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The utilization of computer vision has significantly increased in everyday devices such as mobile 
phones. Computer vision, such as object detection, is based on deep learning models. These 
models have traditionally needed high-performance graphics processing units for training and 
utilization. However, even if it is still not possible to effectively train the models with lower-
performance devices, it has lately become possible to use the models with them. It is critical for 
model performance to develop the mobile application optimally. The choice of the ideal framework 
and user interface is crucial as the user interface architecture sets the constraints for the model’s 
performance. The framework chosen in this thesis, Flutter has an architecture that benefits real-
time features in object detection better than other frameworks.  

A mobile application was developed for this thesis to research the possibilities of using Flutter in 
mobile real-time object detection. The application presents two forms of computer vision: object 
detection and image captioning. For object detection, the application provides real-time 
predictions using the camera. The object detection feature utilizes transfer learning and uses two 
object detectors: Tiny-YOLO v4 and SSD Mobilenet v2. They are the most popular detectors and 
provide a balance between detection accuracy and speed. 

As a result of the thesis, a successful Flutter-based mobile application was developed. The 
application presents the differences between the YOLO-based and SSD-based models in 
accuracy and speed. Furthermore, the image caption generator shows how an external deep 
learning model can be utilized in mobile applications. As importantly, the image caption generator 
works near real-time by predicting the image caption with high accuracy. Both computer vision 
features function optimally due to the Flutter-based architecture and structure. Flutter provides 
high performance and reliability in both computer vision tasks featured in the application. 
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FLUTTERIN HYÖDYNTÄMINEN MOBIILISSA 
HAHMONTUNNISTAMISESSA 

 

Tietokonenäön käyttö on kasvanut huomattavasti matkapuhelimissa. Tietokonenäön tärkein osa, 
hahmontunnistus, perustuu syviin oppimismalleihin. Nämä mallit ovat perinteisesti vaatineet 
tehokkaita grafiikkaprosessoriyksiköitä mallin koulutukseen ja käyttöön. Vaikka mallien tehokas 
kouluttaminen pienitehoisemmilla laitteilla, kuten matkapuhelimilla, ei ole mahdollista, on viime 
vuosina teknologia kehittynyt niin, että malleja voidaan hyödyntää mobiilisovelluksissa. Mallin 
suorituskyvyn kannalta on ratkaisevan tärkeää kehittää mobiilisovellus tekemällä oikeita valintoja. 
Sopivan kehysympäristön valinta on ratkaisevan tärkeää, koska ympäristön määrittämä 
käyttöliittymäarkkitehtuuri asettaa rajoitukset mallin suorituskyvylle. Opinnäytetyössä käytetty 
Flutter-kehysympäristön arkkitehtuuri hyödyntää reaaliaikaisia hahmojen tunnistustoimintoja 
paremmin kuin muut kilpailevat kehysympäristöt. 

Tätä opinnäytetyötä varten kehitettiin mobiilisovellus, jolla tutkittiin mahdollisuuksia käyttää 
Flutteria ja sen arkkitehtuurin mahdollistamaa nopeata reaaliaikaista kohteen tunnistusta. 
Sovelluksessa tutkittiin kahta tietokonenäön muotoa: esineiden havaitseminen ja kuvan tekstitys. 
Kohteen havaitsemiseksi sovellus näyttää reaaliaikaisia ennusteita kameran avulla. Kohteen 
tunnistusominaisuus hyödyntää siirto-oppimista ja käyttää kahta kohdeilmaisinta: Tiny-YOLO v4 
ja SSD Mobilenet v2. Ne ovat suosituimpia ilmaisimia ja tuovat tasapainoa tunnistustarkkuuden 
ja nopeuden välillä. 

Opinnäytetyön tuloksena kehitettiin toimiva Flutter-pohjainen mobiilisovellus. Sovellus esittelee 
eroja YOLO- ja SSD-pohjaisten mallien välillä tarkkuuden ja nopeuden osalta. Lisäksi 
kuvatekstitysgeneraattori näyttää, kuinka ulkoista syväoppimisen mallia voidaan käyttää 
mobiilisovelluksissa reaaliaikaisesti. Tärkeintä on, että kuvatekstitysgeneraattori toimii lähes 
reaaliajassa ennustamalla kuvatekstin tarkasti. Molemmat tietokonenäköominaisuudet toimivat 
erinomaisesti Flutter-pohjaisen arkkitehtuurin ja rakenteiden ansiosta. Flutter-käyttöliittymä 
tuottaa korkean suorituskyvyn ja luotettavuuden molemmissa sovelluksessa esitetyissä 
tietokonenäkötoiminnoissa. 
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LIST OF ABBREVIATIONS 

AI Artificial Intelligence. Technology that resembles human 

intelligence by learning. 

CNN Convolutional neural network. A deep learning network 

resembling the human brain. Often used for image 

recognition tasks 

COCO Common objects in contexts. A large well-versed dataset 

containing everyday objects. 

CPU  Central processing unit. Processor or core on which the 

microprocessor implements functions. 

FPS Frames per second. The amount of times a device updates 

the view on its display. 

GPU  Graphics processing unit. The component on computers that 

is in charge of rendering images and videos. 

iOS  Mobile operating system developed for Apple devices. 

mAP  Mean Average Precision. The mean of the area under the 

precision-recall curve. (Yohanandan, 2020) 

NMS   Non-maximum suppression. A technique to choose the best 

bounding box of the proposed ones in object detection. 

OEM  Original equipment manufacturer. A company that produces 

components to be used by other companies in their products. 

pb Protobuf. A TensorFlow file type containing a graph definition 

and model weights. 

ROI  Region of interest. Image part where the identified objects are 

thought to be and whereas result bounding boxes are added. 

SDK  Software development kit. A package with collected tools for 

software development.  

SSD  Single-shot detector. A single-stage object detector known for 

its accuracy. 

UI  User Interface. The contact point a user interacts with a 

device or an application. 

YOLO  You only look once. A single-stage detector known for its 

speed. 
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1 INTRODUCTION 

Due to the current rising popularity of interest in artificial intelligence or AI, major 

advancements have been made in the field, and the use of AI has become an 

indispensable part of everyday life. These advancements have led to transferring AI and 

Machine Learning features from high-performance devices to lower-performance 

devices. However, AI and Machine Learning have traditionally relied on considerable 

computing power. The developments in Machine Learning have transferred from the use 

of central processing units (CPU) - to the use of servers and more effective graphics 

processing units (GPU). CPUs are processors or cores on which a processor implements 

functions and GPUs are components on computers in charge of rendering images and 

videos. These advances in performance have advanced the field from the limitations of 

just the local calculating power to the calculating power of servers end external GPUs. 

