

Bachelor’s thesis

Information and Communications Technology

2021

Daniel Kusnetsoff

MOBILE REAL-TIME OBJECT
DETECTION WITH FLUTTER

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information and Communications Technology

2021 | 42 pages, 1 page in appendices

Daniel Kusnetsoff

MOBILE REAL-TIME OBJECT DETECTION WITH
FLUTTER

The utilization of computer vision has significantly increased in everyday devices such as mobile
phones. Computer vision, such as object detection, is based on deep learning models. These
models have traditionally needed high-performance graphics processing units for training and
utilization. However, even if it is still not possible to effectively train the models with lower-
performance devices, it has lately become possible to use the models with them. It is critical for
model performance to develop the mobile application optimally. The choice of the ideal framework
and user interface is crucial as the user interface architecture sets the constraints for the model’s
performance. The framework chosen in this thesis, Flutter has an architecture that benefits real-
time features in object detection better than other frameworks.

A mobile application was developed for this thesis to research the possibilities of using Flutter in
mobile real-time object detection. The application presents two forms of computer vision: object
detection and image captioning. For object detection, the application provides real-time
predictions using the camera. The object detection feature utilizes transfer learning and uses two
object detectors: Tiny-YOLO v4 and SSD Mobilenet v2. They are the most popular detectors and
provide a balance between detection accuracy and speed.

As a result of the thesis, a successful Flutter-based mobile application was developed. The
application presents the differences between the YOLO-based and SSD-based models in
accuracy and speed. Furthermore, the image caption generator shows how an external deep
learning model can be utilized in mobile applications. As importantly, the image caption generator
works near real-time by predicting the image caption with high accuracy. Both computer vision
features function optimally due to the Flutter-based architecture and structure. Flutter provides
high performance and reliability in both computer vision tasks featured in the application.

KEYWORDS:

Computer vision, object detection, Flutter, image captioning, deep learning, YOLO, SSD

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tieto- ja viestintätekniikka

2021 | 42 sivua, 1 liitesivua

Daniel Kusnetsoff

FLUTTERIN HYÖDYNTÄMINEN MOBIILISSA
HAHMONTUNNISTAMISESSA

Tietokonenäön käyttö on kasvanut huomattavasti matkapuhelimissa. Tietokonenäön tärkein osa,
hahmontunnistus, perustuu syviin oppimismalleihin. Nämä mallit ovat perinteisesti vaatineet
tehokkaita grafiikkaprosessoriyksiköitä mallin koulutukseen ja käyttöön. Vaikka mallien tehokas
kouluttaminen pienitehoisemmilla laitteilla, kuten matkapuhelimilla, ei ole mahdollista, on viime
vuosina teknologia kehittynyt niin, että malleja voidaan hyödyntää mobiilisovelluksissa. Mallin
suorituskyvyn kannalta on ratkaisevan tärkeää kehittää mobiilisovellus tekemällä oikeita valintoja.
Sopivan kehysympäristön valinta on ratkaisevan tärkeää, koska ympäristön määrittämä
käyttöliittymäarkkitehtuuri asettaa rajoitukset mallin suorituskyvylle. Opinnäytetyössä käytetty
Flutter-kehysympäristön arkkitehtuuri hyödyntää reaaliaikaisia hahmojen tunnistustoimintoja
paremmin kuin muut kilpailevat kehysympäristöt.

Tätä opinnäytetyötä varten kehitettiin mobiilisovellus, jolla tutkittiin mahdollisuuksia käyttää
Flutteria ja sen arkkitehtuurin mahdollistamaa nopeata reaaliaikaista kohteen tunnistusta.
Sovelluksessa tutkittiin kahta tietokonenäön muotoa: esineiden havaitseminen ja kuvan tekstitys.
Kohteen havaitsemiseksi sovellus näyttää reaaliaikaisia ennusteita kameran avulla. Kohteen
tunnistusominaisuus hyödyntää siirto-oppimista ja käyttää kahta kohdeilmaisinta: Tiny-YOLO v4
ja SSD Mobilenet v2. Ne ovat suosituimpia ilmaisimia ja tuovat tasapainoa tunnistustarkkuuden
ja nopeuden välillä.

Opinnäytetyön tuloksena kehitettiin toimiva Flutter-pohjainen mobiilisovellus. Sovellus esittelee
eroja YOLO- ja SSD-pohjaisten mallien välillä tarkkuuden ja nopeuden osalta. Lisäksi
kuvatekstitysgeneraattori näyttää, kuinka ulkoista syväoppimisen mallia voidaan käyttää
mobiilisovelluksissa reaaliaikaisesti. Tärkeintä on, että kuvatekstitysgeneraattori toimii lähes
reaaliajassa ennustamalla kuvatekstin tarkasti. Molemmat tietokonenäköominaisuudet toimivat
erinomaisesti Flutter-pohjaisen arkkitehtuurin ja rakenteiden ansiosta. Flutter-käyttöliittymä
tuottaa korkean suorituskyvyn ja luotettavuuden molemmissa sovelluksessa esitetyissä
tietokonenäkötoiminnoissa.

ASIASANAT:

Tietokonenäkö, hahmontunnistus, Flutter, kuvatekstitys, syväoppiminen, YOLO, SSD

CONTENTS

1 INTRODUCTION 7

2 DEEP LEARNING METHODS AND TECHNOLOGIES 8

2.1 Artificial intelligence and Machine Learning 8

2.2 Object recognition 11

2.2.1 Object detection frameworks 12

2.2.2 YOLO 13

2.2.3 SSD 14

2.3 TensorFlow and TensorFlow Lite 14

3 FLUTTER FRAMEWORK 16

4 APPLICATION PREREQUISITES AND GOALS 21

5 DEVELOPMENT OF THE OBJECT RECOGNITION APPLICATION 23

5.1 Flutter-based application development 23

5.2 Transfer Learning 25

5.3 The structure of the application 28

5.3.1 Object detection 28

5.3.2 Image caption generator 33

6 CONCLUSION 37

REFERENCES 39

APPENDICES

Appendix 1. Image caption generator architecture

FIGURES

Figure 1. Artificial intelligence and Machine Learning. 9
Figure 2. Example of a neural network. 10
Figure 3. Object recognition structure. 11

file:///C:/Users/danie/Desktop/ThesisKusnetsoffDaniel15.05.21.docx%23_Toc72178889
file:///C:/Users/danie/Desktop/ThesisKusnetsoffDaniel15.05.21.docx%23_Toc72178890
file:///C:/Users/danie/Desktop/ThesisKusnetsoffDaniel15.05.21.docx%23_Toc72178891

Figure 4. Structure of the object detection-application. 17
Figure 5. Main components of mobile object detection. 23
Figure 6. Flutter architecture used in application. 24
Figure 7. Dataset labeling using Roboflow. 25
Figure 8. Training results of SSD-based model. 26
Figure 9. Training results of YOLO-based model. 26
Figure 10. Application home screen. 28
Figure 11. Working object detection using SSD-detector. 31
Figure 12. Object detection using SSD Mobilenet (40.0-120.0 FPS). 32
Figure 13. Object detection using Tiny-YOLO (60.0-120.0 FPS). 32
Figure 14. Flowchart of the image caption generator-part of the application. 33
Figure 15. Screen capture of the working image caption generator. 35
Figure 16. Image caption generator (24.0-30.0 FPS). 36

TABLES

Table 1. Framework comparison between Flutter, React Native, and Ionic. 19

PROGRAMS

Program 1. runModelOnStreamFrame-function. 29

file:///C:/Users/danie/Desktop/ThesisKusnetsoffDaniel15.05.21.docx%23_Toc72178892
file:///C:/Users/danie/Desktop/ThesisKusnetsoffDaniel15.05.21.docx%23_Toc72178894
file:///C:/Users/danie/Desktop/ThesisKusnetsoffDaniel15.05.21.docx%23_Toc72178895
file:///C:/Users/danie/Desktop/ThesisKusnetsoffDaniel15.05.21.docx%23_Toc72178898
file:///C:/Users/danie/Desktop/ThesisKusnetsoffDaniel15.05.21.docx%23_Toc72178899
file:///C:/Users/danie/Desktop/ThesisKusnetsoffDaniel15.05.21.docx%23_Toc72178902
file:///C:/Users/danie/Desktop/ThesisKusnetsoffDaniel15.05.21.docx%23_Toc72178903

LIST OF ABBREVIATIONS

AI Artificial Intelligence. Technology that resembles human

intelligence by learning.

CNN Convolutional neural network. A deep learning network

resembling the human brain. Often used for image

recognition tasks

COCO Common objects in contexts. A large well-versed dataset

containing everyday objects.

CPU Central processing unit. Processor or core on which the

microprocessor implements functions.

