

Valtteri Kurhela

Automation of virtualized hardware
test environment

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

Bachelor’s Thesis

14 May 2021

Abstract

Author: Valtteri Kurhela

Title: Automation of virtualized hardware test environment

Number of Pages: 24 pages

Date: 14 May 2021

Degree: Bachelor of Engineering

Degree Programme: Information and Communications Technology

Professional Major: Smart Systems

Supervisors: Joseph Hotchkiss, Senior Lecturer

This thesis aimed to research test automation and how it could be used in a
virtualized hardware test environment to deploy a test automation script. The motive
for this thesis was to investigate options to decrease repetitive manual work for BTS
O&M software developers.

The first phase of the thesis was to research virtualization, study Radio Access
Networks, familiarize myself with Gerrit, Jenkins, and Robot Framework.

The thesis explains the state of the current virtualized hardware test server and tools
that enable test automation deployment. The thesis will go through the deployment
steps of previous test automation system implementation, as the deployment steps
are the same. A new automation system is conceptualized and determined if such a
concept would be able to be implemented.

The thesis explains the basics and capabilities of 5G and what BTS O&M does in the
5G field. The thesis will also explain the basics of virtualization and the difference
between virtual machines and containers.

Based on this study done for this thesis, it can be concluded that automation of test
environments reduces the daily workload of software developers. The research
concludes, that the conceptualized automation system would be able to be
implemented on top of the current virtualized hardware test environment.

Keywords: Test Automation, RAN, Virtualization, Robot Framework, 5G

Tiivistelmä

Tekijä: Valtteri Kurhela

Otsikko: Automation of virtualized hardware test environment

Sivumäärä: 24 sivua

Aika: 14.5.2021

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Tieto- ja viestintätekniikka

Ammatillinen pääaine: Smart Systems

Ohjaajat: Joseph Hotchkiss, Lehtori

Tämän opinnäytetyön tavoitteena oli tutkia testausautomaatiota ja miten sitä
voitaisiin käyttää virtualiisoidussa laitteistotestiympäristössä. Opinnäytetyön
motiivina oli tutkia vaihtoehtoja vähentämään toistuvaa manuaalista työtä BTS
O&M -ohjelmistokehittäjille.

Opinnäytetyön ensimmäinen vaihe oli tutkia virtualisointia ja
radioliitäntäverkkoja sekä tutustua Gerritiin, Jenkinsiin ja Robot Frameworkiin.

Opinnäytetyössä selitetään nykyisen virtualisoidun laitteistotestipalvelimen tila
ja työkalut, jotka mahdollistavat testausautomaation käyttöönoton. Opinnäytetyö
kuvaa edellisen testausautomaatiojärjestelmän käyttöönoton vaiheet, koska
käyttöönottovaiheet ovat samat nykyäänkin. Uusi automaatiojärjestelmä on
teorisoitu ja lisäksi selvitetty, onko sen toteuttaminen mahdollista myös
käytännössä.

Opinnäytetyössä selitetään 5G:n perusteet ja ominaisuudet sekä mitä BTS
O&M tekee 5G-toimialalla. Opinnäytetyössä selitetään myös virtualisaation
perusteet ja miten virtuaalikoneet eroavat säiliöistä.

Tämän opinnäytetyön perusteella voidaan päätellä, että testausympäristön
automatisointi vähentää ohjelmistokehittäjien päivittäistä työmäärää.
Opinnäytetyössä osoitetaan, että teorisoitu automaatiojärjestelmä voidaan
toteuttaa nykyisen virtualisoidun laitteistoympäristön päälle.

Avainsanat: Testiautomaatio, RAN, Virtualisaatio, Robot

Framework, 5G

Contents

List of Abbreviations

1 Introduction 1

2 5G 2

2.1 5G explained 2

2.2 5G capabilities 2

3 Operations and Maintenance 5

4 Current implementation and problems 6

5 Concept 8

6 Virtualization 9

6.1 Virtual Machines 9

6.2 Containers 11

6.3 vRAN 11

6.4 vCU & vDU 13

7 Robot Framework 14

8 Gerrit & Jenkins 18

9 Previous implementation 19

9.1 Deployment steps 19

9.2 Robot test suites 20

10 Conclusion and future steps 22

References 23

List of Abbreviations

IDE Integrated Development Environment

SSH Secure Shell Protocol.