This growth in calculation power has made it possible for complex Machine Learning 

models to be developed. However, the development in technology has only partly made 

it possible to transfer Machine Learning features to lower-performance devices such as 

mobile phones due to the fact that the training still needs to be carried out on high-

performance devices. (Council of Europe, 2020.; Dsouza, 2020.) 

The primary goal of this thesis is to combine and research complex Machine Learning 

models and lower-performance devices through building a cross-platform mobile 

application that uses Machine Learning. The application provides object detection -and 

image caption predictions by pointing the mobile phone camera towards the targets. 

Before the advancements in Machine Learning in recent years, this had been impossible 

as mobile phones have not had enough calculating power to show the results in real-

time. The application is built using Flutter, which is a relatively new user interface or UI 

developed by Google and has an architecture that should benefit object detection. 

Searching through the work in Finnish universities, not a single research or thesis could 

be found about combining the Flutter user interface and object detection. A secondary 

goal for the thesis is to research the differences in real-time performance between the 

object detection feature that is based on local Machine Learning models and the image 

caption generator that uses a prebuilt external model. For the image caption generator, 

the external online-based model should affect the speed of predicting the situation. The 

developed application should provide concrete results if the Flutter UI framework is 

optimal for mobile object detection. (Flutter, 2021a.) 



8 
 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff 

2  DEEP LEARNING METHODS AND TECHNOLOGIES 

2.1 Artificial intelligence and Machine Learning 

Artificial intelligence or AI can be thought of as an autonomous tool between an input 

such as sensors and images and an output such as action and text. The idea is that 

using AI, machines are capable of performing tasks that previously would have required 

human interference. AI can be divided into two categories: narrow AI and Artificial 

General Intelligence. Narrow AI consists of applications within a limited context and 

usually focuses on completing a single task according to the instructions. Applications 

such as autonomously driving cars or a basic Google search are referred to as narrow 

AI. On the other hand, artificial general intelligence are systems that can solve many or 

all tasks and resemble human intelligence. (Built in, 2019.) 

Machine Learning can be defined in different ways, but a relatively simple definition is 

that Machine Learning is the programming of computers so that they can learn from data. 

Machine Learning is based on feeding a computer as much data as possible for the 

computer to learn the patterns and relationships of the data. Machine Learning is often 

thought of as very difficult, as it is based on complex data. However, the main goal of 

Machine Learning is to be able to predict the results without needing to understand all 

parts of the data complexity. Artificial intelligence can be thought of as almost all learning 

a computer does. However, there is a thin line between what simply has been stored in 

memory and what a computed has processed and learned. For a system to have AI, it 

needs to work independently. Additionally, this means the computer needs to learn to 

utilize the data for it to be called Machine Learning. The main difference between 

Machine Learning and AI is that Machine Learning is heavily instructed by humans. 

There are still differences in the methods of different types of Machine Learning, for 

example supervised and unsupervised learning. (Iriondo, 2018) As can be seen in Figure 

1, Machine Learning is a significant component of artificial intelligence that also contains 

deep learning and neural networks. (Géron, 2017, 3-4.) 
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In Machine Learning, the data is usually divided into three datasets: training set, testing 

set, and validation set. The training set is the largest of the sets, and it usually is around 

70-80% of all data. The function of the training set is for an algorithm to learn the priorly 

mentioned patterns and relationships from the data. After the algorithm has learned from 

the training set, it is introduced to the validation set. The validation set is used to estimate 

the model’s effectiveness unbiasedly while the parameters are tuned. After the validation 

set, the model will go through the test set. The idea of the test set is that the final 

performance of the model is assessed with the data it has not previously seen. After 

going through these three datasets, the final model should provide as much accuracy in 

its predictions as possible. This process will take a varied amount of time depending on 

the choices and amount of data trained in the process. Training Machine Learning 

models can often take days or weeks, depending on the setup. (Brownlee, 2017.) 

Deep learning and neural networks  

Deep learning is a part of both AI and Machine Learning and has been the key to 

developing technologies such as autonomous driving and facial recognition. Deep 

learning is based on the idea of successive layers in neural networks. Deep learning 

models are usually built of tens or hundreds of these layers and have been trained using 

massive labelled datasets and neural networks. These layers work like filters, as they 

consist of mathematical functions that separate the features. For example, a single level 

of layers can determine if a hand-drawn number has the features of number 0 or 

1.(Géron, 2017, 87-88.) 

Figure 1. Artificial intelligence and Machine Learning. 
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Neural networks are structures that resemble the neural system of the human brain. 

Each layer is built out of neurons that work as units. These neurons can be thought of 

as mathematical functions that take an input and calculate together a sum using the 

weight and activation function of the output at that layer. The output is then moved to the 

following layers until it reaches the output layer. These networks are constructed out of 

different layer types. The first layer in a neural network is an input layer, and the last 

layer is an output layer. Between these layers are many hidden layers. The hidden layers 

are built out of nodes with their determined weights and thresholds. Weights are the 

connection strength between neurons and thresholds can be thought of as filters, that 

according to the activation, decide if the input signal is sent to the next node. Starting 

from the input layer, the nodes in the following layer are activated according to their 

properties and send the data forward to the next layer. (Géron, 2017., 279-280; 

Kavlakoglu, 2020.; Yiu, 2019.)  

Deep learning and neural networks are often discussed as synonyms even though neural 

networks is a subcategory of deep learning. A neural network with more than three layers 

is considered a deep learning algorithm. As seen in Figure 2, the added layers reside in 

the hidden layers and build up the deep learning algorithm. Adding and altering the 

properties of the hidden layers results in more effective nodes in a model. Additionally, it 

improves the training of the model to function more accurately. However, adding too 

many layers might cause the model to overfit. Overfitting is when a model learns details 

from a dataset too well and starts generalizing the details. (Brownlee, 2019b; Brownlee, 

2019c.; Géron, 2017, 28-29.) 

Figure 2. Example of a neural network. 
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2.2 Object recognition 

Object recognition is the task of identifying objects from images, and it usually takes 

place via a neural network. It is essential to understand that videos are thought of as a 

series of images, and all video recognition tasks can be considered image recognition 

tasks. These tasks can be divided into image classification, object localization, and object 

detection. The image classification task focuses on identifying the object’s class in an 

image. These objects in the image are given class labels. In object localization, the 

objects in the image are located, and a bounding box is set around the object. In the third 

task, object detection, the objects with bounding boxes and the class labels are located 

in the image. (Brownlee, 2019a.; Fritz AI, 2020.) 

