
Samuel Svahn

IMPLEMENTATION OF DIGITAL

SIGNATURE USING SIGNSERVER

Tekniikka
2021

VAASAN AMMATTIKORKEAKOULU

Tietotekniikka

TIIVISTELMÄ

Tekijä Samuel Svahn

Opinnäytetyön nimi Implementation of Digital Signature Using SignServer

Vuosi 2021

Kieli englanti

Sivumäärä 40 + 5 liitettä

Ohjaaja Anna-Kaisa Saari

Tämä opinnäytetyö tutki kuinka digitaalinen allekirjoitus toimii ja miten
viitekehys asennetaan. Joidenkin palveluntarjoajien käyttöehdot mahdollistavat
oikeuden tehdä muutoksia ilman tiedotuksia asiakkaille. Tästä syystä on joskus
hyödyllistä olla riippumaton kolmansista osapuolista tärkeissä toiminnoissa, kuten
allekirjoituksissa.

Sähköisen allekirjoituksen tulee olla turvallinen, joten sen taustalla on julkisen
avaimen salaus tämän takaamiseksi. Julkisen avaimen salaus on osa julkisen
avaimen infrastruktuuria, joka hallinnoin julkisen avaimen sertifikaatteja.
Tutkismumateriaali koostuu pääasiallisesti työssä käytettyjen palveluntarjoajien
verkkolähteistä.

Järjestelmän asennuksen ja manuaalisen testauksen jälkeen, SignServer vaikutti
toimivan täysin verrokkina olleen kaupallisen palvelun tavalla.

Avainsanat Digitaalinen allekirjoitus, SignServer, Kryptografia

VAASAN AMMATTIKORKEAKOULU

VAASA UNIVERSITY OF APPLIED SCIENCES

Tietotekniikka

ABSTRACT

Author Samuel Svahn

Title Implementation of Digital Signature Using SignServer

Year 2021

Language english

Pages 40 + 5 appendices

Name of Supervisor Anna-Kaisa Saari

This thesis examines how a digital signature functions and how the framework is
set up, as it is sometimes beneficial to not have to depend on third parties for vital
business operations. Some third party service providers have the option to take
their service offline or to change it with no prior notice, according to their terms
of service.

The digital signature needs to be secure, so it is supported by a public key
encryption to ensure this. A public key encryption is a part of a public key
infrastructure which manages public key certificates. The research material
consists mostly of web pages of the service providers used in the implementation.

After implementing a proof of concept digital signature framework and doing
manual testing, it seems to function exactly like another commercial grade digital
signature provider that it was tested against.

Keywords Digital Signature, SignServer, Cryptography

Table of Contents

TIIVISTELMÄ

ABSTRACT

LIST OF ABBREVIATIONS...6

1 INTRODUCTION...10

1.1 Today’s Climate...10

1.2 Aims of the Project..10

1.3 Signing Process..10

2 DIGITAL SIGNATURE AND PORTABLE DOCUMENT FORMAT..............12

2.1 Digital Signature..12

2.2 Portable Document Format..12

3 PUBLIC KEY INFRASTRUCTURE...14

3.1 How a PKI Functions..14

3.2 Uses of PKI..14

3.3 Certificates...15

3.3.1 Certificate Authority...15

3.3.2 Certificate Signing Request..15

3.3.3 X.509...16

3.4 PKCS 11 & 12...16

3.5 OpenSSL..16

3.6 Hardware Security Module..16

4 COMPONENTS OF THE SYSTEM..18

4.1 Wildfly 20.0.1..18

4.2 MariaDB 10.5.8...19

4.3 Ubuntu 18.04 LTS...19

5 SIGNSERVER..20

5.1 SignServer 5.2.0..20

5.2 Features..21

5.3 Interfaces...21

5.4 Workers..22

6 IMPLEMENTATION..23

6.1 Requirements...23

6.2 Installation...23

6.2.1 OpenJDK8 & Apache Ant...24

6.2.2 SignServer...24

6.2.3 MariaDB database...25

6.2.4 Wildfly Application Server...26

6.2.5 Start Wildfly and Configuring MariaDB..27

6.3 PKI...28

6.3.1 Wildfly Key and Certificate for SSL...30

6.3.2 Generic Crypto Token...32

6.3.3 Configure Wildfly SSL...32

6.4 SignServer Deployment...33

6.5 Workers..35

6.5.1 Crypto Worker...35

6.5.2 PDF Signer..35

6.6 Testing..36

7 CONCLUSIONS...39

REFERENCES...41

ATTACHMENTS

LIST OF ABBREVIATIONS

PKI Public Key Infrastructure

TLS Transport Layer Security

RA Root Authority

CA Certificate Authority

CSR Certificate Signing Request

PDF Portable Document Format

TSP Trusted Service Provider

AATL Adobe Approved Trust List

HSM Hardware Security Module

SHA Secure Hashing Algorithm

PKCS Public Key Cryptography Standards

IETF Internet Engineering Task Force

SSL Secure Sockets Layer

ISO International Organization for Standardization

HTTP Hypertext Transfer Protocol

SOAP Simple Object Access Protocol

TSP Trusted Service Provider

HTML Hypertext Markup Language

LGPL GNU Lesser General Public License

CLI Command Line Interface

WS Web Services

SOAP Simple Object Access Protocol

PKCS Public Key Cryptography Standards

LIST OF FIGURES

Figure 1. The structure of the implemented system

Figure 2. A client communicating with SignServer and the architecture inside

SignServer /17/. The database and keystore are also a part of the PKI.

Figure 3. SignServers landing page.

Figure 4. Figure 4. Security view of the landing page on Google Chrome.

Figure 5. Signing page.

Figure 6. The PDF before signing.

Figure 7. After the signing is done a new revision is added containing the

signature information.

LIST OF APPENDICES

APPENDIX 1. CA.config

APPENDIX 2. Wildfly certificate request config

APPENDIX 3. Certificate signature prompt

APPENDIX 4. Crypto worker config

APPENDIX 5. PDF worker config

1 INTRODUCTION

1.1 Today’s Climate

In todays world, remote work has become more of an accepted way of working,

even more so during the Covid-19 pandemic. The digital signature has become an

important tool for many businesses. Digital signature is important for many trade

based professions where signatures need to be done quickly, for example during a

phone call with a client. The digital signature saves also time and resources.

1.2 Aims of the Project

The aim of the project was to implement a proof-of-concept level remote server

that can sign PDF documents. This way companies do not have to rely on third

party services (and their privacy policy and terms of service), and can customize

their own server accordingly. The company suggested SignServer as the solution

to start researching. After determining SignServer was suitable for the job,

SignServer needed to be configured and supporting applications set up for the

pipeline to deliver a signed PDF document.

Since the aim of the project is not directly cryptographic or to implement a

commercial grade product, the public key infrastructure here is very simple.

Although public key encryption is a vital part of digital signatures, it is far too

complicated to implement completely with the resources available.

