

Nursultan Akhmetzhanov

Implementation of a Multispeaker Text-to-Speech Synthesis Web Applica-

tion

IMPLEMENTATION OF A MULTISPEAKER TEXT-TO-SPEECH

SYNTHESIS WEB APPLICATION

 Nursultan Akhmetzhanov
 Bachelor’s Thesis
 Spring 2021

 Information Technology
 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Information Technology

Author: Nursultan Akhmetzhanov
Title of the bachelor’s thesis: Implementation of a Multispeaker Text-To-Speech
Synthesis Web Application
Thesis examiner: Kari Jyrkka
Term and year of completion: Sprint 2021 Number of pages: 31

The main goal of this thesis was to implement a multispeaker model on a web
application, additional goals were to introduce the reader to text to speech syn-
thesis and compare the open source multispeaker models.

Most of the information was taken from the original research papers and used to
explain the work of the models and compare the models of multispeaker TTS
using the MOS (Mean Opinion Score) values from the papers themselves. The
development of the web application with multispeaker TTS functionality was
based on open-source repositories for TTS.

As a result, the goal was not met due to complexity of the chosen task, lack of
knowledge and the experience in deep learning and speech synthesis. The steps
in the development of the practical application and the recommendations on how
to proceed with the tasks were written and explained.

Keywords:
speech synthesis, deep learning, machine learning, web application.

 4

PREFACE

The thesis has been done in spring of 2021 and the topic was chosen by the

author himself due to his interest in ML and text-to-speech synthesis. This work

has been done with the help of Kari Jyrkkä who held a role of a tutoring teacher

for this thesis and me.

I would like to thank my tutoring teacher for this thesis Kari Jyrkkä, who guided

me during the development and helped me in the development through regular

review sessions, I would not have been able to finish my thesis without him. I

would also like to thank my language instructor Johanna Talvensaari who re-

viewed the language and the thesis writing rules. I would also like to thank

Mozilla, its TTS repository on GitHub and everyone who contributed to the devel-

opment of that project online and made it considerably easier for me to write this

thesis and achieve my goal.

Oulu, May 15, 2021
Nursultan Akhmetzhanov

 5

CONTENTS

CONTENTS ... 5

VOCABULARY .. 6

1. INTRODUCTION ... 7

2. HISTORY OF SPEECH SYNTHESIS AND CURRENT SPEECH SYNT-

HESIS TECHNOLOGIES .. 9

2.1 The first steps in speech synthesis. Mechanical speech synthesis 9

2.2 Intelligible speech synthesis. Electronic speech synthesizers 10

2.3 Modern speech synthesis. Deep learning speech synthesizers 12

2.3.1 WaveNet, Parallel WaveNet .. 12

3. MULTISPEAKER TEXT-TO-SPEECH SYNTHESIS AND HOW IT WORKS 15

3.1 Multispeaker TTS models .. 15

3.1.1 Tacotron2 with WaveNet ... 16

3.1.2 Multispeaker ClariNet .. 17

3.1.3 Multispeaker TTS using Deep Gaussian Processing 17

3.1.4 GlowTTS .. 19

3.2 Comparisons of multispeaker TTS models ... 20

4. WEB APPLICATION WITH SPEECH SYNTHESIS 23

4.1 Implementations of multispeaker models ... 23

4.1.1 Implementation of Tacotron 2 .. 23

4.1.2 Implementation of GlowTTS .. 23

4.2 Recommendations on the development of a multispeaker TTS application

 .. 24

5. CONCLUSION ... 26

6. APPENDIX ... 26

REFERENCES .. 1

 6

VOCABULARY

MOS – Mean Opinion Score is the mean of all opinion values collected from using

Likert scale (a scale from 1 to any uneven number, which is usually 5). MOS is

often used to collect respondents’ subjective opinion on the subject of research.

NLP – Natural Language Processing is a field of machine learning that works on

understanding and synthesis of correct text, natural text by computers. NLP is

meant to close the gap between computers and humans.

TTS - Text-to-speech, in this paper, referred to text-to-speech synthesis.

 7

1. INTRODUCTION

Speech synthesis is technology associated with future yet is very common in to-

day’s world and can be seen from many places and many devices. Famous ex-

amples are:

1. Speech Plus – speech synthesis technology from 1980s that was used by

Stephen Hawking and automated phone answering systems [3].

2. Google Assistant and other voice assistants – after a series of successful

researches [1, 5, 6] on speech synthesis, speech synthesis has become

an essential part of Google Assistant. Its simulator is accessible on the

developer documentation for Google Assistant [4].

Starting with heavy machines that simulated the work of a vocal tract to generate

intelligible human speech and coming to software applications consisting of sev-

eral united neural networks to synthesize humanlike speech with emotions, into-

nation and attention to grammar.

The neural network models for speech synthesis have only been recently created

and have become faster and more precise every year, resulting in unimaginable

progress in speech synthesis. The pinnacle of these research being multi-

speaker, meaning a model trained to synthesize speech of multiple people, mod-

els capable of synthesizing humanlike speech in a very short time.