Object detection is a combination of both image classification and object localization, as 

can be seen in Figure 3. This process of object detection is possible using neural 

networks. Object detection is usually carried out with the help of one or more 

convolutional neural networks (CNN). A CNN is a neural network that has added 

convolutional layers to the hidden layers. The convolutional layers differ from standard 

hidden layers as there is an assumption that the input coming to the layers are images. 

This means that the neuron architecture is built for specific properties such as width, 

height, and depth. There are usually quite a few convolutional layers in a CNN, and they 

have the function of transforming the input before it travels to the next layer. (Brownlee, 

2019a.) 

Figure 3. Object recognition structure. 
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2.2.1 Object detection frameworks 

Object detection frameworks are combinations of tools that reduce the need to develop 

every aspect of object detection and deep learning. An object detection framework is 

based around neural networks, and it is usually built of four components. The first 

component is the region proposal. During the region proposal, the deep learning model 

thinks there might be an object in the image and proposes regions of interest (ROI). In 

these regions, there are added bounding boxes, which are fed to the next layer of the 

CNN. Bounding boxes are rectangles defined by x and y coordinates that surround the 

objects in images. The second component of an object detection framework is the feature 

extraction and the network predictions. At this point of the object detection process, the 

visual features that are in the bounding boxes are focused on for a closer look. The 

objects found in the bounding boxes’ visual features are then classified so that after this 

step, there are several proposals for classified objects. The third component is the non-

maximum suppression (NMS). NMS combines the bounding boxes on top of each other 

into a single bounding box for every classified object. The fourth and final part of the 

object detection framework is the evaluation metrics. In the evaluation metrics part, the 

model receives the metrics to find the quality of the measurements. The most usual 

metrics are mean average precision (mAP), precision-recall curve, and intersection over 

union. The mAP is the most important of these metrics. It is calculated by determining 

the average precision of all measured classes separately and then calculating the mean 

of all these average precisions. (Elgendy, 2019, 310.; Yohanandan, 2020.)  

Object detection models can be divided according to how many stages they need for the 

detection. Multi-stage detectors usually need two stages for the detection as single-stage 

detectors need only one. The advantage of multi-stage detectors is the accuracy they 

provide. However, the multi-stage detectors are too slow for real-time object detection. 

Single-stage detectors are often several times faster than multi-stage detectors but have 

had a relatively low object detection accuracy. The introduction and development of 

single-stage object detection algorithms such as You only look once (YOLO) and Single-

shot detector (SSD) have made real-time object detection possible. (Hui, 2018.) 

The architecture of the single-stage detectors resembles each other on a level that can 

be compared to a human upper body. The network starts from the input layer and leads 

to the backbone component of the network. The backbone is used for feature extraction. 

As the efficiency of the backbone is critical for object detection performance, it often 
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consists of a model that has been priorly trained by a known successful deep learning 

model. The backbone is followed by the neck component. The primary function of the 

neck is feature extraction. Followed by the neck is the head component. The head is in 

charge of the object detection as it does both the image classification and the image 

regression by determining the properties of the bounding boxes. (Anka, 2020.) 

2.2.2 YOLO 

You Only Look Once (YOLO) is a real-time object detection model used in object 

recognition. The name You Only Look Once is based on how the algorithm only looks 

once at an image while many other algorithms need two looks. Technically, YOLO uses 

only forward propagation for the prediction, while other models might also use backward 

propagation for the prediction. Forward propagation means that data goes only from the 

input layer to the output layer, while in backward propagation, the data goes from output 

layer to input layer. In these multi-stage models with both forward and backward 

propagation, the first look is for generating the region proposals, the second look for 

detecting the objects for the proposals. (Redmon, 2018.) 

YOLO, a single-stage model, uses a convolutional neural network (CNN) to make its 

prediction and proposals. In the CNN, the input image is divided by YOLO into S x S grid 

cells.  These grid cells are all individually responsible for the objects. Dividing the grid 

cells means that each of the cells will predict the bounding boxes, confidence scores, 

and conditional class probabilities. The bounding boxes with the confidence scores and 

the class probabilities are combined, and as a result, the correct class labels and 

bounding boxes are presented. (Periwal, 2020.) 

Overall, there is usually a trade-off between speed and accuracy in every deep learning 

model. YOLO provides fast object detection, but the accuracy often falls short of its 

competitors. To sum up, the strengths of YOLO are that it is sufficiently fast and accurate 

for reliable real-time object detection. YOLO is often compared to SSD as they are the 

most used detectors due to their accuracy, speed, and performance. The main difference 

between YOLO and SSD is their structure. YOLO architecture is built out of two fully 

connected layers, while SSD is built out of convolutional layers that are organized from 

the largest to the smallest size. (Busireddy, 2019.)  
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2.2.3 SSD 

Single-shot detector (SSD) is a neural network model designed for real-time object 

detection. The strength of SSD is the accuracy it provides. However, compared to YOLO, 

SSD is usually slower in its object detection process. The slower speed is due to the 

architecture of the two detectors. (Busireddy, 2019.) 

The SSD model architecture is built out of three parts. The first part is the base network 

that has been pre-trained. The primary function of the base network is to extract feature 

maps from images. The second part of the SSD model architecture is the multi-scale 

feature layers. These feature layers are responsible for filtering the data into smaller 

scales allowing detections to be more flexibly predicted. The third and final part of the 

SSD model architecture is the non-maximum suppression. The non-maximum 

suppression filters and eliminates bounding boxes that overlap each other. (ArcGIS 

Developers, 2019; Elgendy, 2019, 336.) 

The SSD model architecture differs from the object detection framework presented in 

Section 2.2.1. These differences can be mainly explained by the fact that the model 

architecture presented earlier considers a multi-stage object detection model. The 

single-stage models have partly eliminated the first component, region proposals from 

the architecture. (Jordan, 2018.)  

2.3 TensorFlow and TensorFlow Lite 

TensorFlow is a software library that is often used for Machine Learning and deep 

learning. It is primarily used for training large datasets that are used in deep learning. 

TensorFlow is also used for computations on dataflow graphs. To ease and improve the 

Machine Learning and deep learning modeling and training, TensorFlow uses its own 

data graph visualizer, Tensorboard. TensorFlow was developed by Google, and it is 

known for its architectural flexibility as it provides computational benefits across several 

platforms. (TensorFlow, 2021b.) 

Models built for TensorFlow models can be thoughts of as rulebooks for the interpreter 

on what to do with the data to receive the correct output. TensorFlow models are normally 

designed to be run on desktop computers with powerful graphics processing units. As 

machine and deep learning rely on GPU performance, so does TensorFlow. TensorFlow 
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requires an Nvidia GPU with a relatively recent Cuda architecture to work. Cuda 

architecture is used for training in most object recognition models. Devices with Cuda 

architecture have completely different kinds of components and performance than the 

portable devices that run mobile applications. Consequently, a light, weight-optimized 

version of TensorFlow called TensorFlow Lite was designed for smaller devices to run 

the models. (TensorFlow, 2021a.) 