1.3 Signing Process

The signing process starts when client requests a document to be signed. This

request starts a process where a worker inside SignServer receives a signing

request. To get a document signed by SignServer, there needs to be a PKI, Public

Key Infrastructure in place. A PKI uses public and private keys to encrypt and

decrypt data respectively. These keys are used to request a certificate from the

Certificate Authority (CA). A CA is the entity that is in charge of issuing

certificates. A CA returns a certificate to prove that public key ownership is valid.

Other entities can read the public certificate and see that it is vouched by the CA.

An example of a real-life PKI is the government (a CA). The government issues

passports, drivers licences and other certificates for individuals, clients. These

documents are trusted by virtually anyone and anywhere. They are bound to

something that the owner of the document is/has such as a picture, social security

number or DNA (a private key).

SignServer needs both public and private keys to complete the cryptographic

operations on the document. These keys in turn are a part of the PKI and are

bound to the certificates that a CA has provided to the client and to the workers.

2 DIGITAL SIGNATURE AND PORTABLE DOCUMENT

FORMAT

2.1 Digital Signature

A digital signature is a way for someone to vouch for their identity. Only it can

also be used for services, files and such. This project employs a certificate based

digital signature.

Adobe Inc. defines a certificate-based digital signature as follows:

”A certificate-based digital signature is a type of e-signature that

complies with the strictest legal regulations — and provides the

highest level of assurance of a signer’s identity.” /1/

There are multiple benefits to the digital signature according to Adobe Inc.:

- Signatures are issued by trusted providers, so that certain regulations are

followed.

- The digital signature and the PDF document are tamper proof.

- The signed document and the digital signature can both be revalidated for

more than 10 years. /1/

2.2 Portable Document Format

Adobe Inc. developed the Portable Document Format (PDF) in 1993, it is defined

in ISO 32000 /2, vii/. PDF documents are still widely used in digital information

exchange.

Adobe Inc. hosts the Adobe Approved Trust List (AATL), which lists Certificate

Authorities that are trusted whenever a signed PDF document is opened in

Acrobat 9 or Reader 9 and later. These entities are verified by Adobe, and are held

to high technical standards /3/. For example, Telia is the only Finnish company on

the AATL, maybe these technical standards are expensive to implement /4/. The

AATL is important because Adobe provides one of the most popular free PDF

viewers, Adobe Reader. Thus it is important to have a signature that complies with

Adobes trusted providers. This affects the trust of clients and the image of a

company.

3 PUBLIC KEY INFRASTRUCTURE

It might be hard to see how the public key infrastructure (PKI) functions in the

project, but without it, none of this would be possible. After the PKI has been set

up it is quite passive and acts in the background. The PKI secures most of the

information exchange over insecure networks, such as the internet. For example,

HTTPS (or HTTP over SSL/TLS) is based on the PKI and almost all websites are

using HTTPS today.

3.1 How a PKI Functions

The PKI is a concept that encapsulates a set of rules, policies, software and

hardware that are needed to manage digital certificates and public-key

cryptography /5/. In short, public key cryptography uses a key pair with a

mathematical relationship to perform cryptographic operations on information.

The key pair consist of a private key that is kept secret, and a public key which is

a certificate, that are then used to encrypt and decrypt information. /6/

A PKI needs an entity to confirm that a public key matches with the private key of

the entity distributing it, so that identities cannot be faked. To ensure the security

of the system, there needs to be a trusted third party that provides services to

authenticate identities of individual entities, a Certificate Authority. A CA can for

example provide a certificate to an individual which is mathematically bound to

their private key. /6/

3.2 Uses of PKI

PKI is used to support digitally identifying entities, it provides the cryptographic

framework for creating and checking for identifying information that services can

use. PKIs uses are virtually endless, ranging from signing PDF documents and

transactions to securing communications. /5/

3.3 Certificates

Certificates bind a public key to a private key.

”In general, a public-key certificate binds a public key held by an

entity (such as person, organization, account, device, or site) to a set

of information that identifies the entity associated with use of the

corresponding private key.” /7/

If the signature is valid and the examiner of the certificate trusts the party

that has issued the certificate, the key can be used for secure

communication.

3.3.1 Certificate Authority

Certificate Authority acts as the root of trust in a public key infrastructure and

provides services that authenticate the identity of individuals, computers, and

other entities in a network. It also issues certificates against CSRs. /6/

3.3.2 Certificate Signing Request

Signing request sent from a client application to the CA, and is filled with data

about the certificate thats needed to apply for a certificate. The CAs can

determine a unique set of attributes that is needed for a certain CA to accepts the

CSR. /37/

“A certification request consists of a distinguished name, a public key,

and optionally a set of attributes, collectively signed by the entity

requesting certification. Certification requests are sent to a

certification authority, which transforms the request into an X.509

public-key certificate.” /37/

3.3.3 X.509

Most public key infrastructures use a standardized machine-readable certificate

format for the certificate documents. The standard is called X.509v3. Originally, it

was an ISO standard, but today it is maintained by the Internet Engineering Task

Force as RFC 3280. /8/

3.4 PKCS 11 & 12

”PKCS #12 v1.1 describes a transfer syntax for personal identity

information, including private keys, certificates, miscellaneous secrets,

and extensions. Machines, applications, browsers, Internet kiosks, and

so on, that support this standard will allow a user to import, export, and

exercise a single set of personal identity information.” /11/

RFC-7292 gives a good description of the Public Key Cryptography

Standards, or PKCS format, even though the status of this RFC is

”Informational” and not an actual standard. /11/

3.5 OpenSSL

“OpenSSL is a robust, commercial-grade, and full-featured toolkit for

the Transport Layer Security (TLS) and Secure Sockets Layer (SSL)

protocols. It is also a general-purpose cryptography library.” /9/

OpenSSL was used as a cryptographic toolkit to generate keys, certificates,

CSRs and PKCS#12 packages.

3.6 Hardware Security Module

A hardware security module is a tamper-proof piece of hardware that is

recommended (arguably necessary) in PKI implementations for storing and

protecting cryptographic keys. /10, p. 33/ Even though it is not employed in this

project, Primekey advises on its use. The HSM is such an important piece for the

https://www.ietf.org/
https://www.ietf.org/
https://www.iso.org/home.html

security in a PKI that it needs to be mentioned. The only reason it was not

implemented here is the relatively high price.

4 COMPONENTS OF THE SYSTEM

This chapter gives an overview of the services and applications used in the

system.

In Figure 1, the general architecture of the system is laid out. Wildfly provides a

platform for SignServer to run in. The PKI files are stored inside MariaDB and

acccessed by SignServer when needed.

Although recommended this project does not use an HSM, rather this project uses

software keystores located on the server /12/.

Figure 1. The achitecture of the implemented system.

4.1 Wildfly 20.0.1

Wildfly is an open-source modular application server. It is developed as a

community project under the LGPL 2.1 license /14, 15/. An application server is

different from a traditional web-server that delivers static content, i.e. pictures,

HTML -pages etc. The primary purpose of an application is to provide

functionality of the applications that run on it, to the client.

