

Rihards Kellers

Home Automation Network MODBUS

IOT-Ticket-MODBUS Network Software and Implementation

Technology and Communication
2021

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Rihards Kellers
Title Home Automation Network MODBUS
Year 2021
Language English
Pages 36
Name of Supervisor Jani Ahvonen

There are many IoT networks today, which include mainly wireless devices.
While that might sound convenient in many situations, wireless IoT devices
might be vulnerable to hackers. This thesis aims to implement a robust IoT net-
work using RS-485 electronic signaling to transmit data using a Modbus protocol
known from the industry. Finally, the master (PC) transfers the data to the IoT
ticket cloud service.

The aim of this thesis was to create a Modbus protocol-based IoT network. A per-
sonal computer with USB to RS-485 adapter includes a program written using the
Python programming language as a MODBUS master and data processor for such
network implementation. Arduino single-board microcontrollers were pro-
grammed to be MODBUS slave devices.

Keywords Internet of things, MODBUS, Arduino, Python

CONTENTS

ABSTRACT

1 INTRODUCTION .. 6

2 MODBUS PROTOCOL .. 8

2.1 About Modbus Protocol .. 8

2.2 MODBUS RTU Protocol ... 8

2.3 MODBUS RTU Package Application Data Unit Structure 9

2.4 MODBUS Registers and Functions .. 9

2.4.1 Types of Registers ... 9

2.4.2 Modbus Function Examples .. 10

3 IOT-TICKET PLATFORM ... 13

3.1 About IoT-Ticket platform ... 13

3.2 IoT-Ticket Platform Features .. 13

4 ARDUINO MODBUS SLAVE DEVICES ... 14

4.1 Arduino Uno and Arduino Mega 2560 .. 14

4.2 MAX485 Based Serial to RS-485 Module .. 14

4.3 DHT22 Temperature and Humidity Sensor ... 17

4.4 KY-009 RGB LED Module ... 19

4.5 Modbus RTU Arduino Library ... 19

4.6 SimpleDHT Library... 19

4.7 Source Code for Arduino Modbus Slave Devices 19

5 PYTHON-BASED APPLICATION .. 22

5.1 Application Description ... 22

5.2 USB to RS-485 Module .. 23

5.3 MinimalModbus library .. 24

5.4 IoT-Ticket Library .. 24

5.5 Application class structure .. 25

5.6 Device Information Storage and Loading Procedure 25

5.7 Iteration over Tasks .. 29

5.8 Task handling .. 31

5.9 Modbus Network Handling ... 32

5.10 Interaction with IOT-Ticket Platform .. 32

6 TESTING .. 33

7 CONCLUSIONS .. 34

REFERENCES .. 35

LIST OF FIGURES AND TABLES

Figure 1. Network topology of IoT-Ticket-Modbus network with one computer and

five slave devices. 7

Figure 2. MODBUS protocol ADU representation 9

Figure 3. Generic Serial to RS-485 module 16

Figure 4. DHT22(AM2302) Sensor 18

Figure 5. Arduino Uno Modbus Device Slave code snippet 20

Figure 6. Arduino Mega 2560 Modbus Device Slave code snippet 21

Figure 7. Generic USB to RS-485 adapter 24

Figure 8. A complete representation of application class structure 25

Figure 9. Example of JSON file with Modbus slave device information 26

Figure 10. Device class and Raw IO info class representation. 28

Figure 11. Code snippet of device loader 28

Figure 12. Task Data class structure 29

Figure 13. Modbus master application iteration flowchart 30

Figure 14. Task execution flowchart 31

Figure 15. Screenshot from the system demonstration video 33

Table 1. MAX485 Technical Specification 16

Table 2. DHT22 Technical Specification 18

1 INTRODUCTION

IoT networks are becoming more popular as technology advances. Intercon-

nected devices within a home, office or industrial buildings are pretty common

to monitor and control the environment. Today it is easy to get a voice assistant,

connect to the house ethernet network, control lights, and sound in the house-

hold.

Products on the market are widespread and famous. However, consumers might

be concerned about the privacy and security of a household and private life

when all devices are in the same network. IoT devices can be vulnerable to hack-

ers as users can be careless or bugs exist within a specific device that allows un-

authorized access to personal data, such as voice command history.

The Modbus RTU protocol is an excellent alternative to wireless ethernet-con-

nected IoT devices. The RS-485 serial connection-based the Modbus RTU net-

work consists of a master device and up to 247 custom devices that support

Modbus RTU or Modbus RTU certified devices over long distances.1

The Modbus protocol on its own is the only tool for interaction between the de-

vices. As the Modbus protocol is a basic machine-to-machine protocol, separate

software must process both the Modbus network and interact with the IoT-Ticket

cloud.

