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Serverless computing has become increasingly popular as a deployment model for 
microservices. However, not much has been written about its applications in enterprise 
application integration (EAI), namely the practice of sharing data, business rules and 
processes between independently designed applications within an organization. Moreover, 
there is yet little consensus on what constitutes an optimal EAI architecture, making it 
difficult to evaluate the efficacy of serverless in its context. 
 
Using the design science methodology, this research aims to (i) develop an abstract model 
for understanding EAI architecture, and (ii) evaluate the efficacy of serverless computing in 
EAI based on this model. Drawing from research in agile software development, 
organizational structure (U-form and M-form organizations) and transaction cost economics 
(firm boundaries, markets), we establish a theoretical framework in which EAI architectures 
can be understood as vertical hierarchies and horizontal networks involving tradeoffs 
between technological and organizational factors. 
 
From this framework, we first define an abstract model of EAI architecture as a structure 
that seeks to economize on the production, coordination, and vulnerability costs of 
organization, while minimizing transaction costs incurred from search, decision-making, 
and enforcement. Second, we describe the main EAI architectural patterns in terms of our 
abstract model and examine how serverless emerges from this context. Lastly, using a 
hypothetical business case in which several information systems applications must be 
integrated behind a customer-facing channel, we design and implement a serverless 
integration runtime using Amazon Web Services and evaluate its efficacy as an integration 
architecture based on our model. 
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1 Introduction 

1.1 Background 

Serverless is a recent trend in cloud computing that has increasingly been adopted in the 

IT industry. It is offered as a suite of managed services by all major public cloud providers 

including Amazon Web Services, Microsoft Azure and Google Cloud Platform, and has 

been described as the “next-generation cloud” due to its on-demand pricing and full 

application “as a service” functionality (McKinsey 2020). The pay-as-you-go pricing of 

serverless has allowed businesses to shift IT costs from a capex to opex model, in many 

cases dramatically reducing overall spending. Meanwhile, its full application functionality 

has enabled software organizations to greatly decrease their development complexity by 

eliminating the maintenance overhead associated with managing IT infrastructure, thereby 

freeing up developers to focus on developing value-added features. 

 

Discussions around the benefits of serverless have generally focused on its potential for 

production cost savings, as that is usually perceived by buyers as the most salient criteria 

when deciding between containerized and serverless microservices in the cloud. In many 

cases, particularly when load is characterized by alternating peaks and periods of 

idleness, serverless emerges as a clear winner. However, there is yet little general 

guidance on how serverless should be extended more broadly into an organization’s 

enterprise architecture. This is especially the case in Enterprise Application Integration 

(EAI). Approaches to EAI have varied greatly ranging from distributed point-to-point 

integrations to centralized messaging-based Enterprise Service Bus (ESB) systems, and 

the rationales behind their designs are not always clear nor consistent. This makes it 

difficult to understand exactly what problems serverless architecture is meant to solve 

and, consequently, how to optimally implement it in EAI. 

 

Personally, I first encountered serverless in EAI while working as a software engineer in 

the microservices team of a large multinational company. With several thousand 

employees and millions of customers globally, the company maintained a vast number of 

IT systems that were tightly integrated with its B2C digital channels for functions such as 

sales, customer service and marketing. Driven by the need to integrate these systems, the 

company had taken a commercial Enterprise Service Bus (ESB) product into use, which 

provided the centralized integration hub through which its end customers – on channels 

such as the ecommerce website and mobile application – could interface with core back-

office information systems applications such as its CRM. The ESB was supposed to make 

things easier. Instead, it became one of the primary bottlenecks in the software 

development process. Data transformations needed to be coded and maintained in the 



 

 

2 

ESB’s clunky desktop client and required using an abstruse programming language that 

was not widely known. The complexity of the ESB meant that dedicated personnel were 

needed to maintain it, and moreover these people were difficult to find as the skills 

required were not readily available in the job market. Furthermore, it became apparent 

that the ESB had become a common blocker in the development process for many of the 

integrating applications due to its tight coupling with them. Any change to data schemas in 

applications must also be updated in the schema transformations of the ESB, which 

effectively made the ESB tightly coupled with each of the integrating applications and 

therefore a single point of failure. After several years of operating the ESB, the company 

decided to migrate away from the ESB, and through an “exit project” moved all its 

integrations over to decentralized serverless architecture. 

 

What was the driving force behind this series of transformations? Why did the ESB - a 

system designed to solve the problems of distributed application integration using 

centralization - ultimately end up being dismantled in favor of a decentralized, serverless 

approach? In the ensuing chapters, I will attempt to establish a theoretical framework for 

understanding how such widely divergent approaches to EAI emerge to make sense of 

cases like the one I described. 

1.2 Problem Statement 

The problem to be addressed in this thesis can be summarized by the following: 

 

Serverless computing is increasingly being used as an architectural model in EAI, but 

there is at yet little consensus regarding how it should be implemented or evaluated. 

 

Approaching this problem requires a normative framework for EAI - that is, a framework 

that can determine what constitutes a good or optimal EAI architecture - against which 

serverless can be evaluated. A review of the literature on EAI finds that no commonly 

agreed framework exists. Although there is a rich body of literature regarding integration 

patterns, such as those identified by Hohpe and Woolf (2003), it is not always clear why 

certain patterns are preferable to others. Indeed, this is the nature of design patterns - 

they formalize tried-and-tested approaches harvested from past solutions which together 

form a practical pattern language and are therefore fundamentally descriptive rather than 

normative. This makes it difficult to contextualize and evaluate radically new paradigms 

such as serverless computing. Because of this, I must first produce a holistic framework 

where different approaches to EAI can be understood and evaluated before I am able to 

properly contextualize the current use of serverless EAI architecture and evaluate its 

efficacy. A successful outcome of this research would be to provide an organization’s 
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infrastructure or backend team a better understanding of the tradeoffs involved in adopting 

serverless architecture in EAI, as well as a rough blueprint for how to implement some 

integration patterns using serverless technologies. 

 

These objectives can be formulated as the following three research questions, which I will 

attempt to answer throughout the thesis: 

 

RQ1: What are the main existing approaches to EAI and what are their main problems? 

RQ2: How can serverless be used in EAI? 

RQ3: How well does serverless solve the main problems of EAI? 

 

The main target audience of this research are software engineers, solutions architects, 

development managers and product owners of companies where serverless is being 

considered as part of the organization’s cloud EAI architecture. The theoretical portions of 

this research focus on what EAI and serverless are, and why they have evolved into their 

current states. I explore the rationale behind different design patterns and the tradeoffs 

they entail, which I believe would be of value to IT decision-makers such as development 

managers and product owners. The creative portions of the thesis, namely the case 

design and implementation, focus on how serverless can be used for EAI, and are aimed 

at technical stakeholders such as software engineers and solutions architects who might 

be interested in seeing practical examples of how to implement a serverless integration 

runtime. Evaluating how well the design and implementation artifacts perform in turn 

allows us to further determine why serverless should or should not be used for an 

organization’s EAI architecture, bringing us closer to having a prescriptive framework for 

decision-makers. 

 

This research uses the design science research methodology, which seeks to acquire 

knowledge and achieve understanding of a problem domain and its solution by building 

and applying a designed artifact (Vaishnavi, Kuechler & Petter 2004; Hevner, March, Park 

& Ram 2004). A design theory is created through the process of developing and testing an 

information systems artifact, which in turn provides “a means to contribute knowledge by 

offering prescriptive statements and specification of outcomes for a system developed 

based on the theory”. 
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Figure 1. Design Science Research Process Model from Vaishnavi, Kuechler & Petter 

(2004) 

 

A process model formulated by Vaishnavi, Kuechler & Petter (2004) summarizes the key 

process steps involved in the design science research methodology which will be 

undertaken in this research. The application of Vaishnavi’s process model to this research 

can be summarized in the following steps: 

 

(1) Awareness of problem: review the existing literature related to information 
systems and EAI architectures, describe existing approaches and highlight the 
main problems. 

(2) Suggestion: develop a theoretical framework and propose an abstract model for 
evaluating the performance of current and potential solutions; present serverless 
computing as a solution to the main problems of EAI. 

(3) Development: produce a design and instantiation of serverless integration 
architecture as an artifact (instantiation). 

(4) Evaluation: evaluate the artifact using the abstract model developed in (1) and 
provide an assessment of its utility, quality, and efficacy. 

(5) Conclusion: Summarize the knowledge that has been gained through this 
research and suggest possible future studies that can be undertaken. 

 

The following activities and objectives are not included in the project: (i) Full source code 

of the case implementation - the focus of this research is on high-level design rather than 

low-level code details, so code snippets are used sparingly throughout the text and in the 

appendices; (ii) Real-world scenarios and data - this research is limited to a hypothetical 

scenario in order to focus on integration architecture rather than the integration details of 
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each application (e.g. data models, schemas, APIs), meaning that minimal “real” 

enterprise applications are used. 

 

This thesis is structured as follows. In chapter two, I review the existing literature on EAI 

and provide a theoretical framework for evaluating integration approaches from the 

perspective of information systems, technology, organization, and economics. In chapter 

three, I provide a descriptive account of the main approaches that have been used in EAI 

and present serverless computing as the latest evolution in a series of improvements. In 

chapters four and five, I go through the design and implementation of a serverless 

integration architecture using Amazon Web Services (AWS). Finally, in chapter six, I 

evaluate the serverless architecture we developed in chapter four using the theoretical 

framework formulated from section one and conclude with some comments on further 

research 
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2 Theoretical Framework 

2.1 Definition and Scope 

Enterprise application integration (EAI) is the practice of enabling independently designed 

software to work together within an organization through the sharing of data, business 

rules and processes (Gartner 2021). Originally coined to describe integration practices for 

a growing number of business software applications in the 1990s, the term EAI has come 

to refer to both the architectural patterns used for managing software integrations within 

an organization, as well commercially available integration platform as a service (iPaaS) 

and enterprise service bus (ESB) software products that have developed precisely to 

implement these integrations such as IBM MQ, Oracle Service Bus, Microsoft Biztalk, 

MuleSoft, Informatica and Boomi. In this paper, we focus on the architectural definition of 

EAI which refers to the integration patterns between any information systems software 

used within an organization, from large-scale “enterprise” Software-as-a-Service (SaaS) 

applications to small in-house microservices. 

 

The definition of EAI in this research is limited to system integration patterns (i) within an 

organization, and (ii) between independently designed applications. System integration is 

a broad topic in engineering that concerns the aggregation of and coordination between 

subsystems and encompasses everything from software applications to 

telecommunication networks. Our focus with EAI is on the subset of system integrations 

found between software applications within an organization - i.e., within an enterprise, 

corporation, business, or other social entity that has multiple members working together in 

pursuit of a common goal. Furthermore, the integrations that fall under our scope are 

those between independently designed applications, meaning integrations between 

applications that are not necessarily designed to work together. This contrasts with 

integrations between bespoke components of a software platform, for example, as in 

those cases components may be designed with the specific purpose of operating together 

as parts of a coherent system. A typical example scenario that falls under our research 

scope would be a company that integrates several third-party enterprise software 

applications such as HR, payroll, and financial accounting information systems. 

2.2 Information Systems and Enterprise Applications 

The rise of the term enterprise software dates to the 1990s, during which its usage began 

to spread rapidly. As noted in TechCrunch, the adoption of the term by the software 

industry actually owes to the television show Star Trek: The Next Generation - through a 

two-year licensing agreement, the software company Boole & Babbage (now BMC 

Software) launched a Star Trek-branded infomercial campaign in 1993 where it marketed 
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itself as the foremost “Enterprise Automation Company”, catalyzing other companies in 

the industry such as SAP, Baan and Lotus to embrace the “Enterprise” moniker in their 

product offerings (Aziz March 2020). In fact, prior to 1993, software applications that 

served the needs of organizations were much more likely to be referred to as information 

systems software. Every organization has data that needs to be collected, stored, 

processed, and distributed, and with the rise of computers, software applications have 

served as the main technological enabler for the management of these information 

systems. 

 

The arrival of Enterprise Resource Planning (ERP) software to the manufacturing industry 

in the 1990’s proved to be the turning point that spawned the multitude of enterprise 

software applications that we see today. Whereas its precursors - Materials Requirements 

Planning (MRP I) and Manufacturing Resource Planning (MRP II) systems - were used to 

coordinate departments for manufacturing operations, procurement and production 

schedules, ERP enabled the full integration of all departments within a business across 

one single database. Thus, one can view ERP systems as an early attempt to achieve the 

goals of EAI through bundling critical business information systems into one software suite 

of integrated applications. Since the 1990s, information technology has grown into more 

and more business areas, with different departments such as finance, logistics, sales, 

marketing, and HR adopting purpose-built software applications to meet their needs. 

Driven by competitive pressures to lower development costs and shorten application life 

cycles, organizations have increasingly opted to use off-the-shelf software instead of 

having to reinvent the wheel, and this is reflected in the steady expansion of the enterprise 

software market over the past decade. 

 

Today, the enterprise software market offers applications categorized by business 

functions such as accounting, business intelligence (BI), business process management 

(BPM), content management (CM), customer relationship management (CRM), human 

resource management (HRM) and supply chain management (SCM). Organizations often 

have no choice but to adopt off-the-shelf applications into their business information 

systems to stay competitive. While early enterprise applications were typically hosted on-

premises within an organization’s IT infrastructure, the ubiquitous adoption of the internet 

has meant that they have increasingly been offered as cloud services accessible via the 

internet. Improvements in web technology and internet infrastructure during the past two 

decades have further made it possible to achieve highly advanced functionality within web 

applications, leading to increased adoption of web-based enterprise Software-as-a-

Service (SaaS) offerings. For example, Salesforce.com, Workday and NetSuite - popular 

CRM, HR, and financial management applications respectively - are all web-based SaaS 
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platforms accessed primarily via HTTP through a web browser, mobile device, or web 

service APIs. 

 

Enterprise software has acquired something of a bad name over the years for being big, 

slow, and ugly, and the phrase “enterprise software sucks” has become almost a rallying 

cry. This is not without reason. A study by Forrester Research commissioned by Sapho in 

2016 found that despite significant growth in the use of enterprise systems and 

applications, 75% of employees had a hard time accessing information from them (Sapho 

2016). Because enterprise applications typically form a critical component of an 

organization’s core processes, they often end up becoming “legacy” software that are 

difficult to maintain but nonetheless vital for supporting business operations. Perhaps 

because of this, recent years have seen a surge in innovative companies that promise 

greater speed and agility in their enterprise offerings by leveraging cloud computing, 

open-source components, and continuous delivery practices (Williams August 2020). 

 

The reasons are myriad for why enterprise applications have become synonymous with 

big, slow, and legacy software, with some pointing to poor design, nonoptimal value 

streams in B2B sales and within organizations, and conservative corporate culture as a 

few culprits (Nygard 20 February 2009). However, I believe that there is a much more 

basic reason for the reported inefficiencies of enterprise software. Even when an 

enterprise application is fast, well-designed, and functional, it can be difficult to use simply 

because it is not well-integrated with a host of other applications within an organization’s 

network. The increasing scope and complexity of business information systems mean that 

integration between applications can easily become the primary bottleneck. To 

understand why “enterprise software sucks”, we need to look beyond their use in isolation, 

and to the broader information systems within which they operate. 

2.3 What is Integration? 

As the number of software applications grows within an organization, so does the need to 

facilitate communication and data sharing between them. Except for integrations provided 

through standard out-of-the-box adapters and connectors - for example, the marketing 

automation platform HubSpot’s standard connector to Salesforce (HubSpot 2021) - most 

applications operate in silos and cannot communicate with one another by default. End 

users generally access applications through an interface such as a desktop client, web 

browser, or mobile phone, and therefore the most primitive integration process one can 

conceive of would simply be for a person to periodically export and import data manually 

between two applications using these interfaces. Clearly, this is not a sustainable strategy 

- such manual processes would be costly, prone to error, and extremely limited in 
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scalability. The purpose of EAI is to achieve coordination between applications by 

enabling them to share data, business rules and processes with one another efficiently 

and securely through automation. 

 

In a survey of over 380 experts from 44 countries on the topic of API integrations 

conducted by Cloud Elements, 83% of respondents reported that API integration is either 

critical or very important to their greater business strategy, with digital transformation 

(40.3%) and cloud app adoption (27.8%) being the primary reasons (Charboneau 15 June 

2020). Most of the respondents (60.6%) indicated that their integration requirements are 

mostly cloud-based, suggesting that on-premises integrations are dwindling, and in terms 

of investments in integration infrastructure, API management is leading the way over 

iPaaS, SaaS, Enterprise Service Bus, and Message-Oriented Middleware. The highest 

area of demand for integration is for customized APIs that fit specific business processes 

(54.4% of respondents), reflecting the growing customization of digital services within 

organizations and the resulting need to build customized integrations. 

 

 
Figure 2. Distribution of types of applications in enterprise integration, from ONEiO’s 

Integration 2020 report (ONEiO 2020). 

 

A more granular insight into the environments and motives of application integration in 

organizations can be found in Finnish iPaaS company ONEiO’s survey of 100 businesses 

on application integration. The survey found that IT Service Management (ITSM), DevOps 

and CRM tools are the most common types of applications in enterprise integration, 

followed by Finance and ERP, customer service and marketing tools. When asked what 

value integration creates for their business, greater levels of collaboration came out as the 

top response, followed by higher levels of customer service, faster approaches to change, 

becoming more agile and easier adoption of new technology. 
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Table 1. Responses to the question ‘What value do you see integration creating for your 

business?’ from ONEiO’s Integration 2020 Report (ONEiO 2020) 

What value do you see 
integration creating for your business 

Percentage of 
respondents 

Greater levels of collaboration 71% 

Provide higher levels of customer service 64% 

Faster approaches to change 58% 

To become more agile 57% 

Easier adoption of new technology 47% 

Gain better ROI on our software 37% 

Launch products and features more frequently 29% 

More competitive in the marketplace 23% 

2.3.1 Hierarchies and Networks 

Having described the purpose of integrations and examined some of their main use 

cases, we can now look at different approaches to designing integration architectures. 

Gulledge (2006) distinguishes two main categories of software integration which he terms 

“Big I” and “Little i”: While Big I integration can be described as “having all relevant data 

aligned with a single data model and stored only once”, Little i integration is the “the 

interfacing of systems together so they can pass information across a complex technology 

landscape”. The former, reminiscent of the large ERP systems of the 1990s, seeks to 

establish integration through centralization and vertical control over subcomponents, 

whereas the latter seeks to establish integration through the coordination of distributed 

interfaces over a network. This distinction, as we shall see, is at the heart of software 

design as well as enterprise application integration. 

 

When designing software systems, a commonly encountered dilemma is the choice 

between whether to use a small number of large systems or a large number of small 

systems. The former “large systems” approach is what is sometimes referred to as a 

monolith architecture, while the latter “small systems” approach is sometimes referred to 

as a distributed or microservices architecture. The two approaches differ in their degree of 

centralization - monoliths are highly centralized, while microservices are distributed. 