CU Centralized Unit

DU Distributed Unit

vCU Virtualized Centralized Unit.

vDU Virtualized Distributed Unit

5G 5th generation cellular mobile network.

BTS Base Transceiver Station

O&M Operations and Maintenance

MN Mobile Networks

FTP File Transfer Protocol

HTML Hypertext Markup Language

RIDE Robot Integrated Development Environment

RAN Radio Access Network

vRAN Virtualized Radio Access Network

eMBB Enhanced Mobile Broadband

URLLC Ultra-Reliable Low Latency Communications

mMTC Massive Machine Type Communications

LTE Long Term Evolution

OS Operating System

1

1 Introduction

Automation is at its all-time peak of popularity in modern software development

teams because it allows tasks to be executed faster and more reliably than a

human would.

Base Transceiver Station (BTS) Operations and Maintenance (O&M) team in

Nokia Mobile Networks (MN) has a virtualized hardware test environment in use

that lacks automation. The main task for this thesis is to make a concept of an

automation system or a script that would allow software developers to test their

code changes in the virtualized hardware test environment with the least

amount of manual steps necessary. A system of this kind requires lots of

background research and expertise for it to be deployed successfully.

The thesis studies the tools and deployment steps that are necessary for an

automation system of this kind. The thesis also explains the basic concepts of

virtualization, 5G and O&M. The thesis covers the surface of virtualized Radio

Access Network (vRAN) and its sub-units that are running in the virtualized

hardware test server.

The motivation for this task was to reduce the workload of software developers

in BTS O&M that is caused by manual configuration steps. Requiring software

developers to do the same manual configuration steps multiple times is an

unnecessary workload that can and should be automated.

2

2 5G

2.1 5G explained

5G is the 5th generation cellular networking technology and the wireless

telecommunication standard following 1G, 2G, 3G, and 4G. 5G is currently the

newest generation of cellular networking that is in public use and it is one of the

largest trends of the technology industry.

A cellular network or mobile network refers to a radio network, where the link

between end devices is wireless. End devices communicate with each other by

using radiowaves. End devices send radio waves to BTS which transmits them

to other end devices or outer networks. A geographical area with wireless devices

is called a cell. One cell has one BTS that end devices are connected to.

5G connectivity is a major feature for mobile phone manufacturers. Phones must

have integrated hardware that enables them to be connected to 5G networks. 5G

networks in Finland are currently in use in large cities such as Helsinki and

Tampere, but they are not widespread in more rural areas.

2.2 5G capabilities

5G offers improved capabilities from 4G and 4G Long Term Evolution (LTE). 5G

capabilities can be divided into three distinct sectors as seen in the figure below.

3

Figure 1: 5G capabilities triangle [1]

These capabilities are Extreme Mobile Broadband (eMBB), Ultra-reliable Low

Latency Communication (URLLC), and Massive Machine Type Communications

(mMTC) [1]

eMBB in 5G refers to the over 10 Gigabits per second transmission speed of data.

This enables high-resolution streaming of movies over the internet or making

cloud gaming a possibility. Video games require powerful and expensive

hardware, thus making the hobby limited to dedicated gamers, who are willing to

invest hundreds or thousands of euros to be able to play games with maximum

graphical settings. Cloud gaming services have become more common in recent

years, but the bandwidth of current networks is not enough in most cases. Video

games can be streamed from a remote server to any end device over the internet,

thus making dedicated gaming consoles obsolete.