In this setup, a personal computer with an Ubuntu operating system serves as a

master device in the Modbus network. USB to RS-485 device was used to create

1 Full guide to serial communication protocol and our RS-485

software that would be a layer between the Modbus network and data storage, in

this case, IoT-TICKET chosen as an IoT data storage and control platform.

Software that allows Modbus devices and IoT-TICKET cloud to work as the same

system was programmed using the Python programming language due to its high

versatility and many libraries.

However, as an operating system, such as Microsoft Windows also supports Py-

thon, it is possible to use the home server as a Modbus master device or turn

Raspberry Pi into a Modbus master device.

The system designed within this thesis can also be appliable to automation and

device design studies in general. Being open-sourced protocol, this system can al-

low students to design, develop and implement their own devices, interacting with

the system, allowing them to apply the theoretical knowledge in practice.

Figure 1. Network topology of IoT-Ticket-Modbus network with one computer

and five slave devices.

2 MODBUS PROTOCOL

2.1 About Modbus Protocol

The Modbus protocol is the most commonly used industrial protocol designed for

Machine-to-Machine interaction; developed by Modicon company, later acquired

by Schneider Electric, the protocol was introduced in the market in 1979. Schnei-

der Electric assisted in the development of independent developer and user com-

munity organization.2

The open-source base and versatility of the protocol allow multiple manufacturers

to adopt the protocol and implement it in their production. The main applications

of the Modbus protocol are relay and controller handling, sensor data collection,

and monitoring.

2.2 MODBUS RTU Protocol

The system implemented in this thesis focuses on the MODBUS RTU frame format

on the RS-485 half-duplex serial data line.

The Modbus RTU frame format encodes data into binary format; a time interval

performs the role of a package divider. This protocol has a low tolerance towards

latency.

Modbus devices interact following the master-slave model. All requests are made

only by the master device; slave devices can only respond to the requests and can-

not independently begin data transfer.

The Modbus network can consist of multiple segments; however, one segment

can include only one master device and 247 slave devices. Each slave device has a

unique address within the network in a range from 1 to 247. The master device

2 Modbus FAQ: About The Modbus Organization.

does not have an address. However, the master device can send a package ad-

dressing address 0, which will broadcast a package to all slave devices; slave de-

vices cannot respond to broadcast requests. Broadcasting will not be implemented

within the scope of this thesis since there is no confirmation response from the

slave devices.

2.3 MODBUS RTU Package Application Data Unit Structure

MODBUS RTU Application Data Unit consists of:

1. Slave device address – Address of the package recipient device in range

from 0 to 247. (0 for broadcasts)

2. Protocol data unit — Main part of the package, which includes the function

code and data. Data depends on the function code — the maximum size of

253 bytes.

3. Checksum — MODBUS RTU uses algorithm CRC16.

Figure 2. MODBUS protocol ADU representation

2.4 MODBUS Registers and Functions

2.4.1 Types of Registers

A MODBUS slave device includes four data storages; each can hold up to 9999

variables, also known as registers. Using registers, the master device can send the

data to the slave device or read slave device data. The primary purpose of registers

is to control and collect data from the specific device on the MODBUS network.

1. Discrete Output Coils (DO) – 1-bit registers can be written or read by the

master device. The register number is defined as follows: start with 0 fol-

lowed by four digits representing the entity's location. If the master device

uses extended register notation, five digits are specified. Modbus guide-

lines define 1 for a given Coil as an ON state, and the same guidelines de-

fine the value of 0 for a given Output Coil as an OFF state.

2. Discrete Input Contacts (DI) – 1-bit read-only registers. The register num-

ber is defined as follows: start with digit one followed by four digits repre-

senting the entity's location. If the master device uses extended register

notation, five digits are specified. Modbus guidelines define 1 for a given

Coil as an ON state, and the same guidelines define the value of 0 for a

given Output Coil as an OFF state.

3. Analog Input Register (AI) – 16-bit read-only registers. The register number

is defined as follows: start with digit three followed by four digits repre-

senting the entity's location. If the master device uses extended register

notation, five digits are specified.

4. Analog Output Register (AO) – 16-bit registers can be written or read by

the master device. The register number is defined as follows: start with

digit four followed by four digits representing the entity's location. If the

master device uses extended register notation, five digits are specified.

2.4.2 Modbus Function Examples

The list of functions below is not a complete list of functions defined by the Mod-

bus Application Protocol3, it only includes examples and functions used to imple-

ment the goal defined by the thesis description.