4.2 MariaDB 10.5.8

This project uses a MariaDB database on the server. The database provider was

used because Primekey recommends this in use with SignServer. Other database

options are also compatible.

4.3 Ubuntu 18.04 LTS

An Ubuntu 18.04 LTS remote server was rented from OVH hosting to host the

signing application. It was used remotely through SSH and a command line

interface. Ubuntu was chosen because it is one of the most popular, widely used

Debian based Linux distributions.

5 SIGNSERVER

5.1 SignServer 5.2.0

”The SignServer is an application framework performing

cryptographic operations for other applications.” /16/

SignServer is the core of the project. SignServer is a server-side digital

signature software based on the PKI. It carries out the cryptographic

operations and signs the document with provided keys. In essence this

project is infrastructure built around SignServer. /16/

Figure 2 shows a detailed look into the architecture of SignServer. The

client communicates with SignServer through one of the several interfaces.

The authorization shows some of the options there are to authorize the use

of workers. This authorization is applied independently for every worker.

The signing column shows some signing options, I.e authenticode which

signs Windows executables and shared libraries. The PDFSigner used on

this project is not shown here, but it would go into the signing column.

Signing then accesses the cryptographic keys from the keystore through the

Crypto Token, held by a Crypto worker.

Figure 2. A client communicating with SignServer and the architecture inside

SignServer /17/. The database and keystore are also a part of the PKI.

5.2 Features

Since version 3.0 there are three distinct services.

- Signers

- Validation Service

- Timed Service

Signers sign documents and are the only service utilized in this project. Validation

Service is used for integrating PKIs into existing applications i.e. certificate

revokation. Timed Service provides plug-ins that run at defined intervals. /16/

SignServer also features code signing and user authentication to access workers.

5.3 Interfaces

There are a number of ways of communicating with SignServer. Provided

interfaces are:

- Client CLI

- Client HTTP

- Client Web Services (SOAP, that uses a special binary encoding format for

requests and responses)

- Apache HTTP Server as reverse proxy

- Admin Web Service

- Administration web services can be used for remote administration through

client certificate authenticated HTTPS. /16, 18/

Primarily all of these interfaces provide the same functionality, they are just

different channels for transmitting the same signals. The reason there are multiple

interfaces is to provide flexible integration options. A client might want to use the

HTTP interface through their browser for graphical user interface.

During this project, the admin CLI was mostly used and on the client side, HTTP

was used. The CLI is of course the natural interface of remote servers that are

accessed through an SSH connection where there is no graphical user interface.

5.4 Workers

Workers are a part of SignServers design, they are modular and independently

configured service providers. They can be thought as independent subsystems

under SignServer. They are a central part of SignServers functionality. They make

SignServer flexible for different environments and configurations as they are

configured individually.

Workers can perform certain operations, such as signing a document. This project

employs two workers, a PDF signer and a Crypto worker. A Crypto worker does

not perform any operations, but holds a Crypto token that can be referenced by

other workers to access cryptographic keys and operations that the underlying PKI

makes possible, and use it for i.e. signing.

6 IMPLEMENTATION

6.1 Requirements

Requirements for deploying SignServer were following:

- OpenJDK 8 recommended (other Java options include more

configuration).

- JBoss EAP or Wildfly application server.

- Multiple database options or NoDB. Apache Ant or Maven for

deployment.

- Optional build tool if building from source.

- Compatible versions for these components are provided in the Primekey

documentation /19/. Note that some commands might need elevated

privileges /20/.

6.2 Installation

A new user, jboss was created to run the Wildfly and to configure SignServer.

This is because it is generally safer not to run servers with root privileges. For

example, when using the sudo command (which elevates privileges for a single

command) the command and arguments are recorded and an audit trail is

created /20/. Command 1 below, also specifies the home directory, the default

shell and which group the users belongs to.

addgroup jboss

adduser --home /home/jboss --shell /bin/bash --ingroup jboss jboss

Command 1.

SignServer rights were granted to Jboss using chown and specifying the directory

of SignServer recursively, so that Jboss can actually run the service. The asterisk

(‘*’) after SignServer is a wildcard character and specifies all files and

subdirectories under SignServer. The ‘-R’ flag will recursively go through all

aforementioned files and directories applying the ownership to them (Command

2). /21/

chown jboss:jboss /opt/signserver* -R

Command 2.

6.2.1 OpenJDK8 & Apache Ant

Java and Apache Ant were installed using apt package manager. This command

also unzips and installs both of the files. /22, 23/

apt-get install unzip openjdk-8-jdk ant

Command 3.

6.2.2 SignServer

SignServer was downloaded using wget network downloader. The file was then

unzipped into the operating (/opt/) directory using the -d flag. A link between the

directories so that it is easier to refer to the directory (Command 4).

wget
https://sourceforge.net/projects/signserver/files/signserver/5.2/
signserver-ce-5.2.0.Final-bin.zip

unzip signserver-ce-5.2.0.Final-bin.zip -d /opt

ln -s /opt/signserver-ce-5.2.0.Final-bin.zip /opt/signserver

chown jboss:jboss /opt/signserver* -R

Command 4.

https://sourceforge.net/projects/signserver/files/signserver/5.2/signserver-ce-5.2.0.Final-bin.zip
https://sourceforge.net/projects/signserver/files/signserver/5.2/signserver-ce-5.2.0.Final-bin.zip

6.2.3 MariaDB database

The newest stable release of MariaDB was downloaded using wget network

downloader and updated and installed (Command 5).

wget
https://downloads.mariadb.com/MariaDB/mariadb-10.5.8/repo/ubuntu/m
ariadb-10.5.8-ubuntu-bionic-amd64-debs.tar

sudo apt update
sudo apt install mariadb-server

Command 5.

The database was created according to the database setup instructions in command

6. This setup is used for MariaDB. /24/

mysql –u root –p mysql

create database signserver;
grant all on signserver.* to "signserver"@"localhost" identified
by "signserver";
quit

Command 6.

Command 7 shows how the Java 8 connector was downloaded from MariaDB

resource and placed inside Wildflys directories as mariadb. The connector was

moved to the main directory.

wget https://downloads.mariadb.com/Connectors/java/connector-java-

2.6.2/mariadb-java-client-2.6.2.jar

mkdir -p /opt/wildfly/modules/system/layers/base/org/mariadb/main/

mv
mariadb-java-client-2.6.2.jar/opt/wildfly/modules/system/layers/ba
se/org/mariadb/main/

Command 7.

https://downloads.mariadb.com/MariaDB/mariadb-10.5.8/repo/ubuntu/mariadb-10.5.8-ubuntu-bionic-amd64-debs.tar
https://downloads.mariadb.com/MariaDB/mariadb-10.5.8/repo/ubuntu/mariadb-10.5.8-ubuntu-bionic-amd64-debs.tar

Configuration for the Wildfly module was created in module.xml. This

configuration file specifies the database provider and the path of the database

connector (Command 8).

nano
/opt/wildfly/modules/system/layers/base/org/mariadb/main/module.xm
l

<?xml version="1.0" encoding="UTF-8"?>

<module xmlns="urn:jboss:module:1.0" name="org.mariadb">

 <resources>

 <resource-root path="mariadb-java-client-2.6.2.jar"/>

 </resources>

 <dependencies>

 <module name="javax.api"/>

 <module name="javax.transaction.api"/>

 </dependencies>

</module>

Command 8.