4

URLLC in 5G refers to the under one-millisecond latency. Latency is the time

delay between the user’s action and when the action happens. Low latency offers

reliability which would allow 5G to be used in the medical field. Medical experts

such as brain surgeons could do remote operations from another side of the world

by using a robot that is designed for surgeries. This would allow surgeons to be

available immediately in case of emergency. Working with a machine with near-

zero latency would be the same as being at the operation yourself, except

machines can have added functionality build into them, for example being able to

detect and avoid unwanted scalpel cuts.

mMTC in 5G refers to the possibility of connecting up to million devices in a

square kilometer area to a 5G network. This can be used to build smart cities

where devices communicate with each other. One example of this could be fire

detectors connected to the 5G network. Every fire detector in the city would be

connected to a network and if a fire starts at any point, authorities will be informed

and a firetruck would be automatically dispatched without requiring a person to

see a fire and call the emergency number. [1]

5

3 Operations and Maintenance

Operations and Maintenance (O&M) is defined as a group of network

management functions that provide network fault indication, performance

information, and data and diagnosis functions [2]. BTS O&M team in Nokia MN

develops and maintains 5G software components in BTS radio wave towers that

monitor faults and performance statistics. The BTS configuration is also provided

by BTS O&M.

Faults are monitored in Centralized Units (CU) and Distributed Units (DU) by a

software component. If a fault is detected, an alarm will be raised and the network

operators will be alarmed.

Performance statistics are also monitored in CU and DU by another of BTS

O&M:s software components. If there are performance issues, an alarm will be

raised similarly to the fault software component.

The test automation script that is theorized in this thesis is to be used for the

software components that BTS O&M team develops and maintains.

6

4 Current implementation and problems

Currently, if a developer wants to test their code changes in a hardware test

environment, they need to do multiple manual steps. These steps are

documented in Nokia Mobile Networks (MN) internal documents [3][4].

The user must manually enable debugging logs and give permissions for the

program to write logs to the terminal by modifying configuration files [3].

Sometimes the developer needs to manually update the environment to match

the latest version or roll back the older version which is time-consuming and

complicated [4].

In Nokia MN, it is a common way of working to do code changes in a cloud

server, rather than having the program files locally in their work computers.

Deployment of necessary software development environment and managing it

is realistic only in Linux-based servers.

Currently, the software component’s code changes must be compiled and build

in the development server and transferred to the test server by copying them

from one to another. The most common way to work with remote servers is by

mounting them as network drives in Windows File Explorer. A software

developer will copy the build and packaged software component’s code binary

from the development server to the test server. Windows uses File Transfer

Protocol (FTP) for copying files between local drives or network locations.

Developers connect to both servers with a Secure Shell Protocol (SSH)

connection. Login credentials are asked during login. See figure 2 below.

7

Figure 2. Guide on how to give rights and start a binary of a software

component. [3].

After the software components binary has been transferred to the test server, a

developer must manually give executable rights to the binary and run it, as seen

in the figure above.

The major problem with the current implementation is the need for manual

configurations that developers need to take to get to test their code changes.

This can be solved using automation. Automation is a way to save time, by

making these configurations be done automatically with the use of an

automation script.

8

5 Concept

The objective of this thesis is to theorize an automation script that makes

everything possible with just a single command line input. The following

paragraphs explain how the automation script should behave and what steps

the software developer needs to take.

When a developer is done with their code changes for the software component

they work on, they will push the code changes to Gerrit. After that the developer

can connect straight to the virtualized hardware server, that has an automation

script running. Either the user would have to run the script, or it is automatically

run upon successful login to the server. This script asks for the developers

Gerrit commit identifier and user credentials. The software component with the

new changes will be fetched from Gerrit. Gerrit gets the software components

code as a compiled binary from Jenkins.

The automation script will run all test cases on the software binary. Tests are

fetched from online storage, rather than have them take space on the binary.

Logs from the tests will be saved to the file system and the user will get on-

screen information written to the terminal on which tests were successful or

failed.

The test automation would be implemented using Robot Framework. BTS O&M

team members have used Robot Framework for the deployment of test

automation on an older server. This script has not been ported to the current

server. The Deployment chapter will be based on this script.

9

6 Virtualization

Virtualization is the use of software to create abstract layers on top of computer

hardware. This chapter focuses on the virtualization of servers. Virtualization in

this context means that the hardware capabilities are not directly accessed by the

user but the hardware configuration is made into a virtual copy. Virtualization can

be divided into machine virtualization or containerization [5][6]

Figure 3 Machine virtualization and Containerization [6]

6.1 Virtual Machines

Machine virtualization is used to create Virtual Machines (VM). Figure 3

demonstrates the concept of machine virtualization. Physical server hardware is

virtualized into multiple VM:s using a hypervisor. Virtualization turns the physical

hardware of a server into a virtualized replica. This way a single server is divided

into multiple smaller VM:s. Each VM has its own dedicated operating system,

storage, and applications.