The goal of this thesis is to achieve understanding on how text-to-speech synthe-

sis works as well as implementing an application that can copy one’s voice from

a short recording with a subsequent synthesis of learned voice from the text given

as an input [1].

The things to be gone through in this document are:

1. Brief history of the speech synthesis, technologies currently used for the

speech synthesis and how they work.

2. Theory behind the technology of multispeaker text-to-speech synthesis and the

comparison of some of the multispeaker models.

 8

3. My implementation of multispeaker text-to-speech synthesis and how I came

to that step by step using Mozilla’s TTS application from their publicly available

GitHub repository [2].

 9

2. HISTORY OF SPEECH SYNTHESIS AND CURRENT SPEECH

SYNTHESIS TECHNOLOGIES

2.1 The first steps in speech synthesis. Mechanical speech synthesis

The history of speech synthesis started in the 18th century. Researchers tried to

mechanically simulate the work of human’s vocal apparatus including vocal box,

which is called Larynx as well, and mouth area to produce speech. The muscles

in vocal box (FIGURE 1), vocal cords, vibrate the air coming from the lungs

through the vocal cords to produce sounds that reach mouth area, where the

position of the tongue, teeth and lips greatly affect the sounds created, more de-

tails in [25].

FIGURE 1. The structure of human’s larynx with the location of the vocal cords.

The first attempts in speech synthesis [9, 10, 11] were made in the 18th century

by Russian Professor Christian Kratzenstein who understood the differences in

human physiology on pronunciation of vowels. Armed with this knowledge he

constructed an apparatus that produced these sounds. Later, Wolfgang von

Kempelen created a more complex design (FIGURE 2.) that imitated human’s

speech production and imitated the work of the main organs in the human body

 10

that could only create vowels and consonants. The machine could produce vow-

els with the vibrating reed, consonants were produced with a flow of air through

a passage while the reed is off (FIGURE 2.). Resonances were created by de-

forming the leather resonator [12].

FIGURE 2. Wheatstone's reconstruction of von Kempelen's speaking machine [9].

The development of speech synthesis has not stopped here, but has only just

begun, even though none of the constructions could not utter words, it was dy-

namic generation of sounds, not their recording.

2.2 Intelligible speech synthesis. Electronic speech synthesizers

New breakthroughs in speech synthesis were made in 1939 when a VODER

(Voice Operating DEmonstratoR) was presented in World Fair in New York.

VODER was inspired by VOCODER (Voice encoder). VODER looked and

worked similarly to piano: a foot pedal to control the frequency of the sound and

keys that could produce letters, words and short phrases if combined properly,

because of that, the machine could only be operated by a trained specialist.

VODER was a breakthrough because it showed the wide audience how close

current speech synthesis technology was to be used in practice [12].

 11

The next step in the progress of speech synthesis occured when two IBM re-

searchers John Kelly and Carol Lochbaum programmed IBM 704 to not only syn-

thesize speech but sing as well. Interestingly, Arthur Clarke was inspired to add

a song to his book 2001: Space Odyssey, after visiting IBM offices and hearing

what machine sang [7].

Later, in 1980s, a company called Voltrax introduced several products with text-

to-speech synthesis functionality, having the Voltrax Type’n Talk in 1978 [12].

The products from Voltrax allowed the users to connect the modules to their com-

puters and synthesize speech without interrupting other computer processes. It

required a piece of hardware with its own processing power to handle speech

synthesis, speech synthesis was way too computationally heavy for the computer

to handle on its own.

In 1980 a company called Texas Instruments released a product called Speak’n

Spell which was inspired by Voltrax’s Type’n Talk. The toy was designed to help

children with spelling. It would ask a child to spell a word, one of the words in its

database, and the child would have to type the word using toy’s keyboard. The

toy pronounced each letter and congratulated the child if the word was correct.

The innovation in the toy was the fact that it did not store a recording of the words

to spell them, but it stored the recording of phonemes which it then used to syn-

thesize words and sentences on the go [7, 8].

Another worth mentioning breakthrough is SAM (Software Automatic Mouth),

software synthesised speech without any additional hardware. SAM had a mas-

sive success on the market despite being very power consuming and synthesis-

ing speech of lower quality compared to its analogues from Voltrax [12]. Further-

more, speech synthesis was so computationally heavy it paused all other threads

on computer, pausing other applications. Despite all its drawbacks, its advantage

of being a purely software solution has made it to Comodore64, Apple’s comput-

ers and was popular to include or to copy.

Speech synthesis has continued its development but mostly with machine learn-

ing technologies. Machine learning increased the quality of the synthesized

speech making it closer to the real human speech.

 12

2.3 Modern speech synthesis. Deep learning speech synthesizers

There are two main types of speech synthesizers at this moment:

1. Parametric – synthesizer that learns the “essence” of the speech and

learns to generate speech using parameters given to the model. Tweaking

pace, style, tone and other speech parameters [17].