TensorFlow Lite is built out of two main components: an interpreter and a converter. The 

interpreter runs optimized models on lower-powered devices. The converter transforms 

the TensorFlow models to a form that the interpreter can use. Additionally, the converter 

improves optimizations and performance. (TensorFlow, 2021a.)  

TensorFlow Lite does not currently support training models. The model has to be trained 

on a computer with more performance than the relatively low-performance end device 

and then converted to a TensorFlow Lite-file. Alternatively, The TensorFlow models can 

be trained using Google Colab that provides an external online-based GPU with Cuda 

architecture. The trained TensorFlow Lite-file is after the conversion sent to the device’s 

interpreter. (TensorFlow, 2021a.) 
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3 FLUTTER FRAMEWORK 

As the previous chapter has presented the theory and methods behind Machine 

Learning, this chapter concentrates on Flutter, the framework used to develop the 

application user interface and front end. More specifically, Flutter offers a user interface 

(UI) Toolkit developed by Google in 2017 but actually released the first stable version in 

2018. Flutter is used to develop natively compiling applications to desktop, mobile 

devices, and the web. However, it is currently mainly used for mobile development. Both 

Flutter development for desktop and web applications have though been announced by 

Google to be developed further in 2021. As Flutter uses the same codebase for Android 

and iOS applications, the application can be developed to both systems using the same 

code. Flutter can be thought of as a tool that comprises of two parts. The first part is a 

software development kit (SDK). The SDK makes it possible to use a single codebase 

with the programming language Dart and compile the code to native machine code. This 

process enables the code to work both on Android and iOS. The second part of Flutter 

is a widget/framework library that provides widgets used to build the applications. 

Widgets can be thought of as UI-building blocks, and they are most often, for example, 

buttons, text, or containers. (Gaël, 2019.) 

Flutter uses the Dart language to build the applications. Dart-language was developed 

in 2011, and partly because of the rising popularity of Flutter, the language has 

developed faster in recent years than before. The Dart language was also developed by 

Google, and therefore, there was a clear connection between Dart and Flutter during the 

development of Flutter. Dart is a strongly typed object-oriented language and has often 

been compared to languages such as Java and C#. (Ford, 2019) While looking at the 

structure of Flutter applications, there is also a great resemblance to JavaScript. 

Additionally, the code structure for Flutter is relatively simple as the applications do not 

need data-, style-, or template separation. (Moovx, 2020.)  

As seen in Figure 4, the object detection feature of the application developed in this 

thesis consists out of stateful and stateless widgets. These states are classes and define 

the interactivity of the widgets in the application. Stateful widgets are widgets that can 

change due to interaction with the user, and oppositely the stateless widget will not have 

any changes with user interaction. The third widget class is the state, and it defines the 

widgets state, and the widgets build() method. Flutter application structure is relatively 
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simple to create smaller applications and features such as object detection. The later 

discussed image caption generator shows a bit more developed structure of a Flutter 

application. The UML diagram of the image caption generator in appendix 1 shows how 

the applications are built around stateless widgets, stateful widgets, and states. (Flutter, 

2020a 

Flutter is strongly typed, which means that it does not have a graphic design system that 

can be used for designing the layout. Everything that can be seen in the application is 

typed. This makes designing applications slower to start with than its competitors. 

However, as everything is controlled through code, the developer has better cross-

platform control, and the applications can easily look exactly the same on both Android 

and iOS. There are minor negative aspects in the UI look that Flutter provides. As Flutter 

uses its own single codebase, it does not get the exact same iOS look as its competitors, 

such as React native. Flutter works around this issue by having its own iOS type widgets. 

These widgets are named Cupertino widgets and work both on Android and iOS. 

Cupertino widgets let the UI imitate the platform-specific look, so it is nearly impossible 

to recognize the differences between an app designed with Flutter or its native 

competitors. What Flutter loses in some design aspects, it wins with its design flexibility. 

(Flutter, 2021d.)  

Figure 4. Structure of the object detection-application. 
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As Flutter does not have a visual developing interface that shows a layout of the 

developed application, to ease developing Flutter application, there is a hot reload 

feature. This means that applications do not need to be rebuilt for the minor changes to 

show up on an emulator or debugging mobile device. The hot reload feature makes it 

especially easy to debug on a real-world device, as the minor changes are shown in 

merely just a couple of seconds. For major changes to be seen in the application, 

rebuilding the application is necessary. (Flutter, 2021c.) 

There are a few alternatives to Flutter when designing cross-platform mobile 

applications. The main competitor is React Native that is more popular than Flutter. 

However, React Native was published years earlier than Flutter. React Native also has 

the advantage in the number of users as it uses a far more popular language, JavaScript. 

A different kind of competitor also based on JavaScript is Ionic, as it takes the 

development aspect to a more WebView-based direction. This direction has its benefits, 

but it makes it nearly impossible to reach high speeds in real-time object detection. As 

seen in Table 1, Flutter has the edge over its competitors when it comes to designing 

cross-platform applications needing high speed and performance. However, React and 

Ionic do have their benefits in other fields. (Demedyuk & Tsybulskyi, 2020; React Native, 

2021; Ionic, 2021.) 

The reason why Flutter is relatively fast compared to its competitors is that it takes 

advantage of the Skia graphics library. It makes it possible for Flutter applications to 

update the application view every time there is a change in the view. In addition to the 

utilization of Skia-library, the Flutter architecture eliminates the use of a bridge and 

minimizes the unnecessary data flow going forward and back. The architecture and 

speed of updating the view make Flutter a top candidate for applications needing real-

time features. (Shah, 2020.) 
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Table 1. Framework comparison between Flutter, React Native, and Ionic.  