FPS Frames per second. The amount of times a device updates

the view on its display.

GPU Graphics processing unit. The component on computers that

is in charge of rendering images and videos.

iOS Mobile operating system developed for Apple devices.

mAP Mean Average Precision. The mean of the area under the

precision-recall curve. (Yohanandan, 2020)

NMS Non-maximum suppression. A technique to choose the best

bounding box of the proposed ones in object detection.

OEM Original equipment manufacturer. A company that produces

components to be used by other companies in their products.

pb Protobuf. A TensorFlow file type containing a graph definition

and model weights.

ROI Region of interest. Image part where the identified objects are

thought to be and whereas result bounding boxes are added.

SDK Software development kit. A package with collected tools for

software development.

SSD Single-shot detector. A single-stage object detector known for

its accuracy.

UI User Interface. The contact point a user interacts with a

device or an application.

YOLO You only look once. A single-stage detector known for its

speed.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

1 INTRODUCTION

Due to the current rising popularity of interest in artificial intelligence or AI, major

advancements have been made in the field, and the use of AI has become an

indispensable part of everyday life. These advancements have led to transferring AI and

Machine Learning features from high-performance devices to lower-performance

devices. However, AI and Machine Learning have traditionally relied on considerable

computing power. The developments in Machine Learning have transferred from the use

of central processing units (CPU) - to the use of servers and more effective graphics

processing units (GPU). CPUs are processors or cores on which a processor implements

functions and GPUs are components on computers in charge of rendering images and

videos. These advances in performance have advanced the field from the limitations of

just the local calculating power to the calculating power of servers end external GPUs.

This growth in calculation power has made it possible for complex Machine Learning

models to be developed. However, the development in technology has only partly made

it possible to transfer Machine Learning features to lower-performance devices such as

mobile phones due to the fact that the training still needs to be carried out on high-

performance devices. (Council of Europe, 2020.; Dsouza, 2020.)

The primary goal of this thesis is to combine and research complex Machine Learning

models and lower-performance devices through building a cross-platform mobile

application that uses Machine Learning. The application provides object detection -and

image caption predictions by pointing the mobile phone camera towards the targets.

Before the advancements in Machine Learning in recent years, this had been impossible

as mobile phones have not had enough calculating power to show the results in real-

time. The application is built using Flutter, which is a relatively new user interface or UI

developed by Google and has an architecture that should benefit object detection.

Searching through the work in Finnish universities, not a single research or thesis could

be found about combining the Flutter user interface and object detection. A secondary

goal for the thesis is to research the differences in real-time performance between the

object detection feature that is based on local Machine Learning models and the image

caption generator that uses a prebuilt external model. For the image caption generator,

the external online-based model should affect the speed of predicting the situation. The

developed application should provide concrete results if the Flutter UI framework is

optimal for mobile object detection. (Flutter, 2021a.)

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

2 DEEP LEARNING METHODS AND TECHNOLOGIES

2.1 Artificial intelligence and Machine Learning

Artificial intelligence or AI can be thought of as an autonomous tool between an input

such as sensors and images and an output such as action and text. The idea is that

using AI, machines are capable of performing tasks that previously would have required

human interference. AI can be divided into two categories: narrow AI and Artificial

General Intelligence. Narrow AI consists of applications within a limited context and

usually focuses on completing a single task according to the instructions. Applications

such as autonomously driving cars or a basic Google search are referred to as narrow

AI. On the other hand, artificial general intelligence are systems that can solve many or

all tasks and resemble human intelligence. (Built in, 2019.)

Machine Learning can be defined in different ways, but a relatively simple definition is

that Machine Learning is the programming of computers so that they can learn from data.

Machine Learning is based on feeding a computer as much data as possible for the

computer to learn the patterns and relationships of the data. Machine Learning is often

thought of as very difficult, as it is based on complex data. However, the main goal of

Machine Learning is to be able to predict the results without needing to understand all

parts of the data complexity. Artificial intelligence can be thought of as almost all learning

a computer does. However, there is a thin line between what simply has been stored in

memory and what a computed has processed and learned. For a system to have AI, it

needs to work independently. Additionally, this means the computer needs to learn to

utilize the data for it to be called Machine Learning. The main difference between

Machine Learning and AI is that Machine Learning is heavily instructed by humans.

There are still differences in the methods of different types of Machine Learning, for

example supervised and unsupervised learning. (Iriondo, 2018) As can be seen in Figure

1, Machine Learning is a significant component of artificial intelligence that also contains

deep learning and neural networks. (Géron, 2017, 3-4.)

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

In Machine Learning, the data is usually divided into three datasets: training set, testing

set, and validation set. The training set is the largest of the sets, and it usually is around

70-80% of all data. The function of the training set is for an algorithm to learn the priorly

mentioned patterns and relationships from the data. After the algorithm has learned from

the training set, it is introduced to the validation set. The validation set is used to estimate

the model’s effectiveness unbiasedly while the parameters are tuned. After the validation

set, the model will go through the test set. The idea of the test set is that the final

performance of the model is assessed with the data it has not previously seen. After

going through these three datasets, the final model should provide as much accuracy in

its predictions as possible. This process will take a varied amount of time depending on

the choices and amount of data trained in the process. Training Machine Learning

models can often take days or weeks, depending on the setup. (Brownlee, 2017.)

Deep learning and neural networks

Deep learning is a part of both AI and Machine Learning and has been the key to

developing technologies such as autonomous driving and facial recognition. Deep

learning is based on the idea of successive layers in neural networks. Deep learning

models are usually built of tens or hundreds of these layers and have been trained using

massive labelled datasets and neural networks. These layers work like filters, as they

consist of mathematical functions that separate the features. For example, a single level

of layers can determine if a hand-drawn number has the features of number 0 or

1.(Géron, 2017, 87-88.)

Figure 1. Artificial intelligence and Machine Learning.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

Neural networks are structures that resemble the neural system of the human brain.

Each layer is built out of neurons that work as units. These neurons can be thought of

as mathematical functions that take an input and calculate together a sum using the

weight and activation function of the output at that layer. The output is then moved to the

following layers until it reaches the output layer. These networks are constructed out of

different layer types. The first layer in a neural network is an input layer, and the last

layer is an output layer. Between these layers are many hidden layers. The hidden layers

are built out of nodes with their determined weights and thresholds. Weights are the

connection strength between neurons and thresholds can be thought of as filters, that

according to the activation, decide if the input signal is sent to the next node. Starting

from the input layer, the nodes in the following layer are activated according to their

properties and send the data forward to the next layer. (Géron, 2017., 279-280;

Kavlakoglu, 2020.; Yiu, 2019.)

Deep learning and neural networks are often discussed as synonyms even though neural

networks is a subcategory of deep learning. A neural network with more than three layers

is considered a deep learning algorithm. As seen in Figure 2, the added layers reside in

the hidden layers and build up the deep learning algorithm. Adding and altering the

properties of the hidden layers results in more effective nodes in a model. Additionally, it

improves the training of the model to function more accurately. However, adding too

many layers might cause the model to overfit. Overfitting is when a model learns details

from a dataset too well and starts generalizing the details. (Brownlee, 2019b; Brownlee,

2019c.; Géron, 2017, 28-29.)

Figure 2. Example of a neural network.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

2.2 Object recognition

Object recognition is the task of identifying objects from images, and it usually takes

place via a neural network. It is essential to understand that videos are thought of as a

series of images, and all video recognition tasks can be considered image recognition

tasks. These tasks can be divided into image classification, object localization, and object

detection. The image classification task focuses on identifying the object’s class in an

image. These objects in the image are given class labels. In object localization, the

objects in the image are located, and a bounding box is set around the object. In the third

task, object detection, the objects with bounding boxes and the class labels are located

in the image. (Brownlee, 2019a.; Fritz AI, 2020.)

Object detection is a combination of both image classification and object localization, as

can be seen in Figure 3. This process of object detection is possible using neural

networks. Object detection is usually carried out with the help of one or more

convolutional neural networks (CNN). A CNN is a neural network that has added

convolutional layers to the hidden layers. The convolutional layers differ from standard

hidden layers as there is an assumption that the input coming to the layers are images.

This means that the neuron architecture is built for specific properties such as width,

height, and depth. There are usually quite a few convolutional layers in a CNN, and they

have the function of transforming the input before it travels to the next layer. (Brownlee,

2019a.)