2. Concatenative – synthesizer that has a great database of utterances of a

single speaker that is used to generate phrases and sentences by concat-

enating, combining them with one another. Speech synthesizers of this

type have a high pronunciation quality but a very low flexibility - a new

database of recordings is needed for a speech with a different intonation,

style or pace [17].

Recent development in parametric speech synthesis created models and archi-

tectures capable of synthesising speech of higher quality than concatenative

speech synthesisers [1].

2.3.1 WaveNet, Parallel WaveNet

WaveNet model was developed by Google’s DeepMind to generate raw audio

waveforms from other waveforms. The neural network can synthesize high qual-

ity speech, sometimes indistinguishable from human speech. The model is auto-

regressive; in short: the values it outputs are considered and used in its next

inputs [16], FIGURE 3 shows WaveNet’s structure, to get full picture on the struc-

ture of the model check the animated version of it [16]. This method makes the

synthesis very resource demanding. Furthermore, the speech synthesis consid-

ers the text input it was given during the synthesis to produce cohesive speech.

Without any text input it outputs incohesive nonsense. Since the model is trained

to produce any audio waveforms it can also produce songs [16].

 13

FIGURE 3. WaveNet’s structure.

While WaveNet has made a breakthrough in speech synthesis with a resource

demanding, slow, but high-quality audio synthesis. That is why, DeepMind has

made significant improvements to WaveNet and made Parallel WaveNet that is

capable of speech synthesis 20 times faster than real time [14], which means that

the model synthesises a second of audio in 1/20th of a second. Parallel WaveNet

is created using teacher-student learning approach where WaveNet Teacher

“trains” WaveNet Student model to return values like the Teacher WaveNet (FIG-

URE 4.). The Student WaveNet returns values that get fed by the Teacher Wave-

Net to output the score, the Student WaveNet uses that score to evaluate own

performance and changes its parameters to get a higher score from the Teacher

WaveNet, this goes on until its score becomes close enough to the Teacher

WaveNet’s score.

 14

FIGURE 4. Visual representation of Parallel WaveNet’s training.

Parallel WaveNet has high synthesis speed because of its parallel structure that

allows it to synthesize all pieces of the audio simultaneously - all utterances from

the first to the last at the same time [14].

 15

3. MULTISPEAKER TEXT-TO-SPEECH SYNTHESIS AND HOW IT

WORKS

This chapter serves several purposes:

1. To introduce the reader to modern TTS models and architectures.

2. To compare some of the TTS models based on their Mean Opinion Score

(MOS) values. MOS values are typically used in evaluation of subjective

values like the naturalness of the speech.

3. To find the most suitable TTS models to implement. The most suitable

model in terms of the naturalness of the synthesized speech and afforda-

bility in computing resource.

3.1 Multispeaker TTS models

Multispeaker TTS, a neural network that can synthesize speech of multiple peo-

ple, is a technology that has been implemented using various methods [1,18, 19,

20, 21, 22]. The methods and the ideas behind them were so different the tech-

nologies have only one thing common with each other - the use of machine learn-

ing. Most TTS implementations include two components:

1. Text analysis – a part that analyses the input text and outputs phonemes.

2. Speech synthesiser – a part that takes a sequence of phonemes as an

input and outputs waveforms that can be converted to audio files [16].

The others like [20] cannot be categorised as models with two components men-

tioned above. In case of [20], the architecture consists of a cascade of functions

that produce sound from the text input.

Every technology happens to be different from its predecessor, some of them use

entirely different, less sophisticated architectures and algorithms of machine

learning.

 16

3.1.1 Tacotron2 with WaveNet

The benchmark in the whole industry – Tacotron2 with WaveNet. Tacotron2 is

based on Tacotron, an end-to-end TTS model which takes phonemes and graph-

emes as its input and outputs raw spectrogram from the input data [23]. Spectro-

gram, shortly, is an audio waveform transformed into time/frequency graph with

temperature representing the loudness (amplitude) of the sounds, in more details

at [23]. More efficient Tacotron, called Tacotron2 in a pair with vocoder WaveNet

create a more complicated yet necessary architecture for multispeaker TTS.

FIGURE 5. Tacotron 2 architecture model [1].

Tacotron 2 consists of 3 big parts: Speaker Encoder, Synthesizer, Vocoder (FIG-

URE 5). Speaker encoder generates speaker embedding (speaker’s speech fin-

gerprint). The said speaker embedding is given to synthesizer which generates

the mel-spectrogram, a spectrogram where frequencies are converted to mel

scale values [23], from input grapheme sequences and the speaker embedding.

The generated mel-spectrogram is provided to vocoder, integrated WaveNet , to

output waveforms. All models are trained using either LibriTTS [28] or Li-

briSpeech [27] data.

TABLE 1. MOS evaluations from the paper with research on Tacotron 2 comparing it with

other models [15].