Although this distinction is manifest in software engineering, it exists more broadly in all 

manner of information, social and natural systems. In fields as diverse as biology (Bechtel 

2020), complex systems (Corominas-Murtra, Goñi, Sole & Rodríguez-Caso 2013), political 

science (Jung & Lake 2011), history (Ferguson 2017) and management theory (Kotter 

2011) highly centralized systems have been modelled and referred to as hierarchies and 
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distributed systems as networks. Additionally, systems with clustered networks in which 

parties engage in exchange are typically referred to as markets, although these structures 

are relatively less prevalent in software and information systems. 

 

 
Figure 3. Hierarchy, market, and network models of social organization (Tubaro, 7 April 

2016) 

 

Borrowing from these fields, I will refer to the “large systems” approach (Gulledge’s Big I 

integration) as a vertical hierarchy, and the “small systems” approach (Gulledge’s Little i 

integration) as a horizontal network. As economic historian Ferguson explains in his 

exploration of the roles hierarchies and networks have played in economic and political 

contexts throughout history, while hierarchies are “vertical organizations characterized by 

centralized and top-down command, control, and communication”, networks are 

“spontaneously self-organizing, horizontal structures” requiring “minimal premeditation 

and leadership”. 

 

Table 2. Comparison of high-level characteristics of hierarchy and network. 

Hierarchy Network 

Vertical Horizontal 

Centralized Decentralized, distributed 

Top-down command, control and 
communication 

Self-organizing 

2.3.2 Technology and Organization 

Applying the dichotomy between vertical hierarchies and horizontal networks to the field of 

software engineering allows us to understand the tradeoffs that lie at the intersection of 

technological and organizational factors, based on which we can evaluate the value of 
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different approaches to EAI. Technological factors are computational and generally 

deterministic processes affecting measures such as system design, application 

performance, computing costs, memory usage, energy consumption and algorithmic 

complexity - factors, in other words, which do not involve active, continual human agency. 

Organizational factors, on the other hand, are human, social, and behavioral processes 

such as development practices, communication, knowledge management, code 

maintainability, usability, and team efficiency, which are considered more subjective and 

are highly dependent on social cooperation. For example, a computer program may be 

technologically optimal by having low-order algorithmic complexity, efficient memory 

usage and low computing cost, but at the same time organizationally nonoptimal if it is 

difficult to understand and maintain. Having a holistic framework that takes both 

technological and organizational factors into account is thus necessary to gain a complete 

understanding of the divergent approaches in systems architecture and design. Some 

examples of organizational factors are highlighted in Hevner’s Information Systems 

Research framework (2004) which identifies personal roles, responsibilities, and 

characteristics as well as organizational strategies, structure, culture, and processes as 

relevant environmental factors in the formation of business needs in information systems 

research. 

 
Figure 4. Information Systems Research framework as formulated by Hevner (Hevner & 

al. 2004, 80) 

 

With these factors in mind, we can see that divergent approaches to many software 

design problems can be explained in terms of tradeoffs between the costs incurred by 
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hierarchical and network-based organizational structures. Proponents of vertical hierarchy 

advocate for principles such as “don’t repeat yourself” (or DRY) and data normalization, 

which tend to result in monolithic structures such as shared databases, tight coupling 

between subcomponents and high levels of code abstraction. These choices are based on 

the rationale that they bring about greater data consistency, improved enforcement of 

contracts between software components resulting in fewer human errors, lower 

technological costs (e.g., less idle computing capacity) from economies of scale and 

efficiency from reusable components. The DRY principle states (Hunt & Thomas, 2000): 

 
“Every piece of knowledge must have a single, unambiguous, authoritative 

representation within a system.” 

 

In practice, this means avoiding unnecessary duplication and its resultant complexity by 

using abstractions and data normalization. In software architecture, the DRY principle can 

be found in the object-oriented programming mechanism of class inheritance: a base 

class is used as the blueprint from which sub-classes are derived. In database design, it is 

found in the use of database normalization where a database is structured according to a 

series of so-called normal forms in order to reduce data redundancy and improve data 

integrity. The DRY principle is therefore emblematic of hierarchical design – complexity is 

reduced by imposing a single, authoritative source of control to which subsystems are 

subordinate. 

 

On the other hand, proponents of horizontal networks actively resist normalization and 

code abstraction in favor of loose coupling, independent deployability, and encapsulation, 

which tend towards patterns such as agile and microservices architecture. These choices 

are based on the idea that they enable teams to develop applications more autonomously, 

thereby reducing costs incurred from interdependency risks, increasing experimentation, 

decreasing cycle time, and improving continuous delivery. 

 

In EAI, hierarchies and networks similarly underlie divergent approaches to structuring 

coordination between applications. An enterprise consisting of independently designed 

applications is, by definition, a decentralized network. However, integration architectures 

diverge in the degree of hierarchy which they impose on the network, and just as there are 

differences in software design between monoliths and microservices, there are differences 

in integration design regarding just how hierarchical or decentralized an integration 

architecture should be. An evaluative framework would therefore be valuable to decision-

makers who need to choose between implementing either a vertical hierarchy or a 

horizontal network in their integration architecture. Such a framework would need to be 

able to evaluate both technological and organizational factors, which work in tandem to 
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produce value in an organization. In fact, when analyzing system architecture as we are 

doing in this paper, we must find a level of abstraction where human agents (e.g., 

programmers, software users) and computer systems (e.g., software applications, 

integration systems) can be modelled transitively based on a set of shared, fundamental 

organizational structures. 

 

Borrowing from Malone and Smith (Malone & Smith 1984), we establish this level of 

abstraction by defining an organization as a group of agents which consist of either people 

or machines. To organize is to establish the goals of the organization, segment the goals 

into separate activities, and assign the activities to agents in such a way that the overall 

goals are achieved. This abstraction allows us to evaluate technological and 

organizational factors as interchangeable parts of shared processes. In the context of EAI, 

the assignment of activities to agents - referred to by Malone and Smith as the “task 

assignment problem” - is the orchestration of integrations between applications, which 

consists of both organizational processes as well as specific integration technologies. 

2.4 Normative Frameworks 

Having examined the role technological and organizational factors play in EAI, we can 

now begin exploring what constitutes a good EAI architecture by developing a theoretical 

framework with which we can evaluate different approaches. We do so by drawing from 

several normative frameworks that have been used in the context of information systems: 

information system agility, efficiency and scalability, and transaction cost economics. 

2.4.1 Information System Agility 

One approach to evaluating EAI is to refer to descriptive characteristics that are 

considered as norms. In recent years, agility has increasingly been regarded as a norm, 

being embraced by organizations from small startups to Fortune-500 companies. Large 

corporations have adopted Scaled Agile Framework (SAFe) and Large-Scale Scrum 

(LeSS) in their organizations, and a growing number of agile experts have created 

something of a cottage industry providing coaching, training, and certification in agile 

methodologies. Given its prevalence, can information system agility be used as the 

normative framework - the touchstone or measuring stick, so to speak - against which the 

technological and organizational factors of EAI architectures can be evaluated? 
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Figure 5. Google Trends data for worldwide interest in topic “Agile Framework” since 2004 

 

 
Figure 6. Google Trends data for worldwide interest in the topic “Microservices” since 

2004 

 

Chaudhary, Hyde and Rodger (2017) define information system agility as the ability of an 

information system to “sense a change in real time; diagnose it in real time; and select 

and execute a response in real time”. A list of benefits compiled from academic literature 

and validated using qualitative empirical data from practitioners include reduced time to 

implement changes, increased robustness of implemented changes, increased efficiency 

and effectiveness of existing business processes, and the ability to respond rapidly to 

security threats like virus attacks and cyberattacks. Taking a hermeneutic approach to 

analyzing information systems, it seems that a good EAI architecture is one that increases 

information system agility. 

 

How, then, can EAI architecture increase information system agility? One answer lies in 

organizational communication structure and its relationship with system design. The 

organizational factors described by information system agility are largely related to 

communication, such as team structure, interdependency management, task prioritization 

and so on. In the software industry, it has been widely observed that the design structure 

of an organization’s software tends to mirror its communication structure. This mirroring 

between systems design and organizational structure is codified by Conway’s law 

(Conway 1968), which states: 

  
“Any organization that designs a system (defined broadly) will produce a design whose 

structure is a copy of the organization's communication structure.” 
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Conway’s law has been supported by empirical research, most notably a study of the 

“mirroring hypothesis” comparing open-source software organizations to commercial ones 

which found that loosely coupled organizations in the software industry tend to produce 

more modular designs (MacCormack, Baldwin & Rusnak 2011). While Conway’s law hints 

at causality flowing from organizational structure to systems design, we can also infer 

causality as flowing in the opposite direction. To take MacCormack’s case of open-source 

software organizations, for example, one can point to distributed version control systems 

as the key technology that enables loosely coupled organizational structure. 

 

Being the centerpiece responsible for enabling coordination between different systems, 

EAI serves as the bedrock from which an organization’s communication structure 

emerges. Using the characteristics of vertical hierarchies and horizontal networks, we can 

compare software design structures to agile organizations to identify what types of EAI 

design are most conducive to agility. Agile characteristics such as “collaboration” and 

“self-organizing teams” match quite well our definition of horizontal networks as 

“spontaneously self-organizing, horizontal structures” requiring “minimal premeditation 

and leadership”. Indeed, technologies that we have described as being based on 

horizontal networks, such as microservices, are often implemented in the context of agile 

transformation. 

 

In other words, for an organization to achieve information system agility, it needs to have 

an EAI architecture in place that enables coordination between applications to be self-

organized, independent, and loosely coupled. This fits conveniently into the current 

technological trend of microservices who’s decentralized and network-like characteristics 

mirror those of the agile organizations in which they are used. 

 

Table 3. Comparison of hierarchies and networks in the context of technological factors 

Technology Hierarchy Network 

Infrastructure Shared Independent 

Applications Monolith Microservice components 

Communications 
Architecture 

Closely coupled 
Hub-and-spoke 

Loosely coupled 
Clustered, point-to-point 

Development capabilities Code reuse 
Shared database 
Tight coupling 

Duplicated code and data 
Database-per-service 
Loose coupling 
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Table 4. Comparison of hierarchies and networks in the context of organizational factors 

Organizations Hierarchy Network 

Strategies Integration management 
Standardization 
Economies of scale 

Self-organization 
Agility 
Experimentation 

Structure & Culture Function-based 
Tightly-coupled 

Product-based 
Loosely-coupled 

Processes Phase-gate 
Push-based 

Scrum / Kanban 
Pull-based 

 
Table 5. Comparison of hierarchies and networks in the context of people factors 

People Hierarchy Network 

Roles Project Manager 
Development Manager 

Product Owner 
Scrum Master 

Capabilities Specialized End-to-end (full stack) 

Characteristics Top-down decision-making Bottom-up decision-making 

 

However, I find this approach to be incomplete and rather limiting as an evaluative 

framework. Information system agility simply highlights that characteristics of horizontal 

networks and decentralization are valued in certain aspects of organizational structure - it 

is not enough to conclude that we should therefore always design systems with 

characteristics of a horizontal network. In fact, as we shall later discuss, an organization is 

fundamentally a hierarchical structure, and agility is a way to gain competitive advantage 

through selective network characteristics. 

 

This is true also for EAI - integration is fundamentally a hierarchical process imposed 

upon a network but incorporating network characteristics such as loose coupling and self-

organization may increase its efficiency. The rising popularity of decentralized, network-

based technologies certainly does not invalidate the benefits of hierarchical ones, as we 

can see in the case of monolithic applications and more recently with the resurgence of 

the monorepo version control strategy. Hierarchical patterns are in many cases still 

preferred by organizations over decentralized design for a multitude of reasons. 



 

 

18 

 

The real question, therefore, is why selective network characteristics are considered more 

efficient within fundamentally hierarchical organizations (for example, self-organizing agile 

software teams within a company that has management and a CEO). To have a more 

robust normative framework, we need to examine more fundamental normative criteria 

than the ones offered by agility. So, it is to economic efficiency and cost benefit analysis 

we turn to next. 

2.4.2 Efficiency and Flexibility 

The most basic normative criteria shared by all industrial organizations is economic 

efficiency, with cost-benefit analysis (CBA) being the primary tool for evaluation. In the 

domain of information systems and software engineering, this is not as straightforward as 

calculating the production cost savings of a technology under evaluation. As our earlier 

analysis has shown, technological choices can have large spillover effects on 

organizational structure, meaning that organizational impact needs to be factored into the 

CBA of any technology choice. This can be challenging, as the benefits of organizational 

factors such as collaboration are difficult to quantify and therefore easily hidden. 

 

Malone (1985) provides a model of organizational structure defined in terms of tradeoffs 

between production costs, coordination costs, and vulnerability costs. Production costs 

are the “costs of performing the basic tasks necessary to achieve the organization's goals” 

(Malone 1985, 10), which in the context of information systems include the costs of 

computing infrastructure, software licenses, wages, etc. Coordination costs are the 

“overhead” required to manage and delegate tasks within an organization, which typically 

fall under the purview of managers. Vulnerability costs are the “unavoidable costs of a 

changed situation that are incurred before the organization can adapt to the new situation” 

(Malone 1985, 10) - for example, lost competitiveness during economic or technology 

shock. These costs underlie organizational efficiency, consisting of production and 

coordination costs, and flexibility, consisting of coordination and vulnerability costs. 
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Table 6. Examples of U-Form and M-form governance structures from Qian, Roland & Xu 

(1999) 

 U-form M-form 

Government France and Japan: Power 
centralized in specialized 
ministries. Regional governments 
have few powers. 

American federalism: large 
powers held by states. States 
initiate and experiment with 
changes. Successful initiatives 
are imitated by other states. 

Economy Soviet “branch organization”: 
production is organized into 
functional ministries (mining, 
machinery, textile, etc.) each 
responsible for a specialization 
and controlling gigantic factories. 

Chinese “regional 
organization”: production 
organized geographically 
(provinces, prefectures, 
counties, townships, villages) 
into semi-autonomous units. 

Corporation Ford Motor Company (pre-WWII): 
highly specialized departments 
(production, sales, purchasing) 
each dependent on one another  

General Motors under Alfred 
Sloan: collection of self-
contained divisions (Chevrolet, 
Pontiac, Oldsmobile) 
 

 

In this model, we can define two main organizational forms in terms of the tradeoffs they 

make between production, coordination, and vulnerability costs: these are the U-form 

(unitary form) and M-form (multidivisional form) organization (Qian, Roland & Xu 1999). A 

U-form organization groups similar tasks into functional units which are shared among 

products, where operational processing and decision making of all products must be 

coordinated through a central “executive office”. This organizational form achieves 

efficiency through specialization and economies of scale, thereby economizing production 

costs at the expense of incurring relatively high coordination costs. 

 

An M-form organization, on the other hand, is decomposed into self-contained units 

containing complementary tasks which require relatively little coordination with a 

centralized hub. It therefore achieves efficiency and flexibility by economizing coordination 

costs, at the expense of incurring relatively high production costs from lack of functional 

specialization or economies of scale. While Malone suggests that neither organizational 

form is better equipped than the other to mitigate vulnerability costs, Qian, Roland, and Xu 

(2006) provide evidence to the contrary. The flexibility resulting from coordination 

advantages of M-form organizations, Qian & et al. argue, effectively lowers the cost of 

learning and results in higher propensity to innovate, which confers a dynamic advantage 

allowing M-form organizations to mitigate vulnerability costs more effectively. 

 

A market, meanwhile, is an organizational form that falls outside of firm boundaries and 

which can be centralized, as in the case of the stock market (which is quite like a 



 

 

20 

functional hierarchy), or decentralized, as in a consumer market for automobiles. From the 

perspective of a firm, a market presents an organizational form where tasks can be 

completed outside of the firm boundaries, for example in cases where a task is 

outsourced to another firm. This relationship between firms and markets is at the heart of 

outsourcing and software-as-a-service and will be covered in more detail later when we 

discuss transaction cost economics. For now, it suffices to say that markets offer another 

option for task completion beyond U-form and M-form structures. In Malone’s words 

(1985, 13): 

 
“One of the important insights from the literature of organizational theory and economics 

(e.g., see Williamson, 1975) is that the same tasks can, in principle, be coordinated by 
either a market or a hierarchy. For example, General Motors does not need to make all the 

components that go into its finished products. Instead of manufacturing its own tires, for 

instance, it can purchase tires from other suppliers. When it does this, it is using a market 

to coordinate the same activities (i.e., tire production) that would otherwise have been 

coordinated by hierarchical management structures within General Motors.” 

 

Based on Malone’s model, information system agility can be understood as an 

organizational structure that optimizes flexibility. An agile organization mitigates the 

vulnerability costs of technology shock through its ability to “sense a change in real time; 

diagnose it in real time; and select and execute a response in real time”, while also 

economizing on coordination costs through its ability to self-organize. In other words, we 

can interpret an agile organization as following an M-form governance structure - it 

achieves efficiency and flexibility by economizing on coordination costs, while forgoing 

economies of scale and incurring relatively higher production costs due to a lack of 

functional specialization. 

 

Table 7. Comparison of U-form and M-form organizations in terms of production, 

coordination, and vulnerability costs 

 U-form M-form  

Production costs Low - specialization into 
reusable functions, 
economies of scale 

High - replication due to self-
contained units 

Coordination costs High - decision-making must 
be coordinated through a 
central “executive office” 

Low - decision-making done by 
self-contained units 

Vulnerability costs High - lower propensity to 
innovate and adapt to shock 

Low - higher propensity to 
innovate and adapt to shock 
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Returning to our distinction between vertical hierarchies and horizontal networks in EAI 

architecture, we see that the U-form organization aptly describes a vertical hierarchy and 

shares many characteristics with monolithic design and waterfall organizations. M-form 

organizations and markets, on the other hand, are self-organizing and comparatively 

decentralized, and thus have characteristics of a horizontal network. It is important to note 

here that in the terminology of economics, both U-form and M-form organizations are 

technically hierarchies, and therefore I run the risk of confusing the reader by calling M-

Form organizations networks. To clarify my comparison, when I refer to the M-form 

organization as a network, it is primarily to contrast with the relatively hierarchical 

structure of the U-form organization. Drawing upon examples from Qian et al.’s empirical 

research and applying our insights from the previous section on Conway’s Law, we can 

therefore categorize software and integration architectures under U-form and M-form 

organizations as illustrated in the table. 

 

Table 8. Comparison of U-form and M-form organizational structures expressed in 

software teams, software architecture, integration architecture 

 U-form (Hierarchy) M-form (Network) 

Software Teams Waterfall: large, specialized 
teams (analysts, designers, 
developers, testers) each 
responsible for a certain stage 
in linear development. 
Centralized decision-making 
and integration management. 

Agile: small, self-sufficient, and 
cross-functional teams (analysts, 
designers, developers, testers) 
with ownership of a product 

Software 
Architecture 

Monolithic application: single-
tiered structure containing 
interdependent components; 
service-oriented architecture 

Microservices: application 
composed of independent, 
distributed components each with 
a single responsibility 

Integration 
Architecture 

Centralized 
Hub-and-spoke 
Enterprise Service Bus 

Distributed 
Microservices 
Serverless 

 

Viewing hierarchical architectures as U-form and horizontal network architectures as M-

form helps us understand the strategies that each one follows in terms of the tradeoffs 

they make. Hierarchical integration architectures and monolithic applications (i.e., U-form 

structures) have low production costs due to their advantage of being able to reuse code, 

share business processes and form specialized teams responsible for specific 

functionalities. This economizing on production costs is most evident in service-oriented 

architecture, where application components are encapsulated and shared as reusable 

services over an exposure gateway. By contrast, microservice and distributed system 

architectures (i.e., M-form structures) often require setting up a larger number of 
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computing environments, deploying replicated code, and having less specialized teams, 

thereby incurring greater production costs. 