Figure 3. Object recognition structure.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

2.2.1 Object detection frameworks

Object detection frameworks are combinations of tools that reduce the need to develop

every aspect of object detection and deep learning. An object detection framework is

based around neural networks, and it is usually built of four components. The first

component is the region proposal. During the region proposal, the deep learning model

thinks there might be an object in the image and proposes regions of interest (ROI). In

these regions, there are added bounding boxes, which are fed to the next layer of the

CNN. Bounding boxes are rectangles defined by x and y coordinates that surround the

objects in images. The second component of an object detection framework is the feature

extraction and the network predictions. At this point of the object detection process, the

visual features that are in the bounding boxes are focused on for a closer look. The

objects found in the bounding boxes’ visual features are then classified so that after this

step, there are several proposals for classified objects. The third component is the non-

maximum suppression (NMS). NMS combines the bounding boxes on top of each other

into a single bounding box for every classified object. The fourth and final part of the

object detection framework is the evaluation metrics. In the evaluation metrics part, the

model receives the metrics to find the quality of the measurements. The most usual

metrics are mean average precision (mAP), precision-recall curve, and intersection over

union. The mAP is the most important of these metrics. It is calculated by determining

the average precision of all measured classes separately and then calculating the mean

of all these average precisions. (Elgendy, 2019, 310.; Yohanandan, 2020.)

Object detection models can be divided according to how many stages they need for the

detection. Multi-stage detectors usually need two stages for the detection as single-stage

detectors need only one. The advantage of multi-stage detectors is the accuracy they

provide. However, the multi-stage detectors are too slow for real-time object detection.

Single-stage detectors are often several times faster than multi-stage detectors but have

had a relatively low object detection accuracy. The introduction and development of

single-stage object detection algorithms such as You only look once (YOLO) and Single-

shot detector (SSD) have made real-time object detection possible. (Hui, 2018.)

The architecture of the single-stage detectors resembles each other on a level that can

be compared to a human upper body. The network starts from the input layer and leads

to the backbone component of the network. The backbone is used for feature extraction.

As the efficiency of the backbone is critical for object detection performance, it often

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

consists of a model that has been priorly trained by a known successful deep learning

model. The backbone is followed by the neck component. The primary function of the

neck is feature extraction. Followed by the neck is the head component. The head is in

charge of the object detection as it does both the image classification and the image

regression by determining the properties of the bounding boxes. (Anka, 2020.)

2.2.2 YOLO

You Only Look Once (YOLO) is a real-time object detection model used in object

recognition. The name You Only Look Once is based on how the algorithm only looks

once at an image while many other algorithms need two looks. Technically, YOLO uses

only forward propagation for the prediction, while other models might also use backward

propagation for the prediction. Forward propagation means that data goes only from the

input layer to the output layer, while in backward propagation, the data goes from output

layer to input layer. In these multi-stage models with both forward and backward

propagation, the first look is for generating the region proposals, the second look for

detecting the objects for the proposals. (Redmon, 2018.)

YOLO, a single-stage model, uses a convolutional neural network (CNN) to make its

prediction and proposals. In the CNN, the input image is divided by YOLO into S x S grid

cells. These grid cells are all individually responsible for the objects. Dividing the grid

cells means that each of the cells will predict the bounding boxes, confidence scores,

and conditional class probabilities. The bounding boxes with the confidence scores and

the class probabilities are combined, and as a result, the correct class labels and

bounding boxes are presented. (Periwal, 2020.)

Overall, there is usually a trade-off between speed and accuracy in every deep learning

model. YOLO provides fast object detection, but the accuracy often falls short of its

competitors. To sum up, the strengths of YOLO are that it is sufficiently fast and accurate

for reliable real-time object detection. YOLO is often compared to SSD as they are the

most used detectors due to their accuracy, speed, and performance. The main difference

between YOLO and SSD is their structure. YOLO architecture is built out of two fully

connected layers, while SSD is built out of convolutional layers that are organized from

the largest to the smallest size. (Busireddy, 2019.)

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

2.2.3 SSD

Single-shot detector (SSD) is a neural network model designed for real-time object

detection. The strength of SSD is the accuracy it provides. However, compared to YOLO,

SSD is usually slower in its object detection process. The slower speed is due to the

architecture of the two detectors. (Busireddy, 2019.)

The SSD model architecture is built out of three parts. The first part is the base network

that has been pre-trained. The primary function of the base network is to extract feature

maps from images. The second part of the SSD model architecture is the multi-scale

feature layers. These feature layers are responsible for filtering the data into smaller

scales allowing detections to be more flexibly predicted. The third and final part of the

SSD model architecture is the non-maximum suppression. The non-maximum

suppression filters and eliminates bounding boxes that overlap each other. (ArcGIS

Developers, 2019; Elgendy, 2019, 336.)

The SSD model architecture differs from the object detection framework presented in

Section 2.2.1. These differences can be mainly explained by the fact that the model

architecture presented earlier considers a multi-stage object detection model. The

single-stage models have partly eliminated the first component, region proposals from

the architecture. (Jordan, 2018.)

2.3 TensorFlow and TensorFlow Lite

TensorFlow is a software library that is often used for Machine Learning and deep

learning. It is primarily used for training large datasets that are used in deep learning.

TensorFlow is also used for computations on dataflow graphs. To ease and improve the

Machine Learning and deep learning modeling and training, TensorFlow uses its own

data graph visualizer, Tensorboard. TensorFlow was developed by Google, and it is

known for its architectural flexibility as it provides computational benefits across several

platforms. (TensorFlow, 2021b.)

Models built for TensorFlow models can be thoughts of as rulebooks for the interpreter

on what to do with the data to receive the correct output. TensorFlow models are normally

designed to be run on desktop computers with powerful graphics processing units. As

machine and deep learning rely on GPU performance, so does TensorFlow. TensorFlow

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

requires an Nvidia GPU with a relatively recent Cuda architecture to work. Cuda

architecture is used for training in most object recognition models. Devices with Cuda

architecture have completely different kinds of components and performance than the

portable devices that run mobile applications. Consequently, a light, weight-optimized

version of TensorFlow called TensorFlow Lite was designed for smaller devices to run

the models. (TensorFlow, 2021a.)

TensorFlow Lite is built out of two main components: an interpreter and a converter. The

interpreter runs optimized models on lower-powered devices. The converter transforms

the TensorFlow models to a form that the interpreter can use. Additionally, the converter

improves optimizations and performance. (TensorFlow, 2021a.)

TensorFlow Lite does not currently support training models. The model has to be trained

on a computer with more performance than the relatively low-performance end device

and then converted to a TensorFlow Lite-file. Alternatively, The TensorFlow models can

be trained using Google Colab that provides an external online-based GPU with Cuda

architecture. The trained TensorFlow Lite-file is after the conversion sent to the device’s

interpreter. (TensorFlow, 2021a.)

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

3 FLUTTER FRAMEWORK

As the previous chapter has presented the theory and methods behind Machine

Learning, this chapter concentrates on Flutter, the framework used to develop the

application user interface and front end. More specifically, Flutter offers a user interface

(UI) Toolkit developed by Google in 2017 but actually released the first stable version in

2018. Flutter is used to develop natively compiling applications to desktop, mobile

devices, and the web. However, it is currently mainly used for mobile development. Both

Flutter development for desktop and web applications have though been announced by

Google to be developed further in 2021. As Flutter uses the same codebase for Android

and iOS applications, the application can be developed to both systems using the same

code. Flutter can be thought of as a tool that comprises of two parts. The first part is a

software development kit (SDK). The SDK makes it possible to use a single codebase

with the programming language Dart and compile the code to native machine code. This

process enables the code to work both on Android and iOS. The second part of Flutter

is a widget/framework library that provides widgets used to build the applications.

Widgets can be thought of as UI-building blocks, and they are most often, for example,

buttons, text, or containers. (Gaël, 2019.)

Flutter uses the Dart language to build the applications. Dart-language was developed

in 2011, and partly because of the rising popularity of Flutter, the language has

developed faster in recent years than before. The Dart language was also developed by

Google, and therefore, there was a clear connection between Dart and Flutter during the

development of Flutter. Dart is a strongly typed object-oriented language and has often

been compared to languages such as Java and C#. (Ford, 2019) While looking at the

structure of Flutter applications, there is also a great resemblance to JavaScript.

Additionally, the code structure for Flutter is relatively simple as the applications do not

need data-, style-, or template separation. (Moovx, 2020.)

As seen in Figure 4, the object detection feature of the application developed in this

thesis consists out of stateful and stateless widgets. These states are classes and define

the interactivity of the widgets in the application. Stateful widgets are widgets that can

change due to interaction with the user, and oppositely the stateless widget will not have

any changes with user interaction. The third widget class is the state, and it defines the

widgets state, and the widgets build() method. Flutter application structure is relatively

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

simple to create smaller applications and features such as object detection. The later

discussed image caption generator shows a bit more developed structure of a Flutter

application. The UML diagram of the image caption generator in appendix 1 shows how

the applications are built around stateless widgets, stateful widgets, and states. (Flutter,

2020a

Flutter is strongly typed, which means that it does not have a graphic design system that

can be used for designing the layout. Everything that can be seen in the application is

typed. This makes designing applications slower to start with than its competitors.