System MOS

Parametric 3.492 + 0.096

Tacotron (Griffin-Lim) 4.001 + 0.087

Concatenative 4.166 + 0.091

 17

WaveNet (Linguistic) 4.341 + 0.051

Ground truth 4.582 + 0.053

Tacotron 2 4.526 + 0.066

Combined strengths of Tacotron and WaveNet has made Tacotron 2 the undis-

putable champion in terms of quality of the speech synthesis, with a Mean Opin-

ion Score (MOS) (TABLE 1.) higher than anyone else’s.

3.1.2 Multispeaker ClariNet

Multi-speaker ClariNet differs from other multispeaker TTS technologies due to

its model architecture which is basically one model, that generates mel-spectro-

grams and the waveforms of the final output audio. The whole model consists of

4 components, decoder, encoder, vocoder and bridge-net. All components are

connected to each other by bridge-net and are added by speaker embeddings

taken from the embedding lookup table as bias [19]. Such architecture allows for

unified training of all models at the same time with the bias of a speaker embed-

ding served to teach each model about unique characteristics of speaker’s

speech.

3.1.3 Multispeaker TTS using Deep Gaussian Processing

Multispeaker TTS using Deep Gaussian Processing (DGP) differentiates itself

from other approaches and technologies with its simple and efficient architecture.

The DGP based TTS model works on a cascade of GPRs - Gaussian Process

Regressions [25], which are stacked one after another because of the assump-

tion that a function can be decomposed into several functions like here [20]:

f = f^(L+1) ◦ f^(L) ◦ · · · ◦ f (1)

DGP is not suitable for complex multispeaker TTS, that is why improvements in

architecture were made to enable multispeaker text-to-speech synthesis:

 18

1. DGP based multispeaker TTS using speaker codes – uses speaker codes

(S) which get applied by DGP layer and then fed to the hidden layers (hi)

of the model and outputs acoustic features (Y) - sound (FIGURE 6).

FIGURE 6. Architecture of DGP-based acoustic model for multispeaker TTS with three hidden

layers. The hidden layers are fed by the speaker codes applied by single layer GPRs [20].

2. DGPLVM based multispeaker TTS is like the DGP model, but unlike it, it

uses similarities and differences between the speaker codes for more ef-

ficient and cheaper TTS (FIGURE 7) by concatenating r variables which

hold the similarities of speakers’ acoustic features.

 19

FIGURE 7. Architecture of DGPLVM based model with the hidden layers which are concate-

nated by latent r variables [20].

According to the experiments conducted by the authors of [20] DGPLVM and

DGP show very similar results, though DGPLVM generally performs slightly bet-

ter than DGP and was concluded to be more effective when the amount of training

data is limited [20].

3.1.4 GlowTTS

GlowTTS was inspired by the way humans read the text: in order and without

skipping any words. GlowTTS was designed to produce mel-spectrograms on a

monotonic and non-skipping alignments [22].

The model architecture consists of decoder, encoder and duration predictor. The

models are very complex but in short, decoder is responsible for synthesis of the

audio, encoder is responsible for the analysis of the input text, where at the end

it outputs the mel-spectrogram after the duration predictor predicts the needed

duration of the mel-spectrogram, more can be found in [22] and its appendix.

The flow based generative nature of the model enables generation of a mel-spec-

trogram 15.7 times faster compared to Tacotron 2 and synthesizes more natural

speech with long input text, detailed explanation of that can be found here [22].

 20

3.2 Comparisons of multispeaker TTS models

Multispeaker models mentioned above are all successful models in their own re-

gard and serve specific purposes. Some models are more precise, more natural

sounding, some are faster and less computationally heavy but synthesize less

natural speech while the others wanted to test a new approach. The models from

the previous subchapter are compared here.

The models were compared primarily by their Mean Opinion Score (MOS). The

value used to collect subjective opinions from a big number of people, because

naturalness of the speech, typically the most important metric for a speech syn-

thesizer, can only be evaluated by humans. MOS is collected by answers given

by the respondents on a 1 to 5 Likert scale, usually, from “bad” to “excellent”. The

models were originally compared to either Tacotron2, ground truth data or both.

The ground truth data was the MOS on recordings of real people, not the synthe-

sized one speech.

Due to limitations in time and computing resources it was decided to compare the

models using the MOS values from their respective research papers.

According to data from the research papers [15, 20, 23] Tacotron 2 with WaveNet

scored the highest MOS score. Each research has evaluated their MOS values

differently — different samples of data, different people, different training hyperpa-

rameters etc. Because of that, it was decided to compare the models to the MOS

values of their respective ground truth data, recording of a real human speech,

not synthesized. The models were compared to in original papers (TABLE 3).

TABLE 3. Mean Opinion Score (MOS) values from research papers on respective multispeaker

TTS models with MOS values of Ground Truth Data.