3 Modbus application protocol specification V1.1b3.
* N is the number of Outputs divided by 8; if the remainder is not 0, N = N+1

• Read Coils – Function code 01 is used to read from 1 to 2000 contagious

coils in a remote device. PDU consists of function code (1 byte), Starting

address (2 bytes), Quantity of Coils (2 bytes).

o Response PDU consists of Function code 0x01 (1 byte), Byte count

N* (1 Byte), Coil Status Values (n Bytes, where n = N or N+1)

• Read Discrete Inputs – Function code 02 is used to read from 1 to 2000

contagious status of discrete inputs in a remote device. PDU consists of

function code (1 byte), Starting address (2 bytes), Quantity of Discrete in-

puts (2 bytes).

o Response PDU consists of Function code 0x02 (1 byte), Byte count

N* (1 Byte), Input Status Values (n Bytes, where n = N or N+1)

• Read Holding Registers – Function code 03 is used to read from 1 to 125

contagious blocks of holding registers in a remote device. PDU consists of

function code (1 byte), Starting Address (2 bytes), Quantity of Registers (2

bytes).

o Response PDU consists of Function code 0x03 (1 byte), Byte count

N* (1 Byte), Register Values (N* bytes)

• Read Input Registers - Function code 04 is used to read from 1 to 125 con-

tagious input registers in a remote device. PDU consists of function code

(1 byte), Starting Address (2 bytes), Quantity of Registers (2 bytes).

o Response PDU consists of Function code 0x04 (1 byte), Byte count

N* (1 Byte), Input Register Values (N* bytes)

• Write Single Coil – Function code 05 is used to write the state of a single

output to either ON or OFF state in a remote device. PDU consists of func-

tion code (1 byte), Slave Device Address (2 bytes), to request Coil to

switch to on state master device specifies value 0x0000 or 0xFF00 to re-

quest slave device to switch Coil to OFF state (2 bytes).

o Response PDU consists of Function code 0x04 (1 byte), Slave De-

vice Address (2 bytes)

• Write Single Register – Function code 06 writes a single holding register in

a remote device. PDU consists of function code (1 byte), Slave Device Ad-

dress (2 bytes), value in a range of 0x0000 to 0xFFFF (2 bytes)

o Response PDU consists of Function code 0x06 (1 byte), Register

Address (2 bytes), Register Value (2 bytes)

3 IOT-TICKET PLATFORM

3.1 About IoT-Ticket platform

Wapice Oy describes the IoT-Ticket platform as a complete tool suite that allows

customers to build web, mobile, cloud, and reporting Internet of Things-related

applications.

The IoT-Ticket platform includes big data analytics support and user-friendly tools.

The IoT-Ticket improves the Internet of Things experience by allowing users to cre-

ate IoT applications in minutes without additional software development or ex-

penses.4

3.2 IoT-Ticket Platform Features

IoT-Ticket is a user-friendly web-based IoT platform that includes a customizable

dashboard for personal computers and mobile phones, data analysis, device event

automation.

While Wapice Oy targets IoT-Ticket for business solutions, studies can base on the

tools provided by the platform. Software implementation of Modbus master for

Linux can be modified to use any other IoT platform.

4Spice IoT-TICKET product description webpage.

4 ARDUINO MODBUS SLAVE DEVICES

4.1 Arduino Uno and Arduino Mega 2560

Arduino Uno5 is a consumer-grade open-source development microcontroller

board based on ATmega328P microchip6. This project includes two Arduino Uno

development boards that are functioning as Modbus RTU Slave devices as humid-

ity and temperature measuring devices.

Low price, fast development cycle, and popularity might make this development

board a good choice for home automation.

Arduino Mega 2560 is a consumer-grade open-source development microcontrol-

ler board based on the ATmega2560 microchip7. One Arduino Mega 2560 devel-

opment board functions as a Modbus RTU Slave device as an RGB LED controller.

This board has a higher price than Arduino Uno. However, it has more processing

power and additional serial interfaces, digital and analog IO allowing it to be more

versatile than Arduino Uno.

4.2 MAX485 Based Serial to RS-485 Module

Generic serial to the RS-485 module allows development boards to connect to the

Modbus network, which by default is not supported by either of Arduino develop-

ment boards. The modules used in this project utilize the Maxim Integrated

MAX485ESA8 chip.

The module can is usable with any development board which has a serial interface.

However, it is optimal to design and manufacture custom serial to RS-485. The

module mentioned here includes terminating resistor, which might cause issues in

5 Arduino Uno datasheet.
6 ATmega328P datasheet.
7 ATmega2560 datasheet.
8 MAX485ESA datasheet.

Modbus networks with many devices, as only one termination resistor should be

in the network.