However, as everything is controlled through code, the developer has better cross-

platform control, and the applications can easily look exactly the same on both Android

and iOS. There are minor negative aspects in the UI look that Flutter provides. As Flutter

uses its own single codebase, it does not get the exact same iOS look as its competitors,

such as React native. Flutter works around this issue by having its own iOS type widgets.

These widgets are named Cupertino widgets and work both on Android and iOS.

Cupertino widgets let the UI imitate the platform-specific look, so it is nearly impossible

to recognize the differences between an app designed with Flutter or its native

competitors. What Flutter loses in some design aspects, it wins with its design flexibility.

(Flutter, 2021d.)

Figure 4. Structure of the object detection-application.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

As Flutter does not have a visual developing interface that shows a layout of the

developed application, to ease developing Flutter application, there is a hot reload

feature. This means that applications do not need to be rebuilt for the minor changes to

show up on an emulator or debugging mobile device. The hot reload feature makes it

especially easy to debug on a real-world device, as the minor changes are shown in

merely just a couple of seconds. For major changes to be seen in the application,

rebuilding the application is necessary. (Flutter, 2021c.)

There are a few alternatives to Flutter when designing cross-platform mobile

applications. The main competitor is React Native that is more popular than Flutter.

However, React Native was published years earlier than Flutter. React Native also has

the advantage in the number of users as it uses a far more popular language, JavaScript.

A different kind of competitor also based on JavaScript is Ionic, as it takes the

development aspect to a more WebView-based direction. This direction has its benefits,

but it makes it nearly impossible to reach high speeds in real-time object detection. As

seen in Table 1, Flutter has the edge over its competitors when it comes to designing

cross-platform applications needing high speed and performance. However, React and

Ionic do have their benefits in other fields. (Demedyuk & Tsybulskyi, 2020; React Native,

2021; Ionic, 2021.)

The reason why Flutter is relatively fast compared to its competitors is that it takes

advantage of the Skia graphics library. It makes it possible for Flutter applications to

update the application view every time there is a change in the view. In addition to the

utilization of Skia-library, the Flutter architecture eliminates the use of a bridge and

minimizes the unnecessary data flow going forward and back. The architecture and

speed of updating the view make Flutter a top candidate for applications needing real-

time features. (Shah, 2020.)

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

Table 1. Framework comparison between Flutter, React Native, and Ionic.

 Flutter React Native Ionic

Language

Dart

JavaScript

JavaScript

Framework

Flutter

React.js

Any or no framework

Application

Compilation &

Nativity

Compiled native

applications

Only partly compiled

native applications

Not compiled, hosted

web applications inside

native applications

Cross-platform

compilation for

UI components

None for both

Android and iOS

Yes, for both Android

and iOS

None for both Android

and iOS

Platforms

Mobile, web,

desktop

Mobile

Mobile, web, desktop

Performance

Nativity of the

application gives an

advantage in

performance

React is only partly

compiled to native code,

and the use of

JavaScript bridge

makes the performance

less competitive

Wrapping the

application causes

performance issues

Advertised

Framerate

Up to 120 frames per

second (Flutter,

2021)

Up to 60 frames per

second (React Native,

2021)

Up to 60 frames per

second (Ionic, 2021)

A significant advantage for Flutter is that it requires less manual testing than other

alternatives. As it functions with Dart, there are many automated testing alternatives

available. Flutter also provides automated testing features that can be used at unit,

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

widget, and integration levels (Shah, 2020). Unit tests test on the smallest level as they

can test functions, methods, and classes. Widget tests test the widgets on a component

level. Integration tests test the application as a whole or at least a large part of the

application. The provided several levels of automated testing make the debugging and

testing process relatively simple as the need of manual testing has been cut to minimum.

(Flutter, 2020a.)

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

4 APPLICATION PREREQUISITES AND GOALS

This chapter explains what are the planned technical requirements for the thesis and

clarifies what the targets are for creating the finished application successfully. The intent

is that all the requirements that are set in this chapter are achieved in the application.

The main goal of the thesis is to create a cross-platform mobile application that would

provide both object detection based on image classification and object localization using

the phone camera. The application should be fast enough to provide near real-time

detection to maximize the usability of the application. To achieve these goals, the

architecture should follow the Flutter architecture so that it can take advantage of the

optimized system performance. The Flutter-based application is programmed using the

Android Studio IDE due to the emulator it provides. Android Studio supports the

necessary plugins, and additional packages can be imported from pub.dev, a Dart

package hub. The testing of the application is done using both emulators and real-world

devices, so the application and specifically the UI works on all tested devices and

emulators.

A crucial part of the thesis is to find out if Flutter provides an optimal environment for

real-time object detection. The application needs to be able to be seen with a high

enough framerate as well it needs to provide a higher framerate than its competitors. The

higher framerate should be viewable in testing the application. The framerate is tested

on each deep learning model.

The used deep learning models are trained prior to the program calling them. Training

the models requires a computer with a reasonably new GPU. The use of a computer with

a GPU is not be necessary as the training is done via Google Colab Pro. Google Colab

provides an online environment used for Machine Learning. Using Google Colab, the

training is done online via an external GPU. This choice of Machine Learning

environment also makes the training faster than with a few years old GPU. After training

the models on a high-performance GPU, the trained models are converted to formats

that can, later on, be used on lower-performance mobile devices. Training on a separate

device also results in minimizing the calculations and performance needed by the mobile

device.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

The real-time object detection feature in the mobile application utilizes two algorithms:

YOLO and SSD. Comparing the algorithms on accuracy and speed while using the

application should tell if the differences in accuracy and speed are as expected or does

the flutter application architecture tighten the gap between the expected speed of Yolo

and the accuracy of SSD. The versions of the used algorithms are Tiny-YOLO and SSD

Mobilenet. Both versions of the algorithms are designed for mobile devices as they use

relatively little CPU power and have a performance according to the mobile device’s

CPU. Both Tiny-YOLO’s and SSD Mobilenet’s accuracy and speed do unfortunately

differ from the bigger-sized original detectors even though the models are initially trained

using the original models. As the application is designed for mobile phones, the size of

the application is also critical. The recommended size constraints affect the design of the

application. The trained models are trained on a computer and then transferred to the

end device.

As the object detection models YOLO and SSD are trained to a limited amount of objects,

the detection of objects are limited. The number of detectable objects shall be decided

according to the training constraints. As both algorithms are designed for detecting

several objects simultaneously, the goal is to be able to recognize the objects in the

same image simultaneously. The accuracy of the models are measured using mAP.

To widen the perspective of object detection, an image caption generator is added to the

application features. The MAX-image caption generator is trained by IBM using Common

objects in context (COCO) 2017-dataset and accessed by contacting a remote

Kubernetes container. A Kubernetes container is a way of packaging applications, so

they are extracted from the environment they are run in. Therefore, the application is

architecturally different in the image caption generator part compared to the object

detection part. All in all, the application has three sections of interest: Object detection

with YOLO, Object detection with SSD, and Image caption generator.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

5 DEVELOPMENT OF THE OBJECT RECOGNITION

APPLICATION

This chapter describes the development of the mobile application in this thesis. It

presents the choices and solutions used in the execution of application. In addition, the

structure and operation of the computer vision application components are presented.

As seen in Figure 5, the technical aspect of the object detection part of the thesis is built

out of several components that together result in a real-time object detection application.

The development of the image caption generator feature for the application is described

later in this chapter. Furthermore, the results of the tests on the application are explained.

Figure 5. Main components of mobile object detection.

5.1 Flutter-based application development

The UI of the application was built using Flutter, a UI toolkit that is only a couple of years

old. A significant benefit of Flutter is that even a single developer can build applications

with it relatively fast using the easily modifiable Flutter widgets. The widgets work as the

basic building blocks for all applications, as can be further seen with the object

recognition application created.

The main reason Flutter was chosen in this project was that it works best for cross-

platform systems that need quick calculations as real-time object detection needs. Even

though creating the Flutter application is timewise after the training of the deep learning

models, it is essential to inform why it is the base for the thesis and why here it is

explained before the deep learning. Flutter provides an architecture that should provide

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

an optimal environment for the previously mentioned deep learning models. Its most

significant competitor React Native is more popular for cross-platform development but

is usually several times slower than Flutter when processing data. This advantage in

performance is largely due to that Flutter follows the same reactive development

architecture as its competitors but does not use a JavaScript bridge to access the original

equipment manufacturer (OEM) widgets. Hence, As Flutter utilizes custom widgets, it

gains choices the OEM do regulate. The object recognition application takes advantage

of the fact that Flutter has its own widgets and platform channels. As seen in Figure 6,

the application does not need to access the OEM widgets using a bridge, and therefore

it has better performance than others using the reactive development architecture. By

eliminating the data flow forward and back from a bridge and the widgets, Flutter saves

precious time in the dataflow of the application.