10

Hypervisor is a piece of software that enables physical hardware to be turned into

a virtual replica of itself. This replica can be segmented into smaller virtual

machines. Hypervisors can be divided into Type 1 and Type 2 hypervisors.

Type 1 hypervisors are installed directly on top of the physical hardware. Type 1

hypervisor is sometimes referred as a bare-metal hypervisor. Type 1 hypervisors

are preferred, due to their direct access to hardware. Hypervisors that are directly

connected to hardware are seen as the better performing and more secure

hypervisors because there is no OS in between that adds communication latency.

The lack of host OS makes the virtualization deployment more secure because

having a host OS adds another vulnerability to the system.

Type 2 hypervisors are installed on top of the host OS. In this kind of

implementation host OS is located between hardware and the hypervisor. Type

2 hypervisor is sometimes referred as a hosted hypervisor. Type 2 hypervisors

cause more latency because communication between VM and hardware has to

go through the host OS. The benefit of Type 2 hypervisors is that they are easier

to setup and offer wider compatibility with different kinds of hardware

configurations.

VM works like a traditional computer in the eyes of the end-user. Each VM is an

independent unit, that is not reliant on the other VM:s. VM:s offer the benefit of

having multiple operating systems installed on one server. One server can have

for example its own VM for Windows, Debian, and Ubuntu. Moving VM:s between

hypervisors is easy and flexible. These benefits come at the cost of resources

required. If virtualization of a server is wanted where the operating system will

stay the same in each VM, then the same OS will need to be duplicated in each

VM, thus using lots of resources. Containerisation is the better option in these

types of use-cases. [5][6]

11

6.2 Containers

Containerization is another way to approach virtualization. Figure 3 demonstrates

the concept of containerization. Containerization is built on top of the OS, instead

of hardware like VM:s. This limits every container in a containerized environment

to have the same OS. The benefits of containerization are the lesser

requirements for computing power and storage. Containerization avoids having

to create multiple copies of OS across the containers, thus saving resources. The

OS can be managed and configured for the whole container array, instead of

having to manage and configure each OS like it is done with VM:s.

Containerization uses a container engine instead of hypervisors. A container

engine is a piece of software that handles the user's communication between the

hardware and the container. The container engine runs the containers from the

end-users perspective.

Currently, Nokia MN uses containerization for their hardware test environments.

vCU and vDU have been successfully deployed in VM:s, but it is beneficial to use

containerization as there is no need for multiple operating systems. It is not

realistic to have full 5G deployment for developers to test features. With

containerization, a single cloud server can have multiple containers of Radio

Access Network (RAN) units. Containerization is the logical choice for the task

because the OS layer is the same in vRAN. [5][6]

6.3 vRAN

The hardware test server has an instance of virtualized Radio Access Network

(vRAN) running as the environment. vRAN has multiple use cases, but in this

instance, it can be seen as Radio Access Network (RAN) environment that

operates exclusively in virtual space, without needing physical radio towers or

connected end devices.

12

Figure 4. Radio Access Network visualized. [7].

vRAN consists of Core Network, Centralized Unit (CU), multiple Distributed

units (DU), and multiple Radio Units. Figure 4 shows the topology of typical

RAN deployment.

Core Network is the connection module from RAN to the worldwide internet.

Phone operators use Core Network for routing calls and track data usage.

Centralized Units main purpose is to communicate and command distributed

units. CU is also responsible for non-real-time network layer 2 and 3 functions.

Distributed Units answer to Centralized Units and communicate with Radio

Units. DU is responsible for real-time network layer 1 and 2 scheduling

functions.

Radio Unit is responsible for receiving, transmitting, and amplifying radio signals

received from network devices, such as mobile phones. [7]

13

6.4 vCU & vDU

Virtualized hardware test server is a remote server that has an instance of

virtualized Centralized Unit (vCU) or virtualized Distributed Unit (vDU) running.

vCU and vDU mimic the real CU and DU that are in BTS radio wave towers.