The MAX485ESA chip by Maxim Integrated is a low-power, slew-rate-limited trans-

ceiver designed for half-duplex applications.

Depending on the RE and DE connection, the module works as a transmitter or

receiver. The application of current to RE and DE pins switches the RS-485 module

into transmit mode while lacking current switches to the retrieve mode.

By default, this module includes 120 Ω resistor R7 for serial line termination, as

serial RS-485 line in this project includes multiple slave devices, removal of 120 Ω

termination resistor R7 was necessary for two of the slave devices9. The removal

of termination resistance in similar generic modules is a good solution for devel-

opment purposes but not practical for developing a device dedicated to serving as

a Modbus RTU slave device.10

9 Wiring of RS485 Communications Networks.
10 RS-485 basics: When termination is necessary, and how to do it properly.

Figure 3. Generic Serial to RS-485 module

Pin connection for the implementation of connections within this project was the

same for all devices as follows:

Vcc Pin-Connected to 5 Volt output of Arduino Board.

Ground pin – Connected to the ground pin of Arduino Board.

A pin – Connected to the A pin of USB to RS-485 converter.

B pin – Connected to the B pin of USB to RS-485 converter.

DE and RE pins – Connected to pin 3 of Arduino Board.

R0 pin – Connected to the RX0 pin of Arduino Board.

D1 pin – Connected to the TX0 pin of Arduino Board.

Table 1. MAX485 Technical Specification

Tx/Rx 1Tx + 1Rx

Duplex Half

4.3 DHT22 Temperature and Humidity Sensor

DHT22 Temperature and Humidity Sensor is a popular consumer-grade sensor; it

is common in most projects requiring temperature and Humidity measuring. The

sensor outputs a digital signal and takes on average two seconds to take measure-

ments. Small size, low power consumption, and long transmission distance allow

this sensor to transmit data far from the development board, enabling placement

in a different room.

Within the scope of this thesis, the DHT22 temperature and humidity sensor

measures the ambient temperature and humidity; the master device collects

measurements and uploads them to IoT-Ticket cloud as an example of variables

that can be read from the Modbus Slave device and displayed in the IoT-Ticket

dashboard.

V(supply) (V) 5

Data Rate (kbps) (min) 2500

ICC (mA) (Typ) 0.5

Oper. Temp. (°C) -40 to +85

Figure 4. DHT22(AM2302) Sensor

Table 2. DHT22 Technical Specification11

Model DHT22

Power Supply 3.3-6V DC

Output signal Digital signal via single-bus

Operating range Humidity 0-100% RH
Temperature -40~80 °C

Accuracy Humidity +-2% RH (Max +-5% RH)
Temperature <+-0.5 °C

Resolution of sensitivity Humidity 0.1% RH
Temperature 0.1 °C

Repeatability Humidity +-1% RH
Temperature +-0.2 °C

Sensing period Average: 2s

Interchangeability Fully interchangeable

11 Digital-output relative humidity & temperature sensor/module DHT22.

4.4 KY-009 RGB LED Module

KY-009 is an RGB full-color LED module for Arduino12, capable of emitting a range

of colors by mixing red, green, and blue light. The amount of each color is adjusted

using PWM.

This RGB LED module can show the possibility of writing the values given in the

IoT-Ticket Dashboard to the slave devices.

4.5 Modbus RTU Arduino Library

Modbus RTU Arduino Library is a part of a project authored by Samuel Marco I

Armengol under the GNU License and publicly available on GitHub.13

This library implements a serial Modbus protocol for Arduino devices. Within the

scope of this thesis, Arduino development boards use this library to interact as

Slave devices in the Modbus Network.

4.6 SimpleDHT Library

The SimpleDHT Arduino library is a part of a project authored by Winlin under the

MIT License and publicly available on GitHub.14

This library implements interfacing with DHT22 and DHT11, which allows usage of

DHT22 sensor on Arduino Uno Modbus Slave devices.

4.7 Source Code for Arduino Modbus Slave Devices

Arduino Uno Modbus slave devices share the source code for the program; the

only difference between devices is the slave address. The first Arduino Uno Slave

Device uses the number ten as its address, and the second Slave Device uses 11 as

its address.

12 KY-009 Datasheet.
13 Modbus-Master-Slave-for-Arduino.
14 SimpleDHT.

Arduino development boards utilize the ModbusRtu library to allow boards to

serve as a Modbus Slave Device. Each of the Arduino boards uses pin three to

change the RS-485 module mode; this pin connects to pins DE and RE of serial to

RS-485 Module.