The layout for the application is developed using the layout widgets. As the application

layout is built entirely in code and not using any visual tool, creating the layout was a little

trial and error. However, Flutter uses an easily understandable hierarchal system to build

the visual layout for the applications. By using the hierarchal design and the hot reload

function, it is relatively easy to create a clear and functional layout for a smaller screen.

If there are any minor layout issues as there were in the development of this application,

the debugger shows relatively clearly where the issue is located in code and on the

debugging device’s screen.

Figure 6. Flutter architecture used in application.

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

5.2 Transfer learning the dataset

As training any computer vision application, it is possible to build the CNN from the

beginning and train the model from scratch. This, however, takes a very long time and

often requires weeks or months of testing that would not be possible for this thesis. A

more effective method in model training is to download a pre-trained neural network that

has already been trained on a large dataset. This way of training is called transfer

learning, and in this thesis, the model is trained using transfer learning and then

converted and added to the developed object recognition application.

The transfer learning in this thesis utilizes the COCO-2017 dataset. This means that the

training of our dataset benefits from the COCO datasets already trained and tested

labelled images. The COCO dataset is built out of approximately 120 000 pre-labelled

images and it was chosen because it has a large variety of images that have labelled

everyday objects. Additionally, the dataset is large enough to have relatively accurate

results on the objects. Without using transfer learning, there would have also been a

computational issue as the training of the images would have taken several weeks or

months, even if there would have been several GPUs available. Even then, the results

would most likely been worse than without using transfer learning. Using transfer learning

also had the benefit of avoiding overfitting, which is a common issue in deep learning.

The dataset trained to COCO-2017 was initially built using Roboflow, a service that

makes dataset building easier and

quicker. As seen in Figure 7, by

gathering the dataset images into

Roboflow, labeling is made relatively

simple as the bounding boxes can

be set and labelled. Roboflow also

allows transforming the dataset to

the correct format, so utilizing YOLO

and SSD is possible. Utilizing the

dataset building using Roboflow, the

dataset is divided into training,

testing, and validation set.

Figure 7. Dataset labeling using Roboflow.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

The initial idea of the dataset contents was to build it entirely from everyday images taken

from web image searches and label them using Roboflow. This turned to be a too time-

consuming task, and by testing the transfer learning with about 200 self-labelled images

on objects in offices, it turned out that the mean average precision 0.5 (mAP 0.5) for SSD

was around 0.15. This result leads to the conclusion that either the dataset would need

to be several times larger or a larger prelabelled dataset could be used.

The necessary choice was to transfer to a prelabelled dataset. The best overall dataset

found for the purpose was the PASCAL VOC 2007-dataset, as it contains thousands of

everyday images. To utilize the self-labelled images from Roboflow, the images were

added to the Pascal VOC 2007-dataset. The final used dataset contains the 200 self-

labelled images and the thousands of images from the Pascal VOC 2007-dataset. The

transfer to a prelabelled dataset affected the accuracy of the models positively. As can

be seen from Figure 8, the transfer to a larger dataset proved to work, as the SSD-based

model had the mAP 0.5 or mean average precision 0.5 of almost 70 % at its best. The

Yolo-based model reaches nearly the same results in training as the SSD-based model.

As shown in Figure 9, at the end of the training with tens of thousands of images, the

best result the YOLO-based model reaches is around 65 %. The average loss (avg loss)

in both models is around the same 1,34-1,47, proving the model is working. The average

loss measures the distance of a single example in the model to the correct prediction on

a curve based on all predictions. Hence, the lower this value is, the better.

Figure 8. Training results of SSD-based model.

Figure 9. Training results of YOLO-based model.

Roboflow also provides Google Colab notebooks that can be used for training the

different format datasets using transfer learning. The created dataset is trained using the

notebooks after making some changes to them. The transfer learning guarantees much

better results in accuracy, as the training of the relatively small, labelled dataset is done

to the enormous COCO dataset. The transfer learning also shortens the time used for

training. (Roboflow, 2020a; Roboflow, 2020b)

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

The dataset training utilized the COCO dataset early in training, so the trained model for

both Tiny-YOLOv4 and for SSD Mobilenet v2 should have better results than with just

without it. The training process for both does resemble each other. However, they have

their issues. As a Tiny-YOLO model is not meant for training, the initial training is done

using YOLO v4 and then transformed to YOLOv4-Tiny. This causes the biggest issue

with Tiny-YOLO. Even though the model has been trained using YOLO, the accuracy

and mAP can not be repeated on Tiny-YOLO. After getting the converted Tiny-YOLO

file, the file with the model must be transformed to a protocol buffers-file (pb-file). The

pb-file is used to store TensorFlow-based models. However, as a pb-file can not directly

be used in a mobile application, it has to be converted into a TensorFlow Lite -file that

can be directly embedded into the application. A TensorFlow Lite-file is a TensorFlow

model-file that can be used on mobile devices. The mAP0.5 of the final converted

dropped sharply to averaging around 22%.

The transforming process for the SSD Mobilenet v2 is much simpler compared to YOLO

as a trained SSD model can be transformed into a TensorFlow Lite model-file with just

one step. However, the model does suffer a bit from the transformation to the TensorFlow

Lite model as the architecture of SSD has to go through minor adjustments to function

on a mobile platform. After the conversion to a TensorFlow Lite-file, the models mean

average precision with a 0,5 threshold for correct detection (mAP0.5) was around 53%

on average. This means the conversion resulted in a ten percent drop in accuracy. The

trained models can be fed to the application but do need some adjustments to work as

planned. These adjustments will be described later in the thesis.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

5.3 The structure of the application

At the beginning of development, the object

recognition application was built as two

separate applications: Object detection

application and image caption generator. Both

the object detection and the image caption

generator display the different features of

mobile object recognition. To make the object

recognition application more versatile and

consistent for testing purposes, both object

recognition features are combined into a single

application. As seen in Figure 10, the

application home screen icons offer the

promised object recognition alternatives in a

single application. The home screen icons are

divided into two rows. The first row provides the

object detection alternatives and the second

row the image captioning alternatives.

Combining the features into a single application

makes the testing results more comparable to

each other. In addition, the application structure

was developed to present how Flutter makes

these features as effective as

possible.

5.3.1 Object detection

Creating the object detection feature in the object recognition application starts with

building the front-end for the application. Building a layout using Flutter, where it is

possible to call for the deep learning models by pushing buttons, does not need a

particularly complex layout structure. As earlier mentioned, the Flutter-based widgets

provide building blocks where the deep learning components can be inserted into.

Figure 10. Application home screen.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

The most important part of application functionality is to connect the camera and gallery

to the deep learning models. Both the SSD- and YOLO-based deep learning models do

work without changes necessary to the application itself but to give the model the best

chance to work. However, some optimization is necessary to get the same level results

gotten during the training and testing of the models. The models need optimizations

depending on what UI and end-platform they will be used on. A major optimization is to

normalize the models so they will work on mobile devices. In this case, the SSD-model

needs normalization for it to work. As the model is trained and converted, the color values

are changed to values between -1 and 1. However, the model is designed to have values

between 0 and 255. Hence, a normalization of the color values is necessary. This

optimization is especially necessary due to the use of Flutter as the UI. As Flutter is in

charge of updating every pixel, the normalization of making 127,5 the center value

especially important. If the value would not be set to 127,5 the model would see the

image overly bright and could not detect or recognize all the objects. This means the

object detection feature in the mobile application would have poor accuracy and miss

objects that it can recognize normally. As seen in program 1, the

Tflite.detectObjectOnFrame-method is called, and it runs the camera stream through the

trained model. Without the normalization value correctly set, the image would be much

brighter than normal, and the object detection would give a bad result.

Program 1. runModelOnStreamFrame-function for object detection using SSD.

runModelOnStreamFrame() async

 {

 imgMaxHeight = imgCamera.height + 0.0; //default set 1280

 imgMaxWidth = imgCamera.width + 0.0; // set 720

 recogList = await Tflite.detectObjectOnFrame(

 bytesList: imgCamera.planes.map((plane) {

 return plane.bytes;

 }).toList(),

 model: "SSDMobileNet",

 imageHeight: imgCamera.height,

 imageWidth: imgCamera.width,

 Program continues.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

 imageMean: 127.5, //input normalization(model trained -1 - 1)

 imageStd: 127.5, // Otherwise -> too bright -> lower accuracy

 numResultsPerClass: 1, // Gives only one prediction

 threshold: 0.45, // Tested on 0.4 - 0.6

);

The code structure of the YOLO feature of the application resembles the SSD feature.