System Mean Opinion Score (MOS)

 Model Ground Truth Data

Tacotron2 with

WaveNet
4.526 ± 0.066[15] 4.582 ± 0.053

 21

Multispeaker

ClariNet
3.90 ± 0.36[19] 4.26 ± 0.38

GlowTTS

(Highest out of

all versions)

3.45 ± 0.11[22] 4.54 ± 0.06

The idea is to calculate the difference between the GTD’s MOS and model’s MOS

values, the lower the difference – the better the model can synthesize natural,

believable speech (Table 3).

TABLE 4. The difference between model’s MOS and GTDs MOS.

System
Difference between model’s MOS and Ground Truth Data’s

(GTD) MOS

Tacotron2 with

WaveNet
0.056 + 0.013

Multispeaker

ClariNet
0.36 + 0.02

GlowTTS

(Highest out of

all versions)

1.09 + 0.05

According to Table 4, Tacotron2 with WaveNet appears to synthesize speech the

closest to GTD, with Multispeaker Clarinet right behind it and GlowTTS the last.

GlowTTS showed such results compared to GTD, but showed comparative re-

sults to the Tacotron2 they build for evaluation phase 3.35 + 0.11, which is not

that different from GlowTTS’s MOS. Furthermore, due to it being parallel TTS

model, parallel TTS models generate mel-spectrograms faster than autoregres-

sive TTS models like Tacotron and Tacotron 2, GlowTTS happens to generate

mel-spectrograms 15.7 times faster than Tacotron 2 while obtaining comparable

performance according to [22].

 22

As you can see Tacotron 2 with WaveNet shows the best performance out of all

models listed here, proving why it is used as a benchmark for TTS models.

Tacotron 2 shows impressive results to this day especially since researchers

keep developing the technology by replacing WaveNet with Parallel WaveNet,

WaveGlow etc. Despite that, it is important to understand that Tacotron 2 is not

the perfect model for multispeaker TTS: Tacotron 2 struggles to synthesize

speech from a long input text without any issues, while GlowTTS can do that, but

with noticeable monotonic sound of the speech.

 23

4. WEB APPLICATION WITH SPEECH SYNTHESIS

This chapter describes the steps taken to implement multispeaker TTS using

open-source repositories and speech datasets. Furthermore, this chapter in-

cludes recommendations on implementation of multispeaker TTS web applica-

tion.

4.1 Implementations of multispeaker models

Implementation of TTS in a user-friendly way is a difficult task, an implementation

of a multispeaker TTS as a web application is a challenge. To implement a mul-

tispeaker TTS application an open-source TTS repository from Mozilla [2] was

chosen as a foundation. The repository was cloned, and steps were taken ac-

cording to official build instructions on the server found in wiki section of the re-

pository [2], the best versions of the checkpoint files were used on builds of the

server for every model tried.

4.1.1 Implementation of Tacotron 2

Initially, the versions of Tacotron 2 were used to synthesize human speech due

to its high MOS. Unfortunately, the web application could not run on Tacotron 2

because of the absence of '/data/rw/home/Data/VCTK/scale_stats.npy' docu-

ment on every version of the Tacotron 2. The absent document could not be

found on the issues on the repository of the application and could not be recre-

ated. Because of that, the model of the application was switched to GlowTTS,

because its MOS value were right after Tacotron 2.

4.1.2 Implementation of GlowTTS

Web application on GlowTTS could synthesize speech from its default voice,

without any speaker embeddings. Speaker embeddings were generated accord-

ing to instructions from ‘/TTS/TTS/speaker_encoder/README.md’ file, the only

change done in ‘/TTS/TTS/speaker_encoder/config.json’ file was the change in

model.input_dim to 80. Speaker embedding was generated from a short record-

ing of an author’s voice saying: “This is the recording of my voice. I'm seeing

 24

things that should be said and I like seeing things”, calling the

‘/TTS/TTS/speaker_encoder/bin/compute_embeddings.py’. The recording was

stored in .wav format and put in a folder structure imitating the structure of

LibriTTS dataset with a text file with a transcription of the recording. The gener-

ated speaker embedding was stored in application directory for speaker embed-

dings - ‘/TTS/TTS/speaker_encoder/voice_embeddings’.

Speaker embeddings could not be used by the model to synthesize the speech,

the files and functions in the application without modifications in the code which

were suggested by one of the main contributors of the repository and discussed

in this issue [29]. The changes were done in files:

1. ‘TTS/TTS/bin/compute_embeddings.py’

2. ‘TTS/TTS/server/conf.json’

3. ‘TTS/TTS/speaker_encoder/config.json’

4. ‘TTS/TTS/tts/models/glow_tts.py'

5. ‘TTS/TTS/speaker_encoder/model.py’

6. ‘TTS/TTS/server/server.py’

7. ‘TTS/TTS/utils/ synthesizer.py’

The changes done in these files were done to debug modify the functions in the

files to get the needed results. The files were chosen from python’s error mes-

sages. Debugging did not yield any results, speech synthesis from the speaker

embedding was not realized. The further development of the application was

stopped because the application could not be developed from the scratch with

the time left for the deadline.