 Flutter React Native Ionic 

 

Language  

 

Dart 

 

JavaScript 

 

JavaScript 

 

Framework 

 

Flutter 

 

React.js 

 

Any or no framework 

 

Application 

Compilation & 

Nativity 

 

 

Compiled native 

applications 

 

Only partly compiled 

native applications 

 

Not compiled, hosted 

web applications inside 

native applications 

 

Cross-platform 

compilation for 

UI components 

 

 

None for both 

Android and iOS 

 

Yes, for both Android 

and iOS 

 

None for both Android 

and iOS 

 

Platforms 

 

Mobile, web, 

desktop 

 

Mobile 

 

Mobile, web, desktop 

 

Performance 

 

Nativity of the 

application gives an 

advantage in 

performance  

 

React is only partly 

compiled to native code, 

and the use of 

JavaScript bridge 

makes the performance 

less competitive 

 

Wrapping the 

application causes 

performance issues 

 

Advertised 

Framerate 

 

Up to 120 frames per 

second (Flutter, 

2021) 

 

Up to 60 frames per 

second (React Native, 

2021) 

 

Up to 60 frames per 

second (Ionic, 2021) 

 

A significant advantage for Flutter is that it requires less manual testing than other 

alternatives. As it functions with Dart, there are many automated testing alternatives 

available. Flutter also provides automated testing features that can be used at unit, 
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widget, and integration levels (Shah, 2020). Unit tests test on the smallest level as they 

can test functions, methods, and classes. Widget tests test the widgets on a component 

level. Integration tests test the application as a whole or at least a large part of the 

application. The provided several levels of automated testing make the debugging and 

testing process relatively simple as the need of manual testing has been cut to minimum. 

(Flutter, 2020a.) 
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4 APPLICATION PREREQUISITES AND GOALS 

This chapter explains what are the planned technical requirements for the thesis and 

clarifies what the targets are for creating the finished application successfully. The intent 

is that all the requirements that are set in this chapter are achieved in the application. 

The main goal of the thesis is to create a cross-platform mobile application that would 

provide both object detection based on image classification and object localization using 

the phone camera. The application should be fast enough to provide near real-time 

detection to maximize the usability of the application. To achieve these goals, the 

architecture should follow the Flutter architecture so that it can take advantage of the 

optimized system performance. The Flutter-based application is programmed using the 

Android Studio IDE due to the emulator it provides. Android Studio supports the 

necessary plugins, and additional packages can be imported from pub.dev, a Dart 

package hub. The testing of the application is done using both emulators and real-world 

devices, so the application and specifically the UI works on all tested devices and 

emulators. 

A crucial part of the thesis is to find out if Flutter provides an optimal environment for 

real-time object detection. The application needs to be able to be seen with a high 

enough framerate as well it needs to provide a higher framerate than its competitors. The 

higher framerate should be viewable in testing the application. The framerate is tested 

on each deep learning model. 

The used deep learning models are trained prior to the program calling them. Training 

the models requires a computer with a reasonably new GPU. The use of a computer with 

a GPU is not be necessary as the training is done via Google Colab Pro. Google Colab 

provides an online environment used for Machine Learning. Using Google Colab, the 

training is done online via an external GPU. This choice of Machine Learning 

environment also makes the training faster than with a few years old GPU. After training 

the models on a high-performance GPU, the trained models are converted to formats 

that can, later on, be used on lower-performance mobile devices. Training on a separate 

device also results in minimizing the calculations and performance needed by the mobile 

device.  
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The real-time object detection feature in the mobile application utilizes two algorithms: 

YOLO and SSD. Comparing the algorithms on accuracy and speed while using the 

application should tell if the differences in accuracy and speed are as expected or does 

the flutter application architecture tighten the gap between the expected speed of Yolo 

and the accuracy of SSD. The versions of the used algorithms are Tiny-YOLO and SSD 

Mobilenet. Both versions of the algorithms are designed for mobile devices as they use 

relatively little CPU power and have a performance according to the mobile device’s 

CPU. Both Tiny-YOLO’s and SSD Mobilenet’s accuracy and speed do unfortunately 

differ from the bigger-sized original detectors even though the models are initially trained 

using the original models. As the application is designed for mobile phones, the size of 

the application is also critical. The recommended size constraints affect the design of the 

application. The trained models are trained on a computer and then transferred to the 

end device.  

As the object detection models YOLO and SSD are trained to a limited amount of objects, 

the detection of objects are limited. The number of detectable objects shall be decided 

according to the training constraints. As both algorithms are designed for detecting 

several objects simultaneously, the goal is to be able to recognize the objects in the 

same image simultaneously. The accuracy of the models are measured using mAP.  

To widen the perspective of object detection, an image caption generator is added to the 

application features. The MAX-image caption generator is trained by IBM using Common 

objects in context (COCO) 2017-dataset and accessed by contacting a remote 

Kubernetes container. A Kubernetes container is a way of packaging applications, so 

they are extracted from the environment they are run in. Therefore, the application is 

architecturally different in the image caption generator part compared to the object 

detection part. All in all, the application has three sections of interest: Object detection 

with YOLO, Object detection with SSD, and Image caption generator. 
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5 DEVELOPMENT OF THE OBJECT RECOGNITION 

APPLICATION  

This chapter describes the development of the mobile application in this thesis. It 

presents the choices and solutions used in the execution of application. In addition, the 

structure and operation of the computer vision application components are presented. 

As seen in Figure 5, the technical aspect of the object detection part of the thesis is built 

out of several components that together result in a real-time object detection application. 

The development of the image caption generator feature for the application is described 

later in this chapter. Furthermore, the results of the tests on the application are explained.  

 

Figure 5. Main components of mobile object detection. 

5.1 Flutter-based application development 

The UI of the application was built using Flutter, a UI toolkit that is only a couple of years 

old. A significant benefit of Flutter is that even a single developer can build applications 

with it relatively fast using the easily modifiable Flutter widgets.  The widgets work as the 

basic building blocks for all applications, as can be further seen with the object 

recognition application created. 

The main reason Flutter was chosen in this project was that it works best for cross-

platform systems that need quick calculations as real-time object detection needs. Even 

though creating the Flutter application is timewise after the training of the deep learning 

models, it is essential to inform why it is the base for the thesis and why here it is 

explained before the deep learning. Flutter provides an architecture that should provide 
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an optimal environment for the previously mentioned deep learning models. Its most 

significant competitor React Native is more popular for cross-platform development but 

is usually several times slower than Flutter when processing data. This advantage in 

performance is largely due to that Flutter follows the same reactive development 

architecture as its competitors but does not use a JavaScript bridge to access the original 

equipment manufacturer (OEM) widgets. Hence, As Flutter utilizes custom widgets, it 

gains choices the OEM do regulate. The object recognition application takes advantage 

of the fact that Flutter has its own widgets and platform channels. As seen in Figure 6, 

the application does not need to access the OEM widgets using a bridge, and therefore 

it has better performance than others using the reactive development architecture. By 

eliminating the data flow forward and back from a bridge and the widgets, Flutter saves 

precious time in the dataflow of the application. 

The layout for the application is developed using the layout widgets. As the application 

layout is built entirely in code and not using any visual tool, creating the layout was a little 

trial and error. However, Flutter uses an easily understandable hierarchal system to build 

the visual layout for the applications. By using the hierarchal design and the hot reload 

function, it is relatively easy to create a clear and functional layout for a smaller screen. 