 

On the other hand, horizontal network architectures have lower coordination costs when 

compared to hierarchical architectures. In hierarchies such as a monolithic application, 

tightly coupled functional dependencies mean that a change in one component will likely 

have an impact on another component. Practically, this means that hierarchically 

structured software development teams frequently bottleneck each other in the 

development cycle, resulting in slower delivery and delayed time-to-market, as well as 

higher chances of incurring costs from unmitigated interdependency risks such as system 

failures. As briefly examined in the discussion concerning agility, hierarchical architectures 

also suffer from higher vulnerability costs. While microservice architectures enable teams 

to decide their own technologies, programming languages and tools, hierarchical 

architectures such as iPaaS or ESBs often require a standardized toolset and 

programming language. This is good for developing specialization and achieving 

efficiency through economies of scale, but if the standard toolset and programming 

language become supplanted by vastly superior technologies, the organization can suffer 

huge costs from lost competitiveness. Security vulnerabilities present a similar risk. 

Microservices, on the other hand, not only are able to adapt to shock much more quickly 

due to their low coordination costs but are also in a much better position to continually 

innovate and capitalize on disruptive technologies due to their flexibility from self-

organization. In the information technology industry in particular, vulnerability costs can be 

existential threats, while the opposite - the ability to innovate through disruptive 

technologies - has often served as a ticket for market entry and, in some cases, 

dominance. 

 

Using this model, we can evaluate the efficacy of an EAI architecture for a particular 

organization by analyzing its impacts on the organization’s production, coordination, and 

vulnerability costs. For example, an organization that has a highly effective 

communication structure with only a few employees, such as a small startup company, 

might not benefit much from economizing coordination costs, and therefore a hierarchical 

integration architecture that economizes on production costs may be the optimal choice. 

By contrast, a large company with many products and information systems might find that 

high coordination costs far outweigh production costs, in which case a vertical network 

EAI architecture may be the optimal choice. This not only provides us with a normative 

framework based on CBA which we can use to evaluate the efficacy of an EAI 

architecture, but also helps us understand how EAI has evolved through the years. 
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In the three decades since Malone formulated this model, however, several technological 

developments including the internet, personal computing, and vastly improved 

computational processing power have tipped the scale over to horizontal networks. These 

technological developments have dramatically lowered both production and coordination 

costs, which I believe partially accounts for the growing enthusiasm we see today for 

horizontal network strategies such as agile, microservices, cloud computing and 

serverless. Incredibly, Malone predicts some of these developments in 1985. First, 

Malone postulates that if the “unit costs” of coordination - i.e., transmitting and processing 

information - decrease, then “coordination mechanisms that would previously have been 

prohibitively expensive will, in some situations, become affordable.” (Malone 1985, 22) I 

believe this is precisely what has occurred as today’s instant messaging, project 

management, email, and version control technologies have rendered Malone’s concept of 

coordination costs almost unrecognizable. Many of today’s firms have low explicit 

coordination costs but extremely high interdependencies among units, a model that 

doesn’t quite fit into either U-form or M-form. Second, Malone predicts that information 

technology should lower transaction costs (a concept we will return to shortly) which 

should consequently make “markets more efficient and therefore more desirable as 

coordination mechanisms” (Malone 1985, 23). This is an incredibly prescient statement, 

as we have seen the meteoric rise of IT outsourcing, Software-as-a-Service, and cloud 

computing in the past two decades. Third, Malone predicts that the effect of decreasing 

coordination costs from IT will result in an increase in market-like organizational 

mechanisms within firms. In Malone’s words (Malone 1985, 24): 

 
“Another, and perhaps more likely, possibility is that coordination mechanisms like those in 

a market will come to be used more and more inside large firms. For example, the 

widespread use of electronic mail, computer conferencing, and electronic markets (e.g., 

Hiltz & Turoff, 1978; Johansen, 1984: Turoff, 1984) can facilitate what some observers 

(e.g., Mintzberg, 1979; Toffler, 1970) have called "adhocracies," that is, rapidly changing 

organizations with many shifting project teams composed of people with different skills and 

knowledge. These organizations can rely heavily on networks of lateral relations at all 

levels of the organization rather than relying solely on the hierarchical relations of 
traditional bureaucracies to coordinate people's work (e.g., Rogers, 1984; Naisbitt, 1983).” 

 

Quite astoundingly, Malone’s description of these hypothetical “adhocracies” seems to 

exactly describe the agile teams we see today. As the drastic technological 

transformations postulated by Malone have been rendered a reality over the past three 

decades, they also bring with them complexities that are not accounted for in Malone’s 

original model. In particular, the market-like mechanisms that Malone postulates would 

emerge within large firms is now readily observable in the case of enterprise integrations 

and have in fact created novel difficulties that perhaps were not imaginable in 1985. To 
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understand what these difficulties are and how we can tackle them, we turn next to 

transaction cost economics, a field within economics that studies the complex relationship 

between firms and markets. 

2.4.3 Transaction Cost Economics 

Transaction cost economics has been used in information systems research as a 

theoretical framework for evaluating the economic impact of information technology 

(Ciborra 1983). It posits that “the optimum organizational structure is one that achieves 

economic efficiency by minimizing the costs of exchange” (Young 2013), where these 

costs of exchange can be understood broadly as the costs of running the economic 

system of firms. A subfield within the discipline of economics, transaction cost economics 

has primarily been applied to the analysis of firms and markets. Particularly, with its early 

formulation by Ronald Coase (1937), transaction cost economics examines why firms 

emerge in the first place when individuals can freely engage in bilateral trade through the 

price mechanism of markets. As Coase examines, “in view of the fact that it is usually 

argued that co-ordination will be done by the price mechanism, why is such organization 

necessary?” 

 

The answer, as postulated by Coase and elaborated by Williamson (1991), is that firms 

emerge because they economize on the transaction costs of exchange and production 

more efficiently than individuals do. In markets, transaction costs are defined as the total 

costs of making a transaction (excluding, from a buyer’s perspective, the price of the good 

or service itself) and can be divided into three broad categories which constitute the 

different phases of a transaction: 

1. Search and information costs, involved in determining the price and availability of a 
product or service on the market. 

2. Bargaining and decision costs, such as contract negotiation, bidding, auctioning, 
and other activities required for two parties to come to an agreement on a 
transaction. 

3. Policing and enforcement costs, namely the costs of monitoring and enforcing the 
terms of a transaction, including recourse to litigation when terms are violated. 

 

Williamson, who received a Nobel Prize in Economics largely based on his work on 

transaction cost economics, theorized that where transaction costs are high, hierarchical 

governance structures such as firms will tend to form. On the other hand, where 

transaction costs are low, transactions will tend to take place between individuals in 

market structures, with minimal intervention from firms. Williamson thus provides us with a 

framework for understanding not only why firms emerge, but how they determine which 

transactions to include within their scope. As Coase explains when examining the 

boundaries of a firm’s scope (Coase 1937): 
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“At the margin, the costs of organizing within the firm will be equal either to the costs 

of organizing in another firm or to the costs involved in leaving the transaction to be 

‘organized’ by the price mechanism”. 

 

In other words, transaction costs set the natural boundaries of a firm. As Malone 

accurately predicts, information technology has dramatically reduced transaction costs 

and consequently shifted firm boundaries and organizational mechanisms towards 

markets. We observe this readily in the growth of IT consulting and the SaaS, PaaS and 

IaaS industries. Information technology has made it incredibly easy for organizations to 

purchase software and services from a market rather than developing in-house 

competences and solutions, with cloud computing being a salient example. Instead of 

organizing IT infrastructure tasks through internal M-form or U-form structures, an 

organization can now resort to a market solution where a server can be provisioned in a 

matter of a few clicks and automatically billed electronically based on usage. From the 

perspective of the vendor, cloud computing can perhaps be analyzed as the product of a 

hierarchical U-form structure economizing on production costs through economies of 

scale - infrastructure-as-a service is born out of the cloud vendor’s extreme specialization 

in developing computing infrastructure and operations, which low transaction costs (i.e., 

internet) have enabled the commercialization of. From the perspective of a firm, however, 

cloud computing in fact serves as an enabler for a decentralized M-form organizational 

structure. With infrastructure tasks outsourced away, software units can be more self-

organized and have less interdependencies with one another. This is perhaps what 

Malone means when he suggests that “coordination mechanisms like those in a market 

will come to be used more and more inside large firms” (Malone 2003, 24) - decentralized, 

on-demand services have become so highly integrated into enterprise architectures that 

the distinction between market and firm can become blurred, making organizations more 

and more characteristic of horizontal networks. 

 

While transaction cost theory (TCT) has been used to explain the emergence and role of 

IT systems such as enterprise applications and electronic marketplaces in business 

(Laudon, Laudon & Brabston 2005), little has been written about its impact on information 

systems architecture. As pointed out by Cordella (2006), much of the information systems 

literature invoking TCT has presented IT systems as hierarchical structures which solve 

“inefficiencies in the organization of transactions in complex and uncertain settings” and 

focuses incorrectly on the direct positive effects such systems have on “information flow, 

distribution, and management”. For instance, an organization can dramatically decrease 

the transaction costs of finding and purchasing its products by setting up an online 

ecommerce store. But what about the costs incurred from online customer service, 
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handling online return policies, and maintaining the internet payment system? These are 

transaction costs that emerge because of the ecommerce system, and it would be short-

sighted for an organization to not take them into account when making a technology 

decision. As Cordella explains, transaction costs “in fact often increase as a consequence 

of the adoption of ICT…because of the associated extra costs required to accommodate 

the more complex environment that emerges”. Cordella’s central point is that while studies 

in information systems research have invoked TCT to positively evaluate the adoption of 

ICT systems, they have largely failed to consider the negative externalities that these 

systems produce and are therefore flawed. Cordella does not argue that TCT is of no 

value to information systems research, only that the existence of these negative 

externalities in organizational environments forces us to rethink the way TCT should be 

used in evaluating the impacts of ICT systems. 

 

Notwithstanding Cordella’s critique of the use of TCT in information systems, we restate 

the function he presents for capturing the transaction costs of a specific exchange here 

(Cordella, 2006): 

 
𝑇𝑐	 = 	𝑓(𝑈; 𝐶; 𝐵𝑟; 𝐼𝑎; 𝐴𝑠; 𝑂𝑏; 𝐶𝑐) 

 

where 𝑇𝑐 is transaction costs, 𝑈 is uncertainty, 𝐶 is complexity, 𝐵𝑟 is bounded rationality, 

𝐼𝑎 is information asymmetry,  𝐴𝑠  is  asset specificity,  𝑂𝑏  is  opportunistic behaviour, and  

𝐶𝑐  is coordination costs. 

 

As the reader may recall from Malone’s discussion, one of the impacts of IT on 

organizational form is that “coordination mechanisms like those in a market will come to 

be used more and more inside large firms” (Malone 2003, 24). Indeed, as we look at 

today’s enterprise architectures, the boundaries between in-house and SaaS applications 

are blurring as we see an increasing number of software products being offered for all 

manner of business use cases. Effectively, the IT organizations of many large companies 

have moved away from developing in-house software to essentially becoming API 

brokers, tasked with integrating different commercial products or open-source software 

packages together. This phenomenon emerged because technologies such as the 

internet have enabled transaction costs to become so low that markets are more and 

more frequently able to outcompete and therefore displace organizational functions. The 

result is that the organizational environments that software teams find themselves in today 

might no longer bear resemblance to the neat U-form and M-form structures that Malone 

describes, but something more akin to M-form - i.e., decentralized, self-organizing agile 

units - with extremely high interdependencies between units as well as with units outside 

of firm boundaries (e.g., external SaaS integrations). 
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Given this background, we can model enterprise integrations through the transaction cost 

lens of market mechanisms. Assuming a hypothetical scenario in which an organization’s 

enterprise architecture is governed fully by market mechanisms, let’s take a transaction to 

refer to the implementation or maintenance of an integration between two applications. 

Extrapolating each of these factors from markets to EAI yields the following 

 

Table 9. Transaction cost factors applied to the context of EAI 

Transaction 
Cost Factor 

Application in the context of EAI architecture 

Uncertainty Likelihood that the integration fails to be completed on time or fails 

to operate in production 

Bounded 

rationality 

Extent to which developers and other ICT stakeholders do not act 

rationally - they may make incorrect assumptions about 

technologies, misunderstand requirements and produce bugs, 

particularly as complexity increases 

Information 

asymmetry  

Extent to which individuals responsible for building and maintaining 

the integration do not have information about the data, business 

rules and processes involved in the integrating applications 

Asset 

specificity 

 

Degree to which the personnel, tools, time and other resources 

invested in developing the integration are specific to the integration 

and not redeployable in other contexts  

Opportunistic 

behavior 

Likelihood that stakeholders act in their own self-interest rather than 

the interest of completing the integration. Admittedly, this is a 

feature that is quite specific to the context of markets and is 

therefore not really relevant for intra-organizational analysis, since 

organizations are formed precisely to mitigate these opportunistic 

market behaviors. We will therefore not use this factor in our 

analysis. However, it could in theory be applied to analyze the 

incentives and behavior of development teams, particularly in cases 

where subcontracting or consulting is used, as those cases are 

indeed characterized by market transactions 

Coordination 

costs 

Costs of coordinating requirements and tasks between different 

teams, tools, and stakeholders (known as integration management 

in traditional project management) 
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Cordella points out that each of these factors have high interdependencies with one 

another, and therefore when evaluating their role in the design of an EAI architecture we 

are unlikely to be able isolate the effects of any single factor. As he explains, while 

previous information systems research has often attempted to reduce the transaction cost 

effects of a single factor, “Transactions costs are not only the sum of the costs generated 

by the different factors, but are influenced by the imbricate, interdependent relationship 

between them”. It would thus be mistaken to provide any prescriptive framework based on 

an isolated transaction cost factor - rather, these factors must be considered, in a sense, 

as an emergent whole. 

 

Applying these transaction cost factors to the three different phases of a transaction by 

yields the following: 

● Search and information costs: In EAI, this corresponds to interface discovery - 
namely, the costs involved in documenting, managing, and searching for 
integration interfaces such as API endpoints and specifications. As an example, a 
vertical hierarchy may lower the cost of finding an integration interface by 
centralizing them all into one exposure gateway (decreased information 
asymmetry). Depending on how this is implemented, however, this centralized 
exposure gateway may result in increased transaction costs caused by information 
overload (increased bounded rationality), single-point-of-failure (increased 
uncertainty) and costs from specialized tooling (increased asset specificity) 

● Bargaining and decision costs: This corresponds to the development required for 
protocol translation and data transformation between applications in EAI. Again, a 
vertical hierarchy may prevent the need to build separate transformations between 
each node by providing a hub-and-spoke architecture with a standard protocol and 
data model (decreased coordination costs), while at the same time incur greater 
sunk costs by investing in tools and personnel specific to the integration platform 
(increased asset specificity), and making deployment processes less transparent 
to those not involved in managing the integration hub (increased information 
asymmetry) 

● Policing and enforcement costs: In EAI, this corresponds to the operations, 
administration, infrastructure management, monitoring and security analysis 
required to maintain the integration runtime. 

 

Examining these transaction cost factors in the context of EAI architectures allows us to 

properly consider the emergent, negative externalities that EAI can produce in enterprise 

information systems, which in turn allows us to evaluate the suitability of an EAI 

architecture more accurately for an organization. 
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2.5 Abstract Model 

Having reviewed the normative frameworks presented by information system agility, 

organizational efficiency and flexibility, and transaction cost economics, we now have the 

theoretical basis on which to develop an abstract model for evaluating different 

approaches to EAI. From our analysis of information system agility, we saw that agility can 

be defined more robustly in terms of efficiency and flexibility, which in turn can be 

expressed as tradeoffs between production, coordination, and vulnerability costs. These 

tradeoffs are identified in two main organizational forms, one defined by a vertical 

hierarchical (U-form) which economizes on production costs to achieve efficiency, and the 

other by a horizontal network (M-form) which economizes on coordination and 

vulnerability costs to achieve flexibility. Further, we found that as information technology 

dramatically lowers both the unit costs of coordination and the transaction costs of 

exchange, coordination mechanisms that were once prohibitively expensive - such as IT 

outsourcing, SaaS solutions and cloud computing - have become affordable, meaning that 

market mechanisms have effectively become an integral part of the organizational 

structure of firms. Therefore, the transaction costs of market mechanisms, particularly the 

costs of search and information, bargaining and decision, and policing and enforcement, 

must now be accounted for as negative externalities when evaluating the impact of an EAI 

architecture. 

 

We can summarize this abstract evaluative model as follows: 

 

An effective EAI architecture is one that economizes on the production, coordination, and 

vulnerability costs of organization, while minimizing negative externalities incurred from 

search, decision-making, and enforcement. 

 

With this abstract model, we are now equipped with the concepts and language needed to 

describe and evaluate the different types of integration patterns and integration 

architectures that can be found in EAI. 
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3 Enterprise Application Integration 

3.1 Integration Patterns 

In Enterprise Integration Patterns, Hohpe and Woolf (2003) provide a pattern language for 

enterprise application integration that has been widely used in the software industry and 

implemented in EAI and message-oriented middleware frameworks such as Spring 

Integration and Apache Camel. These design patterns document and formalize tried-and-

tested approaches to integration that have been harvested from real-world solutions, 

which together form an integration pattern language we can refer to. 

 

Hohpe and Woolf distinguish four main integration styles in EAI, which can be considered 

top-level approaches on which integration patterns are based. These are File Transfer, 

Shared Database, Remote Procedure Invocation and Messaging. While all four integration 

styles are widely used as part of an integration architect’s toolkit, messaging is the most 

powerful of the four given its loosely coupled and asynchronous nature - as such, 

messaging is the only integration style that is covered by Hohpe and Woolf’s integration 

patterns and offered in EAI frameworks such as Apache Camel. In this section, we’ll go 

through each of the integration styles and touch briefly upon two common messaging 

integration patterns: the point-to-point and publish/subscribe messaging. 

3.1.1 File Transfer 

 

 
Figure 7. Diagram of the File Transfer integration style (Hohpe & Woolf 2003) 

 

In File Transfer integrations, each application produces files or shared data for others to 

consume and consumes files that other applications have produced. Integrators take the 

responsibility of transforming the files into a format that is both readable and processable 

by the consuming system. These tend to be COBOL file system formats for mainframe 

systems, text-based files such as CSV for Unix systems, and XML or JSON for more 

modern applications. 

 

File Transfer integration is useful for importing and exporting tabular data, particularly 

when integrating with legacy systems which might not have APIs. It is often used for 
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loading data into relational databases through CSV files, a format that is widely used by 

end users to manage data in office applications such as Microsoft Excel. In the era of 

web-based enterprise software, File Transfer integration is typically accomplished by 

setting up a Secure File Transfer Protocol (SFTP) server or a cloud object storage service 

such as an Amazon S3 bucket, on which other applications can upload their files in the 

specified format. These files can then be ingested into the application by invoking a trigger 

or through a scheduled CRON process. 