The Arduino Uno development board code includes the SimpleDHT library to col-

lect measured data from the DHT22 sensor.

Figure 5. Arduino Uno Modbus Device Slave code snippet

DHT22 average measurement time is two seconds. The 2-second delay helps to

avoid complications induced by the mechanics of the DHT22 sensor; Arduino Uno

Modbus Slaves update humidity and temperature values in the register during the

measurement collection from the DHT22 sensor.

One of the limitations of the Modbus network is the inability to pass floating-point

values directly. Temperature and humidity values were multiplied by 100, creating

an integer value, divided by 100 by the Modbus Master device, allowing transfer

of floating-point values.

Arduino Mega 2560 Modbus Slave Device has a similar codebase. However, in-

stead of writing data to the registers, the development board reads the register

values and writes them as PWM values to the pins 5, 6, and 7, corresponding to

Red, Green, and Blue components of the RGB LED module. Arduino Mega 2560

development board has number 12 as slave address.

Figure 6. Arduino Mega 2560 Modbus Device Slave code snippet

5 PYTHON-BASED APPLICATION

5.1 Application Description

The Python15 application is supposed to serve as a Modbus Network Master device

by connecting to the network using the USB to RS-485 module. Currently, the

codebase allows the connection of multiple Modbus Network Segments. How-

ever, within the scope of this thesis, only one segment is present.

The application consists of four parts and two external libraries, MinimalModbus

authored by Jonas Berg, licensed under Apache License16 and IoT-Ticket library de-

veloped by Wapice Ltd, licensed under MIT License17.

The application loads the device list from JSON files in 'devices' folder in the same

directory as the core file of the Python project, creating and filling the class with

the information provided by the JSON file. The JSON files include device name, the

serial port of Modbus Network in which device is located, register information,

datatypes, units.

The software considers each register as separate IO; the application creates a task

from the IO information. The application uses tasks to interact with the registers

and handle reading and writing from and to registers.

The application iterates with adjustable time intervals, each iteration reduces the

time until task execution, and when the time until execution equals zero, the ap-

plication starts processing the task. Upon the start of task execution, the applica-

tion selects action depending on the register type. Current IoT-Ticket cloud data is

being downloaded with adjustable intervals, defaulted by 5 seconds.

Tasks related to Discrete Inputs and Input Registers are executed independently

from stored Cloud Data. Discrete Inputs and Input Software reads all registers once

15 Python 3.9.5 documentation.
16 MinimalModbus.
17 IoTTicket-PythonLibrary.

the time until the execution is zero. The task processor compares the current value

in Discrete Input or Coil. If values have changed, new values are packed into data

node packages and uploaded to according devices to the IoT-Ticket cloud storage

at the end of application iteration. It is possible to configure the task to upload

data without comparing.

Tasks related to Coils and Holding Registers application are considered as Cloud

Data Sensitive. The execution of such tasks only occurs when the time until execu-

tion is zero and Cloud Data was just loaded. Task processing consists of reading

the current value in Cloud Data, the current value in Coil or Holding Register, and

writing value from the Cloud Data to the device.

The application tracks the current state of Coils and Holding registers by rereading

the values from slave devices and uploading them to the cloud with the appendix

either "_coil_state” or “_holding_register_state."

5.2 USB to RS-485 Module

The personal computer, which serves as Modbus Device Master, is connected to

the Modbus Network using a generic USB to RS-485 module. USB to RS-485 mod-

ule supports half duplex transmission, 1200 meters transmission rate at transmis-

sion speed of 9600b/s18.

Terminal A of the module connects to the RS-485 modules of Arduino Slave De-

vices terminal A, and terminal B connects to the RS-485 module terminal B of Ar-

duino Slave Devices.

18 Usb to serial chip CH340 data sheet.

Figure 7. Generic USB to RS-485 adapter

5.3 MinimalModbus library

The MinimalModbus library, developed by Jonas Berg, is a Python driver for Mod-

bus RTU and ASCII protocols, supporting serial connections using RS-485, RS-232,

or USB to serial adapters. The library is licensed under Apache License, version 2.0.

The MinimalModbus library includes Instrument class to communicate to instru-

ments, also known as slaves within Modbus RTU network.

The library includes implementation of Modbus functions: Read Coils, Read Dis-

crete Inputs, Read Holding Registers, Read Input Registers, Write Single Coil, Write

Single Register, Write Multiple Coils, and Write Multiple Registers.

It is possible to transmit or receive float values and ASCII strings using this library.

However, the target device might not support it.