However, the YOLO-part does not need the same normalization as the SSD. As the

model is trained with the non-negative values 0,0-255,0, the pixel color value stays the

same from the original training device to the mobile end-device. Some minor adjustments

to the model are necessary. The YOLO model automatically rotates the camera by 90

degrees. The rotation is easily fixed by changing the model-values in

Tflite.detectObjectOnFrame. A larger issue with the YOLO-Tiny-model is with both the

accuracy and the speed it provides. The accuracy of the trained YOLO model is not

good. Unfortunately, the accuracy can not be helped, as many of the original YOLO-

model features are not available in the converted tflite-based model. As the model does

not recognize the detected object with a high probability, the detection threshold must be

set low to 0,15. Compared to the SSD model threshold at 0,45, it is clear that SSD is a

clear winner in accuracy. However, the YOLO-based object detection feature works

sufficiently in the application with objects that are easy to recognize.

The YOLO model provides approximately 200-250 frames per second (FPS) and

therefore creates problems with the application keeping in the pace of the model. Without

any changes in the application properties, there rises an issue with scheduling. Mobile

phones can currently show a maximum of 120 FPS on their screens. Therefore, the

model can not display 200-250 FPS. By minor changes in asynchronous scheduling, the

issue with scheduling is fixed, and the model works as planned.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

A crucial task of the thesis was to implement object detection successfully into a Flutter

mobile application, as shown in Figure 11, and test if Flutter provides an optimal

environment for it. A secondary part of the task was to test if the Flutter architecture

provides a better environment for computer vision and object detection than its

competitors, React Native and Ionic. During

testing, Flutter offers a frame rate up to 120 FPS

for object detection, as seen in Figure 12 and

Figure 13. Testing the object detection

application frame rate separately on SSD, the

results varied from 60 FPS to 120 FPS with a

couple of minor quick slips down to 40 FPS.

While testing the Tiny YOLO-based feature,

Flutter did provide a more stable stream of frame

rate between 60 and 120 frames per second.

Newer mobile phones do currently have a 120

FPS maximum framerate for their screens, as

did the tested device. Therefore, it can be stated

that both SSD and YOLO are successful in

providing near maximum frame rate. During

further testing of the UI average frame rate, the

average is between the values of 3,5 ms and 4,5

ms. This means that, on average, Flutter would

provide clearly more than the 120 frames per

second. Both React.JS and Ionic have a

promised maximum framerate of 60 FPS, and

therefore the results are clear. (React Native,

2021; Ionic, 2021) Flutter offers the best object detection speeds and mobile applications

if the CPU provides over 60 FPS for the model, as the application is capable of displaying

predictions over 60 times per second. However, these high frame rates are currently

scarce on mobile devices and therefore often irrelevant.

The results of the object detection application were as expected but did provide some

surprises. As expected, the SSD-based model performed better in both accuracy and

mAP. It provided around 50-70% accuracy when detecting objects correctly. The

recognition threshold was set to 45% to improve the viewing of the results. As the

reliability of the prediction varied every frame per prediction, the bounding box showing

Figure 11. Working object detection
using SSD-detector.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

the result would disappear when the result would dip just below 50%. Setting the

threshold to 45% made the viewing more pleasurable, but at the same time, a bit more

unreliable. However, as a goal was to create a mobile application that would show the

differences in accuracy and speed between the SSD model and YOLO model, a decision

was made to have the threshold 5% lower than normal.

Figure 12. Object detection using SSD Mobilenet (40.0-120.0 FPS).

Figure 13. Object detection using Tiny-YOLO (60.0-120.0 FPS).

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

5.3.2 Image caption generator

The image caption generator has a more complex structure than the object detection

parts as it actually has both an application front-end and a back-end. The application

shows three ways to use the image caption generator. These three ways or features are

caption predictions on camera stream, caption predictions on an image taken using the

application, and caption predictions on an image from the mobile phone gallery. All three

features can be seen in Figure 14, and are based on the most crucial part of the program,

the camera stream feature that predicts the situation through a video stream of the

camera.

The application shows the three best predictions on screen. The current version of the

application displays an updated prediction every four seconds. This is due to the fact that

if the application showed the prediction faster, there would be two issues. The first issue

is that as there are three predictions on screen, the reading time of the predictions would

Figure 14. Flowchart of the image caption generator-part of the application.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

be too fast. The second issue is that these four seconds give the application more than

enough time to perform all its functions flawlessly. If the time for reading would not be

necessary, the four seconds could be changed to one second and still work. While testing

the image caption generator, there should be a relatively significant difference between

the speed of the object detection and the image caption generator.

The second feature of the image caption generator is that it will predict the situation from

a picture in the mobile phone’s gallery. However, as it would not benefit anyone, the

prediction from an image from the gallery does not change every four seconds. The third

feature of the application is that it will also predict the situation from a picture just taken

using the application. After creating these features based on the mobile phone’s camera,

the image caption model itself needs to be connected to the application.

From a more technical aspect, the prediction works by capturing images from the camera

feed and storing them into the mobile phone’s local storage. From the local storage, the

images are then sent using an HTTP POST request to the image caption generator

model in the getResponse-function. This means that the images are passed to the

model, and the generated caption predictions are sent back and shown on the screen of

the device.

To display the effectiveness of the image caption prediction, the application offers three

alternative choices as it predicts the situation. These prediction alternatives often

resemble each other quite closely, as can be seen in Figure 15. Compared to the object

detection model, the application does not show the probability of the prediction. The

choice of not showing the probability was made primarily because the model has a

significant amount of prediction alternatives, and the probabilities are relatively small. As

shown in Figure 15, the application accurately predicts the situation in front of the mobile

phone camera.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

The back end of the application is based

on utilizing the IBM-Max Image Caption

Generator model container that is called

over a server. Creating the model of an

effective image caption generator by

oneself is an enormous feat. As a

working image caption generator needs

hundreds of thousands of labelled

pictures and even more distinct objects,

even the work collecting, creating, and

generating the dataset for the model

would take a long time. The used IBM

Max Image caption generator consists of

over 200 000 labelled images and has

more than 1 500 000 distinct labelled

objects (Singh, 2020). As well as

creating and labeling the dataset for a

long time, the training of such a dataset

would take months for average GPUs.

The Max image caption generator has

been trained at IBM using

supercomputers. Therefore, it is

understandable that the image caption

generator used in the thesis is prebuilt

and not developed for the use of the

application.

The Max image caption generator used is stored in the IBM cloud. To gain contact with

the model in the cloud. the model of the image caption generator has been modified into

being stored in a Kubernetes container. By contacting the created container, the

application can ask the model what is viewed in the camera view and what captions it

predicts. As the IBM cloud does only support a free Kubernetes container for a limited

amount of time, the completed application does contact a Kubernetes container upheld

by IBM and not the previously made container. This container has the same Max image

caption generator model as the previously created and used container. Therefore, it is

important to be reminded of the differences in the features in the application. The main

Figure 15. Screen capture of the working
image caption generator.

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

difference to the object detection feature in the application, the image caption feature

contacts the container using the POST method and receives the captions from the model

while the object detection feature is entirely local.

Flutter UI provides approximately 24.0 frames during the use of the image caption

generator, as seen in Figure 16. During a half dozen measurements the frame rendering

times were between 24.0 to 30.0 frames per second. As the frame rate for real-time

detection is usually thought of being around these framerates and up, the Flutter UI

provides an excellent environment for real-time object detection with an external model.

However, the limitation of the image caption generator is not only the frame rate but the

processing time built out of application performance and sending and receiving them

from the model in the online container. Flutter provides both the frame rate and the

performance for the image caption generator to work successfully.

Figure 16. Image caption generator (24.0-30.0 FPS).

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

6 CONCLUSION

The main goal of the thesis was to create a Flutter-based mobile application with object

detection features as well as to research the suitability of the Flutter UI for real-time

object detection. To research the suitability, two types of computer vision features were

created and comprised into a mobile application. The object detection feature presents

the local deep learning model’s performance on the Flutter UI, whereas the image

caption generator presents an approach using an external model. The differences in

Flutter performance for the local and external features are noticeable. However, they

both provide real-time object recognition.

The Flutter UI provided an optimal environment for computer vision features in the

developed mobile application. The Flutter architecture presented also a stable near

maximum frame rate for both a Tiny-Yolo-based and SSD Mobilenet-based object

detection. Furthermore, Flutter also triumphed in frame rate over its most significant

competitors with a twofold frame rate. The testing of the image caption generator

displayed the lowered frame rate of 24 frames per second. As the goal was to create a

near real-time system, the performance of the image caption generator was a success.