 

3.1.2 Shared Database 

 

 
Figure 8. Diagram of the Shared Database integration style (Hohpe & Woolf 2003) 

 

Shared Database integrations ensure that applications are always consistent by having 

them utilize the same underlying database. This is usually facilitated by a database 

transaction management system which ensures that simultaneous updates to the same 

piece of data are handled gracefully through rollbacks and error handling. The governing 

principle in this approach is centralization: Shared Database integrations aim to achieve 

consistency between applications by enforcing a single source of truth. 

 

This is the integration style used internally in the software architectures of large ERP and 

CRM enterprise applications such as SAP, Salesforce, and other large enterprise SaaS 

products. In the context of application integration, a shared database between several 

applications provides a powerful way to enforce data consistency, but also creates tight 

coupling between applications which can be detrimental to both development efficiency as 

well as runtime performance. 
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3.1.3 Remote Procedure Invocation 

 

 
Figure 9. Diagram of the Remote Procedure Invocation integration style (Hohpe & Woolf 

2003) 

 

In Remote Procedure Invocation (RPI), each application is developed as a large-scale 

object or component with encapsulated data but exposes some of its procedures through 

an interface through which these procedures can be remotely invoked by other 

applications. The governing principle behind this integration pattern is encapsulation: each 

application maintains the integrity of the data it owns and can alter its internal data without 

affecting every other application. If an application wants to retrieve data from - or modify 

data in - another application, it must make an explicit call to that application. 

 

This integration style has its roots in request-response protocols dating back to the early 

days of distributed computing of the late 1960’s but was first formalized as Remote 

Procedure Call in 1981. It has since been used for distributed computing protocols such 

as the Network File System (NFS), Java Remote Method Invocation (Java RMI), and early 

web service protocols such as JSON-RPC and JSON-XML. In more recent years, the RPI 

style has been implemented in technologies commonly used for modern web services 

such as SOAP, REST and gRPC. 

 

RPI, by way of web service APIs, has evolved to become the de facto computing interface 

between software intermediaries in the world wide web. Today, most applications have 

web service APIs that are available with HTTP via protocols such as REST and SOAP. 

One drawback, however, is that RPI requires both applications to be up and ready at the 

same time. If A sends data to B, but B happens to be down, the transaction will fail and 

cause problems in A’s runtime as well as for the system’s data consistency. This is 

particularly problematic if the transaction between A and B is a link in a larger chain of 

transactions involving other applications. Complex logic for throttling, error handling and 

fallback procedures need to be developed to handle these scenarios, which adds to 

development cost as well as complexity. 
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3.1.4 Messaging 

 

 
Figure 10. Diagram of the messaging style (Hohpe & Woolf 2003) 

 

Messaging integrations allow applications to communicate with each other in a fault-

tolerant, loosely coupled way that counters some of the complications highlighted in the 

other integration styles. Each application is connected to a common messaging system 

and uses messages to exchange data and invoke behavior. If Application A needs to 

invoke a process in Application B such as transferring data for ingestion into a data 

warehouse, for example, all A needs to do is send a message to the common messaging 

system which is then received by B through a polling- or event-driven consumer service. 

This allows data to be transferred “frequently, immediately, reliably, and asynchronously, 

using customizable formats”. This is the most popular and generally preferred integration 

style in EAI. 

  

 

 
 

Figure 11. Point-to-Point Channel (Hohpe & Woolf 2003) 

 

Messaging integration patterns generally involve the use of Message Channels. Each 

messaging system has a set of Message Channels through which data can be transferred 

from one application to another, and these can be either point-to-point or publish-

subscribe channels. In a point-to-point channel, only one receiver consumes any given 

message - the message is read exactly once and by exactly one receiver, after which it 

disappears. In a publish-subscribe channel, a single message from an input channel (aka 

publisher) is split into multiple copies and delivered to multiple output channels, each of 

which has only one receiver (aka subscriber) and can only consume a message once. 
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Figure 12. Publish-Subscribe Channel (Hohpe & Woolf 2003) 

 

The use of these two main types of messaging channels allows architects to construct 

more advanced messaging integration patterns, such as pipes-and-filters, in which a 

series of point-to-point channels are used as “pipes” to chain together independent 

processing steps or “filters”; and scatter-gather, which sends a message through publish-

subscribe channels to multiple receivers and re-aggregates the responses back into a 

single message through a point-to-point channel. 

 

 
Figure 13. Pipes and filters (Hohpe & Woolf 2003) 
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Figure 14. Scatter-Gather (Hohpe & Woolf 2003) 

3.2 Integration Architectures 

Enterprise integration patterns are often mixed-and-matched to accomplish the various 

integration needs that emerge in an enterprise system. A file transfer integration, for 

example, can be used in combination with messaging to trigger processing workflows 

once a file has been uploaded to an SFTP server or object storage bucket. As the number 

of integrations in a network grows, however, the need to manage the topology of 

integrated applications becomes more and more important to keep complexities and costs 

in check. This is the realm of enterprise architecture, which we will explore in this section. 

3.2.1 Point-to-Point 

The most straightforward way to integrate multiple applications into a single unit is through 

point-to-point integration (also known as one-to-one integration). This involves connecting 

two or more applications using an interface between each application, where data is 

transformed into a compatible format at each end. Point-to-point integration is sometimes 

seen as an attractive option as it is lightweight and requires minimal overhead, especially 

in the case of greenfield or small implementation projects where only a few applications 

need to be integrated. For such projects, using point-to-point integration can keep 

microeconomic (project) costs low. However, this comes with a number of hidden costs 

which become apparent as the number of integrated applications in an organization 

increases. Most organizations are increasingly seeing the need to rapidly adopt new IT 

systems, and in these cases the point-to-point model can quickly become unmanageable 

and fragile. This is illustrated by Salesforce.com’s point-to-point integration architecture 

circa 2014, during which they were growing at 30% year over year and had to integrate a 

number of development environments, back-office systems and software acquisitions. 
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Figure 15. Diagram of Salesforce.com’s point-to-point integration architecture circa 2014. 

(Tiernan 24 November 2014) 

 

There are several main reasons why point-to-point integrations are not feasible for EAI. 

First, the complexity of any point-to-point integrated system scales exponentially because 

each integrated application must communicate with every other application independently. 

For an architecture consisting of n applications, the number of interfaces required to 

integrate all applications is n(n-1) / 2, meaning that the number of integration interfaces 

increases at an exponential rate relative to the number of applications. 

 
Figure 16. Illustration of number of interface connections in an architecture containing 6 

systems. (Koreans 2014) 
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For instance, an architecture containing three applications requires only three interfaces 

for full integration. With six applications, however, the number of interfaces quickly 

increases to fifteen - and at eight applications to twenty-eight interfaces. For any 

architecture consisting of more than three applications, therefore, the number of interfaces 

scales exponentially, which can cause development and maintenance costs to spiral out 

of control. Furthermore, as the marginal value of each new application on average only 

scales linearly while the cost scales exponentially, each additional component incurs 

greater marginal cost. 

 

 
Figure 17. Each additional component in a point-to-point network incurs greater marginal 

cost (Tiernan 24 November 2014) 

 

Given the tendency of point-to-point systems to degrade into what is referred to as a “big 

ball of mud” - i.e., systems that lack perceivable architecture or order - various integration 

architectures have evolved to manage the complexities emerging from the topologies of 

integrated applications. Chronologically, these are hub-and-spoke, service-oriented 

architecture and microservices, each of which has built and expanded upon their 

predecessors. 

3.2.2 Hub-and-Spoke 

Also known as a message broker, hub-and-spoke architecture emerged as an inevitable 

reaction to the exponential scaling of point-to-point topologies. By introducing a central 

hub through which all applications communicate, each application only needs one 

interface to integrate with the network - meaning that the integration complexity of the 

network can theoretically scale linearly with the number of applications (Kökörčený 2014). 
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Figure 18. From point-to-point integrations to hub-and-spoke (Clark 2018) 

  

Hub-and-spoke architecture usually consists of message-oriented middleware in which 

communication between the hub and the spokes is achieved using message channels 

such as point-to-point (i.e., one-to-one) or publish-subscribe (i.e. a one-to-many or “fan-

out”) implemented by means of a middleware layer. In enterprise integration, hub-and-

spoke architecture is thus primarily asynchronous and typically designed for integrating 

on-premises, back-office enterprise applications, with a major advantage over point-to-

point being that the hub decouples applications from one another, and integration 

middleware can be reused. 

 

A major problem with this approach, however, is that the hub still needs to provide 

protocol translation, where a message received from a message queue needs to be 

passed on using HTTP, and data transformation, where data is mapped to a model 

compatible with the target application. If one were to add a message translator between 

each application in a hub-and-spoke architecture, then one would end up going back to 

point-to-point architecture since the number of translators scales exponentially with the 

number of applications. 

 

 
Figure 19. Canonical Data Model (Hohpe & Woolf 2003) 
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One solution to the problem of data formats, proposed by Hohpe (2003), is to use what he 

terms a Canonical Data Model - that is, impose a data model that is independent from any 

specific application and require applications to produce and consume messages in this 

format. Having a data format general enough to be used by all applications can be very 

challenging. 

3.2.3 Service-Oriented Architecture 

As the internet became ubiquitous during the 2000s and the standards HTTP, XML and 

SOAP became widely accepted, Service-Oriented Architecture (SOA) emerged as a way 

to expose on-premises, back-office enterprise applications (i.e. systems of record) as a 

suite of reusable services through standard network protocols. SOA builds upon hub-and-

spoke architecture by having the hub also serve as an interface exposing functions from 

its spokes as re-usable services (IBM Cloud Education 2021). We can therefore view SOA 

as consisting of two interoperating patterns: asynchronous hub-and-spoke in the 

background and synchronous service exposure in the foreground. 

 

 

 
Figure 20. SOA pattern (Clark 2018) 

 

Enterprise Service Bus (ESB) became the dominant way of implementing SOA and is 

available through both commercial products such as Mule ESB, Oracle Service Bus, 

Microsoft BizTalk, IBM App Connect and TIBCO, as well as open-source software such as 

Apache Camel, Apache ServiceMix, JBoss ESB and Spring Integration. Despite the 
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availability of these tools, ESBs - especially older commercial products - turned out to be 

quite challenging to develop and maintain perhaps due to the large, enterprise-wide scope 

of SOA. Given that one of the core benefits of SOA is the reusability of interfaces, it made 

sense to centralize ESB development so that integrations can be reused across all 

enterprise applications and projects. This resulted in the phenomenon where 

organizations often end up with a single ESB infrastructure supporting the entire 

enterprise, along with a dedicated team of specialists responsible for developing and 

maintaining it. 

 

The centralized ESB pattern created several problems that are characteristic of monolithic 

design. First, integrations become tightly coupled and therefore carry high 

interdependency risks - changes deployed to one interface often destabilize unrelated 

interfaces, resulting in the need for complex regression testing as well as resulting in high 

disincentives to releasing software. Second, due to the large number of integrations they 

contained, centralized ESB runtimes are often very large and caused significant 

downtimes during deployments, thereby encouraging a preference for live-patching hot 

fixes. These further compounds disincentives to releasing software, as ad hoc changes 

and server configurations make it difficult to replicate environments for diagnosis and 

testing. Third, as ESBs typically must integrate with legacy applications that do not have 

easy-to-use interfaces, the integrations are often highly complex and require expertise 

that only a small number of integration specialists can provide. This not only dictates the 

need for a specialist integrations team that operates the ESB in a Waterfall style, but also 

means that filling vacancies in the team is often challenging due to a scarcity of suitable 

candidates. 

3.2.4 Microservices 

Microservices emerged as a way to tackle the challenges resulting from centralized, 

monolithic design. While SOA and ESB have an enterprise scope focusing on integrations 

between different applications, the microservice architecture emerged from within the 

context of internal components within applications. In the years prior to the rise of 

microservices, application architectures gravitated towards large, centralized monoliths, 

and just as centralized ESBs had become bloated and difficult to maintain, so too had 

applications. Monolithic applications, consisting of interdependent components packed 

into a single-tiered structure, quickly became costly and fragile, encountering many of the 

same problems that centralized ESBs faced. To counter these challenges and meet the 

growing need for IT organizations to be agile and scalable, developers started breaking 

applications down into smaller units which can be developed and run independently. This 
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eventually evolved into an architectural style where an application is structured as a 

collection of services that are as follows (Richardson 2020): 

 

● Highly maintainable and testable 
● Loosely coupled 
● Independently deployable 
● Organized around business capabilities 
● Owned by a small team 

 

Applying microservices principles to EAI means splitting up the centralized ESB into 

smaller, independently maintainable, and easily scalable pieces. Just as in SOA, the 

microservice architecture’s integration runtime consists of a both an exposure gateway 

through which a suite of reusable services can be accessed as standard network 

protocols, as well as asynchronous back-office integrations between systems of record. 

The way these are implemented, however, differ greatly from ESB. 

 

First, thanks to the standardization of REST as a network protocol and the resultant 

emergence of API gateways and management, applications no longer need an ESB’s 

integration runtime as an intermediary to translate communication protocols - instead they 

can publish directly to an API gateway through which it can be discovered. With the rise of 

virtualization technologies such as Docker, orchestration frameworks such as Kubernetes, 

developer tools for continuous integration and deployment, and the increasing adoption of 

cloud computing, integration runtimes have become a lot more streamlined, user-friendly, 

and cost-effective. Application teams can build lightweight integration runtimes using 

containers and deploy them through automated continuous delivery processes into cloud 

environments. These technologies have proven to be key enablers for the decentralization 

of integration ownership away from specialist SOA teams to the application teams 

themselves. 
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Figure 21. Microservice architecture (Clark 2018) 

 

Second, in microservice architecture, back-office asynchronous integrations between 

applications no longer rely on a hub-and-spoke pattern, but instead communicate with 

each other in a decentralized manner. While ESB solves the problem of exponential 

scaling from point-to-point integrations by providing a single, centralized hub as a 

message broker, in microservice architecture applications have the freedom of choosing 

the implementation and scope of their integrations. The key here is choice: if all 

applications in the enterprise network are deeply integrated with each other, for example, 

then it might indeed make sense to implement a message or event bus serving as a 

broker like the hub-and-spoke model. More frequently, however, integrations are between 

clusters of applications, sometimes involving nothing more than a unidirectional 

notification message from one application to another. In these cases, the integration work 

required - such as sending a message to another application through a point-to-point 

messaging channel - can be trivial to implement as a microservice and can be easily 

maintained by the application team. This is greatly enabled by the standardization of 

lightweight protocols such as HTTP and REST as well as the huge improvements in 

integration tooling. In more-complex integrations involving clusters of applications, 

applications have a growing suite of integration tools available that provide, for example, 

message routing and other orchestration capabilities. These are readily available both as 
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part of PaaS cloud computing environments on which many modern applications live, 

such as Amazon Web Services, Google Cloud Platform and Microsoft Azure, but can also 

be implemented as their microservice components. When deployed as a microservice 

component, integration frameworks with ESB-like capabilities such as Apache Camel 

implement common integration patterns that enforce best practices and are highly 

configurable, which can be a lightweight alternative to traditional centralized ESBs which 

application development teams can themselves maintain. 

 

Using microservices for EAI is therefore a huge improvement over centralized ESB as it 

provides greater ease and flexibility, which makes the development and maintenance of 

integration runtimes less costly and more agile. Additionally, the lightweight nature of 

microservices opens the possibility for decentralized management of the integration 

runtime, in which the application development teams themselves can maintain their 

application’s integration runtime within decentralized clusters of applications in an 

enterprise system. 

3.3 Serverless Computing 

3.3.1 Technological Background 

We have seen that microservices emerged in reaction to the challenges posed by 

monolithic applications and ESBs, and this has been enabled in large part by a few key 

technologies. The most important of these technologies is containerization, particularly the 

open-source Docker Engine, which allows application code to be easily packaged along 

with its dependencies and reliably deployed in different computing environments. 

Combined with the adoption of cloud computing, continuous integration tools and 

standardization of communication protocols, containers have enabled development teams 

to break down services into modular, independent components without worrying too much 

about development overhead and economies of scale. Containers accomplish this by 

virtualizing the operating system on which they are hosted, allowing multiple containers to 

share the same machine and OS kernel while running in isolation from each other. 

Containers are therefore like virtual machines in that they are both a means of providing 

resource isolation and allocation through virtualization. But whereas virtual machines are 

an abstraction of physical hardware, containers are an abstraction at the application layer. 
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Figure 22. Comparing Containerized Applications to Virtual Machines (Fong 2018). 

 

Serverless computing builds upon containers by providing an even further layer of 

abstraction at the level of application functions. While containers allow developers to 

quickly allocate computing resources and spin up application servers, in serverless 

computing the cloud service provider allocates computing resources on demand 

whenever a function is executed, thereby abstracting away the concept of a server from 

the application entirely (hence its name). Serverless computing is somewhat of a 

misnomer as physical servers still exist and are managed by the cloud service provider, 

but all aspects of this management - such as capacity planning, scaling and virtual 

machines - are either completely hidden or easily configurable by the developer. 

Furthermore, serverless computing utilizes a pay-as-you-go pricing model where costs are 

incurred solely based on the time and memory allocated to run the application code, with 

no costs for idle time. When compared to explicitly provisioned servers which generally 

have periods of idle time during which resources are underutilized, serverless computing 

has the potential to bring significant cost savings, particularly in cases where usage is low. 

3.3.2 Serverless versus Containers 

Without going into too much detail comparing serverless with container-based 

microservice architectures, it suffices for now to say that serverless architecture 

automates infrastructure operations to an even greater extent than container-based 

microservice architectures by handing over control of infrastructure operations to the cloud 

computing provider. As we shall see, this comes with both benefits and drawbacks. With 

the help of technologies such as Docker, Kubernetes and Helm, system administration for 

containerized microservices (such as CPU, memory, and networking) can be configured 

precisely to business needs and deployed to a wide range of server hardware including all 

the major cloud computing platforms. There are also technologies which provide 

autoscaling and maintenance automation capabilities for containerized microservices 
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which enable them to achieve some of the resource-optimization benefits offered by 

serverless. Containerized microservices are therefore still the go-to computing 

infrastructure of choice for many organizations, particularly for databases, stateful 

applications, and workloads which have consistent, predictable throughput especially 

when large data volumes or memory usage is involved. 

 

In the traditional waterfall model of software engineering, completed application code is 

handed over from a software development team to an operations team, who are then 

responsible for deploying the code and overseeing its subsequent operations such as 

network, security, and server administration. As discussed, the automation capabilities 

offered by microservice containerization technologies are thus a huge improvement to this 

previous model, to the extent that the traditional system administration tasks are quickly 

being automated away. Docker and Kubernetes enable software developers to do many 

of the tasks traditionally reserved for system administrators, thereby dramatically 

improving the cycle time and scalability of software releases. However, the tooling needed 

to continuously integrate and deploy these containers, as well as the maintenance 

operations they require once they go live, are still complex enough that they often still 

need to be managed by dedicated personnel, typically as part of so-called DevOps or Site 

Reliability Engineering (SRE) teams. Thus, container technology doesn’t fully solve the 

problem of the disconnect between development and operations - it simply improves it by 

enabling operations to be more automated, scalable, and closely integrated with the 

software development process. 