The motive to test in these virtualized hardware servers is to be certain that the

software component with the new code changes works in the actual CU or DU.

When making local changes in the development server, code will be tested by

certain test frameworks. If changed code passes the tests in the development

server then it can be expected that it will also work on actual BTS. However, it is

advised to test in the virtualized hardware test server if the code interacts with

other software components or if the memory allocation or timers are a major part

of the code changes.

Programming languages, such as C++, can be used for memory manipulation.

Sometimes developers need to allocate memory or use pointers that address

the physical memory of the hardware the program is running on. Timings for

RAN software components are crucial and missing them will cause issues for

the whole component.

Nokia MN has separate test servers for vCU and vDU. Developer can reserve

testing slot from an online tool for these servers. The servers have containers

with an instance of vCU or vDU running that developers can use as their testing

environment.

It is important to note that vCU and vDU communicate with each other. In vCU

environment there exists a mimic vDU and the other way around. This mimic

unit’s deployment is a simplified version whose purpose is to send responses to

the main unit.

14

7 Robot Framework

Robot Framework is an open-source automation framework that is commonly

used for test automation and robotic process automation. Robot Framework is

open-source software, meaning anyone can use it for personal or commercial

use cases [8].

Robot Framework was chosen for the task because it is widely used, thus

having good documentation and because it has been developed originally by

Nokia Networks. Robot Framework has been successfully used for test

automation before in BTS O&M development team which was a major reason

for choosing to continue with it as the automation framework. Robot Framework

also supports third-party libraries that improve the potential of the tests.

Robot Framework is a keyword-driven test automation framework. This means

that keywords act the same way as functions from traditional programming

languages. This means that development is done by making smaller functions

which makes the code easier to develop and understand.

Figure 5 Robot Framework Sections. [9]

Data is defined in different sections as shown in the figure above. Different

sections are recognized by their header row. The recommended header format

is “*** Header ***”. [9]

15

Robot Framework uses tabular style syntax which makes writing test cases

more user-friendly and readable. This means that each line of code made in

Robot Framework uses a tabular separation of parts of the command.

Robot Framework supports custom libraries made in Python or Java

programming languages. These libraries are a way to introduce new tools to

expand the possibilities of testing. One of the most used third-party libraries is

SeleniumLibrary which offers tools to interact with web browsers and -sites [10].

SeleniumLibrary has been used by BTS O&M in previous test automation

systems.

Robot Framework programs are executed via a command-line interface, using

Python. Python version 3 onwards is supported. The newest version of Python

was downloaded and added to the system environmental variables.

Robot Framework works in any text editor, but it is beneficial to use an

Integrated Development Environment (IDE). IDE offers tools that make writing

programs easier for developers, such as syntax highlighting, code completion,

refactoring, and debugging.

The next task was choosing an IDE that fills the necessary requirements. The

three main options for developing using Robot Framework are Robot Integrated

Development Environment (RIDE), Visual Studio Code, and Eclipse.

RIDE is a development environment specifically made for Robot Framework,

while Visual Studio Code and Eclipse require third-party extensions to support

Robot Framework.

Visual Studio Code was chosen, because it offers a quality of life additions,

such as easier working with other file types and integrated terminal for

executing the tests. [11]

After downloading Visual Studio Code, Robot Framework Intellisense was

downloaded from the Extensions marketplace. IntelliSense is a general term for

16

various code editing features including code completion, parameter info, quick

info, and member lists. IntelliSense features are sometimes called by other

names such as "code completion", "content assist", and "code hinting”. [12][13]

Figure 6 Robot Framework Test Program

The program seen in the figure above was developed to learn and demonstrate

in-depth about how Robot Framework operates.

In the settings section, SeleniumLibrary is included. The variables section has

two variables: ${BROWSER} and ${URL}. ${BROWSER} states which web

browser is used and ${URL} states which URL to access. In the test cases

section, we have a test case called “Open Google test case”. This test case

calls “Go to Google” keyword. This user-created keyword calls “Open Browser”

keyword which is defined in SeleniumLibrary. We give the two necessary

variables for the call of the keyword which results in Google opening in Google

Chrome browser. [10]

17

The test file is executed by inputting the command “python -m robot ./test.robot”

to the integrated terminal in Visual Studio Code. This command states that

“test.robot” file that is located in the current directory will be executed using

python with robot module.