Another significant question in the thesis was to find out how the two object detection

models perform. The differences between SSD- and YOLO-based object detection is

viewable in the application as an accuracy difference. As a result of training the dataset

and converting the original models into a TensorFlow Lite-based mode, the differences

in accuracy are amplified. The SSD-based model provides more consistent and accurate

object predictions on screen than the YOLO-based object detection model.

The final version of the object recognition application has some areas of improvement

that were not implemented. Visually, the bounding boxes in the object detection

application are slightly too large on the top side. The initial thought was that the bounding

box size is the wrong size due to the screen resolution, screen size, or the TensorFlow

Lite detection on frame. However, changing the properties of the screen resolution,

screen size, and TensorFlow Lite detection on frame-values did not fix the issue. More

improvements could also have been made to the dataset used in object detection. Due

to the time constraints concerning the dataset labeling, an optimal dataset would have

been self-labelled. However, labeling the thousands of images would have taken weeks

or months to do. The decision to gain a more accurate model over a completely self-

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

made dataset was hard but correct. As a result of having to change to training a tested

dataset, the application functions according to the expectations. Currently the final

improvement to the application would be testing the application on iOS. The current

version of the application works only on Android but could function on iOS with a few

changes in the dart-project properties. As Flutter provides the option of easily creating

cross-platform mobile applications, the testing on iOS would be a logical step in

development for the application.

All in all, both the object detection and image caption generator features function as

planned. The differences between SSD- and YOLO-based object detection are viewable

in the application as a clear difference in accuracy. Furthermore, the image caption

generator shows how an external and sizeable deep learning model can be utilized

successfully in mobile applications via a cloud container. As importantly, the image

caption generator works near real-time by predicting the image caption with high

accuracy. Both computer vision features function optimally due to the Flutter-based

architecture and structure. Flutter provides high performance and reliability in both

computer vision tasks featured in the application and should be considered a top

candidate when building cross-platform applications needing real-time features.

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

REFERENCES

Altexsoft, (2018). The Good and the Bad of Flutter App Development. [online] Altexsoft. Available
at: https://www.altexsoft.com/blog/engineering/pros-and-cons-of-flutter-app-development/
[Accessed 11 Mar. 2021]

Anka, A., (2020). YOLO v4: Optimal Speed & Accuracy for object detection. [online] Medium.

Available at: https://towardsdatascience.com/yolo-v4-optimal-speed-accuracy-for-object-

detection-

79896ed47b50#:~:text=YOLO%20v4%20achieves%20state%2Dof%2Dthe%2Dart%20results%

20(,FPS%20on%20a%20V100%20GPU. [Accessed 7 April 2021].

ArcGIS Developers. (2019). How single-shot detector (SSD) works? | ArcGIS for Developers.

[online] Available at: https://developers.arcgis.com/python/guide/how-ssd-works/ [Accessed 19

March 2021].

Built In, (2020). What is Artificial Intelligence? How Does AI Work? | Built In. [online] Available at:

https://builtin.com/artificial-intelligence [Accessed 19 March 2021].

Busireddy, C., (2019). is YOLO really better than SSD?. [online] Linkedin.com. Available at:

https://www.linkedin.com/pulse/yolo-really-better-than-ssd-chandrakala-busireddy [Accessed 3

April 2021].

Brownlee, J., (2017). What is the Difference Between Test and Validation Datasets?. [online]

Machine Learning Mastery. Available at: https://machinelearningmastery.com/difference-test-

validation-datasets/ [Accessed 20 March 2021].

Brownlee, J., (2019a). A Gentle Introduction to Object Recognition With Deep Learning. [online]

Machine Learning Mastery. Available at: https://machinelearningmastery.com/object-recognition-

with-deep-learning/ [Accessed 13 March 2021].

Brownlee, J., (2019b). How Do Convolutional Layers Work in Deep Learning Neural Networks?.

[online] Machine Learning Mastery. Available at:

https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-networks/

[Accessed 14 March 2021].

Brownlee, J., (2019c). How to Avoid Overfitting in Deep Learning Neural Networks. [online]

Machine Learning Mastery. Available at: https://machinelearningmastery.com/introduction-to-

regularization-to-reduce-overfitting-and-improve-generalization-error/ [Accessed 3 April 2021].

Council of Europe. (2020). History of Artificial Intelligence. [online] Council of Europe. Available

at: https://www.coe.int/en/web/artificial-intelligence/history-of-ai [Accessed 24 March 2021].

https://www.altexsoft.com/blog/engineering/pros-and-cons-of-flutter-app-development/
https://towardsdatascience.com/yolo-v4-optimal-speed-accuracy-for-object-detection-79896ed47b50%23:~:text=YOLO%20v4%20achieves%20state-of-the-art%20results%20(,FPS%20on%20a%20V100%20GPU.
https://towardsdatascience.com/yolo-v4-optimal-speed-accuracy-for-object-detection-79896ed47b50%23:~:text=YOLO%20v4%20achieves%20state-of-the-art%20results%20(,FPS%20on%20a%20V100%20GPU.
https://towardsdatascience.com/yolo-v4-optimal-speed-accuracy-for-object-detection-79896ed47b50%23:~:text=YOLO%20v4%20achieves%20state-of-the-art%20results%20(,FPS%20on%20a%20V100%20GPU.
https://towardsdatascience.com/yolo-v4-optimal-speed-accuracy-for-object-detection-79896ed47b50%23:~:text=YOLO%20v4%20achieves%20state-of-the-art%20results%20(,FPS%20on%20a%20V100%20GPU.
https://developers.arcgis.com/python/guide/how-ssd-works/
https://builtin.com/artificial-intelligence
https://www.linkedin.com/pulse/yolo-really-better-than-ssd-chandrakala-busireddy
https://machinelearningmastery.com/difference-test-validation-datasets/
https://machinelearningmastery.com/difference-test-validation-datasets/
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-networks/
https://machinelearningmastery.com/introduction-to-regularization-to-reduce-overfitting-and-improve-generalization-error/
https://machinelearningmastery.com/introduction-to-regularization-to-reduce-overfitting-and-improve-generalization-error/
https://www.coe.int/en/web/artificial-intelligence/history-of-ai

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

Demedyuk, I. & Tsybulskyi, N., (2020). Flutter vs Native vs React-Native: Examining

Performance. [online] Inveritasoft. Available at: https://inveritasoft.com/blog/flutter-vs-native-vs-

react-native-examining-performance [Accessed 11 March 2021].

Dsouza, J., (2020). What is a GPU and do you need one in Deep Learning?. [online] Towards

Data Science. Available at: https://towardsdatascience.com/what-is-a-gpu-and-do-you-need-

one-in-deep-learning-718b9597aa0d [Accessed 26 March 2021].

Elgendy, M., (2019). Deep Learning for Vision Systems. . [online] Flutter. Available at Early

access: Manning Publications

Flutter. (2020a). Testing Flutter apps. [online] Flutter. Available at: https://flutter.dev/docs/testing

[Accessed 19 April 2021]

Flutter. (2020b). Adding interactivity to your Flutter app. [online] Flutter. Available at:

https://flutter.dev/docs/development/ui/interactive#:~:text=A%20widget%20is%20either%20stat

eful,are%20examples%20of%20stateless%20widgets.[Accessed 17 April 2021]

Flutter. (2021a). Flutter architectural overview. [online] Flutter. Available at:

https://flutter.dev/docs/resources/architectural-overview [Accessed 01 April 2021]

Flutter. (2021b). Flutter performance profiling. [online] Flutter. Available at:

https://flutter.dev/docs/perf/rendering/ui-

performance#:~:text=Flutter%20aims%20to%20provide%2060,

UI%20doesn’t%20render%20smoothly. [Accessed 05 April 2021]

Flutter. (2021c). Hot reload. [online] Flutter. Available at:

https://flutter.dev/docs/development/tools/hot-reload [Accessed 02 April 2021]

Flutter. (2021d). Platform-specific behaviors and adaptations. [online] Flutter. Available at:

https://flutter.dev/docs/resources/platform-adaptations [Accessed 04 April 2021]

Ford, S., (2019). The Dart Language: When Java and C# Aren’t Sharp Enough. [online] Toptal.

Available at: https://www.toptal.com/dart/dartlang-guide-for-csharp-java-devs [Accessed 23

March 2021]

Fritz AI. (2020). Object Detection Guide. [online] Fritz AI. Available at: Accessed 19.03.2021

https://www.fritz.ai/object-detection/#part-basics [Accessed 19 March 2021]

Gaël, T., (2019). What is Flutter and Why You Should Learn it in 2020. [online] freeCodeCamp.