If there are any minor layout issues as there were in the development of this application, 

the debugger shows relatively clearly where the issue is located in code and on the 

debugging device’s screen. 

Figure 6. Flutter architecture used in application. 
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5.2 Transfer learning the dataset 

As training any computer vision application, it is possible to build the CNN from the 

beginning and train the model from scratch. This, however, takes a very long time and 

often requires weeks or months of testing that would not be possible for this thesis. A 

more effective method in model training is to download a pre-trained neural network that 

has already been trained on a large dataset. This way of training is called transfer 

learning, and in this thesis, the model is trained using transfer learning and then 

converted and added to the developed object recognition application.  

The transfer learning in this thesis utilizes the COCO-2017 dataset. This means that the 

training of our dataset benefits from the COCO datasets already trained and tested 

labelled images. The COCO dataset is built out of approximately 120 000 pre-labelled 

images and it was chosen because it has a large variety of images that have labelled   

everyday objects. Additionally, the dataset is large enough to have relatively accurate 

results on the objects. Without using transfer learning, there would have also been a 

computational issue as the training of the images would have taken several weeks or 

months, even if there would have been several GPUs available. Even then, the results 

would most likely been worse than without using transfer learning. Using transfer learning 

also had the benefit of avoiding overfitting, which is a common issue in deep learning. 

The dataset trained to COCO-2017 was initially built using Roboflow, a service that 

makes dataset building easier and 

quicker. As seen in Figure 7, by 

gathering the dataset images into 

Roboflow, labeling is made relatively 

simple as the bounding boxes can 

be set and labelled. Roboflow also 

allows transforming the dataset to 

the correct format, so utilizing YOLO 

and SSD is possible. Utilizing the 

dataset building using Roboflow, the 

dataset is divided into training, 

testing, and validation set.  

Figure 7. Dataset labeling using Roboflow. 
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The initial idea of the dataset contents was to build it entirely from everyday images taken 

from web image searches and label them using Roboflow. This turned to be a too time-

consuming task, and by testing the transfer learning with about 200 self-labelled images 

on objects in offices, it turned out that the mean average precision 0.5 (mAP 0.5) for SSD 

was around 0.15. This result leads to the conclusion that either the dataset would need 

to be several times larger or a larger prelabelled dataset could be used.  

The necessary choice was to transfer to a prelabelled dataset. The best overall dataset 

found for the purpose was the PASCAL VOC 2007-dataset, as it contains thousands of 

everyday images. To utilize the self-labelled images from Roboflow, the images were 

added to the Pascal VOC 2007-dataset. The final used dataset contains the 200 self-

labelled images and the thousands of images from the Pascal VOC 2007-dataset. The 

transfer to a prelabelled dataset affected the accuracy of the models positively. As can 

be seen from Figure 8, the transfer to a larger dataset proved to work, as the SSD-based 

model had the mAP 0.5 or mean average precision 0.5 of almost 70 % at its best. The 

Yolo-based model reaches nearly the same results in training as the SSD-based model. 

As shown in Figure 9, at the end of the training with tens of thousands of images, the 

best result the YOLO-based model reaches is around 65 %. The average loss (avg loss) 

in both models is around the same 1,34-1,47, proving the model is working. The average 

loss measures the distance of a single example in the model to the correct prediction on 

a curve based on all predictions. Hence, the lower this value is, the better. 

 

Figure 8. Training results of SSD-based model. 

 

Figure 9. Training results of YOLO-based model. 

Roboflow also provides Google Colab notebooks that can be used for training the 

different format datasets using transfer learning. The created dataset is trained using the 

notebooks after making some changes to them. The transfer learning guarantees much 

better results in accuracy, as the training of the relatively small, labelled dataset is done 

to the enormous COCO dataset. The transfer learning also shortens the time used for 

training. (Roboflow, 2020a; Roboflow, 2020b) 
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The dataset training utilized the COCO dataset early in training, so the trained model for 

both Tiny-YOLOv4 and for SSD Mobilenet v2 should have better results than with just 

without it. The training process for both does resemble each other. However, they have 

their issues. As a Tiny-YOLO model is not meant for training, the initial training is done 

using YOLO v4 and then transformed to YOLOv4-Tiny. This causes the biggest issue 

with Tiny-YOLO. Even though the model has been trained using YOLO, the accuracy 

and mAP can not be repeated on Tiny-YOLO. After getting the converted Tiny-YOLO 

file, the file with the model must be transformed to a protocol buffers-file (pb-file). The 

pb-file is used to store TensorFlow-based models. However, as a pb-file can not directly 

be used in a mobile application, it has to be converted into a TensorFlow Lite -file that 

can be directly embedded into the application. A TensorFlow Lite-file is a TensorFlow 

model-file that can be used on mobile devices. The mAP0.5 of the final converted 

dropped sharply to averaging around 22%. 

The transforming process for the SSD Mobilenet v2 is much simpler compared to YOLO 

as a trained SSD model can be transformed into a TensorFlow Lite model-file with just 

one step. However, the model does suffer a bit from the transformation to the TensorFlow 

Lite model as the architecture of SSD has to go through minor adjustments to function 

on a mobile platform. After the conversion to a TensorFlow Lite-file, the models mean 

average precision with a 0,5 threshold for correct detection (mAP0.5) was around 53% 

on average. This means the conversion resulted in a ten percent drop in accuracy. The 

trained models can be fed to the application but do need some adjustments to work as 

planned. These adjustments will be described later in the thesis.  
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5.3 The structure of the application 

At the beginning of development, the object 

recognition application was built as two 

separate applications: Object detection 

application and image caption generator. Both 

the object detection and the image caption 

generator display the different features of 

mobile object recognition. To make the object 

recognition application more versatile and 

consistent for testing purposes, both object 

recognition features are combined into a single 

application. As seen in Figure 10, the 

application home screen icons offer the 

promised object recognition alternatives in a 

single application. The home screen icons are 

divided into two rows. The first row provides the 

object detection alternatives and the second 

row the image captioning alternatives. 

Combining the features into a single application 

makes the testing results more comparable to 

each other. In addition, the application structure 

was developed to present how Flutter makes 

these features as effective as                       

possible. 

5.3.1 Object detection 

Creating the object detection feature in the object recognition application starts with 

building the front-end for the application. Building a layout using Flutter, where it is 

possible to call for the deep learning models by pushing buttons, does not need a 

particularly complex layout structure. As earlier mentioned, the Flutter-based widgets 

provide building blocks where the deep learning components can be inserted into.  

Figure 10. Application home screen. 