Upon completion of the tests, Hypertext Markup Language (HTML) files are

generated. These files report the user about in-depth statistics of the tests.

“log.html”, “report.html” and “output.xml” are the default artifact files that Robot

Framework generates.

Figure 7 report.html

The figure above shows the details in report.html. We can see the details of the

test completion such as which tests passed when the tests were run and how

long it took to complete the run.

18

8 Gerrit & Jenkins

Gerrit is a web-based code collaboration tool designed for software developers.

Gerrit works as a storage space for code changes where they get reviewed and

tested before being allowed to submit to the production branch. In the

development server, git commands are configured to automatically push to

Gerrit. Once developer pushes their code changes using git commit and git

push, Gerrit will automatically trigger Jenkins. [14]

Jenkins is an open-source automation server. A popular use case for Jenkins is

to automate software testing in the conjuration of code collaboration tools, such

as Gerrit. Jenkins will compile the software component to a binary. After it has

been compiled, Jenkins will proceed to run unit and system tests for the

software components binary. The developer can follow the process from the

Jenkins pipeline which visualizes the testing process. [15]

The code changes can be merged to the production branch when it has passed

Jenkins verification and two other developers have given their permission as a

+1 and +2 mark. These marks mean that the changes are implemented

according to commonly agreed coding style guidelines and fulfill the

specification required for the feature.

Gerrit would be used to replace the manual copying of build files between the

development server and hardware test server. Once the user connects to the

hardware test server, the automation script would ask for the developer's Gerrit

credentials and they would be able to choose the change to commit from a list

of all their previous code reviews. When a developer chooses their code

change, the build files are fetched from the linked Jenkins page and the testing

process would begin.

19

9 Previous implementation

This chapter will analyze the previous test automation system that has been in

use on older virtualized hardware test servers. The automation system has been

developed by other members in BTS O&M. The chapter will analyze the test

automation part made using Robot Framework and explain the deployment steps

necessary to get the test automation working. The system has not been ported

over for use in the current virtualized hardware test servers. The deployment

steps for the automation system that is theorized in this thesis are identical to the

previous implementation.

9.1 Deployment steps

This automation system consists of scripts made in multiple scripting

languages, where the combination forms a comprehensive automation

deployment.

The automation system starts by connecting to the environment and artifactory.

Artifactory is a storage space for by-products of the software, such as log files

and snapshots of the state of the program. The automation system will push

and pull data between the test server and artifactory during the run, such as log

files and snapshots. After making necessary connections, the automation

system will move to the setup stage.

The setup stage consists of fetching build files from the artifactory to the

environment. Once the files have been fetched, they will be unpackaged to the

file system of the environment.

The next step is to modify build files according to environment configurations.

After the modifications have been done, the system will check if there are builds

from previous runs. The old builds will be deleted and the current build shall be

deployed in its place.

20

Robot Framework is used for the deployment steps from commissioning onwards.

After commissioning has been done, the system will check if the software

component binary that has code changes is running and will have tests run on it.

The user will get real-time status updates in the terminal. If something fails during

the deployment at any point, the user will get error notifications and the current

build will get stopped and cleared from the environment.

Logs and snapshots will be saved to the file system of the test server and in

artifactory. Log files are used by the developer to determine what went wrong

with the deployment. Log files have timestamps and information that was also

outputted to the terminal.

Teardown of the environment will be executed at the end of the deployment

process which resets the environment to the default state.

9.2 Robot test suites

Robot Framework tests are used to execute the remaining deployment steps. The

tests made with Robot Framework in the automation system have been divided

into three files. A set of tests in the same file is called a test suite. Each test suite

represents a remaining deployment step. The remaining deployment steps are

commissioning, testing, and ending the deployment.

The execution order for the test suites has been listed in a text file. The system

will look for the text file during the build and pass it to the robot configuration,

where it is used to define the execution order.