6.2.4 Wildfly Application Server

Using wget the Wildfly package was downloaded from their website /25/. The

package was extracted with ‘xf’ and filtered tar.gz through Gzip with the ‘z’ flag

(Command 9). /26/

wget https://download.jboss.org/wildfly/20.0.1.Final/wildfly-

20.0.1.Final.tar.gz

tar xfz wildfly-20.0.1.Final.tar.gz -C /opt

ln -s /opt/wildfly-20.0.1.Final /opt/wildfly

chown jboss:jboss /opt/wildfly* -R

https://download.jboss.org/wildfly/20.0.1.Final/wildfly-20.0.1.Final.tar.gz
https://download.jboss.org/wildfly/20.0.1.Final/wildfly-20.0.1.Final.tar.gz

Command 9.

SignServer needs to access Wildlflys location, to enable this the location of

Wildfly was added as an environment variable to the end of ”.bashrc” (Command

10). According to the installation guide, it is not mandatory to set NodeID, but

errors will get printed in the log if not set. NodeID is not used as there is only one

node (one instance of SignServer running in the network/server) /27/. A large

corporation could utilize multiple nodes to provide more capacity, or to provide

specific services.

nano /home/jboss/.bashrc

export APPSRV_HOME=opt/wildfly-20.0.1.Final
export SIGNSERVER_NODEID=node1

Command 10.

6.2.5 Start Wildfly and Configuring MariaDB

A new instance of the SSH terminal was opened and Wildfly was started as user

Jboss by running standalone.sh (Command 11). Then another terminal was opened

for configuring Wildfly by using the Jboss CLI (Command 12).

cd /opt/wildfly/wildfly-20.0.1.Final$
./bin/standalone.sh

cd /opt/wildfly/wildfly-20.0.1.Final$
./bin/jboss-cli.sh

Command 11.

You are disconnected at the moment. Type 'connect' to connect to
the server or 'help' for the list of supported commands.

[disconnected /] connect

Command 12.

MariaDB connector was registered in the Wildfly CLI. The CLI returns outcome

and result parameters for every command (Command 13).

/subsystem=datasources/jdbc-

driver=org.mariadb.jdbc.Driver:add(driver-

name=org.mariadb.jdbc.Driver,driver-module-

name=org.mariadb,driver-xa-datasource-class-

name=org.mariadb.jdbc.MySQLDataSource)

[standalone@localhost:9990 /] :reload

{

"outcome" => "success",

"result" => undefined

}

Command 13.

The database was configured further in command 14 according to the instructions
by Primekey.

data-source add --name=signserverds --driver-
name="org.mariadb.jdbc.Driver"
--connection-url="jdbc:mysql://127.0.0.1:3306/signserver" --jndi-
name="java:/SignServerDS" --use-ccm=true --driver-
class="org.mariadb.jdbc.Driver" --user-name="yourUsername" --
password="yourPassword" --validate-on-match=true --background-
validation=false --prepared-statements-cache-size=50 --share-
prepared-statements=true --min-pool-size=5 --max-pool-size=150 --
pool-prefill=true --transaction-
isolation=TRANSACTION_READ_COMMITTED --check-valid-connection-
sql="select 1;"

Command 14.

6.3 PKI

Setting up the PKI, the following files were created. Command 15 shows the basic

setup for the general directories for the PKI. /28/

mkdir /opt/pki

mkdir -p /opt/pki/db/ca.db.certs

mkdir /opt/pki/config

mkdir /opt/pki/certificates

mkdir /opt/pki/requests

echo '01' > /opt/pki/db/ca.db.serial

touch /opt/pki/db/ca.db.index

Command 15.

Contents of the CAs config file at /opt/pki/config/ca.config outlines the rules and

information for our CA to be used by the CA itself and others interacting with it

(Appendix 1).

Private keys need to be generated for every operator in the PKI. Using OpenSSL

genrsa command in command 15 /29/. Command arguments define the cipher

algorithm DES3, which is a cipher run three times in a row to make the encryption

stronger and an output file. The last option specified is the length of the private

key generated as bits. In production projects, Triple DES algorithm should not be

used as it is considered a weak cipher /30/. For the private key encryption in this

case, it is enough to have the process done correctly, the ciphers can always be

changed according to specified needs. After executing the command, the prompt

will ask to enter a passphrase to decrypt the key.

openssl genrsa -des3 -out /opt/pki/certificates/ca.key 2048

Command 16.

The req command creates a PCKS#10 certificate signing request. The certificate

uses UTF8 encoding. The ‘new’ parameter creates a new certificate and will

prompt to fill out the certificate fields as defined in the configured CA policy

(file: ca.config). X509 parameter will create a certificate instead of a request.

Days specifies how long the certificate is valid. Finally the CA key location and

output file are specified (Command 17). /31/

After executing a prompt will appear and ask for CA private key passphrase

specified after the previous command. The necessary information to create the

certificate were provided in the prompt.

openssl req -utf8 -new -x509 -days 3000 -key
/opt/pki/certificates/ca.key -out /opt/pki/certificates/ca.crt

Command 17.

The x509 command can do multiple things such as signing and view contents of a

certificate (Command 18). This command has the outform DER argument which

specifies the encoding of the certificate to a DER format. DER is a binary

certificate format so it does not contain any BEGIN/END statements as other

formats such as PEM that are ASCII based. DER is usually used in Java

platforms. /32, 33/

openssl x509 -in /opt/pki/certificates/ca.crt -outform DER -
out /opt/pki/certificates/ca.der

Command 18.

6.3.1 Wildfly Key and Certificate for SSL

The function of an SSL certificate is to provide functional HTTPS communication

with an endpoint. The certificate makes SSL/TLS encryption possible. A new key

is generated with command 19. A certificate request was configured, creating the

file at /opt/pki/requests/https.wildfly.req (Appendix 2). A file was used to create

this request, because there needs to be a ‘subjectAltName’ property, otherwise

some browsers might not accept the certificate.

openssl genrsa -out /opt/pki/certificates/https.wildfly.key 2048

Command 19.

A certificate request is generated for Wildfly from the CA. The ‘req’ command

here (Command 20) is used without the x509 parameter, so a CSR is created

instead of the case above where a certificate was created.

openssl req -config requests/https.wildfly.req -days 365 -new key
/opt/pki/certificates/https.wildfly.key -out
/opt/pki/certificates/https.wildfly.csr

Command 20.