 

One can therefore view serverless computing as an attempt to go one step further than 

containerization in operations automation. With servers abstracted away and system 

features such as deployment, security, logging, monitoring, autoscaling and networking 

provided out of the box by the cloud computing provider, software development teams can 

in many cases take full ownership of deployment and maintenance operations 

themselves. For example, instead of needing an operations team to manually scale 

servers up and down based on usage (or scripting automation capabilities to so), 

serverless computing orchestrates this process automatically based on usage and 

charges the cost correspondingly. Every function execution has dedicated memory and 

CPU cores (up to a certain extent, e.g., ranging from 128 MB to 10,240 MB in AWS 

Lambda) meaning that computing power is virtually unlimited if memory usage of 

individual workloads is within the provisioned limits. As mentioned, this is not suitable for 

some types of workloads such as stateful applications and databases. However, it is ideal 

for stateless workloads such as data processing, REST APIs and most web application 

use cases. 
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3.3.3 Applications in EAI 

Given that EAI mostly involves the stateless transformation, translation, and transfer of 

data between applications, it therefore makes sense that serverless should be a good fit 

for implementing EAI workloads. However, one crucial element that serverless computing 

must be able to support is asynchronous messaging, which has been described in the 

integration patterns in previous sections. We have already discussed Lambda functions, 

which take an input event such as a HTTP request, execute the function logic and return 

the result as an output (for non-void functions). These can be used in EAI for performing 

transformations and business logic. But how is serverless computing used in the context 

of crucial infrastructure for messaging channels, topics, and queues? 

 

In a microservice architecture approach to EAI, messaging infrastructure can itself be 

deployed as a microservice component that interacts with integrating applications. Open-

source software such as Apache Kafka, Apache Camel, and RabbitMQ all provide a range 

of messaging features that can be deployed as stateful containers and used to implement 

the orchestration aspects of enterprise integration patterns. For instance, these 

messaging systems, deployed as microservices, can be used in conjunction with 

serverless Lambda functions by providing the central messaging hub through which each 

integrating application is connected as a node, with a serverless lambda function serving 

as a transformation and translation layer between the messaging hub and each 

application. This approach relies on containerized microservices to implement the core 

EAI messaging infrastructure, with serverless lambda functions as an ancillary 

component. 

 

While messaging hubs deployed as microservices effectively replace ESBs, they can 

become too complex in practice for development teams to maintain by themselves. Just 

as containerized applications often require a DevOps or SRE team to maintain the CI/CD 

pipelines and administer Kubernetes clusters for example, these messaging hubs may 

make it again necessary for a dedicated team of specialists to oversee their deployment 

and maintenance. Therefore, a purely serverless approach to EAI should preferably not 

have to deal with deploying and maintaining a separate messaging hub. Serverless 

computing’s answer to this is in the form of lightweight, managed services that can be 

operated using an on-demand model in much the same way as Lambda functions. These 

managed services are offered by all major cloud computing platforms, providing 

messaging services that can be provisioned on-demand with minimal configuration and 

operational overhead, and can be easily integrated with serverless functions. Since we 

are focusing on AWS in this thesis, the messaging services we explore are Simple 
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Notification Service (SNS) and Simple Queue Service (SQS) which we will discuss in 

greater detail. 

3.4 Discussion 

To summarize this section, we saw that in the absence of any explicit integration 

architecture the de facto state of an enterprise system can be described as consisting of a 

network of point-to-point integrations between applications. Using our distinction between 

vertical hierarchies and horizontal networks, we see that point-to-point integrations 

represent a maximally horizontal network structure with minimal hierarchical coordination. 

The nodes in this topology are fully decentralized, such that each node needs to explicitly 

establish a connection to each other node to share data, business rules and processes. 

This creates what we referred to as the exponential scaling problem, where the number of 

interfaces needed scales at an exponential rate relative to the number of applications in 

the network. As a result, point-to-point integrations not only result in a “big ball of mud” in 

the enterprise system’s topology, but also incurs a number of costs. 

 

Recalling our abstract model of EAI architecture - as a structure that economizes on the 

production, coordination and vulnerability costs of organization while minimizing negative 

externalities incurred from search, decision-making and enforcement - we can interpret 

the costs involved in point-to-point integrations as resulting from the transaction costs of 

market mechanisms. As each application must transact with every other application 

without a coordinating central hub, point-to-point integrations greatly resemble 

decentralized markets. As such, point-to-point integrations incur high transaction costs - 

each node must first locate and connect to every other node on the network (search and 

information costs), establish protocols and transformation logic for sharing data and 

business processes (bargaining and decision-making costs), and monitor and protect the 

deployed integration runtimes (enforcement and policing costs). From the perspective of 

transaction cost economics, therefore, we can describe the costs of exponential scaling in 

point-to-point integrations as negative externalities resulting from the transaction costs of 

market mechanisms. 
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Table 10. Comparison of EAI architectures in terms of transaction, production, 

coordination, and vulnerability costs. 

 Transaction 
Costs (search, 
decision-
making, 
enforcement) 

Efficiency Flexibility 

Production 
Costs 

Coordination 
Costs 

Vulnerability 
Costs 

Point-to-Point - - - - 

Hub-and-Spoke + - - - 

SOA ++ + - - 

Microservices + + + ++ 

Serverless ++ ++ ++ + 
- does not economize 

+ economizes 

++ economizes to a greater extent 

 

Just as hierarchical firms emerge to economize on the transaction costs of exchange in 

markets, so too do hierarchical integration architectures emerge to economize on the 

transaction costs of point-to-point integrations. Hub-and-spoke and service-oriented 

architecture impose a high degree of hierarchy upon a network of applications in order to 

lower the costs of search, decision-making and enforcement, and hence present a 

maximally hierarchical organizational form. Hub-and-spoke can be compared to a basic 

hierarchical firm - all integrating applications simply connect as spokes to the hub and 

communicate with one another through a centralized message broker. Although hub-and-

spoke integrations mitigate the transaction costs of market exchange (point-to-point 

integrations) by bringing them under the control structure of a firm (centralized integration 

hub), it neither achieves efficiency nor flexibility when compared to other integration 

architectures. 

 

Service-oriented architecture, on the other hand, presents a more sophisticated form of 

hierarchical organization which can be described as U-form or efficient hierarchical 

structure. By encapsulating software components into specialized functions, SOA 

economizes on production costs to a much greater extent than the hub-and-spoke 

architecture. Functionality offered by implementations of SOA such as ESBs further 

economizes on transaction costs by offering features such as an exposure gateway over 

which the reusable services can be found and accessed. However, its tight coupling of 

interdependencies, centralized release orchestration and high degree of skill specificity 

means that it carries great coordination and vulnerability costs, and therefore it sacrifices 

flexibility in favor of its efficiency. 
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Microservice and serverless architectures revert the hierarchical pattern of SOA by 

breaking it down into a more decentralized structure (i.e., horizontal network), thereby 

economizing coordination and vulnerability costs and achieving greater flexibility. Loose 

coupling, self-organization, and independence all lower coordination and vulnerability 

costs as they enable decision-making autonomy, shorter cycle times, greater levels of 

experimentation, and quicker adaptation to technological shock. Microservices and 

serverless can therefore be described by as horizontal network structure, or the M-form 

organization in Malone’s model. However, while the M-form’s flexibility should come at the 

expense of relatively greater production costs, this is not clearly the case with 

microservice and serverless architectures. Indeed, splitting up the centralized ESB into 

smaller, independently maintainable microservices requires setting up more dedicated 

computing environments, and it might seem that microservices should therefore incur 

higher production costs. However, as virtualization, cloud computing and continuous 

integration technologies continue to improve, the production costs of a microservice 

architecture have greatly decreased to the point that they can out-compete SOAs. 

 

This is even more pronounced in serverless architecture. With its pay-as-you-go pricing 

model, serverless computing has extremely streamlined production costs, making it a 

much more efficient option than microservices for many types of workloads. Another key 

advantage that serverless has compared to containerized microservices is the fact that it 

offers full application functionality out of the box. These features help lower the costs of 

coordination for serverless integration architectures, decreasing the amount of manual 

configuration, back-and-forth communication and other types of explicit coordination that 

is typically required between microservice teams. 

 

As we discussed earlier, however, the decentralized network structure embodied by 

microservices and serverless have become so highly integrated that the distinction 

between market and firm becomes blurred, meaning that market mechanisms are again 

effectively an integral part of the organizational structure of firms and along with them the 

transaction costs (i.e. negative externalities) of search, decision-making and enforcement. 

In order to mitigate these negative externalities, teams need to develop administrative 

tools for tasks such as service discovery, deployment, security, audit logging, and 

monitoring, and the costs they incur are often non-trivial. Without such tools, we would 

find ourselves in the realm of point-to-point integrations again, with a big ball of mud and 

crippling transaction costs. This is where serverless architecture also has a significant 

advantage over containerized microservices - its full application functionality means that 

these administrative tools are offered out-of-the-box and can be easily configured in UI 

dashboards, templates or via the cloud platform’s API and SDKs. 
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One area in which serverless computing is at a disadvantage compared to microservices, 

however, is vulnerability costs. In general, developing services using cloud computing 

always has inherent risk of vendor lock-in, where an application or architecture has 

become so specific to a certain cloud vendor that it becomes costly to migrate away from 

the vendor and explore other options (hence being “locked-in” to a certain vendor). 

Because vendors usually offer a range of choices in technology (e.g., operating systems, 

programming languages), they still enable a great deal of flexibility and operate very well 

with open source - hence, the vulnerability costs in serverless are not as great as those of 

ESBs, for example. However, serverless implementations inevitably require some amount 

of vendor-specific code, which imposes vulnerability costs in situations where the 

organization must migrate away from the vendor’s cloud infrastructure. Containerized 

microservice architectures, on the other hand, can encapsulate software in containers 

such that explicit infrastructure assumptions are minimized. 

 

To summarize, based on our theoretical framework, serverless computing presents an 

attractive approach to EAI. It is able to economize on production costs through pay-as-

you-go pricing, coordination costs through full application “as a service” functionality, and 

vulnerability costs through supporting a wide range of open-source technologies that 

enable experimentation and adaptation. While the risk of vendor lock-in makes it slightly 

more vulnerable than microservices, it has an advantage over containerized microservices 

in its ability to mitigate the negative externalities of decentralized integrations through out-

of-the-box functionality. In the following sections, I will present a design and 

implementation of a serverless EAI architecture to how well it holds up to our theoretical 

evaluation of it. 

 

  



 

 

51 

4 Case Design 

In this case scenario, we are tasked with building backend services for a company’s 

customer loyalty program on top of its newly acquired CRM system. Salesforce has been 

selected as the new CRM for loyalty member data such as accounts and contacts and 

serves both as the back-office sales and customer service tool used by internal 

employees, as well as the “master data” system of record used by customer-facing digital 

channels. We can assume that front-end applications such as a website and mobile 

application already exist, and therefore what is needed are the backend services for 

connecting these digital channel applications to Salesforce. Since several other 

applications are also used as part of the loyalty program’s information system, they also 

need to be integrated with Salesforce. 

4.1 Overview 

For the purposes of this scenario, there are four back-office applications used by the 

loyalty program: a CRM system (Salesforce), a loyalty system (rule engine), an email 

automation system, and a data warehouse: 

● Salesforce: Salesforce is the cloud CRM platform that serves both as the “master 
data” for the organization’s contacts and accounts as well as the main GUI 
application for all sales and customer service personnel to manage interactions 
with customers. 

● Loyalty System: This application is responsible for managing each customer’s 
membership after they have enrolled in the company’s loyalty program, and 
therefore stores data such as tiers, points and transactions. It serves as a rule 
engine that evaluates when a customer should be promoted to the next tier, for 
instance, or when they should be given an award. 

● Email Automation: The email automation system is an application used for 
marketing automation as well as for sending emails in specific user flows such as 
sign up and deregistration, and therefore relies on customer data such as the 
customer’s name to construct personalized email content. 

● Data Warehouse: The data warehouse is a data store used as the source of truth 
for back-office business intelligence and analytics, and therefore ingests data from 
Salesforce such as contacts and accounts. 

 

Since this scenario is artificial, all integrating applications in this implementation are 

stubbed except for Salesforce. This means that although they exist and function as 

integrating nodes in the architecture, they are not real enterprise applications and for the 

most part do not have fully-fledged functionality. The loyalty system, for instance, does not 

have a functioning rule engine in this implementation as that is outside of the focus of 

application integration. Rather, these applications are implemented using either (1) a 

NoSQL document database or (2) a simple serverless function. These stubs should be 

sufficient to demonstrate how data and business processes can be shared across several 
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applications. The connection to Salesforce, which is not stubbed in this case project, 

contains examples of implementing a commercial application’s API which should be 

representative of what integration code for other commercial applications would look like 

via REST interface. 

 

For this scenario, we limit the development scope to two customer flows: registering to the 

loyalty program, and deregistering from the loyalty program. These can be written as two 

user stories with corresponding acceptance criteria: 

 

(1) Enroll Member: As a customer, I can enroll in the loyalty program so that I can 
earn points and get better more personalized services. Acceptance criteria: 

(a) A new Contact record is created in Salesforce containing customer 
information 

(b) A new loyalty member record is created in the loyalty rule engine 
(c) A copy of the Salesforce Contact record is ingested into the data 

warehouse 
(d) A “welcome” email is sent upon successful registration 

(2) Unenroll Member: As a customer, I can unenroll from the loyalty program so that 
my data is removed from all systems of record. Acceptance criteria: 

(a) The customer’s Contact record is deleted in Salesforce 
(b) The customer’s loyalty member record is deleted from the loyalty rule 

engine 
(c) The data warehouse’s copy of the Contact record is deleted 
(d) A “goodbye” email is sent upon successful deregistration 

 

Other customer flows in a typical loyalty program that would require synchronicity between 

the applications such as updating profile information, processing transactions and 

upgrading tiers are out of the scope of this scenario. However, integrations for these other 

customer flows should be able to follow a similar pattern as the one explored here, which 

exposes integration processes as services accessible via an exposure gateway. 

4.2 Infrastructure-as-a-Service 

The cloud computing platform Amazon Web Services (AWS) is used to provide the 

computing Infrastructure-as-a-Service for the implementation of the two user stories 

above i.e. (1) Enroll Member and (2) Unenroll Member. In particular, we make use of three 

serverless technologies that are offered as services on the platform: AWS Lambda, 

Amazon Simple Notification (SNS) and Amazon Simple Queue Service (SQS): 

 

● AWS Lambda: This is the serverless compute service that we use as the 
foundational building block for executing workloads. Lambda functions are ideal for 
stateless, high-volume, short duration microservices such as REST APIs, and are 
therefore typically configured to be executed from HTTP requests coming from an 
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API gateway. However, they can also be configured to execute on other event 
sources, such as consuming events from a queue or running on a cron schedule. 

● SNS: Amazon Simple Notification Service is a managed pub/sub messaging 
service that can be used for both application-to-application as well as application-
to-person messaging. In the case of distributed serverless lambda functions, SNS 
can be used to implement many-to-many messaging between them. A messaging 
channel consists of (1) an SNS Topic; (2) a service (such as a lambda function) 
that has permission to publish messages to that SNS topic; and (3) a subscriber 
(such as a messaging queue, SMS, or email) that reads the messages from the 
channel. 

● SQS: Amazon Simple Queue Service is a fully managed message queuing service 
which is typically paired with SNS to form the receiving end of a messaging 
channel. A queueing mechanism is necessary in messaging channels in order to 
decouple publishers from subscribers. SQS queues are therefore typically used in 
conjunction with lambda functions to subscribe to SNS messages, allowing lambda 
functions to read messages from SNS asynchronously. 

 

These services provide us with the modular building blocks we need to implement our 

integration architecture. Although this design and implementation make explicit use of the 

Amazon Web Services platform, similar serverless computing services are available on 

competing platforms such as Google Cloud Platform and Microsoft Azure. However, these 

alternatives are not in the scope of this case’s design and implementation, and they may 

not contain all the necessary services needed to build the architecture proposed in this 

case. 

4.3 High-Level Architecture 

To get a high-level overview of the architecture, it is helpful to group components into four 

layers of logical abstraction: the exposure gateway, engagement layer, integration layer 

and the back-office layer. As we shall see in the implementation, however, these are not 

necessarily separated as such at the code- and infrastructure-level. Indeed, this is a 

feature of serverless design patterns. Whereas a hierarchical integration architecture 

might have monolithic applications housing each of these different layers of processes, 

and separate teams managing each, serverless processes are distributed and mostly 

share the same modular building blocks of lambda functions, document data stores and 

messaging queues, which means that the physical boundaries of different processes are 

not as clearly defined as their functional boundaries. 



 

 

54 

 
Figure 23. High-level architecture 

4.3.1 Exposure Gateway 

The Exposure Gateway is the point of access to the loyalty program’s backend services 

from the internet. The internet in this case primarily consists of web and mobile 

applications in the company’s customer-facing digital channels, and these invoke the 

engagement layer APIs through the exposure gateway via HTTP. To ensure data privacy 

and mitigate security threats such as distributed denial-of-service (DDoS) attacks, access 

control should be in place at this layer. Organizations which have high traffic and globally 

distributed users should also consider using a content delivery network (CDN) such as 

Cloudflare or Akamai which provide content caching, edge computing, and bot mitigation 

capabilities that can improve performance as well as security. As these topics are not the 

focus of this case scenario, however, a simple API gateway protected by API key will 

suffice. 

 

Each API in the engagement layer is exposed as an endpoint on the API Gateway and 

can be invoked via HTTP requests. For this scenario, I use a custom domain name 

https://eai.ceora.app and configured Google’s DNS service to route the domain name to 

my Amazon API Gateway instance, which in turn exposes each of the APIs in the 

engagement layer as path endpoints.  The path https://eai.ceora.app/salesforce/account 

and its subpaths route to APIs in the Account Management module, while the path 
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https://eai.ceora.app/salesforce/contact and its subpaths route to APIs in the Contact 

Management module. 

 

 
Figure 24. Amazon API Gateway resource paths 

4.3.2 Engagement Layer 

This layer is an abstraction of the subset of processes that serve as APIs for customer-

facing digital channel applications. The APIs in this layer use the REST protocol for 

stateless transfer of data over HTTP methods such as GET, POST and PUT. The Account 

Management module consists of the lambda functions related to Salesforce Account 

records, while the Contact Management module consists of lambda functions related to 

Salesforce Contact records. Each lambda function is implemented as a REST API and is 

mapped to an endpoint and request in the exposure gateway. 

 

To register a new loyalty member (User Story 1), for example, we can use cURL to make 

a POST request to https://eai.ceora.app/salesforce/contact which is mapped to the 

Create Profile API. 

 

curl --location --request POST 'https://eai.ceora.app/salesforce/contact' \ 

--header 'x-api-key: <API_KEY> \ 

--header 'Content-Type: application/json' \ 

--data-raw '{ 

   "LastName": "Labadie", 

   "FirstName": "Hellen", 

   ... 