4.2 Recommendations on the development of a multispeaker TTS applica-

tion

First, the general recommendation is to not take the chosen task lightly, under-

stand your skills and the knowledge needed to accomplish the chosen task. Spe-

cifically:

 25

1. Understanding the basic machine learning concepts like training, models,

algorithms, datasets, supervised learning, unsupervised learning, rein-

forcement learning, classification, regression etc.

2. Understanding of the model, technology chosen to be implemented. Poor

or superficial understanding of the concepts of the technology will jeopard-

ize the development of the application. The developer should understand

what the chosen model does and how it does that.

While the above-mentioned recommendations there are recommendations of mi-

nor importance:

1. Experience in the development of applications. Whether you decide to de-

veloper web, mobile or desktop application, the understanding of the nu-

ances of the platform and experience in its development can decrease the

difficulty of the development.

2. Experience in speech synthesis and NLP. Experience in both will mitigate

the risks of failure of the understand and the development of the applica-

tion. Having previous experience in a similar or the same field is beneficial

but not necessary.

3. Regular feedback from developers with experience in the speech synthe-

sis field, preferably – the chosen technology. The connection with devel-

opers working on similar projects will be beneficial for the problem solving.

This can be accomplished by making your application open source and by

through resources like Stack Overflow or issues on GitHub.

4. The project’s foundation should not be a third-party repository, unless the

author understands the codebase of the application, can freely modify the

code of the application and the repository has an active community capa-

ble of answering the questions and issues appeared.

 26

5. CONCLUSION

The history of speech synthesis is old and had many large breakthroughs to get

to the current level of speech synthesis. That is why the implementation of a TTS

web application should not be taken lightly since the tasks requires understanding

and experience in machine learning, deep learning and NLP. This paper failed to

implement the web application with multispeaker TTS, primarily because of the

lack of needed knowledge and experience in machine learning, NLP and TTS,

and because of the shortage of time. Such a task is recommended to be taken

only with enough time and knowledge, furthermore, the development of the ap-

plication should be not heavily based on a third-party open-source repository un-

less the repository has a strong documentation, active community, well written

and modifiable codebase.

AN EXAMPLE OF A MULTI-PAGE APPENDIX APPENDIX 2/1

REFERENCES

(1) Y. Jia, Y. Zhang, R. J. Weiss, Q. Wang, J. Shen, F. Ren, Z. Chen, P.

Nguyen, R. Pang, I. L. Moreno, Y. Wu, 2018-2019. “Transfer Learning

from Speaker Verification to Multispeaker Text-To-Speech Synthesis”.

Google funded research, [Accessed: April 18, 2021], https://re-

search.google/pubs/pub47019/

(2) Mozilla, 2018-2021, “TTS”. [Accessed: April 5, 2021],

https://github.com/mozilla/TTS

(3) M. Joao, “How Intel Gave Stephen Hawking a Voice”, Wired UK issue

01.15, [Online], [Accessed: April 25, 2021] Available:

https://www.wired.com/2015/01/intel-gave-stephen-hawking-voice/

(4) TTS Simulator, SSML, Google Assistant for Developer. [Accessed: April

25, 2021], https://developers.google.com/assistant/conversational/df-

asdk/ssml#tts_simulator

(5) Y. Wang, R.J. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,

Zongheng Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le, Y. Agiomyrgianna-

kis, R. Clark, R. A. Saurous, 2017, “TACOTRON: TOWARDS END-TO-

END SPEECH SYNTHESIS”, [Accessed: April 26, 2021],

https://arxiv.org/pdf/1703.10135.pdf

(6) A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A.

Graves, N. Kalchbrenner, A. Senior, K. Kavukcuoglu, 2016, “WAVENET:

A GENERATIVE MODEL FOR RAW AUDIO”, [Accessed: April 30,

2021], https://arxiv.org/pdf/1609.03499.pdf

(7) “The Evolution of Computer Speech”, 28.02.2018, The Science Elf, [Ac-

cessed: April 30, 2021],

https://www.youtube.com/watch?v=wQjTgvUEOrY

(8) “How Speech Synthesizers Work”, 10.03.2019, The 8-bit guy, [Accessed:

April 30, 2021], https://www.youtube.com/watch?v=XsMRxNSDccc

(9) Flanagan J. (1972), “Speech Analysis, Synthesis, and Perception”,

Springer-Verlag, Berlin-Heidelberg-New York.