The CA was requested to sign a certificate according to the CSR (Command

21) /34/. A prompt will ask to review the certificate. The certificate was signed

and committed to the database (Attachment 3).

openssl ca -config /opt/pki/config/ca.config -out
/opt/pki/certificates/https.wildfly.crt -infiles
/opt/pki/certificates/https.wildfly.csr

Command 21.

The PKCS#12 command was used to export the certificate and key together in a

bundle format (Command 22). The prompt will then ask to enter a passphrase.

openssl pkcs12 -export -in
/opt/pki/certificates/https.wildfly.crt -inkey
/opt/pki/certificates/https.wildfly.key -out
/opt/pki/certificates/wildfly.p12 -name wildfly -chain -CAfile
/opt/pki/certificates/ca.crt

Command 22.

6.3.2 Generic Crypto Token

Using the same commands as before to configure the Crypto Worker. ‘my

Organization’ and ‘CryptoGeneric’ were used as an organization name and a

common name respectively (Command 23).

openssl genrsa -out /opt/pki/certificates/crypto.generic.key 1024

openssl req -days 365 -new -key
/opt/pki/certificates/crypto.generic.key -out
/opt/pki/certificates/crypto.generic.csr

openssl ca -config /opt/pki/config/ca.config -out
/opt/pki/certificates/crypto.generic.crt -infiles
/opt/pki/certificates/crypto.generic.csr
openssl pkcs12 -export -in
/opt/pki/certificates/crypto.generic.crt -inkey
/opt/pki/certificates/crypto.generic.key -out
/opt/pki/certificates/crypto.generic.p12 -name generic -CAfile
/opt/pki/certificates/ca.crt

Command 23.

6.3.3 Configure Wildfly SSL

Using the Java keytool, the keystore was created. The deststorepass and

destkeypass must be the same or Wildfly will not be able to retrieve the key

(Command 24). /35/

mkdir /opt/wildfly/standalone/configuration/keystore

keytool -importkeystore -deststorepass *passphrase* -destkeypass
passphrase -destkeystore
/opt/wildfly/standalone/configuration/keystore/wildfly.keystore.j
ks -srckeystore /opt/pki/certificates/wildfly.p12 -srcstoretype
PKCS12 -srcstorepass *passphrase1* -alias wildfly

keytool -importkeystore -srckeystore
/opt/wildfly/standalone/configuration/keystore/wildfly.keystore.j
ks -destkeystore
/opt/wildfly/standalone/configuration/keystore/wildfly.keystore.j
ks -deststoretype pkcs12

keytool -alias CA_Own -import -file /opt/pki/certificates/ca.crt
-keystore
/opt/wildfly/standalone/configuration/keystore/truststore.jks

chown jboss:jboss /opt/wildfly* -R

Command 24.

Wildfly standalone was started again and connected to Jboss CLI to configure

further. A blog by Octopus Deploy helped in the navigation of the Wildfly CLI

and checking of the values after executing the commands (Command 25) /36/.

/socket-binding-group=standard-sockets/socket-
binding=httpspriv:add(port="8443",interface="httpspriv")

/core-service=management/security-realm=SSLRealm:add()

/core-service=management/security-realm=SSLRealm/server-
identity=ssl:add(keystore-path="keystore/wildfly.keystore.jks",
keystore-relative-to="jboss.server.config.dir", keystore-
password="passphrase", alias="wildfly")

/core-service=management/security-realm=SSLRealm/
authentication=truststore:add(keystore-path="keystore/
truststore.jks", keystore-relative-to="jboss.server.config.dir",
keystore-password="passphrase1")

/subsystem=undertow/server=default-server/https-
listener=httpspriv:add(socket-binding="httpspriv", security-
realm="SSLRealm", verify-client=REQUIRED)

Command 25.

6.4 SignServer Deployment

SignServer comes with some default configurations that can be copied and used as

a template for unique configurations. The configuration was copied and opened

for editing. The lines containing appserver home and database name were

activated by uncommenting them (Command 26).

cp /opt/signserver/conf/signserver_deploy.properties.sample
/opt/signserver/conf/signserver_deploy.properties

nano /opt/signserver/conf/signserver_deploy.properties

appserver.home=${env.APPSRV_HOME}

database.name=mysql

chown jboss:jboss /opt/signserver* -R

Command 26.

To deploy SignServer and the configuration to the application server, using ant

‘deploy’ as a deploy tool. When the server is ready, the version of SignServer can

be checked to see if everything went OK (Command 27).

cd /opt/signserver

./bin/ant deploy

.bin/signserver getstatus brief all

Current version of server is : SignServer EE 4.0.0

Command 27.

6.5 Workers

6.5.1 Crypto Worker

The properties file for Crypto Generic worker was created at

/opt/signserver/myconfig/worker-crypto.properties (Attachment 4). After this a

keystore was created and imported (Command 30). Defaultkey is the name of the

generic certificate imported in the keystore (-alias generic). After this the

configuration was imported into SignServer.

mkdir /opt/signserver/myconfig

nano /opt/signserver/myconfig/worker-crypto.properties

keytool -importkeystore -deststorepass keystorepwd -destkeypass
keystorepwd -destkeystore
/opt/signserver-ce-5.2.0.Final/myconfig/worker.crypto.keystore.jk
s -srckeystore /opt/pki/certificates/crypto.generic.p12 -
srcstoretype PKCS12 -srcstorepass cryptobois -alias generic

keytool -importkeystore -srckeystore /opt/signserver-ce-
5.2.0.Final/myconfig/worker.crypto.keystore.jks -destkeystore
/opt/signserver-ce-5.2.0.Final/myconfig/worker.crypto.keystore.jk
s -deststoretype pkcs12

Command 28.

cd /opt/signserver

./bin/signserver setproperties /opt/signserver/myconfig/worker

Command 29.

6.5.2 PDF Signer

The configuration file was created similarly to the Crypto worker. Different

configuration options in the config file attached (Attachment 5).

./bin/signserver setproperties myconfig/worker-
pdfsigner.properties

Command 30.

https://github.com/blink38/signserver/blob/master/myconfig/worker-crypto.properties

6.6 Testing

The deployed server is located at https://51.75.66.251:8442 and SignServer at

https://51.75.66.251:8442/signserver/. From the landing page (Figure 3), there are

some Administrator options, but the Signing is done in the Client web. To access

the administration web, a client certificate is required. The default pages are just

basic HTML pages and can be modified and replaced as necessary.

Figure 3. SignServers landing page.

Figure 4. Security view of the landing page on Google Chrome.

https://51.75.66.251:8442/signserver/
https://51.75.66.251:8442/

As seen on the security tab viewed in Google Chrome (Figure 4), the CA created

is not trusted by the browser. Self-signed certificates are not trusted.

Implementations used for production should obtain an SSL/TLS certificate to

have browsers trust the domain.

Figure 5. Signing page.

Steps to sign a document:

- Input the name of the worker you want to use

- Select the input file from your computer

- Modify the options if necessary I.e the PDF is password locked

- SignServer sends the signed document to you and it is automatically

downloaded, presuming there were no errors in the process.