}' 
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Similarly, to fetch an existing customer we can make a cURL HTTP GET request to 

https://eai.ceora.app/salesforce/contact/<CONTACT_ID>, which is mapped to the Get Profile 

API 

  

curl --location --request GET 'https://eai.ceora.app/salesforce/contact/<CONTACT_ID>' --

header 'x-api-key: <API_KEY> 

 

In this scenario, the engagement layer serves primarily as a proxy between the internet 

and Salesforce, fortifying access to Salesforce from the internet while at the same time 

performing all necessary protocol and schema translations for integrations. For instance, if 

the loyalty web application’s schema differs from Salesforce’s, a field mapping can be 

performed at this layer. Protocol translations (e.g., from HTTP to messaging) are also 

performed at this layer so that asynchronous integration processes can take place in the 

downstream integration layer. 

4.3.3 Integration Layer 

The integration layer is an abstraction representing the processes which perform 

integration tasks between the back-office systems. The processes in the integration layer 

implement the integration patterns explored earlier and serve as the bridge not only 

between the engagement layer and back-office applications, but also for processes 

among different back-office applications. 

 

For instance, a web service in the engagement layer - say a backend service for a web 

application - can send a message to a topic Z that is subsequently consumed by a back-

office application X which initiates a business process. Another back-office application Y, 

however, can also send a message to topic Z to trigger the business process in 

application X. This is illustrated to highlight that back-office applications can communicate 

both through the exposure gateway (i.e., with HTTP) or through the integration runtime 

itself via messaging protocols. 

 

4.3.4 Back-Office Layer 

This layer is an abstraction representing the enterprise applications that serve as back-

office systems with which the Integration Layer communicates. It can consist of 

applications that are hosted within the organization’s network on the same cloud, on-

premises on the organization’s own infrastructure, or outside of the organization’s network 

- as is the case with Salesforce which is hosted on its own data centers and only available 

as a cloud service. For the purposes of this scenario, all back-office applications except 
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for Salesforce are within the organization’s network on the same cloud (since they are 

implemented using stubs, as discussed earlier). 

 

Back-office applications generally have their own data stores and copy of the data, but 

this is not always the case as some applications are explicitly designed to be used in 

conjunction with, or on top of, existing applications. This is how I have intended the Email 

Automation system to be in this implementation scenario, which has a Shared Database 

integration with the data warehouse (See Integration Patterns - Shared Database). The 

Email Automation system needs to access customer data to construct its email content, 

and although it could achieve this by maintaining its own copy of the data, in this scenario 

the Email Automation system needs to fetch customer data from an external source at 

process invocation, which in this case is the data warehouse.  

 

4.4 Integration Architecture 

4.4.1 Enroll Member 

 
Figure 25. Architecture of integration flow for user registration 

  

The integration flow in the member enrollment process uses a fanout messaging pattern, 

which spreads a message to multiple destinations in parallel. Recalling the messaging 
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integration patterns in an earlier chapter, the fanout strategy uses a publish-subscribe 

messaging channel. The Create Profile lambda function processes incoming requests 

from the internet routed via the API Gateway and creates a Contact record in Salesforce 

via its REST API. If Contact creation in Salesforce is successful, the Create Profile 

publishes a message to an SNS Topic which notifies its subscribers that the Contact 

record has been created, at the same time forwarding the Contact record’s data by 

encoding it in JSON and encapsulating it in the message body. 

 

The Create Profile lambda has no knowledge of which processes are subscribed to the 

SNS Topic - all it needs to do is publish the message with JSON-encoded Contact data to 

the topic. In this user registration flow, the Create Profile’s SNS topic has three 

subscribers: the Send Welcome Email lambda function which sends an email welcoming 

the newly registered member by invoking the Email Automation system (stubbed by 

Amazon SES); the Enroll Loyalty Member lambda function which creates a Loyalty 

Member record in the Loyalty System (stubbed by a DynamoDB table), and the Ingest 

Contact lambda function which makes a replica of the Contact data in the Data 

Warehouse (stubbed by a DynamoDB table). 

 

These lambda functions subscribe to the Create Profile SNS Topic using Amazon SQS 

message queues - each lambda function has its own message queue that serves as a 

buffer for incoming messages. Technically, it is the message queues that are subscribed 

to the SNS topic, and they are each configured as an event source for their respective 

lambda functions so that when a queue receives a message, it automatically triggers the 

lambda function to process the message. Amazon SQS abstracts away the polling, 

reading and removal of messages which happen in the background. 
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4.4.2 Unenroll Member 

 
Figure 26. Architecture of integration flow for user deregistration 

 

The member unenrollment process begins with the same fanout messaging pattern as the 

member enrollment process, but one of the two branches of the fanout tree uses a Pipes 

and Filters messaging pattern. The Pipes and Filters pattern breaks down a large 

processing task into a sequence of smaller, independent processing steps. The large 

processing task in this case can be summarized as “Send automated ‘goodbye’ email 

containing Contact data fetched from the Data Warehouse and then delete Contact record 

from data warehouse.” The two smaller processing steps that this processing task is 

broken down to are: 

 

1. Send “goodbye” email using Contact data fetched from the Data Warehouse 
2. Delete Contact record from the Data Warehouse, implemented by the Send Email 

and Delete Contact Data lambda functions respectively. 
 

In the language of Pipes and Filters, these two lambda functions are the filters which are 

connected in a sequence by pipes consisting of SNS-SQS messaging channels. The key 

term here is sequence - in some cases, processing steps cannot be executed in parallel 

the way they are in Enroll Member because there are interdependencies between the 

processing steps. In this case, the interdependency is between the Send Email step and 

Delete Contact Data step, since they make use of the same underlying database. If Send 

Email and Delete Contact Data are executed in parallel, there is a risk of encountering a 

race condition in which the Contact record has already been deleted from the Data 

Warehouse at the moment when the Send Email tries to fetch the Contact record. 
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4.5 Systems Engineering 

In addition to providing the functionality of application integration, the solution must also 

provide several key features of supporting technical infrastructure that are expected from 

a production EAI implementation. These features can be described broadly as systems 

engineering features, and fall under the categories of security, fault tolerance, and 

observability. 

 

Security features protect the software system from vulnerabilities. In the context of EAI, 

these vulnerabilities can occur wherever the system is accessed either externally via the 

internet or internally by users within an organization. Thus, our EAI implementation must 

offer three main features to mitigate security vulnerabilities. It must (1) encrypt all 

communications that take place over the internet using an encryption protocol such as 

TLS; (2) enforce access control (authentication and authorization) for all public API 

endpoints; (3) govern access rights for deploying and modifying the EAI implementation to 

users within an organization. 

 

Fault tolerance refers to how well a system continues to operate in the event of failure or 

faults within one or more of its components. We expect the EAI implementation to be fault-

tolerant so that it can continue operating normally even when some part of the system 

fails. For example, if the integration component to one application throws an exception 

due to malformed data, then a fault tolerant EAI should ensure that (1) the scope of 

affected components within the system should be as limited as possible and (2) the 

affected components should recover gracefully from the exception and continue 

functioning normally preferably with little intervention. 

 

Observability describes how well a system’s internal states can be known by its external 

outputs, and involves three main features: logging, monitoring and alarms. An EAI system 

that has good observability should allow administrators to easily access logs collected 

from all components within the system so that process instances can be easily traced 

during debugging. It should also provide a way to continuously monitor the health of the 

system through statistics, data visualizations and synthetic monitoring (i.e., periodically 

executing test scripts on the production system which emulate transactions). Lastly, it 

should provide a way to alert administrators of failure by sending alarms that are triggered 

whenever a failure is detected through monitoring tools. 
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5 Case Implementation 

In this section, I will go through the details of implementing the serverless EAI 

architecture. I first describe the technologies used in this implementation, before 

proceeding to explain them in the context of this implementation by going through the 

project structure, infrastructure-as-code, deployment process, back-office integrations, 

and messaging integrations. 

5.1 Technologies and Structure 

5.1.1 Programming Languages 

As we have already seen, AWS Lambda serves as the compute service for executing 

workloads. It supports several different languages in its runtime environment including 

Node.js, Python, Ruby, Java, Go and .NET. For the Lambda functions in this 

implementation, I use the Node.js runtime environment which executes JavaScript code. 

 

TypeScript is used during the deployment process and compiles into JavaScript at 

deployment time. Using TypeScript rather than JavaScript makes the code more readable 

and allows us to take advantage of object-oriented features. All libraries and 

dependencies are managed using the package manager yarn and are defined in the 

package.json file. Additionally, I use the Webpack module bundler which helps minimize 

the size of deployment packages and optimizes the performance of the lambda functions. 

5.1.2 Amazon Web Services 

In addition to Lambda functions, however, a number of AWS services are used in the 

implementation, some of which we have already mentioned in the architecture design 

such as SNS and SQS. All together, they are listed as follows: 

- Amazon API Gateway 
- Amazon CloudWatch 
- AWS Certificate Manager 
- AWS CloudFormation 
- AWS Cloud Development Kit (CDK) 
- Amazon DynamoDB 
- AWS Identity and Access Management (IAM) 
- AWS Lambda 
- Amazon Simple Email Service (SES) 
- Amazon Simple Notification Service (SNS) 
- Amazon Simple Queue Service (SQS) 
- Amazon S3 
- AWS Systems Manager 
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While many of these services can be provisioned and configured manually through the 

web interface or using the AWS Command Line Interface (CLI), there are several 

Infrastructure-as-Code tools and SDKs which make it possible to provision AWS 

resources either programmatically or by using templates. CloudFormation is a native tool 

offered by AWS that can be used to provision and manage a set of related resources 

through user-defined models written as JSON or YAML templates. 

 

CloudFormation templates are extremely flexible and powerful, but they can also quickly 

become verbose and difficult to manage when many services are involved. Hence, it is 

common to see the other infrastructure-as-code tools and frameworks such as Terraform, 

Serverless Framework or AWS Cloud Development Kit (CDK) being used as an 

alternative to CloudFormation. These tools provide a higher-level abstraction layer on top 

of the services, meaning that developers can specify composite services and allow the 

tools to automatically provision dependent resources, such as access policies, behind the 

scenes. While Terraform deploys templates using the AWS SDKs, Serverless Framework 

and CDK are built on top of CloudFormation and work by synthesizing the higher-level 

abstractions into “low-level” CloudFormation JSON templates before deploying them to 

the cloud. 

 

Serverless Framework uses YAML templates to model the infrastructure resources. As its 

name suggests, Serverless Framework is designed specifically for serverless 

architectures and therefore offers a limited number of AWS services - these include the 

most used serverless services such as AWS Lambda and DynamoDB. Amazon CDK, on 

the other hand, is a fully-fledged SDK in which infrastructure resources can be modelled 

using a programming language, and is currently available in JavaScript / TypeScript, 

Python, Java, and .NET. 

 

In this implementation project, I use CDK in TypeScript as the tool for provisioning 

infrastructure as code. This allows the implementation to use a single programming 

language for both infrastructure provisioning as well as the integration runtime, minimizing 

the number of development tools required. For instance, the yarn package manager is 

used to manage dependencies for both the lambda function code as well as the CDK 

infrastructure code, and a JavaScript framework such Jest can be used for unit testing 

both the infrastructure code as well as the lambda function code. 

5.1.3 Project Structure 

The project is divided into three main directories - /src contains the code used by the 

lambda functions, /stacks contains the code for CDK stacks which provision infrastructure 
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resources, and /cdk-app contains the code which defines the deployment and serves as 

the orchestrator for these CDK stacks. The /src/lambda subdirectory contains the Lambda 

function handlers, and the /src/lib subdirectory contains re-usable components such as 

the HTTP client class for accessing the Salesforce REST API. 

 

The /stacks directory contains CDK stacks which represent the logical models for 

provisioning infrastructure in the form of TypeScript code. I have grouped these stacks 

based on the types of infrastructure they provision. For example, the /stacks/database 

subdirectory contains a stack that provisions a shared database, while the 

/stacks/messaging subdirectory contains several stacks that provision infrastructure such 

SNS topics and SQS queues. 

 

├── cdk-app 

│   └── cdk-app.ts 

├── src 

│   ├── lambda 

│   │   ├── messaging 

│   │   │   ├── delete_contact_sqs.ts 

│   │   │   ├── ingest_contact_sqs.ts 

│   │   │   ├── loyalty_enroll_sqs.ts 

│   │   │   ├── loyalty_unenroll_sqs.ts 

│   │   │   ├── publish_sns.ts 

│   │   │   └── send_email_sqs.ts 

│   │   └── salesforce 

│   │       ├── create 

│   │       │   ├── create_account.ts 

│   │       │   └── create_contact.ts 

│   │       ├── delete 

│   │       │   ├── delete_account.ts 

│   │       │   └── delete_contact.ts 

│   │       ├── get 

│   │       │   ├── get_account.ts 

│   │       │   └── get_contact.ts 

│   │       └── update 

│   │           ├── update_account.ts 

│   │           └── update_contact.ts 

│   └── lib 

│       ├── salesforce_client.ts 

│       └── ssm_service.ts 

├── stacks 

│   ├── database 

│   │   └── database-stack.ts 

│   ├── domain-stack.ts 

│   ├── messaging 

│   │   ├── deletion-stack.ts 
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│   │   ├── email-stack.ts 

│   │   ├── ingestion-stack.ts 

│   │   ├── loyalty-stack.ts 

│   │   └── messaging-stack.ts 

│   ├── rest 

│   │   ├── rest-stack.ts 

│   │   ├── salesforce-account-proxy.ts 

│   │   ├── salesforce-contact-proxy.ts 

│   │   └── salesforce-proxy.ts 

│   └── shared 

│       ├── lambda-construct.ts 

│       └── utils.ts 

5.1.4 Infrastructure-as-Code 

Using CDK, infrastructure can be provisioned programmatically as CloudFormation stacks 

using TypeScript. This is a major advantage that CDK has over some other infrastructure-

as-code frameworks, which rely on static templates. These TypeScript stacks are then 

synthesized into CloudFormation templates and deployed to AWS using a command-line 

interface. The CDK app serves as a deployment scope for the different stacks and also 

provides a way to orchestrate the interconnections between the stacks. 

 

In cdk-app.ts (Appendix 1), we define a CDK app as a deployment scope by simply 

instantiating it from the CDK App class: 

 

import * as cdk from '@aws-cdk/core'; 

const app = new cdk.App(); 

 

The stacks which define the infrastructure models can then be added to the CDK app’s 

scope to be included in the deployment. For example, to deploy the messaging stack 

containing contains the SNS topics, we simply instantiate the MessagingStack class that 

we have defined in /stacks/database/database-stack.ts: 

 

const messagingStack = new MessagingStack(app, `eai-messaging`); 

 

The MessagingStack, meanwhile, is defined by the following class which extends the CDK 

Stack class. It creates all three topics that are used by the messaging integrations: 

  

import * as cdk from '@aws-cdk/core'; 

import * as sns from '@aws-cdk/aws-sns'; 
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export class MessagingStack extends cdk.Stack { 

 public createContactTopic: sns.Topic; 

 public deleteContactTopic: sns.Topic; 

 public unenrollMemberTopic: sns.Topic; 

 

 constructor(scope: cdk.Construct, id: string) { 

   super(scope, id); 

   this.createContactTopic = new sns.Topic(this, `${id}-sns-createContact`, { 

     displayName: 'Contact subscription topic' 

   }); 

   this.deleteContactTopic = new sns.Topic(this, `${id}-sns-deleteContact`, { 

     displayName: 'Delete contact subscription topic' 

   }); 

   this.unenrollMemberTopic = new sns.Topic(this, `${id}-sns-unenrollContact`, { 

     displayName: 'Unenroll member subscription topic' 

   }); 

 } 

} 

 

The RestStack class (Appendix 2) contains the engagement layer lambda functions which 

publish messages to the SNS topics defined in the MessagingStack. For a Lambda 

function to be able to publish a message to an SNS topic, it needs to have (i) permission 

to access and publish a message to the topic and (ii) an address or identifier with which to 

reference the topic. 

 

In CloudFormation, access permissions are usually managed by provisioning an IAM 

policy that grants permissions to a resource, using the resource’s Amazon Resource 

Name (ARN) as a unique identifier. Since we are using CDK, however, we can make use 

of object-oriented practices to establish permissions programmatically. The CDK construct 

for an SNS topic has a function grantPublish to which a lambda function construct can be 

passed as an argument. Thus, we pass the CreateContact lambda construct as an 

argument to the SNS topic’s grantPublish function to programmatically define the trust 

policy. At deployment time, CDK synthesizes the programmatically provisioned trust policy 

into a CloudFormation template that provisions an IAM policy granting the trust 

relationship. 

 

// Api gateway serving as HTTP exposure gateway to applications 

const restStack = new RestStack(app, `eai-rest`); 

 

// Messaging stack contains topics used for communicating between applications 

const messagingStack = new MessagingStack(app, `eai-messaging`); 
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messagingStack.createContactTopic.grantPublish(restStack.salesforce.contact.createContact); 

 

For the lambda function to reference the SNS topic at runtime, it also needs to be able to 

access its ARN in the runtime environment. This can be accomplished by configuring a 

Lambda environment variable which becomes available as a global variable in the Node 

runtime. CDK Lambda constructs have an addEnvironment function which can be used for 

adding runtime environment variables. 

 

restStack.salesforce.contact.createContact.addEnvironment('CREATE_CONTACT_TOPIC_ARN', 

messagingStack.createContactTopic.topicArn) 

 

As illustrated previously in the architecture, a message that is sent to an SNS topic is 

consumed by an SQS queue. This requires configuring the SQS queue to be added as a 

subscriber to the topic, and can be done in an object-oriented way using CDK. For the 

“send email” process in the Enroll Member flow, for example, we can instantiate the 

EmailStack, which contains an SQS queue and a Lambda function that sends emails, and 

configure the Create Contact SNS topic to add the queue as a subscriber. 

 

// Marketing automation application 

const emailStack = new EmailStack(app, `${APP_NAME}-email`); 

messagingStack.createContactTopic.addSubscription(new 

subs.SqsSubscription(emailStack.queue)); 

 

Within the EmailStack, the SQS queue is configured as an event source for the email 

sender lambda function, meaning that once a message is consumed from the SNS topic 

by the queue it is forwarded as an event to the email sender Lambda. We will examine 

how this is done from the Lambda functions shortly. 

 

5.1.5 Deployment Process 

As deploying AWS CDK apps into an AWS environment requires provisioning resources 

such as Amazon S3 buckets for storing deployment artifacts and IAM roles, the AWS 

environment needs to be “bootstrapped” when using CDK for the first time. After the AWS 

environment has been bootstrapped, the CDK command-line interface can be used to 

synthesize and deploy the CDK app and associated stacks. 
 

cdk synth eai-rest 

cdk deploy eai-rest 
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This deployment command is used to deploy the resources for the first time, as well as for 

any subsequent updates. When deploying a stack, CDK can diff the synthesized 

CloudFormation templates to determine whether anything has been modified. If there are 

no changes detected, CDK skips the deployment. 

 

The serverless architecture in our implementation contains a total of eight different stacks 

that are defined using TypeScript in the cdk-app.ts. It would therefore be cumbersome if 

we must manually specify and deploy each stack independently. Luckily, CDK can infer 

most dependencies between stacks that are included in the CDK app scope. For example, 

since the MessagingStack is a dependency of RestStack, we only need to explicitly 

synthesize and deploy the RestStack using the above command, and CDK will 

automatically deploy the MessagingStack as well. 

 

However, sometimes there are no programmatically defined dependency relationships. 