29 
 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff 

The most important part of application functionality is to connect the camera and gallery 

to the deep learning models. Both the SSD- and YOLO-based deep learning models do 

work without changes necessary to the application itself but to give the model the best 

chance to work. However, some optimization is necessary to get the same level results 

gotten during the training and testing of the models. The models need optimizations 

depending on what UI and end-platform they will be used on. A major optimization is to 

normalize the models so they will work on mobile devices. In this case, the SSD-model 

needs normalization for it to work. As the model is trained and converted, the color values 

are changed to values between -1 and 1. However, the model is designed to have values 

between 0 and 255. Hence, a normalization of the color values is necessary. This 

optimization is especially necessary due to the use of Flutter as the UI. As Flutter is in 

charge of updating every pixel, the normalization of making 127,5 the center value 

especially important. If the value would not be set to 127,5 the model would see the 

image overly bright and could not detect or recognize all the objects. This means the 

object detection feature in the mobile application would have poor accuracy and miss 

objects that it can recognize normally. As seen in program 1, the 

Tflite.detectObjectOnFrame-method is called, and it runs the camera stream through the 

trained model. Without the normalization value correctly set, the image would be much 

brighter than normal, and the object detection would give a bad result. 

Program 1. runModelOnStreamFrame-function for object detection using SSD. 

runModelOnStreamFrame() async 

  { 

    imgMaxHeight = imgCamera.height + 0.0;  //default set 1280 

    imgMaxWidth = imgCamera.width + 0.0;  // set 720 

    recogList = await Tflite.detectObjectOnFrame( 

      bytesList: imgCamera.planes.map((plane) { 

        return plane.bytes; 

      }).toList(), 

 

      model: "SSDMobileNet", 

      imageHeight: imgCamera.height, 

      imageWidth: imgCamera.width, 

    Program continues. 
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      imageMean: 127.5, //input normalization(model trained -1 - 1) 

      imageStd: 127.5,  // Otherwise -> too bright -> lower accuracy 

      numResultsPerClass: 1,  // Gives only one prediction 

      threshold: 0.45, // Tested on 0.4 - 0.6 

    ); 

 

The code structure of the YOLO feature of the application resembles the SSD feature. 

However, the YOLO-part does not need the same normalization as the SSD. As the 

model is trained with the non-negative values 0,0-255,0, the pixel color value stays the 

same from the original training device to the mobile end-device. Some minor adjustments 

to the model are necessary. The YOLO model automatically rotates the camera by 90 

degrees. The rotation is easily fixed by changing the model-values in 

Tflite.detectObjectOnFrame. A larger issue with the YOLO-Tiny-model is with both the 

accuracy and the speed it provides. The accuracy of the trained YOLO model is not 

good. Unfortunately, the accuracy can not be helped, as many of the original YOLO-

model features are not available in the converted tflite-based model. As the model does 

not recognize the detected object with a high probability, the detection threshold must be 

set low to 0,15. Compared to the SSD model threshold at 0,45, it is clear that SSD is a 

clear winner in accuracy. However, the YOLO-based object detection feature works 

sufficiently in the application with objects that are easy to recognize.  

The YOLO model provides approximately 200-250 frames per second (FPS) and 

therefore creates problems with the application keeping in the pace of the model. Without 

any changes in the application properties, there rises an issue with scheduling. Mobile 

phones can currently show a maximum of 120 FPS on their screens. Therefore, the 

model can not display 200-250 FPS. By minor changes in asynchronous scheduling, the 

issue with scheduling is fixed, and the model works as planned. 
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A crucial task of the thesis was to implement object detection successfully into a Flutter 

mobile application, as shown in Figure 11, and test if Flutter provides an optimal 

environment for it. A secondary part of the task was to test if the Flutter architecture 

provides a better environment for computer vision and object detection than its 

competitors, React Native and Ionic. During 

testing, Flutter offers a frame rate up to 120 FPS 

for object detection, as seen in Figure 12 and 

Figure 13. Testing the object detection 

application frame rate separately on SSD, the 

results varied from 60 FPS to 120 FPS with a 

couple of minor quick slips down to 40 FPS. 

While testing the Tiny YOLO-based feature, 

Flutter did provide a more stable stream of frame 

rate between 60 and 120 frames per second. 

Newer mobile phones do currently have a 120 

FPS maximum framerate for their screens, as 

did the tested device. Therefore, it can be stated 

that both SSD and YOLO are successful in 

providing near maximum frame rate. During 

further testing of the UI average frame rate, the 

average is between the values of 3,5 ms and 4,5 

ms. This means that, on average, Flutter would 

provide clearly more than the 120 frames per 

second. Both React.JS and Ionic have a 

promised maximum framerate of 60 FPS, and 

therefore the results are clear. (React Native, 

2021; Ionic, 2021) Flutter offers the best object detection speeds and mobile applications 

if the CPU provides over 60 FPS for the model, as the application is capable of displaying 

predictions over 60 times per second. However, these high frame rates are currently 

scarce on mobile devices and therefore often irrelevant. 

The results of the object detection application were as expected but did provide some 

surprises. As expected, the SSD-based model performed better in both accuracy and 

mAP. It provided around 50-70% accuracy when detecting objects correctly. The 

recognition threshold was set to 45% to improve the viewing of the results. As the 

reliability of the prediction varied every frame per prediction, the bounding box showing 

Figure 11. Working object detection 
using SSD-detector. 



32 
 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daniel Kusnetsoff 

the result would disappear when the result would dip just below 50%. Setting the 

threshold to 45% made the viewing more pleasurable, but at the same time, a bit more 

unreliable. However, as a goal was to create a mobile application that would show the 

differences in accuracy and speed between the SSD model and YOLO model, a decision 

was made to have the threshold 5% lower than normal. 

  

Figure 12. Object detection using SSD Mobilenet (40.0-120.0 FPS). 

 

Figure 13. Object detection using Tiny-YOLO (60.0-120.0 FPS). 
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5.3.2 Image caption generator 

The image caption generator has a more complex structure than the object detection 

parts as it actually has both an application front-end and a back-end. The application 

shows three ways to use the image caption generator. These three ways or features are 

caption predictions on camera stream, caption predictions on an image taken using the 

application, and caption predictions on an image from the mobile phone gallery. All three 

features can be seen in Figure 14, and are based on the most crucial part of the program, 

the camera stream feature that predicts the situation through a video stream of the 

camera.  

The application shows the three best predictions on screen. The current version of the 

application displays an updated prediction every four seconds. This is due to the fact that 

if the application showed the prediction faster, there would be two issues. The first issue 

is that as there are three predictions on screen, the reading time of the predictions would 

Figure 14. Flowchart of the image caption generator-part of the application. 
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be too fast. The second issue is that these four seconds give the application more than 

enough time to perform all its functions flawlessly. If the time for reading would not be 

necessary, the four seconds could be changed to one second and still work. While testing 

the image caption generator, there should be a relatively significant difference between 

the speed of the object detection and the image caption generator. 