SignServer provides different kinds of PDF documents to use for testing. Here in

testing a file called “sample-certified-signingallowed256.pdf” was used. it is a

PDF with Primekey logo and a signature done by Primekey. It can only be signed,

form filled, commented or have pages added. After signing it is guaranteed to be

tamper proof with its hash. As our CA is not on the AATL, the signatures origin is

not trusted, as we see on the Primekeys signature too (Figure 6).

The tests also covered password locked and editing locked documents. In the case

of errors, SignServer returned a HTML page with a simple text and a short

description of the error.

Figure 6. The PDF before signing.

Figure 7. After the signing is done a new revision is added, containing the

signature information.

Looking at the signature details on Figure 7, the ‘reason’ field is set as ‘Signing

test.’ As observed during the testing of other signing services, the ‘reason’ field is

used to record the name of the signer.

7 CONCLUSIONS

This thesis was a proof of concept on how to implement SignServer, a simple PKI

and the supporting services on a remote server. Since the safety of the

implementation cannot be assured, it is not meant to be used in production as is.

The mechanics are functional, but a PKI is much more complicated than this.

There is no revocation or renewal of certificates, the keys are stored on the server

rather than the recommended HSM. HTTPS is not implemented because the CA is

self-signed with no root certificate. A proper solution would be to buy an

SSL/TLS certificate from a trusted provider, so that users could trust the system.

Manual tests were done against a commercial signature provider and SignServer

seems to work very similarly. SignServer could be working in the background in

their systems too, so at the least SignServer can do the same as their systems.

Requesting a signature to a PDF and authorizing it through an email message

yielded a PDF where the “signer” field was “Signer0002” and the “reason” field

was the name in the signature. These commercial companies might run their own

scripts to create a new signer, or edit the xml configuration of an existing one

when a signature is requested and then just change the “reason” field to show the

name of the requestor.

Some of the algorithms, hashes and ciphers are not up to todays security

standards, but it is easily implemented when setting up a PKI when the needs of

the system are known. Here the PKI was made using a guide /38/, but there are

better options for production systems i.e EJBCA also by Primekey /39/, an open

source CA solution.

In a production solution, there would probably be better Linux distributions

especially made to run servers that have less overhead than Ubuntu. Implementing

SignServer into production brings many questions, especially regarding security.

If there are resources to take care of the mentioned concerns, SignServer is a good

solution.

REFERENCES

/1/ Adobe Inc. website. Accessed 29.3.2021
https://acrobat.adobe.com/us/en/sign/glossary/digital-signatures.html

/2/ Document management - Portable document format – Part 1: PDF
1.7, First edition 7.1.2008. Accessed 29.3.2021.
http://wwwimages.adobe.com/www.adobe.com/content/dam/acom/en/devnet/
pdf/pdfs/PDF32000_2008.pdf

/3/ Adobe AATL Technical requirements Accessed 6.5.2021.
https://helpx.adobe.com/acrobat/kb/
approved-trust-list2.html#AATLtechnicalrequirements

/4/ Adobe Approved trust list, Accessed 29.3.2021.
https://helpx.adobe.com/acrobat/kb/approved-trust-list2.html

/5/ Nexus Group, Public key infrastructure (PKI) explained in 4
minutes, 03/09 2018. Accessed 29.3.2021.
https://www.nexusgroup.com/crash-course-pki/

/6/ Microsoft, Public Key Infrastructure 31.5.2018. Accessed 29.3.2021
https://docs.microsoft.com/en-gb/windows/win32/seccertenroll/
public-key-infrastructure?redirectedfrom=MSDN

/7/ IETF, RFC 3647 Internet X.509 Public Key Infrastructure
November 2003, Accessed 29.3.2021.
https://www.ietf.org/rfc/rfc3647.txt

/8/ IETF, RFC 3280, Accessed 11.5.2021.
https://datatracker.ietf.org/doc/html/rfc3280

/9/ OpenSSL, Accessed 10.5.2021.
https://www.openssl.org/

/10/ Microsoft, Code Signing Best Practices July 25 2007, Accessed
15.4.2021.
http://www.microsoft.com/whdc/winlogo/drvsign/best_practices.msp x

/11/ IETF, RFC 7292 (PKCS#12), Accessed 6.4.2021.
https://tools.ietf.org/html/rfc7292

/12/ Primekey documentation, Accessed 6.4.2021.
https://doc.primekey.com/signserver/signserver-introduction

https://www.ietf.org/rfc/rfc3647.txt
https://docs.microsoft.com/en-gb/windows/win32/seccertenroll/public-key-infrastructure?redirectedfrom=MSDN
https://docs.microsoft.com/en-gb/windows/win32/seccertenroll/public-key-infrastructure?redirectedfrom=MSDN
https://docs.microsoft.com/en-gb/windows/win32/seccertenroll/
https://www.nexusgroup.com/crash-course-pki/
https://helpx.adobe.com/acrobat/kb/
https://doc.primekey.com/signserver/signserver-introduction
https://tools.ietf.org/html/rfc7292
http://www.microsoft.com/whdc/winlogo/drvsign/best_practices.mspx
http://www.microsoft.com/whdc/winlogo/drvsign/best_practices.mspx
https://www.openssl.org/
https://datatracker.ietf.org/doc/html/rfc3280
https://helpx.adobe.com/acrobat/kb/approved-trust-list2.html
https://helpx.adobe.com/acrobat/kb/approved-trust-list2.html#AATLtechnicalrequirements
http://wwwimages.adobe.com/www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf

/13/ Oracle documentation, Java keytool, Accessed 6.4.2021.
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

/14/ GNU, LGPL 2.1 license, Accessed 6.4.2021.
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html

/15/ Github, Wildfly source code, Accessed 6.4.2021.
https://github.com/wildfly/wildfly/

/16/ Primekey documentation, SignServer, Accessed 6.4.2021.
https://download.primekey.se/docs/SignServer-Enterprise/4.0.2/manual/
introduction.html

/17/ Primekey documentation, SignServer architecture and concepts,
Accessed 15.4.2021.
https://download.primekey.com/docs/SignServer-Enterprise/current/
Architecture_and_Concepts.html

/18/ Primekey documentation, SignServer integration, Accessed
6.4.2021.
https://doc.primekey.com/signserver540/signserver-integration

/19/ Primekey documentation, SignServer Prequisites, Accessed
7.4.2021.
https://doc.primekey.com/signserver520/signserver-installation/prerequisites

/20/ Sudo, Sudo in a Nutshell, Accessed 11.5.2021.
https://www.sudo.ws/intro.html

/21/ Linux die, Chown reference, Accessed 11.5.2021.
https://linux.die.net/man/1/chown

/22/ Linux die, Apt-get reference, Accessed 11.5.2021.
https://linux.die.net/man/8/apt-get

/23/ Linux die, Unzip reference, Accessed 11.5.2021.
https://linux.die.net/man/1/unzip