This is the case with the DomainStack which deploys the custom domain referenced 

statically in the RestStack’s API Gateway. If we want CDK to nonetheless check the 

DomainStack for changes and deploy it along with the RestStack, we must manually 

specify it as a dependency like so: 

 

const domainStack = new DomainStack(app, `eai-domain`); 

restStack.addDependency(domainStack); 

 

Combining the CDK commands into a deployment bash script that is executed by a Node 

npm script in package.json, we can then use a one-line deployment command to initiate 

the deployment. This command can be run from either the developer’s machine or from a 

CI/CD environment: 

 

yarn deploy 

5.2 Architecture Implementation 

5.2.1 Exposure Gateway 

In the architecture design, we present an exposure gateway which allows services such 

as a web app backend to invoke our APIs from the internet. This is implemented using 

Amazon API Gateway and provisioned from the RestStack by the createApi function. 

 

 createApi(): apigateway.RestApi { 
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   return new apigateway.RestApi(this, `${this.id}-api`, { 

     apiKeySourceType: apigateway.ApiKeySourceType.HEADER, 

     cloudWatchRole: false, 

     deploy: true, 

     endpointConfiguration: { 

       types: [apigateway.EndpointType.EDGE], 

     }, 

   }); 

 } 

 

As the reader might recall from the architecture design, we need to expose the internet-

accessible APIs on the path endpoint https://eai.ceora.app/salesforce/contact. This is 

done by adding child resources to the API Gateway’s root API construct. 

 

const salesforce = this.api.root.addResource('salesforce'); 

const contact = salesforce.addResource('contact') 

 

To configure burst and rate limits for the API gateway’s usage, a usage plan is created for 

the API gateway as follows 

 

createUsagePlan(api: apigateway.RestApi): apigateway.UsagePlan { 

   const usagePlan = api.addUsagePlan(`${this.id}-usage-plan`, { 

     throttle: { 

       burstLimit: 50, 

       rateLimit: 20, 

     }, 

   }); 

   usagePlan.addApiStage({ 

     stage: api.deploymentStage, 

   }); 

   return usagePlan; 

 } 

 

Finally, to make sure that the lambda functions are protected by some form of 

authentication, API keys are created and added to the usage plan. Here, we see an 

example of programmatic infrastructure provisioning in action using a for-loop to create 

API keys from a list. 

 

createApiKeys(): void { 

   const apiUsers = ['internal']; 

   for (const user of apiUsers) { 
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     const apiKey = new apigateway.ApiKey(this, `${this.id}-api-key-${user}`, { 

       apiKeyName: `${this.id}-${user}`, 

       resources: [this.api], 

     }); 

     this.usagePlan.addApiKey(apiKey); 

   } 

 } 

 

5.2.2 Engagement Layer 

The engagement layer consists of the Create Profile and Delete Profile lambda functions 

which are accessible from the internet via the exposure gateway. These are also 

provisioned using the RestStack using the AWS Lambda SDK, which takes parameters 

such as the Lambda runtime, memory size, timeout duration, log retention. 

 

this.lambda = new lambda.Function(this, id, { 

  functionName: id, 

  runtime: lambda.Runtime.NODEJS_12_X, 

  memorySize: 128, 

  timeout: cdk.Duration.seconds(12), 

  logRetention: 1, 

  code: lambda.Code.fromAsset('../../dist/bundle'), 

  handler: 'create_contact.handler', 

}); 

 

CDK packages the code assets from the specified asset directory and deploys it to the 

Lambda function. In our case, this asset directory contains the Webpack bundles 

compiled from our TypeScript code and JavaScript dependencies. The handler property 

specifies the file and function that contains the lambda logic to be executed by the 

Lambda handler. This pattern of defining a Lambda function in CDK is used by all the 

other infrastructure stacks in the implementation, including the SQS handler Lambda 

functions.  

5.2.3 Back-Office Integrations 

The back-office applications in this scenario are Salesforce, Loyalty System, Email 

Automation, and Data Warehouse. Except for Salesforce, all the applications are stubbed 

- however, we can nevertheless use Salesforce as an example to illustrate how the 

serverless integration runtime communicates with the back-office applications. 
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Salesforce offers a powerful REST API which can be used for machine-to-machine 

communication from the lambda functions. After configuring Salesforce to expose its 

REST API by creating a Connected App and setting up authorization using OAuth 2.0, we 

can now create, read, update, and delete data to and from Salesforce by sending HTTP 

requests to its REST API. 

 

Authentication to Salesforce requires several secret values that should not be stored 

unencrypted in the codebase. One way to handle this problem would be to store the 

secrets in an encrypted file that is decrypted at deployment time and made accessible as 

environment variables in the application runtime. A preferable solution, and the one I have 

chosen, is to make use of the cloud provider’s secrets management service that can fetch 

and decrypt secrets at runtime. As part of its Systems Manager service, AWS offers a 

feature called Systems Manager Parameters (SSM) which can be invoked through an 

SDK by lambda functions at runtime. 

 

From the AWS browser interface, I created a JSON object in SSM called 

“salesforce_secrets” which contains all the parameters needed for authorization to 

Salesforce. This parameter can then be fetched in the integration runtime using the AWS 

SDK as follows:  

 

const parameter = await ssm.getParameter({ Name: 'salesforce_secrets', WithDecryption: true 

}).promise(); 

 

With the authentication secrets in place, we now need to develop the components for 

making HTTP requests to the Salesforce API. There are several open-source libraries that 

provide a wrapper around the native Salesforce API which make it easier to use. I chose 

jsforce as it is one of the most popular ones with good documentation. The two customer 

flows in this scenario - enroll member and unenroll member - are implemented as 

separate lambda functions, and both communicate with Salesforce. To make this 

functionality reusable, therefore, I created a SalesforceClient (Appendix 3) which can be 

instantiated by any lambda function to communicate with Salesforce. 

 

Using these tools, initializing a client for the Salesforce API is as simple as fetching and 

parsing the authentication secrets from SSM, instantiating the SalesforceClient by passing 

in the authentication secrets, and then making an HTTP request to authenticate and login 

to Salesforce. 

 

const client: SalesforceClient = new SalesforceClient(options); 
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await client.login(); 

 

With the SalesforceClient, we can perform a wide range of actions that are available the 

Salesforce REST API using only a few lines of code. For example, creating a new Contact 

record based on a JSON request body is a one-liner as follows: 
 

const contact = await client.sobject('Contact').create(contactCreateRequest) 

5.2.4 Messaging Integrations 

Having gone through how the engagement layer processes a request, and how this 

request synchronously integrates with the back-office application Salesforce via remote 

procedure invocation of its REST API, we can now proceed to look at the integration 

layer’s messaging patterns. 

 

As we saw already, the messaging infrastructure is modeled and deployed using CDK, 

and the CreateProfile lambda function has been granted permission to publish a message 

to the CreateContact SNS topic. The unique identifier for the SNS topic has also been 

added as an environment variable CREATE_CONTACT_TOPIC_ARN, which can be 

accessed in the Lambda Node runtime. We therefore only need to fetch the topic ARN 

and use the SNS SDK to publish the message. 

 

In Enroll Member Flow’s Create Profile lambda, for example, we publish a successfully 

created contact record as a JSON-encoded message to the Create Contact topic as the 

first part of a fanout integration pattern. 

 

const topicArn = process.env.CREATE_CONTACT_TOPIC_ARN; 

const sns = new SNSClient({ region: "eu-central-1" }); 

await sns.send( 

 new PublishCommand({ 

   Message: JSON.stringify(contact), 

   TopicArn: topicArn, 

 }) 

); 

 

As shown, the SNS SDK makes it very simple to publish a message with just a few lines 

of code. This method of forwarding a Contact record is used in both the Enroll Member 

flow’s fanout integration pattern as well as the Unenroll Member flow’s pipes-and-filters 

integration pattern. 
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After the message is published to the SNS topic, it is immediately consumed by the SQS 

queues that are subscribed to it. In the Enroll Member flow, the message is consumed by 

three queues: the email automation system queue, loyalty system queue and the data 

warehouse queue. Each queue in turn has a lambda handler subscribed to it that listens 

for events. When the queue consumes the SNS topic’s message, it emits an SQS event 

containing the message’s contents which is subsequently consumed by the lambda 

handler. The lambda handler can then extract, parse, and process the message by 

executing some business logic. 

 

The Send Email lambda handler, for example, is used in both the Enroll Member as well 

as the Unenroll Member flows. It has one Send Email queue that is subscribed to two 

SNS topics - the Create Contact topic and Unenroll Member topic - meaning that it 

consumes messages from both topics. The Send Email lambda listens to SQS events 

emitted from the Send Email queue and processes incoming events. This is implemented 

with just a few lines of code like so: 

export const handler: SQSHandler = async (event: SQSEvent, _context: Context) => { 

 try { 

   for (const record of event.Records) { 

     const notification = JSON.parse(record.body); 

     const message = JSON.parse(notification.Message); 

     await sendEmail(message); 

     if (message.unenroll) { 

       const snsTopic = process.env.UNENROLL_MEMBER_TOPIC_ARN; 

       await publishMessage(notification.Message, snsTopic!); 

     } 

   } 

 } catch (error) { 

   console.log(error); 

 } 

}; 

 

With the SQS lambda handler, we can differentiate two use cases which have slightly 

different processes. In the Enroll Member flow, the lambda only sends a welcome email to 

the new member and the process ends - it serves as the message consumer in the fanout 

integration pattern. In the Unenroll Member flow, the lambda sends a goodbye email and 

then further publishes a message to another SNS topic, which notifies the Delete Contact 

lambda to initiate the member un-enrollment and cleanup process. This second flow uses 

the pipes-and-filters pattern in which the SQS lambda handler serves as the filter and 

subsequently pipes the message downstream to another filter for further processing. 
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5.3 Systems Engineering 

As discussed in the case design, the serverless EAI implementation needs to provide key 

systems engineering features which ensure the health and security of its computing 

infrastructure. These, we saw, are features related to security, fault tolerance, and 

observability. Owing to the managed services provided by the AWS cloud environment, all 

the heavy lifting required in systems engineering is handled out-of-the-box in a serverless 

implementation. Rather than designing and building systems engineering components 

myself, therefore, I have simply made use of the managed services offered by AWS with 

minimal configuration or customization. 

5.3.1 Security 

Amazon API Gateway is the only part of the architecture exposed to the internet and by 

default it uses HTTPS to enforce TLS encryption for all connections. When deploying a 

Lambda function, Amazon API Gateway automatically assigns an internal domain to the 

API that uses the Amazon API Gateway certificate. For this implementation, I used a 

custom domain name – ceora.app – which is managed by the Google DNS service, and 

AWS Certificate Manager was used to issue a certificate for it. As a result, the system 

securely exposes public API endpoints such as https://eai.ceora.app/salesforce/contact/ 

via TLS encryption. 

 

Access to the EAI’s API endpoints via internet traffic is authenticated using API keys, 

which are configured on Amazon API Gateway. The API endpoints in the implementation 

are intended for server-to-server use, meaning that they are invoked by other servers 

such as a web application backend for example1. To emulate these servers, cURL and 

Postman were used for testing HTTP requests to the API endpoints. Indeed, more 

advanced protocols such as OAuth or JWT could have been used to provide authorization 

capabilities – however, such authorization features are not needed at this layer. 

Presumably authorization would be handled further upstream as part of a larger 

authentication service, from which the EAI stack’s APIs are invoked. 

 

AWS Identity and Access Management (IAM) is used in this implementation to provide 

access control to the AWS environment for users within the organization. Access to the 

AWS environment requires user credentials which grant both console access through the 

web browser as well as programmatic access through the CLI. As this implementation 

involved only one developer, fine-grained access control using IAM was not used. All 

deployment activities were executed by my AWS administrator user account, primarily 

using the AWS CLI with configured access keys. However, it would be trivial to provision 

IAM user credentials with fine-grained security controls if more developers were to be 
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onboarded to the project. Using the IAM console, an AWS administrator can configure 

access rights to individual resources either by creating access policies for an individual 

user, or for a group or role to which the user can then be assigned. 

 

The fine-grained capabilities offered by IAM are nevertheless used for server-to-server 

access control. As shown in the previous section on Infrastructure-as-Code and the CDK 

application (Appendix 1), access between all deployed components is restricted by default 

and need to be explicitly specified by defining IAM access policies. Using this approach 

limits the exposure of security vulnerabilities within the AWS environment – for example, if 

a resource from an unrelated stack is compromised within the same AWS account, it 

cannot infiltrate the resources in the EAI stack because access is restricted by default. A 

more robust way of implementing cloud security at the enterprise level would be to 

sandbox services into separate AWS accounts – such as having a separate account for 

the EAI implementation - or even to sandbox each of the EAI’s deployment environments 

into separate AWS accounts – such as development, UAT and production. Cross-account 

access, which are needed for scenarios such as continuous integration, can then be 

configured using IAM roles. This is however a vast topic that ventures far beyond the 

scope of this research - it suffices to say for our purposes that the AWS IAM service used 

in the implementation provides powerful fine-grained access control that can be highly 

customized for internal users and services. 

5.3.2 Fault Tolerance 

Serverless computing has built-in fault tolerance through several of its architectural and 

infrastructural features. First, because workloads are logically spread across multiple 

different lambda functions, failure within one lambda function can be relatively contained 

so that it does not bring down the entire system. For example, if the Send Email lambda 

function throws an unhandled exception due to a logical error, other lambda functions can 

continue to operate without interruption. In comparison, an uncaught exception in a 

monolithic application may very well crash the entire system. 

 

Second, lambda functions maintain compute capacity across multiple Availability Zones – 

each representing a group of data centers – which effectively ensures that the function is 

available even if an individual machine or data center facility fails. Having distributed 

computing capacity allows the system to be resilient against hardware failure, and this is 

particularly the case for serverless workloads as rebalancing and other server 

maintenance tasks are completely automated behind the scenes. Lambda functions thus 

provide fault tolerance against hardware failure with minimal operational input needed. 
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Third, the decentralized messaging integration patterns used in this EAI architecture are 

designed fundamentally with fault tolerance in mind. Using an SQS queue as a buffer for 

asynchronous message processing means that a lambda message consumer does not 

need to be available when a message is published. Thus, in the event where the lambda 

has failed and is unavailable, the message remains on the queue and is read from the 

queue whenever the lambda becomes available again. SQS keeps processing messages 

until the expiration of the retention period. 

 

Fault tolerance is one of the key technological advantages that the horizontal network 

design of serverless computing has over vertical hierarchical design. A monolithic 

integration runtime hosted on a single server presents a single point of failure, while a 

distributed infrastructure like the one implemented in this serverless computing allows the 

system to be resilient and highly available even when components fail. 

5.3.3 Observability 

Logging, monitoring, and alarms are all provided out-of-the-box through Amazon 

CloudWatch when deploying lambda functions. Amazon CloudWatch is AWS’s monitoring 

and observability service that collects monitoring and operational data from logs, metrics, 

and events, and can be used to set alarms, trigger automated actions, visualize logs, and 

troubleshoot issues. When deploying a lambda function using CDK, a CloudWatch log 

group is automatically created which collects logs emitted in the lambda runtime. When 

troubleshooting issues, it is straightforward to access and search through the logs in the 

CloudWatch log groups. 

 

For more advanced log searches, Amazon CloudWatch Log Insights provides a console 

with a purpose-built query language that can be used to search across multiple log 

groups. This is particularly useful for tracing process instances that span multiple lambda 

functions within the integration stack. A simple way of implementing tracing is to generate 

a unique request ID for each process instance and include it as a request header at each 

processing stage. When troubleshooting a process instance, we can then easily use 

CloudWatch Log Insights to query across multiple log groups using the unique request ID 

as a query parameter and thereby trace the process instance across multiple lambda 

functions. 

 

Due to the stateless and autoscaling features of lambda functions, minimal infrastructure 

metrics are needed for this implementation. However, one useful metric is the API 

response times for integrations to back-office applications. For a production scenario 

where response times for the Salesforce API need to be monitored, one can add a 
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responseTime variable to the Salesforce client which measures how long it takes to 

receive a response from the Salesforce API after a request has been made. This 

responseTime value can then be emitted as a log within the lambda functions, which can 

then be queried using CloudWatch Log Insights. This data can then be aggregated into 

metrics using functions provided by CloudWatch’s query syntax. These metrics, in turn, 

can serve as the basis for data visualization dashboards and alarms for use by an 

operations team. 
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6 Evaluation 

6.1 Methodology and Limitations 

Having gone through the implementation artifact, we can now evaluate its efficacy in EAI 

against the abstract model established from our theoretical framework. In Chapter 2, we 

defined an effective EAI to be one that economizes on the production, coordination, and 

vulnerability costs of organization, while minimizing negative externalities incurred from 

search, decision-making, and enforcement. Our model further predicts that serverless 

computing should perform well based on these criteria relative to alternative integration 

architectures. Let’s therefore evaluate how well our implementation artifact has performed 

in terms of transaction costs, efficiency, and flexibility, and explore any unusual additional 

findings. 

 

It is important to point out some of the limitations of this evaluation. Any assessment of the 

artifact is based primarily on my qualitative observation, and therefore it admittedly does 

not have a high standard of rigor. Furthermore, since we have not set up any metrics, 

control group or indeed any alternative integration architecture with which the artifact can 

be compared against, it is impossible to quantitatively verify any evaluative statements. 

However, this is not the main purpose of our evaluation. This being a design science 

research, our methods and subsequent results are exploratory. Our abstract model 

presents a hypothesis about serverless computing in EAI, and the implementation artifact 

can neither confirm nor reject this hypothesis. Evaluating the implementation artifact 

merely allows us to qualitatively verify the patterns presented in the abstract model and 

account for any unusual or surprising findings. More rigorous quantitative analyses in 

further research can thus be pursued based on these exploratory findings. 

 

To evaluate the implementation artifact, we must infer its transaction, production, 

coordination, and vulnerability costs from empirically observed technological and 

organizational factors. Costs from organizational factors (such as coordination costs) are 

reflected in the time and labor required for task assignment, and therefore the simplest 

way to empirically observe organizational factors in this research would be to measure the 

time taken to implement a solution. In an organization, time taken to implement a solution 

translates directly into labor costs, which often constitutes the largest expense. However, 

given the limitation of this research (namely that we have no control group, and the 

implementation was completed by only one developer), measuring the overall time it takes 

to implement this case architecture would not yield meaningful results. We can 

nevertheless determine the relative time taken by certain activities within the 

implementation process – expressed as a subjective measure of complexity – and use 
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that as an empirical observation. For instance, observing the time it takes to complete a 

task that typically requires organizational cooperation, such as developing a messaging 

channel between two applications, gives us an idea of the transaction and coordination 

costs of serverless when we compare it to alternative technologies. For simplicity’s sake, 

therefore we will take cloud costs as a measurement of technological factors, and the 

relative complexity (time taken) as a measurement of organizational factors.  

6.2 Model Verification 

6.2.1 Transaction Costs 

Our abstract model suggests that serverless architecture is better suited than alternatives 

to economize the transaction costs of search, decision-making and enforcement due to its 

unique combination of hierarchical and network characteristics. 