Available at: https://www.freecodecamp.org/news/what-is-flutter-and-why-you-should-learn-it-in-

2020/ [Accessed 23 March 2021]

https://inveritasoft.com/blog/flutter-vs-native-vs-react-native-examining-performance
https://inveritasoft.com/blog/flutter-vs-native-vs-react-native-examining-performance
https://flutter.dev/docs/testing
https://flutter.dev/docs/development/ui/interactive%23:~:text=A%20widget%20is%20either%20stateful,are%20examples%20of%20stateless%20widgets.
https://flutter.dev/docs/development/ui/interactive%23:~:text=A%20widget%20is%20either%20stateful,are%20examples%20of%20stateless%20widgets.
https://flutter.dev/docs/resources/architectural-overview
https://flutter.dev/docs/perf/rendering/ui-performance#:~:text=Flutter%20aims%20to%20provide%2060,UI%20doesn't%20render%20smoothly.
https://flutter.dev/docs/perf/rendering/ui-performance#:~:text=Flutter%20aims%20to%20provide%2060,UI%20doesn't%20render%20smoothly.
https://flutter.dev/docs/perf/rendering/ui-performance#:~:text=Flutter%20aims%20to%20provide%2060,UI%20doesn't%20render%20smoothly.
https://flutter.dev/docs/development/tools/hot-reload
https://flutter.dev/docs/resources/platform-adaptations
https://www.toptal.com/dart/dartlang-guide-for-csharp-java-devs
https://www.fritz.ai/object-detection/%23part-basics
https://www.freecodecamp.org/news/what-is-flutter-and-why-you-should-learn-it-in-2020/
https://www.freecodecamp.org/news/what-is-flutter-and-why-you-should-learn-it-in-2020/

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

Géron, A., (2017). Hands-On Machine Learning with Scikit-Learn & TensorFlow – Concepts,

tools, and techniques to build intelligent systems. Sebastopol: O’Reilly Media, Inc..

Hui, J., (2018). SSD object detection: Single Shot MultiBox Detector for real-time processing.

[online] Medium. Available at: https://jonathan-hui.medium.com/ssd-object-detection-single-shot-

multibox-detector-for-real-time-processing-9bd8deac0e06 [Accessed 20 March 2021]

Iriondo, R., (2018). Machine Learning (ML) vs. Artificial Intelligence (AI) — Crucial Differences.

[online] Towards AI. Available at: https://pub.towardsai.net/differences-between-ai-and-machine-

learning-and-why-it-matters-1255b182fc6 [Accessed 23 March 2021]

Ionic,. (2021). Fast apps. Out-of-the-box. [online] Ionic Framework. Available at:

https://ionicframework.com/ [Accessed 02 April 2021]

Jordan, J., (2018). An overview of object detection: one-stage methods. [online] Jeremy Jordan.

Available at: https://www.jeremyjordan.me/object-detection-one-stage/ [Accessed 03 April 2021]

Kavlakoglu, E., (2020). AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: What’s

the difference? [online] IBM. Available at: https://www.ibm.com/cloud/blog/ai-vs-machine-

learning-vs-deep-learning-vs-neural-networks [Accessed 16 March 2021]

Moovx, (2020). What’s best in 2020? Flutter vs React Native. [online] Moovx. Available at:

https://moovx.mobi/whats-best-in-2020-flutter-vs-react-native/ [Accessed 23 March 2021]

Open Data Science, (2018). Overview of the YOLO Object Detection Algorithm. [online] Open

Data Science. Available at: https://medium.com/@ODSC/overview-of-the-yolo-object-detection-

algorithm-7b52a745d3e0 [Accessed 14 March 2021]

Periwal, S., (2020). Real-Time Object Detection with YOLO. [online] LatentView Analytics.

Available at: https://www.latentview.com/blog/real-time-object-detection-with-yolo/ [Accessed 20

March 2021]

React Native, (2021). Performance Overview. [online] React Native. Available at:

https://reactnative.dev/docs/performance [Accessed 02 April 2021]

Redmon, J., (2018). YOLO: Real-Time Object Detection. [online] Pjreddie. Available at:

https://pjreddie.com/darknet/yolo/ [Accessed 03 April 2021]

Roboflow. (2020a). Roboflow-TensorFlow-object-detection-mobilenet-colab.ipynb. [online]

Google Colab. Available at:

https://colab.research.google.com/drive/1wTMIrJhYsQdq_u7ROOkf0Lu_fsX5Mu8a#scrollTo=Yjt

CbLF2i0wI [Accessed 26 March 2021]

https://jonathan-hui.medium.com/ssd-object-detection-single-shot-multibox-detector-for-real-time-processing-9bd8deac0e06
https://jonathan-hui.medium.com/ssd-object-detection-single-shot-multibox-detector-for-real-time-processing-9bd8deac0e06
https://pub.towardsai.net/differences-between-ai-and-machine-learning-and-why-it-matters-1255b182fc6
https://pub.towardsai.net/differences-between-ai-and-machine-learning-and-why-it-matters-1255b182fc6
https://ionicframework.com/
https://www.jeremyjordan.me/object-detection-one-stage/
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://moovx.mobi/whats-best-in-2020-flutter-vs-react-native/
https://medium.com/@ODSC/overview-of-the-yolo-object-detection-algorithm-7b52a745d3e0
https://medium.com/@ODSC/overview-of-the-yolo-object-detection-algorithm-7b52a745d3e0
https://www.latentview.com/blog/real-time-object-detection-with-yolo/
https://reactnative.dev/docs/performance
https://pjreddie.com/darknet/yolo/
https://colab.research.google.com/drive/1wTMIrJhYsQdq_u7ROOkf0Lu_fsX5Mu8a#scrollTo=YjtCbLF2i0wI
https://colab.research.google.com/drive/1wTMIrJhYsQdq_u7ROOkf0Lu_fsX5Mu8a#scrollTo=YjtCbLF2i0wI

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

Roboflow. (2020b). Mobile Object Detection.ipynb. [online] Google Colab. Available at:

https://colab.research.google.com/drive/1sJHfrz2DhfEziEZJav_ueWJtTHnlooH3#scrollTo=zbniF

j-eSimL [Accessed 27 March 2021]

Shah, H., (2020). React Native vs Flutter: Choose The Best Framework For Your Next Project.

[online] Simform. Available at: https://www.simform.com/react-native-vs-flutter/#testing

[Accessed 23 March 2021]

Singh, A. & Bhadani, R., (2020). Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter.

Birmingham, United Kingdom, Packt Publishing Ltd.

TensorFlow, (2021a). TensorFlow Lite guide. [online] TensorFlow. Available at:

https://www.TensorFlow.org/lite/guide [Accessed 26 March 2021]

TensorFlow., (2021b). TensorFlow 2.4.1 [online] PyPi. Available at:

https://pypi.org/project/TensorFlow/ [Accessed 02 April 2021]

Theseus. (2021). Theseus. [online] Theseus. Available at: https://www.theseus.fi/ [Accessed 26

March 2021]

Yiu, T., (2019). Understanding Neural Networks. [online] Towards Data Science. Available at:

https://towardsdatascience.com/understanding-neural-networks-19020b758230 [Accessed 25

March 2021]

Yohanandan, S., (2020). mAP (mean Average Precision) might confuse you!. [online] Towards

Data Science. Available at: https://towardsdatascience.com/map-mean-average-precision-might-

confuse-you-5956f1bfa9e2 [Accessed 04 April 2021]

https://colab.research.google.com/drive/1sJHfrz2DhfEziEZJav_ueWJtTHnlooH3#scrollTo=zbniFj-eSimL
https://colab.research.google.com/drive/1sJHfrz2DhfEziEZJav_ueWJtTHnlooH3#scrollTo=zbniFj-eSimL
https://www.simform.com/react-native-vs-flutter/#testing
https://www.tensorflow.org/lite/guide
https://pypi.org/project/tensorflow/
https://www.theseus.fi/
https://towardsdatascience.com/understanding-neural-networks-19020b758230
https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2
https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff

Image caption generator architecture

(Cut in half due to size)

	appendices
	List of Abbreviations
	1 Introduction
	2 Deep learning Methods and technologies
	2.1 Artificial intelligence and Machine Learning
	2.2 Object recognition
	2.2.1 Object detection frameworks
	2.2.2 YOLO
	2.2.3 SSD

	2.3 TensorFlow and TensorFlow Lite

	3 Flutter Framework
	4 Application prerequisites and goals
	5 development of the object recognition Application
	5.1 Flutter-based application development
	5.2 Transfer learning the dataset
	5.3 The structure of the application
	5.3.1 Object detection
	5.3.2 Image caption generator

	6 Conclusion
	references