(10) Flanagan J., Rabiner L. (Editors) (1973), “Speech Synthesis”, Dow-

den, Hutchinson & Ross, Inc., Pennsylvania.

https://research.google/pubs/pub47019/
https://research.google/pubs/pub47019/
https://github.com/mozilla/TTS
https://www.wired.com/2015/01/intel-gave-stephen-hawking-voice/
https://developers.google.com/assistant/conversational/df-asdk/ssml#tts_simulator
https://developers.google.com/assistant/conversational/df-asdk/ssml#tts_simulator
https://arxiv.org/pdf/1703.10135.pdf
https://arxiv.org/pdf/1609.03499.pdf
https://www.youtube.com/watch?v=wQjTgvUEOrY
https://www.youtube.com/watch?v=XsMRxNSDccc

AN EXAMPLE OF A MULTI-PAGE APPENDIX APPENDIX 2/2

(11) Schroeder M. (1993), “A Brief History of Synthetic Speech”, Speech

Communication vol. 13, pp. 231-237.

(12) S, Lemmetyy, 06.1999, “Review of Speech Synthesis”, Technology,

[Accessed: May 3, 2021], http://research.spa.aalto.fi/publications/the-

ses/lemmetty_mst/chap2.html

(13) D. Jurafsky & J. H. Martin, “Speech and Language Processing”,

Hidden Markov Models, 12.2020, [Accessed: May 6, 2021],

https://web.stanford.edu/~jurafsky/slp3/A.pdf

(14) G. van den Driessche, E. Lockhart, L. C. Cobo, F. Stimberg, N.

Casagrande, D. Grewe, S. Noury, S. Dieleman, E. Elsen, N. Kalchbren-

ner, H. Zen, A. Graves, H. King, T. Walters, D. Belov, D. Hassabis, 2017,

“Parallel WaveNet: Fast High-Fidelity Speech Synthesis”, [Accessed:

May 7, 2021], https://arxiv.org/pdf/1711.10433.pdf

(15) J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z.

Chen, Y. Zhang, Y. Wang, RJ Skerry-Ryan, R. A. Saurous, Y. Agiomyr-

giannakis , and Y. Wu, 2018, “NATURAL TTS SYNTHESIS BY CONDI-

TIONING WAVENET ON MEL SPECTROGRAM PREDICTIONS”, [Ac-

cessed: May 7, 2021], https://arxiv.org/pdf/1712.05884.pdf

(16) A. van den Oord, S. Dieleman, 09.2016, “WaveNet: A generative

model for raw audio”, [Accessed: May 8, 2021], https://deep-

mind.com/blog/article/wavenet-generative-model-raw-audio

(17) J. Singh, 11.2018, “WaveNet: Google Assistant’s Voice Synthe-

sizer”, Towards Data Science, [Accessed: May 9, 2021], https://to-

wardsdatascience.com/wavenet-google-assistants-voice-synthesizer-

a168e9af13b1

(18) M, Chen, X, Tan, Y. R. J. Xu, H. Sun, S. Zhao, T. Qin, T. Liu,

06.2020, “MultiSpeech: Multi-Speaker Text to Speech with Transformer”,

[Accessed: May 10, 2021], https://arxiv.org/pdf/2006.04664.pdf

(19) J. Park, K. Zhao, K. Peng, W. Ping, 07.2019, “Multi-Speaker End-

to-End Speech Synthesis”, [Accessed: May 10, 2021],

https://arxiv.org/pdf/1907.04462.pdf

http://research.spa.aalto.fi/publications/theses/lemmetty_mst/chap2.html
http://research.spa.aalto.fi/publications/theses/lemmetty_mst/chap2.html
https://web.stanford.edu/~jurafsky/slp3/A.pdf
https://arxiv.org/pdf/1711.10433.pdf
https://arxiv.org/pdf/1712.05884.pdf
https://deepmind.com/blog/article/wavenet-generative-model-raw-audio
https://deepmind.com/blog/article/wavenet-generative-model-raw-audio
https://towardsdatascience.com/wavenet-google-assistants-voice-synthesizer-a168e9af13b1
https://towardsdatascience.com/wavenet-google-assistants-voice-synthesizer-a168e9af13b1
https://towardsdatascience.com/wavenet-google-assistants-voice-synthesizer-a168e9af13b1
https://arxiv.org/pdf/2006.04664.pdf
https://arxiv.org/pdf/1907.04462.pdf

AN EXAMPLE OF A MULTI-PAGE APPENDIX APPENDIX 2/3

(20) K. Mitsui, T. Koriyama, H. Saruwatari, 08.2020, “Multi-speaker

Text-to-speech Synthesis Using Deep Gaussian Processes”, [Accessed:

May 11, 2021], https://arxiv.org/pdf/2008.02950.pdf

(21) Z. Cai, C. Zhang, M. Li, 05.2020, “From Speaker Verification to

Multispeaker Speech Synthesis, Deep Transfer with Feedback Con-

straint”, [Accessed: May 12, 2021], https://arxiv.org/pdf/2005.04587.pdf

(22) J. Kim, S. Kim, J. Kong, S. Yoon, 2020, “Glow-TTS: A Generative

Flow for Text-to-Speech via Monotonic Alignment Search”, [Accessed:

May 12, 2021], https://arxiv.org/pdf/2005.11129.pdf

(23) Y. Wang, RJ Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N.

Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le, Y. Agiomyrgiannakis,

R. Clark, R. A. Saurous, 04.2017, “TACOTRON: TOWARDS END-TO-

END SPEECH SYNTHESIS”, [Accessed: May 12, 2021],

https://arxiv.org/pdf/1703.10135.pdf

(24) “How Does My Voice Work?”, Temple Health, Temple Head & Neck

Institute, 11.04. 2018, [Accessed: May 19, 2021], https://www.temple-

health.org/about/blog/how-does-my-voice-

work#:~:text=When%20you%20breathe%2C%20the%20vocal,(cy-

clic%20opening%20and%20closing).

(25) L. Roberts, “Understanding the Mel Spectrogram”, Analytics

Vidhya, [Accessed: May 20, 2021], https://medium.com/analytics-

vidhya/understanding-the-mel-spectrogram-fca2afa2ce53

(26) H. Sit, “Quick Start to Gaussian Process Regression”, Towards

data science, [Accessed: May 20, 2021], https://towardsdatasci-

ence.com/quick-start-to-gaussian-process-regression-

36d838810319#:~:text=Gaussian%20process%20regres-

sion%20is%20nonparametric,functions%20that%20fit%20the%20data.

(27) “LibriSpeech ASR corpus”, Open SLR, [Accessed: May 15, 2021],

https://www.openslr.org/12

(28) H. Zen, V. Dang, R. Clark, Y. Zhang, R. Weiss, Y. Jia, Z. Chen, Y.

Wu, “LibriTTS”, Google Research, 2019, [Accessed: May 15, 2021],

https://research.google/tools/datasets/libri-tts/

https://arxiv.org/pdf/2008.02950.pdf
https://arxiv.org/pdf/2005.04587.pdf
https://arxiv.org/pdf/2005.11129.pdf
https://arxiv.org/pdf/1703.10135.pdf
https://www.templehealth.org/about/blog/how-does-my-voice-work#:~:text=When%20you%20breathe%2C%20the%20vocal,(cyclic%20opening%20and%20closing
https://www.templehealth.org/about/blog/how-does-my-voice-work#:~:text=When%20you%20breathe%2C%20the%20vocal,(cyclic%20opening%20and%20closing
https://www.templehealth.org/about/blog/how-does-my-voice-work#:~:text=When%20you%20breathe%2C%20the%20vocal,(cyclic%20opening%20and%20closing
https://www.templehealth.org/about/blog/how-does-my-voice-work#:~:text=When%20you%20breathe%2C%20the%20vocal,(cyclic%20opening%20and%20closing
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
https://towardsdatascience.com/quick-start-to-gaussian-process-regression-36d838810319#:~:text=Gaussian%20process%20regression%20is%20nonparametric,functions%20that%20fit%20the%20data
https://towardsdatascience.com/quick-start-to-gaussian-process-regression-36d838810319#:~:text=Gaussian%20process%20regression%20is%20nonparametric,functions%20that%20fit%20the%20data
https://towardsdatascience.com/quick-start-to-gaussian-process-regression-36d838810319#:~:text=Gaussian%20process%20regression%20is%20nonparametric,functions%20that%20fit%20the%20data
https://towardsdatascience.com/quick-start-to-gaussian-process-regression-36d838810319#:~:text=Gaussian%20process%20regression%20is%20nonparametric,functions%20that%20fit%20the%20data
https://www.openslr.org/12
https://research.google/tools/datasets/libri-tts/

AN EXAMPLE OF A MULTI-PAGE APPENDIX APPENDIX 2/4

(29) “Can we not plug-in embeddings if synthesizing on a single-speaker

model?”, 10.03.2020, Mozilla/TTS, [Accessed: May 1, 2021],

https://github.com/mozilla/TTS/issues/378

(30) DubstepKnight, glow-tts, May of2021, [Accessed: May 20, 2021],

https://github.com/DubstepKnight/glow-tts

https://github.com/mozilla/TTS/issues/378
https://github.com/DubstepKnight/glow-tts

	Contents
	VOCABULARY
	1. introduction
	2. History of speech synthesis and current speech synthesis technologies
	2.1 The first steps in speech synthesis. Mechanical speech synthesis
	2.2 Intelligible speech synthesis. Electronic speech synthesizers
	2.3 Modern speech synthesis. Deep learning speech synthesizers
	2.3.1 WaveNet, Parallel WaveNet

	3. multispeaker text-to-speech synthesis and how it works
	3.1 Multispeaker TTS models
	3.1.1 Tacotron2 with WaveNet
	3.1.2 Multispeaker ClariNet
	3.1.3 Multispeaker TTS using Deep Gaussian Processing
	3.1.4 GlowTTS

	3.2 Comparisons of multispeaker TTS models

	4. web application with speech synthesis
	4.1 Implementations of multispeaker models
	4.1.1 Implementation of Tacotron 2
	4.1.2 Implementation of GlowTTS

	4.2 Recommendations on the development of a multispeaker TTS application

	5. conclusion
	REFERENCES