 

As a quick review, we saw that horizontal networks such as point-to-point topologies incur 

high costs from uncertainty, bounded rationality, information asymmetry and asset 

specificity when developing integrations, as each application must integrate individually 

with one another using market-like mechanisms. These costs are addressed by the 

emergence of hierarchical structures such as hub-and-spoke and SOA, but at the 

expense of production, coordination, and vulnerability costs. Decentralized microservices 

emerged to mitigate the production, coordination and vulnerability costs found in SOA 

architectures, but its horizontal network characteristics once again result in the kinds of 

transaction costs we found in point-to-point integrations - this time, as the negative 

externalities of flexibility. Administrative tools for operational tasks such as service 

discovery, deployment, security, audit logging, and monitoring must often be implemented 

in addition to the integrations themselves, which incur significant costs. Our abstract 

model posits that serverless should fare better at handling these negative externalities 

because its full application functionality provides many of the same benefits of a vertical 

hierarchy like an ESBs. 

 

Indeed, my experience of implementing the serverless EAI architecture has absolutely 

confirmed this. Despite its distributed design, which is characteristic of horizontal 

networks, serverless still retains some of the hierarchical elements of ESBs in the form of 

out-of-the-box features, APIs, and SDKs that take advantage of economies of scale. Take 

logging for example. Logging with AWS CloudWatch came out-of-the-box with each of the 

deployed lambda functions, and retention times are easily configurable in CDK using one 

line of code. We can contrast this to the amount of work required to manually implement 

and maintain logging tools such as ElasticSearch and Kibana, which are commonly found 
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in containerized microservice architectures and can sometimes require dedicated projects 

or personnel to implement. 

 

Security is another example where serverless architecture EAI performs with flying colors. 

As we saw when going through the integration to Salesforce, AWS offers out-of-the-box 

secrets management tools such as SSM that we can use to store authentication secrets, 

mitigating the security risks - as well as development costs - of encrypting and decrypting 

secrets in the codebase. We were also able to create API keys for our two internet-

exposed lambda functions using CDK with just a few lines of code. Admittedly, basic 

authentication using API keys does not necessarily represent production-grade security, 

however this has been chosen to make the functions easily accessible for testing. 

Implementing more advanced security protocols such as signed requests with AWS 

Signature Version 4 is straightforward and does not require much more effort. 

6.2.2 Production Costs 

The fixed production costs of this serverless EAI architecture are extremely low. For the 

month of April 2021, during which the integration runtime was almost completely idle, the 

cost of hosting the entire architecture on AWS was $1.22. Furthermore, these costs were 

incurred from only one service, SQS, which needs to be constantly running to poll for 

incoming messages. All other services such as SNS, Lambda, S3 and CloudWatch - 

because they were not used - all remained within the limits of the free tier. The $1.22 

monthly cost thus gives us a baseline of the fixed cost of running five SQS queues each 

configured with a long polling wait time of 20 seconds. Clearly, therefore, the fixed 

production costs of serverless without a doubt blow all alternatives out of the water when 

considering the costs of maintaining stateful solutions EC2 instances or, even worse, 

license fees of commercial ESBs. 

 

To evaluate the overall production costs of serverless, however, we would need to 

account for its marginal production costs - and indeed, the pay-as-you-go pricing model of 

serverless is based almost entirely on marginal costs. This would require that we put a 

higher load on the serverless runtime, perhaps based on production environments, and 

observe how it compares to alternatives running the same load. 

 

An important point, however, is that the production costs on serverless are determined not 

only by the amount of load, but by its pattern. Serverless is ideal for stateless services 

such as REST APIs, especially where load is unpredictable and characterized by 

alternating peaks and periods of idleness. Using serverless for services characterized by 

constant, predictable load, may in fact make it more expensive than using stateful 
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containerized microservices. For the purposes of my implementation however, the pay-as-

you-go pricing model is perfect, as my use case is exactly one where load is characterized 

by long periods of idleness. 

6.2.3 Coordination Costs 

Our abstract model suggests that serverless should economize on coordination costs 

more effectively than alternatives, and I have observed this to be true while caveated by 

the limitations of my methodology. Coordination costs are the costs of processes such as 

task delegation and decision-making - within the software engineering teams, this 

translates to processes such as releasing software. We saw with ESBs that in vertical 

hierarchies, coordination costs are high since centralization results in the formation of a 

specialized ESB unit that effectively becomes a single point of failure and blocker. 

 

By using infrastructure-as-code with CDK, we can define and deploy infrastructure 

components independently as modular units. Combined with the CLI, SDKs and APIs 

offered by AWS, we can easily setup scripts with which infrastructure can be 

independently deployed and torn down. For example, we can establish a data governance 

model that is well-defined yet highly flexible. By default, the serverless architecture 

assumes a database-per-service pattern in line with microservice principles, but we can 

set up access to the database stack so that it serves as a shared database integration 

between the data warehouse and the email automation system. 

 

Admittedly, however, it is difficult to evaluate how well our serverless EAI architecture 

fares in terms of coordination costs since there is no one other than the author of this 

research who is building integrations towards it.  Since this implementation has involved 

only one developer, it has for the most part followed a centralized deployment model - 

there is only one CDK app which deploys all the infrastructure stacks. This implementation 

has not been able to fully take advantage of the decentralized coordination features of 

serverless. 

 

I suspect, however, that if several developers were to develop new integrations to this 

serverless runtime, we would find that they are able to work independently without many 

bottlenecks. One simple way that the decentralized coordination features of serverless 

architecture could have been tested is by implementing parts of the integration 

architecture in another programming language. For example, we could have implemented 

the Email Sender entirely in Python, using the Python CDK library and Lambda runtime. 

This would have provided a way to emulate a situation where two different teams must 
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develop integrations to the same runtime and would have been a good way to test how 

well serverless infrastructure handles the coordination costs involved. 

6.2.4 Vulnerability Costs 

Based on the features offered by AWS, I’ve observed that running serverless architecture 

in AWS is resilient against vulnerability costs within the cloud platform, but not necessarily 

beyond it. Recalling that vulnerability costs are the “unavoidable costs of a changed 

situation that are incurred before the organization can adapt to the new situation” such as 

technological shock, our abstract model suggests that horizontal networks in general are 

better equipped than vertical hierarchies at handling vulnerability costs. This is because 

the lower coordination costs found in horizontal networks also lowers the costs of learning, 

and therefore horizontal networks have a higher propensity to innovate. 

 

This propensity to innovate is epitomized by microservice architectures, which have 

maximal freedom to experiment with different tools and technologies. Serverless 

computing also does a good job at being compatible with a wide range of programming 

languages and tools, especially when compared to the limitations imposed by alternatives 

such as ESBs. However, it nonetheless has a limited hand due to the limitations imposed 

by cloud infrastructure. For example, cold start times make it largely prohibitive to use 

JVM technologies in Lambda functions, meaning that serverless developers cannot take 

advantage of the latest developments in that world such as Kotlin. 

 

Moreover, I found that the implementation needed at times to be vendor-specific to make 

the most out of the coordination advantages offered by serverless in AWS. From the 

perspective of transaction cost economics, this can be seen as a form of asset-specificity 

cost - i.e., the cost incurred to reallocate the asset for another use. For example, the 

lambda functions contain logic that needs to be developed specifically to handle AWS 

events such as those from API Gateway or SQS. While these pieces of vendor-specific 

code are not overly intrusive, they would at the minimum need to be refactored to be used 

in another cloud environment. 

 

More problematic are the technologies that I have lauded in previous sections of this 

evaluation, namely CDK and the rich set of tools which allow serverless to take advantage 

of both vertical hierarchy as well as horizontal network characteristics. These 

technologies, particularly those that I have referred to as out-of-the-box administrative 

features, are crucial mechanisms for economizing transaction and coordination costs, and 

yet they are also the most vendor-specific. This vendor-specificity means that in the case 
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of vendor change, any investments made in AWS present not only non-transferrable sunk 

costs, but active vulnerability costs from refactoring and testing. 

6.3 Summary of Findings 

To summarize the findings of this research and evaluation, let’s return to the three 

research questions which I set out to answer and see how well we have been able to 

answer them throughout this thesis. 

 

RQ1: What are the main existing approaches to EAI and what are their main problems? 

 

In Chapters 2 and 3, we found that main approaches to EAI can be described by a set of 

integration patterns and integration architectures. These integration patterns fall under 

four main types: file transfer, shared database, remote procedure invocation and 

messaging. Integration patterns are mixed and matched to form integration architectures, 

and we identified these to be point-to-point, hub-and-spoke, service-oriented architecture 

and microservices. Using the theoretical framework and abstract model developed in 

Chapter 2, we saw that these different EAI architectures can be categorized as either 

vertical hierarchies or horizontal networks and that the problems they encounter can be 

understood in terms of tradeoffs between transaction, production, coordination, and 

vulnerability costs. 

 

RQ2: How can serverless be used in EAI? 

 

In Chapter 3, we introduced serverless computing as a technology and examined its 

applications as an integration runtime for EAI. We then presented a design and 

implementation artifact of a serverless integration runtime using AWS in Chapters 4 and 5, 

using a hypothetical scenario in which several back-office enterprise applications must be 

integrated behind a customer-facing interface. 

 

RQ3: How well does serverless solve the main problems of EAI? 

 

Before designing and implementing the artifact, we evaluated the features of serverless 

computing in Chapter 3 using the abstract model of EAI and postulated that it should be 

an attractive approach to EAI due to its ability to economize on production costs, 

coordination costs, and vulnerability costs while being able to minimize the negative 

externalities resulting from decentralization. We then attempted to qualitatively verify this 

model by evaluating the artifact against it and found that our observations of the artifact 

are for the most part consistent with the model. 



 

 

83 

 

One interesting pattern we can infer from our implementation artifact is that the 

differences between microservice and serverless architecture can be interpreted as 

tradeoffs between transaction costs, coordination costs and vulnerability costs. 

Microservice architectures economize on vulnerability costs by avoiding vendor lock-in, at 

the expense of missing out on the rich set of vendor-specific features offered by cloud 

computing. Serverless architectures, on the other hand, make the most out of vendor-

specific features which economize on coordination costs, at the expense of incurring 

vulnerability costs from asset-specificity. 
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7 Further Research 

Several points for further research were identified throughout the evaluation process. 

 

First, a load testing experiment can be conducted to examine the effect different load 

patterns have on the production costs of serverless computing. For example, we can 

create a test suite consisting of constant, step, and goal-based load patterns and record 

the costs incurred in AWS over a fixed time frame. We can then run the same test for an 

alternative integration runtime such as containerized microservices and quantitatively 

compare the results. 

 

Second, as we noted earlier, the limitation of having only one developer meant that it was 

not possible to accurately observe the serverless EAI artifact’s coordination costs. We 

would therefore benefit from a qualitative study in which several integration teams are 

observed developing integrations using serverless technologies. Documenting their ways 

of working and efficiency over a period could help us understand how coordination costs 

are handled by serverless architecture. A more ambitious experiment would be to observe 

many different teams from many different companies, control for serverless integration 

runtimes, and quantitatively measure team performance using metrics within a framework 

such as Scrum. 

 

Given that this research is exploratory in nature, it has developed several abstractions 

regarding information systems and organizations which could be verified, refuted, or 

expanded upon. Three of these abstractions have been referenced throughout this thesis 

to describe and evaluate integration patterns and approaches. These are (i) the 

categorization of information systems as vertical hierarchy and horizontal network 

structures; (ii) the application of market mechanisms and transaction cost economics to 

the analysis of integration architectures; and (iii) the abstract model of EAI architecture as 

economizing on production, coordination, and vulnerability costs. 

 

These abstractions make assumptions that have not been verified, and therefore they 

would certainly benefit from further research that either verify or refute the underlying 

assumptions. Alternatively, further exploratory research can be made to expand on the 

theoretical framework and identify what it has ignored, or account for any unusual 

findings. 
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Appendices 

Appendix 1. CDK App source code 

#!/usr/bin/env node 
import * as cdk from '@aws-cdk/core'; 
import * as subs from '@aws-cdk/aws-sns-subscriptions'; 
import { RestStack } from '../stacks/rest/rest-stack'; 
import { DatabaseStack } from '../stacks/database/database-stack'; 
import { MessagingStack } from '../stacks/messaging/messaging-stack'; 
import { EmailStack } from '../stacks/messaging/email-stack'; 
import { IngestionStack } from '../stacks/messaging/ingestion-stack'; 
import { LoyaltyStack } from '../stacks/messaging/loyalty-stack'; 
import { DomainStack } from '../stacks/domain-stack'; 
import { DeletionStack } from '../stacks/messaging/deletion-stack'; 
 
const APP_NAME = 'eai'; 
const app = new cdk.App(); 
 
// Custom domain name 
const domainStack = new DomainStack(app, `${APP_NAME}-domain`); 
 
// Stack for shared database integrations 
const databaseStack = new DatabaseStack(app, `${APP_NAME}-database`); 
 
// Api gateway serving as HTTP exposure gateway to applications 
const restStack = new RestStack(app, `${APP_NAME}-rest`); 
restStack.addDependency(domainStack); 
 
// Messaging stack contains topics used for communicating between applications 
const messagingStack = new MessagingStack(app, `${APP_NAME}-messaging`); 
messagingStack.createContactTopic.grantPublish(restStack.salesforce.contact.createCon
tact); 
messagingStack.deleteContactTopic.grantPublish(restStack.salesforce.contact.deleteCon
tact); 
restStack.salesforce.contact.createContact.addEnvironment('CREATE_CONTACT_TOPIC_ARN', 
messagingStack.createContactTopic.topicArn) 
restStack.salesforce.contact.deleteContact.addEnvironment('DELETE_CONTACT_TOPIC_ARN', 
messagingStack.deleteContactTopic.topicArn) 
 
// Marketing automation application 
const emailStack = new EmailStack(app, `${APP_NAME}-email`); 
messagingStack.createContactTopic.addSubscription(new 
subs.SqsSubscription(emailStack.queue)); 
databaseStack.contactsTable.grantReadWriteData(emailStack.emailSenderLambda); 
emailStack.emailSenderLambda.addEnvironment('CONTACTS_TABLE', 
databaseStack.contactsTable.tableName); 
messagingStack.deleteContactTopic.addSubscription(new 
subs.SqsSubscription(emailStack.queue)); 
messagingStack.unenrollMemberTopic.grantPublish(emailStack.emailSenderLambda); 
emailStack.emailSenderLambda.addEnvironment('UNENROLL_MEMBER_TOPIC_ARN', 
messagingStack.unenrollMemberTopic.topicArn); 
restStack.addDependency(emailStack); 
 
// Ingestion pipeline to store contacts to data warehouse 
const ingestionStack = new IngestionStack(app, `${APP_NAME}-ingestion`); 
messagingStack.createContactTopic.addSubscription(new 
subs.SqsSubscription(ingestionStack.queue)); 
ingestionStack.contactIngestionLambda.addEnvironment('CONTACTS_TABLE', 
databaseStack.contactsTable.tableName) 
databaseStack.contactsTable.grantReadWriteData(ingestionStack.contactIngestionLambda)
; 
restStack.addDependency(ingestionStack); 
 
// Loyalty member services - enroll, process and uneroll member 
const loyaltyStack = new LoyaltyStack(app, `${APP_NAME}-loyalty`); 
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messagingStack.createContactTopic.addSubscription(new 
subs.SqsSubscription(loyaltyStack.enrollmentQueue)); 
messagingStack.deleteContactTopic.addSubscription(new 
subs.SqsSubscription(loyaltyStack.unenrollmentQueue)); 
restStack.addDependency(loyaltyStack); 
 
// Delete Contact 
const deletionStack = new DeletionStack(app, `${APP_NAME}-deletion`); 
messagingStack.unenrollMemberTopic.addSubscription(new 
subs.SqsSubscription(deletionStack.queue)); 
deletionStack.deleteContactLambda.addEnvironment('CONTACTS_TABLE', 
databaseStack.contactsTable.tableName) 
databaseStack.contactsTable.grantReadWriteData(deletionStack.deleteContactLambda); 
restStack.addDependency(deletionStack); 
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Appendix 2. RestStack source code 

 
import * as cdk from '@aws-cdk/core'; 
import * as apigateway from '@aws-cdk/aws-apigateway'; 
import { loadConfig } from '../shared/utils'; 
import { SalesforceProxy } from './salesforce-proxy'; 
 
const config: object = loadConfig(); 
export class RestStack extends cdk.Stack { 
 public id: string; 
 public scope: cdk.Construct; 
 public api: apigateway.RestApi; 
 public usagePlan: apigateway.UsagePlan; 
 public salesforce: SalesforceProxy; 
 
 constructor(scope: cdk.Construct, id: string) { 
   super(scope, id); 
   this.id = id; 
   this.scope = scope; 
   this.api = this.createApi(); 
 
   const domainName = apigateway.DomainName.fromDomainNameAttributes(this, `${id}-
domain`, { 
     domainName: config['domainName'], 
     domainNameAliasHostedZoneId: '', 
     domainNameAliasTarget: '', 
   }); 
   new apigateway.BasePathMapping(this, `${id}-basePathMapping`, { 
     basePath: '', 
     domainName: domainName, 
     restApi: this.api, 
   }); 
 
   this.usagePlan = this.createUsagePlan(this.api); 
   this.createApiKeys(); 
 
   this.salesforce = new SalesforceProxy(this, `${this.stackName}-salesforce`, { 
     api: this.api, 
   }); 
 } 
 
 createApi(): apigateway.RestApi { 
   return new apigateway.RestApi(this, `${this.id}-api`, { 
     apiKeySourceType: apigateway.ApiKeySourceType.HEADER, 
     cloudWatchRole: false, 
     deploy: true, 
     endpointConfiguration: { 
       types: [apigateway.EndpointType.EDGE], 
     }, 
   }); 
 } 
 
 createUsagePlan(api: apigateway.RestApi): apigateway.UsagePlan { 
   const usagePlan = api.addUsagePlan(`${this.id}-usage-plan`, { 
     throttle: { 
       burstLimit: 50, 
       rateLimit: 20, 
     }, 
   }); 
   usagePlan.addApiStage({ 
     stage: api.deploymentStage, 
   }); 
   return usagePlan; 
 } 
 
 createApiKeys(): void { 
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   // Create API keys for each user 
   const apiUsers = ['internal']; 
   for (const user of apiUsers) { 
     const apiKey = new apigateway.ApiKey(this, `${this.id}-api-key-${user}`, { 
       apiKeyName: `${this.id}-${user}`, 
       resources: [this.api], 
     }); 
     this.usagePlan.addApiKey(apiKey); 
   } 
 } 
} 
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Appendix 3. SalesforceClient source code 

 
import { Connection, UserInfo } from 'jsforce'; 
 
export interface SalesforceOptions { 
 endpoint: String; 
 clientId: String; 
 clientSecret: String; 
 username: String; 
 password: String; 
 securityToken: String; 
} 
 
export class SalesforceClient extends Connection { 
 private options: SalesforceOptions; 
 
 constructor(options: SalesforceOptions) { 
   super({ 
     oauth2: { 
       clientId: `${options.clientId}`, 
       clientSecret: `${options.clientSecret}`, 
     }, 
   }); 
   this.options = options; 
 } 
 
 public async login(): Promise<UserInfo> { 
   return await super.login( 
     `${this.options.username}`, 
     `${this.options.password}${this.options.securityToken}` 
   ); 
 } 
} 

 
 

 

 