/24/ Primekey, Database setup,Accessed 11.5.2021.
https://doc.primekey.com/signserver520/signserver-installation/database-setup

/25/ Wildfly Downloads, Accessed 13.5.2021.
https://www.wildfly.org/downloads/

/26/ Linux Die, Tar command reference, Accessed 12.5.2021.
https://linux.die.net/man/1/tar

https://linux.die.net/man/1/chown
https://download.primekey.com/docs/SignServer-Enterprise/current/Architecture_and_Concepts.html
https://download.primekey.com/docs/SignServer-Enterprise/current/Architecture_and_Concepts.html
https://download.primekey.com/docs/SignServer-Enterprise/current/
https://linux.die.net/man/1/tar
https://www.wildfly.org/downloads/
https://doc.primekey.com/signserver520/signserver-installation/database-setup
https://linux.die.net/man/1/unzip
https://linux.die.net/man/8/apt-get
https://www.sudo.ws/intro.html
https://doc.primekey.com/signserver520/signserver-installation/prerequisites
https://doc.primekey.com/signserver540/signserver-integration
https://download.primekey.se/docs/SignServer-Enterprise/4.0.2/manual/introduction.html
https://download.primekey.se/docs/SignServer-Enterprise/4.0.2/manual/introduction.html
https://github.com/wildfly/wildfly/
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

/27/ Primekey documentation, SIGNSERVER_NODEID, Accessed
7.4.2021.
https://download.primekey.com/docs/SignServer-Enterprise/current/Install_SignS
erver.html

/28/ Linux Die Net, Mkdir command reference, Accessed 10.5.2021.
https://linux.die.net/man/1/rm

/29/ OpenSSL, genrsa command refence, Accessed 10.5.2021.
https://www.openssl.org/docs/man1.0.2/man1/genrsa.html

/30 OpenSSL, The SWEET32 Issue, CVE-2016-2183, Accessed
13.5.2021.
https://www.openssl.org/blog/blog/2016/08/24/sweet32/

/31/ OpenSSL, req command reference, Accessed 10.5.2021.
https://www.openssl.org/docs/manmaster/man1/openssl-req.html

/32/ OpenSSL, x509 command reference, Accessed 10.5.2021.
https://www.openssl.org/docs/man1.0.2/ man1/x509.html

/33/ DigiCert, What is DER Format?, Accessed 13.5.2021.
https://knowledge.digicert.com/quovadis/ssl-certificates/ssl-general-topics/
what-is-der-format.html

/34/ Linux die, CA reference, Accessed 13.5.2021.
https://linux.die.net/man/1/ca

/35/ Linux die, Java Keytool, Accessed 13.5.2021.
https://linux.die.net/man/1/keytool-java-1.7.0-openjdk

/36/ Octopus Deploy, Using the Wildfly CLI, Accessed 13.5.2021.
https://octopus.com/blog/using-the-wildfly-cli

/37/ IETF, RFC 2968, Accessed 14.5.2021.
https://datatracker.ietf.org/doc/html/rfc2986

/38/ blink38, SignServer guide, Accessed 16.5.2021.
https://github.com/blink38/signserver

/39/ Primekey, EJBCA, Accessed 14.5.2021. https://www.ejbca.org/

https://www.ejbca.org/
https://octopus.com/blog/using-the-wildfly-cli
https://knowledge.digicert.com/quovadis/ssl-certificates/ssl-general-topics/what-is-der-format.html
https://knowledge.digicert.com/quovadis/ssl-certificates/ssl-general-topics/what-is-der-format.html
https://knowledge.digicert.com/quovadis/ssl-certificates/ssl-general-topics/
https://www.openssl.org/docs/man1.0.2/man1/x509.html
https://www.openssl.org/docs/man1.0.2/
https://www.openssl.org/docs/manmaster/man1/openssl-req.html
https://github.com/blink38/signserver
https://datatracker.ietf.org/doc/html/rfc2986
https://linux.die.net/man/1/keytool-java-1.7.0-openjdk
https://linux.die.net/man/1/ca
https://www.openssl.org/blog/blog/2016/08/24/sweet32/
https://www.openssl.org/docs/man1.0.2/man1/genrsa.html
https://linux.die.net/man/1/rm
https://download.primekey.com/docs/SignServer-Enterprise/current/Install_SignServer.html
https://download.primekey.com/docs/SignServer-Enterprise/current/Install_SignServer.html

APPENDIX 1

[ca]

default_ca = CA_OWN

[CA_own]

dir = /opt/pki/db

certs = /opt/pki/db

new_certs_dir = /opt/pki/db/ca.db.certs

database = /opt/pki/db/ca.db.index

serial = /opt/pki/db/ca.db.serial

RANDFILE = /opt/pki/db/ca.db.rand

certificate = /opt/pki/certificates/ca.crt

private_key = /opt/pki/certificates/ca.key

default_days = 3000

default_crl_days = 30

default_md = sha256

preserve = no

policy = policy_anything

copy_extensions = copy

x509_extensions = cert_ext

[policy_anything]

countryName = optional

stateOrProvinceName = optional

localityName = optional

organizationName = optional

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

[cert_ext]

APPENDIX 2

OpenSSL configuration file for creating a CSR for a server
certificate

Adapt at least the FQDN and ORGNAME lines, and then run

openssl req -new -config myserver.cnf -keyout myserver.key -out
myserver.csr

on the command line.

the fully qualified server (or service) name

FQDN = wildfly.domain

the name of your organization

(see also https://www.switch.ch/pki/participants/)

ORGNAME = MyOrganization

subjectAltName entries: to add DNS aliases to the CSR, delete

the '#' character in the ALTNAMES line, and change the
subsequent

'DNS:' entries accordingly. Please note: all DNS names must

resolve to the same IP address as the FQDN.

ALTNAMES = DNS:$FQDN # , DNS:bar.example.org ,
DNS:www.foo.example.org

[req]

default_bits = 2048

default_md = sha256

prompt = no

encrypt_key = no

distinguished_name = dn

req_extensions = req_ext

[dn]

C = FI

O = $ORGNAME

CN = $FQDN

[req_ext]

subjectAltName = $ALTNAMES

APPENDIX 3

Check that the request matches the signature

Signature ok

The Subject's Distinguished Name is as follows

countryName :PRINTABLE:'FI'

organizationName :ASN.1 12:'MyOrganization'

commonName :ASN.1 12:'wildfly.domain'

Certificate is to be certified until May 5 12:47:09 2029 GMT
(3000 days)

Sign the certificate? [y/n]:Y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

APPENDIX 4

Type of worker

WORKERGENID1.TYPE=CRYPTO_WORKER

This worker will not perform any operations on its own and
indicates this by

using the worker type CryptoWorker

WORKERGENID1.IMPLEMENTATION_CLASS=org.signserver.server.signers.C
ryptoWorker

Uses a soft keystore:

WORKERGENID1.CRYPTOTOKEN_IMPLEMENTATION_CLASS=org.signserver.serv
er.cryptotokens.KeystoreCryptoToken

Name for other workers to reference this worker:

WORKERGENID1.NAME=MyCryptoTokenP12

Type of keystore

PKCS12 and JKS for file-based keystores

INTERNAL to use a keystore stored in the database (tied to the
crypto worker)

WORKERGENID1.KEYSTORETYPE=PKCS12

Path to the keystore file (only used for PKCS12 and JKS)

WORKERGENID1.KEYSTOREPATH=/opt/signserver/myconfig/
worker.crypto.keystore.jks

Optional password of the keystore. If specified the token is
"auto-activated".