The second feature of the image caption generator is that it will predict the situation from 

a picture in the mobile phone’s gallery. However, as it would not benefit anyone, the 

prediction from an image from the gallery does not change every four seconds. The third 

feature of the application is that it will also predict the situation from a picture just taken 

using the application. After creating these features based on the mobile phone’s camera, 

the image caption model itself needs to be connected to the application. 

From a more technical aspect, the prediction works by capturing images from the camera 

feed and storing them into the mobile phone’s local storage. From the local storage, the 

images are then sent using an HTTP POST request to the image caption generator 

model in the getResponse-function. This means that the images are passed to the 

model, and the generated caption predictions are sent back and shown on the screen of 

the device. 

To display the effectiveness of the image caption prediction, the application offers three 

alternative choices as it predicts the situation. These prediction alternatives often 

resemble each other quite closely, as can be seen in Figure 15. Compared to the object 

detection model, the application does not show the probability of the prediction. The 

choice of not showing the probability was made primarily because the model has a 

significant amount of prediction alternatives, and the probabilities are relatively small. As 

shown in Figure 15, the application accurately predicts the situation in front of the mobile 

phone camera. 
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The back end of the application is based 

on utilizing the IBM-Max Image Caption 

Generator model container that is called 

over a server. Creating the model of an 

effective image caption generator by 

oneself is an enormous feat. As a 

working image caption generator needs 

hundreds of thousands of labelled 

pictures and even more distinct objects, 

even the work collecting, creating, and 

generating the dataset for the model 

would take a long time. The used IBM 

Max Image caption generator consists of 

over 200 000 labelled images and has 

more than 1 500 000 distinct labelled 

objects (Singh, 2020). As well as 

creating and labeling the dataset for a 

long time, the training of such a dataset 

would take months for average GPUs. 

The Max image caption generator has 

been trained at IBM using 

supercomputers. Therefore, it is 

understandable that the image caption 

generator used in the thesis is prebuilt 

and not developed for the use of the 

application.  

The Max image caption generator used is stored in the IBM cloud. To gain contact with 

the model in the cloud. the model of the image caption generator has been modified into 

being stored in a Kubernetes container. By contacting the created container, the 

application can ask the model what is viewed in the camera view and what captions it 

predicts. As the IBM cloud does only support a free Kubernetes container for a limited 

amount of time, the completed application does contact a Kubernetes container upheld 

by IBM and not the previously made container. This container has the same Max image 

caption generator model as the previously created and used container. Therefore, it is 

important to be reminded of the differences in the features in the application. The main 

Figure 15. Screen capture of the working 
image caption generator. 
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difference to the object detection feature in the application, the image caption feature 

contacts the container using the POST method and receives the captions from the model 

while the object detection feature is entirely local. 

Flutter UI provides approximately 24.0 frames during the use of the image caption 

generator, as seen in Figure 16. During a half dozen measurements the frame rendering 

times were between 24.0 to 30.0 frames per second. As the frame rate for real-time 

detection is usually thought of being around these framerates and up, the Flutter UI 

provides an excellent environment for real-time object detection with an external model. 

However, the limitation of the image caption generator is not only the frame rate but the 

processing time built out of application performance and sending and receiving them 

from the model in the online container. Flutter provides both the frame rate and the 

performance for the image caption generator to work successfully. 

 

Figure 16. Image caption generator (24.0-30.0 FPS). 
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6 CONCLUSION 

The main goal of the thesis was to create a Flutter-based mobile application with object 

detection features as well as to research the suitability of the Flutter UI for real-time 

object detection. To research the suitability, two types of computer vision features were 

created and comprised into a mobile application. The object detection feature presents 

the local deep learning model’s performance on the Flutter UI, whereas the image 

caption generator presents an approach using an external model. The differences in 

Flutter performance for the local and external features are noticeable. However, they 

both provide real-time object recognition.  

The Flutter UI provided an optimal environment for computer vision features in the 

developed mobile application. The Flutter architecture presented also a stable near 

maximum frame rate for both a Tiny-Yolo-based and SSD Mobilenet-based object 

detection. Furthermore, Flutter also triumphed in frame rate over its most significant 

competitors with a twofold frame rate. The testing of the image caption generator 

displayed the lowered frame rate of 24 frames per second. As the goal was to create a 

near real-time system, the performance of the image caption generator was a success. 

Another significant question in the thesis was to find out how the two object detection 

models perform. The differences between SSD- and YOLO-based object detection is 

viewable in the application as an accuracy difference. As a result of training the dataset 

and converting the original models into a TensorFlow Lite-based mode, the differences 

in accuracy are amplified. The SSD-based model provides more consistent and accurate 

object predictions on screen than the YOLO-based object detection model. 

The final version of the object recognition application has some areas of improvement 

that were not implemented. Visually, the bounding boxes in the object detection 

application are slightly too large on the top side. The initial thought was that the bounding 

box size is the wrong size due to the screen resolution, screen size, or the TensorFlow 

Lite detection on frame. However, changing the properties of the screen resolution, 

screen size, and TensorFlow Lite detection on frame-values did not fix the issue. More 

improvements could also have been made to the dataset used in object detection. Due 

to the time constraints concerning the dataset labeling, an optimal dataset would have 

been self-labelled. However, labeling the thousands of images would have taken weeks 

or months to do. The decision to gain a more accurate model over a completely self-
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made dataset was hard but correct. As a result of having to change to training a tested 

dataset, the application functions according to the expectations. Currently the final 

improvement to the application would be testing the application on iOS. The current 

version of the application works only on Android but could function on iOS with a few 

changes in the dart-project properties. As Flutter provides the option of easily creating 

cross-platform mobile applications, the testing on iOS would be a logical step in 

development for the application.   

All in all, both the object detection and image caption generator features function as 

planned. The differences between SSD- and YOLO-based object detection are viewable 

in the application as a clear difference in accuracy. Furthermore, the image caption 

generator shows how an external and sizeable deep learning model can be utilized 

successfully in mobile applications via a cloud container. As importantly, the image 

caption generator works near real-time by predicting the image caption with high 

accuracy. Both computer vision features function optimally due to the Flutter-based 

architecture and structure. Flutter provides high performance and reliability in both 

computer vision tasks featured in the application and should be considered a top 

candidate when building cross-platform applications needing real-time features.  
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Image caption generator architecture 

(Cut in half due to size) 
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