5.4 IoT-Ticket Library

The IoT-Ticket library for Python is a library developed by Wapice Ltd and released

under the MIT License. The library uses IoT-Ticket REST API.

It provides a set of functions for interaction with the IoT-Ticket platform, allowing

data transmission between the platform and application without writing a custom

library.

The methods of the library include functions for information fetching, data read-

ing, and writing. The application implemented within the scope of this thesis uti-

lizes read and write data functions of the IoT-Ticket library.

5.5 Application class structure

The application operates using array of large class named Device class, that in-

cludes name of the slave device, description of the slave device, Instrument class

(Implemented in the MinimalModbus library and used for communication with the

slave devices),

serial port dedicated to the Modbus network segment, slave device address, array

of sub-class Raw IO info that stores the information about slave device registers,

and array of sub-class Task Data that stores the information required for task pro-

cessor.

Figure 8. A complete representation of application class structure

5.6 Device Information Storage and Loading Procedure

As the Modbus master device is unaware of the number of slave devices in the

Modbus network and their specifications, the user must create a JSON file with

the information about the device. The JSON file must include the name of the slave

device, the serial port with required Modbus network segment, slave device ad-

dress, and list of IO on the specified device. IO is a name that would describe a

package that includes register information, such as name, register address, data

type, number of decimals, register type, and some of the other information that

task processor and IoT-Ticket cloud require.

Figure 9. Example of JSON file with Modbus slave device information

The JSON file includes data required for Task processor, Modbus network interac-

tion, and information required for interaction with IoT-Ticket platform. The JSON

file consists of:

• deviceName – The name of the Modbus slave device, under this name, the

data of the slave device will appear on the IoT-Ticket platform.

• description – Used for the description of the device, however unused in

the application or IoT-Ticket platform.

• port – Location of the interface within the master device that holds the

Modbus network segment containing the slave device.

• address – Address of the slave Modbus device within the Modbus network.

• io – List of the information for each register, defined as:

o name – Name of the register, used for data storage on the IoT-

Ticket platform.

o description – Used for the description of the register, however un-

used in the application or IoT-Ticket platform.

o register – address of the register within the Modbus slave device.

o units – Used only to specify units of the register within the IoT-

Ticket platform.

o datatype – Used for specification of the datatype to store on the

IoT-Ticket platform.

o number_of_decimals – Required for specification of a number of

decimals of the float values. 0 if the register contains integer or

boolean value.

o register_type – Type of the register. The task processor requires

this to perform a correct operation. It can be either of four register

types.

o action_interval – Time in seconds between the execution of the

task.

o error_mode – Mode of error handling for the given register. "Retry"

– will instruct the task processor to retry to send or receive data

from the register upon encountering exceptions. "Skip" – will in-

struct the task processor to ignore the exception and switch to the

next task.

o cloud_update_mode – As resources of the IoT-Ticket platform are

limited, it is possible to instruct the task processor to either upload

values only when it is different from currently stored in the IoT-

Ticket or update the values upon every execution of the task.

Upon the startup of the application, the device information loader loads the device

information from the JSON file into the device class, saving all the information

from the file in the application memory.

Figure 10. Device class and Raw IO info class representation.

As the raw information from the JSON files is loaded, the device loader starts pro-

cessing the information and builds a task list based on a list of IO specified by the

file. Once loading is complete, tasks are being created for every IO located in the

IO list of the given device.

Figure 11. Code snippet of device loader

The task contains the time until execution, task execution interval, and infor-

mation about the Modbus slave device and IoT-Ticket platform. Essentially, the

task class contains information required for the transaction of information be-

tween the Modbus slave device and the IoT-Ticket platform.

Figure 12. Task Data class structure

5.7 Iteration over Tasks

Once the application loads device information and prepares a list of tasks, it down-

loads the most recent data from the IoT-Ticket and assigns information from the

cloud to each task.

Each iteration, a function is called to decrease the time until a new batch of data

downloads from the cloud. The execution of task starts when the time until exe-

cution equals zero. After the execution, the time until the subsequent execution

equals pre-defined in JSON file time.

Tasks based on interaction with Coils and Holding registers are considered as cloud

data sensitive. The primary function of Coils and Holding registers is to input infor-

mation into the Modbus slave devices; actual data from the IoT-cloud storage

must be present.

Tasks based on interaction with Discrete inputs and Input registers do not require

actual IoT-cloud data, as the Modbus master device only uploads it to the IoT-

cloud storage.

Figure 13. Modbus master application iteration flowchart

5.8 Task handling

The task execution starts from checking the time until execution; if that value is

not zero, the task processor is skipping the task. Otherwise, the task processor

selects action depending on the type of register specified in the task.