WORKERGENID1.KEYSTOREPASSWORD=keystorepwd

Optional key to test activation with. If not specified the
first key found is

used.

WORKERGENID1.DEFAULTKEY=generic

APPENDIX 5

General properties

WORKERGENID1.TYPE=PROCESSABLE

WORKERGENID1.IMPLEMENTATION_CLASS=org.signserver.module.pdfsigner
.PDFSigner

WORKERGENID1.NAME=PDFSigner

WORKERGENID1.AUTHTYPE=NOAUTH

Crypto token

WORKERGENID1.CRYPTOTOKEN=MyCryptoTokenP12

#WORKERGENID1.CRYPTOTOKEN=CryptoTokenP11

Using key from sample keystore

WORKERGENID1.DEFAULTKEY=generic

Key using ECDSA

#WORKERGENID1.DEFAULTKEY=signer00002

PDFSigner properties

#--------------------------SIGNATURE
PROPERTIES--------------------------------------#

specify reason for signing. it will be displayed in signature
properties when viewed

default is "Signed by SignServer"

#WORKERGENID1.REASON=Signed by SignServer

WORKERGENID1.REASON=Signing test

specify location. it will be displayed in signature properties
when viewed

default is "SignServer"

#WORKERGENID1.LOCATION=SignServer

WORKERGENID1.LOCATION=Finland

digest algorithm used for the message digest and signature
(this is optional and defaults to SHA1)

the algorithm determines the minimum PDF version of the
resulting document and is documented in the manual.

for DSA keys, only SHA1 is supported

WORKERGENID1.DIGESTALGORITHM=SHA256

#--------------------------SIGNATURE
VISIBILITY--------------------------------------#

if we want the signature to be drawn on document page set
ADD_VISIBLE_SIGNATURE to True , else set to False

default is "False"

#WORKERGENID1.ADD_VISIBLE_SIGNATURE = False

WORKERGENID1.ADD_VISIBLE_SIGNATURE = True

specify the page on which the visible signature will be drawn

this property is ignored if ADD_VISIBLE_SIGNATURE is set to
False

default is "First"

possible values are :

 # "First" : signature drawn on first page of the
document,

 # "Last" : signature drawn on last page of the document,

 # page_number : signature is drawn on a page specified by
numeric argument. If specified page number exceeds page count of
the document ,signature is drawn on last page

 # if page_number specified is not numeric (or negative
number) the signature will be drawn on first page

WORKERGENID1.VISIBLE_SIGNATURE_PAGE = 2

specify the rectangle signature is going to be drawn in

this property is ignored if ADD_VISIBLE_SIGNATURE is set to
False

defailt is "400,700,500,800"

format is : (llx,lly,urx,ury). Here llx =left lower x
coordinate, lly=left lower y coordinate,urx =upper right x
coordinate, ury = upper right y coordinate

#WORKERGENID1.VISIBLE_SIGNATURE_RECTANGLE = 400,700,500,800

if we want the visible signature to contain custom image ,
specify image as base64 encoded byte array

alternatively custom image can be specified by giving a path to
image on file system

note : if specifying a path to an image "\" should be escaped (
thus C:\photo.jpg => "C:\\photo.jpg")

note : if specifying image as base64 encoded byte array "="
should be escaped (this "BBCXMI==" => "BBCXMI\=\=")

if both of these properties are set then
VISIBLE_SIGNATURE_CUSTOM_IMAGE_BASE64 will take priority

if we do not want this feature then do not set these properties

default is not set (no custom image)

these properties are ignored if ADD_VISIBLE_SIGNATURE is set to
False

#WORKERGENID1.VISIBLE_SIGNATURE_CUSTOM_IMAGE_BASE64=

#WORKERGENID1.VISIBLE_SIGNATURE_CUSTOM_IMAGE_PATH=

if we want our custom image to be resized to specified
rectangle (set by VISIBLE_SIGNATURE_RECTANGLE) then set to True.

if set to True image might look different that original (as an
effect of resizing)

if set to False the rectangle drawn will be resized to
specified image's sizes.

if set to False llx and lly coordinates specified by
VISIBLE_SIGNATURE_RECTANGLE property will be used for drawing
rectangle (urx and ury will be calculated from specified image's
size)

this property is ignored if ADD_VISIBLE_SIGNATURE is set to
False or if custom image to use is not specified

default is True

#WORKERGENID1.VISIBLE_SIGNATURE_CUSTOM_IMAGE_SCALE_TO_RECTANGLE =
True

to create a certifying signature that certifies the document
set the CERTIFICATION_LEVEL

possible values are: NOT_CERTIFIED, FORM_FILLING,
FORM_FILLING_AND_ANNOTATIONS or NO_CHANGES_ALLOWED

default is NOT_CERTIFIED

WORKERGENID1.CERTIFICATION_LEVEL=NOT_CERTIFIED

#--------------------------SIGNATURE
TIMESTAMPING--------------------------------------#

if we want to timestamp document signature, specify timestamp
authority url, if required bu tsa uncomment tsa username and
password lines and specify proper values

if we do not want to timestamp document signature , do not set
property

Worker ID or name of internal timestamp signer in the same
SignServer

Default: none

#WORKERGENID1.TSA_WORKER=TimeStampSigner

URL of external timestamp authority

note : if path contains characters "\" or "=" , these
characters should be escaped (thus "\" = "\\", "=" =>"\=")

default is not set (no timestamping)

WORKERGENID1.TSA_URL =

#WORKERGENID1.TSA_URL=http://tsa.example.com:8080/signserver/tsa?
workerName\=TSA

if tsa requires authentication for timestamping , specify
username and password

if tsa does not require authentication, do not set these
properties

these properties are ignored if TSA_URL is not set (no
timestamping)

default is not set (tsa does not require authentication)

#WORKERGENID1.TSA_USERNAME=

#WORKERGENID1.TSA_PASSWORD=

#--------------------------EXTRA PROPERTIES [NOT TESTED
YET]--------------------------------------#

#if we want to embedd the crl for signer certificate inside the
signature package set to True, otherwise set to False

#default is False

#WORKERGENID1.EMBED_CRL = False

#if we want to embedd the ocsp responce for signer certificate
inside the signature package set to True, otherwise set to False

#note : issuer certificate (of signing certificate) should be in
certificate chain.

#default is False

#WORKERGENID1.EMBED_OCSP_RESPONSE = False