The task execution for the Discrete Input and Input Register involves reading data

from the slave device. The task processor compares the data fetched from the

slave device to the stored data from the same register. If the fresh data and the

stored data are different or the cloud update mode "Always" is present, the task

processor will prepare the data node package to upload to the IoT-Ticket cloud.

Figure 14. Task execution flowchart

The task execution for the Coil and Holding Registers consists of reading data from

the slave device. The task processor compares the data fetched from the slave

device to the data downloaded from the IoT-Ticket cloud. If there is a difference,

the task processor assigns register in the slave device the value from IoT-Ticket

cloud. To ensure the data was assigned correctly, the task processor reads the

value from the slave device and prepares the data node package with the suffix

"_state." The cloud update mode "Always" will upload the current value of the

slave device register in a data node package with the suffix "_state."

Once all actions are executed within the task, time until execution for a given task

is set the same value as the time specified within configuration. If the task has an

unknown register type, the task is assigned the lowest priority; the task processor

will not process it in the future.

5.9 Modbus Network Handling

The Modbus master Python application uses the MinimalModbus library to inter-

act with the Modbus RTU network, USB to RS-485 module establishes a physical

connection to the network. The custom library prevents critical exceptions by re-

trying reading or writing attempts upon encountered exceptions. The most com-

monly encountered exception is connection timeout. As RS-485 has a low toler-

ance towards delays and a poor-quality cable was used during development,

shielded cables can prevent this exception from happening.

5.10 Interaction with IOT-Ticket Platform

The Modbus master Python application uses the IoT-Ticket library to receive actual

data from the cloud storage, encapsulates data node packages, and sends them

back to the IoT-Ticket cloud storage.

The application creates IoT-Ticket data node packages that include the name of

the variable, the value of the variable, the data type, and optionally, units at the

end of task execution. The application uploads the values at the end of the itera-

tion. The application tries to minimize interaction with the IoT-Ticket platform as

it does not have infinite resources. Every user has a quota of data that can be sent

and stored at the IoT-Ticket platform.

6 TESTING

After the development and implementation of the network, the system testing

followed. The system can send and receive data from the IoT-Ticket platform in

the current state, including variables with boolean, floating-point, and integer

data types, and assign them to the Coils and Holding register in the slave devices.

The system can read values from the Input registers and Discrete inputs and up-

load them to the IoT-Ticket platform.

Tests were performed using three Arduino boards; two included the DHT22 sen-

sor, and one included the RGB Led module.

During the tests, the capability of reading the values to the RGB Led module was

tested. Humidity and temperature tests from the DHT22 were also successful.

Figure 15. Screenshot from the system demonstration video

7 CONCLUSIONS

The implementation and development of the system, including Modbus RTU pro-

tocol and IoT-Ticket platform, can be considered a success. The system can com-

municate with the Modbus network and utilize IoT-Ticket storage.

The system can be used for domestic or study purposes; it might be unreliable for

implementation in industrial production. It can be part of the study process as it

includes the standard machine-to-machine protocol and supports custom devices.

It is possible to improve the system by implementing different ways of passing the

floating-point values, such as two integers. It is possible to implement string trans-

mission. However, the target slave device must support it.

To make this system more viable for the industry or study purposes, it would be

beneficial to develop more advanced exception handling, web-based control in-

terface, support of different IoT platforms, and support of network configuration

during the system execution.

In the current state, home environments can utilize the system as an alternative

to wireless IoT networks.

REFERENCES

Full guide to serial communication protocol and our RS-485. 2019. Accessed

26.04.2021. https://www.maximintegrated.com/en/design/technical-docu-

ments/app-notes/3/3884.html

Modbus FAQ: About The Modbus Organization. 2005. Accessed 26.04.2021.

https://www.modbus.org/faq.php

Modbus application protocol specification V1.1b3. 2012. Accessed 26.04.2021.

https://modbus.org/specs.php

Spice IoT-TICKET product description webpage. 2019. Accessed 26.04.2021.

https://www.wapice.com/products/iot-ticket

Arduino Uno datasheet. 2013. Accessed 26.04.2021. https://www.far-

nell.com/datasheets/1682209.pdf

ATmega328P datasheet. 2015. Accessed 26.04.2021. https://ww1.micro-

chip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-

ATmega328P_Datasheet.pdf

ATmega2560 datasheet. 2014. Accessed 26.04.2021. https://ww1.micro-

chip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-at-

mega640-1280-1281-2560-2561_datasheet.pdf

MAX485ESA datasheet. 2014. Accessed 26.04.2021. https://datasheets.maximin-

tegrated.com/en/ds/MAX1487-MAX491.pdf

Wiring of RS485 Communications Networks. 2020. Accessed 26.04.2021.

https://www.se.com/ww/en/faqs/FA221785/

RS-485 basics: When termination is necessary, and how to do it properly. 2021.

Accessed 26.04.2021. https://e2e.ti.com/blogs_/b/analogwire/posts/rs-485-ba-

sics-when-termination-is-necessary-and-how-to-do-it-properly

https://www.maximintegrated.com/en/design/technical-documents/app-notes/3/3884.html
https://www.maximintegrated.com/en/design/technical-documents/app-notes/3/3884.html
https://www.modbus.org/faq.php
https://modbus.org/specs.php
https://www.wapice.com/products/iot-ticket
https://www.farnell.com/datasheets/1682209.pdf
https://www.farnell.com/datasheets/1682209.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://datasheets.maximintegrated.com/en/ds/MAX1487-MAX491.pdf
https://datasheets.maximintegrated.com/en/ds/MAX1487-MAX491.pdf
https://www.se.com/ww/en/faqs/FA221785/
https://e2e.ti.com/blogs_/b/analogwire/posts/rs-485-basics-when-termination-is-necessary-and-how-to-do-it-properly
https://e2e.ti.com/blogs_/b/analogwire/posts/rs-485-basics-when-termination-is-necessary-and-how-to-do-it-properly

Thomas Liu. 2011. Digital-output relative humidity & temperature sensor/mod-

ule DHT22. Accessed 26.04.2021. https://www.sparkfun.com/datasheets/Sen-

sors/Temperature/DHT22.pdf

KY-009 Datasheet. 2017. Accessed 26.04.2021.

https://datasheetspdf.com/datasheet/KY-009.html

Modbus-Master-Slave-for-Arduino. 2014. Accessed 26.04.2021.

https://github.com/smarmengol/Modbus-Master-Slave-for-Arduino

SimpleDHT. 2018. Accessed 26.04.2021. https://github.com/winlinvip/Sim-

pleDHT

Python 3 documentation. 2018. Accessed 26.04.2021. https://docs.py-

thon.org/3/

MinimalModbus. 2019. Accessed 26.04.2021. https://minimalmod-

bus.readthedocs.io/en/stable/

IoTTicket-PythonLibrary. 2016. Accessed 26.04.2021. https://github.com/IoT-

Ticket/IoTTicket-PythonLibrary

Usb to serial chip CH340 data sheet. 2017. Accessed 26.04.2021.

https://cdn.sparkfun.com/datasheets/Dev/Arduino/Other/CH340DS1.PDF

https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://datasheetspdf.com/datasheet/KY-009.html
https://github.com/smarmengol/Modbus-Master-Slave-for-Arduino
https://github.com/winlinvip/SimpleDHT
https://github.com/winlinvip/SimpleDHT
https://docs.python.org/3/
https://docs.python.org/3/
https://minimalmodbus.readthedocs.io/en/stable/
https://minimalmodbus.readthedocs.io/en/stable/
https://github.com/IoT-Ticket/IoTTicket-PythonLibrary
https://github.com/IoT-Ticket/IoTTicket-PythonLibrary
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Other/CH340DS1.PDF

	1 Introduction
	2 MODBUS protocol
	2.1 About Modbus Protocol
	2.2 MODBUS RTU Protocol
	2.3 MODBUS RTU Package Application Data Unit Structure
	2.4 MODBUS Registers and Functions
	2.4.1 Types of Registers
	2.4.2 Modbus Function Examples

	3 Iot-ticket platform
	3.1 About IoT-Ticket platform
	3.2 IoT-Ticket Platform Features

	4 ARDUINO MODBUS SLAVE DEVICEs
	4.1 Arduino Uno and Arduino Mega 2560
	4.2 MAX485 Based Serial to RS-485 Module
	4.3 DHT22 Temperature and Humidity Sensor
	4.4 KY-009 RGB LED Module
	4.5 Modbus RTU Arduino Library
	4.6 SimpleDHT Library
	4.7 Source Code for Arduino Modbus Slave Devices

	5 PYTHON-BASED APPLICATION
	5.1 Application Description
	5.2 USB to RS-485 Module
	5.3 MinimalModbus library
	5.4 IoT-Ticket Library
	5.5 Application class structure
	5.6 Device Information Storage and Loading Procedure
	5.7 Iteration over Tasks
	5.8 Task handling
	5.9 Modbus Network Handling
	5.10 Interaction with IOT-Ticket Platform

	6 Testing
	7 Conclusions
	REFERENCES