The first test suite is in charge of commissioning. The tests suite includes two test

cases. The first test case's purpose is to do the commissioning. The test will call

a keyword that opens a web browser and logs into a remote server. The

automation for opening the web browser and inputting values to the login fields

is done using SeleniumLibrary [10]. Once the connection has been established,

21

commissioning will be completed with the remote server. The secondary test

case's purpose is to take screenshots of various elements during the

commissioning in the remote server.

The next test suite is executed after the first one is done with the commissioning.

The test suite runs the test cases in the virtualized hardware environment for the

software components’ binary. This will check that the software binary can be run

successfully and runs test cases on it. The results will be printed on the terminal

and collected as log files.

The final test suite contains a test case that handles the ending of the deployment

process. This includes taking screenshots, handling logs and running a teardown

of the environment. Logs are saved to the file system of the server and to the

artifactory. This test suite also runs a teardown of the environment, which resets

the environment to the state it was before the deployment. After this test suite is

executed successfully, deployment is complete.

22

10 Conclusion and future steps

This Bachelor's thesis aimed to find out if automation of virtualized hardware test

environment were plausible and to learn more about how such environment

operates and what backend resources and systems would be needed.

The objective was accomplished by studying virtualization, vRAN, Robot

Framework, Gerrit, Jenkins, and the old implementation of test automation. The

study was completed successfully. Based on this study and the previous

experiences of the development team, it can be concluded that automation for

virtualized hardware environments is plausible and beneficial.

This Bachelor’s thesis can be used in the future as a reference if BTS O&M wants

to implement the automation script that has been conceptualized in this thesis.

Making the actual implementation of such an automation solution is a complex

task that requires lots of technical understanding, resources, and time allocation.

23

References

1 Part 1: The truths and myths of 5G deployment – a technical perspective.
18 October 2019. Online. NGP Capital. <https://ngpcap.com/news/5g-
impact-1> Accessed May 10, 2021

2 Guidelines for the Use of the "OAM" Acronym in the IETF. June 2011.
Online. Internet Engineering Task Force (IETF).
<https://datatracker.ietf.org/doc/html/rfc6291> Accessed May 13, 2021

3 How to test in real HW. Online. Nokia Networks internal document.

Accessed March 10, 2021

4 How to update CU environment. Online. Nokia Networks internal
document. Accessed March 10, 2021

5 Virtualization. 19 June 2019. Online. IBM.
<https://www.ibm.com/cloud/learn/virtualization-a-complete-guide>
Accessed April 30, 2021

6 Containers vs. Virtual Machines (VMs): What’s the Difference?. 16 March
2018. Online. NetApp. <https://blog.netapp.com/blogs/containers-vs-
vms//> Accessed April 30, 2021

7 Open RAN Explained. 16 October 2020. Online. Nokia.
<https://www.nokia.com/about-us/newsroom/articles/open-ran-explained/
Accessed April 30, 2021

8 Robot Framework. Online. <https://robotframework.org> Accessed March
10, 2021.

9 Robot Framework User Guide. Version 4.0.1. Online. <
https://robotframework.org/robotframework/latest/RobotFrameworkUserGu
ide.html> Accessed March 11, 2021

10 SeleniumLibrary. Github. Online <
https://github.com/robotframework/SeleniumLibrary> Accessed April 2,
2021

11 Visual Studio Code. Online. <https://code.visualstudio.com/> Accessed
March 11, 2021

12 Visual Studio Intellisense. 31 March 2021. Online. Visual Studio Code. <
https://code.visualstudio.com/docs/editor/intellisense> Accessed April 22,
2021

13 Robot Framework Intellisense. Visual Studio Marketplace. Online <
https://marketplace.visualstudio.com/items?itemName=TomiTurtiainen.rf-
intellisense> Accessed April 22, 2021

https://ngpcap.com/news/5g-impact-1
https://ngpcap.com/news/5g-impact-1
https://datatracker.ietf.org/doc/html/rfc6291
https://www.ibm.com/cloud/learn/virtualization-a-complete-guide
https://blog.netapp.com/blogs/containers-vs-vms/
https://blog.netapp.com/blogs/containers-vs-vms/
https://www.nokia.com/about-us/newsroom/articles/open-ran-explained/
https://robotframework.org/
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
https://github.com/robotframework/SeleniumLibrary
https://code.visualstudio.com/
https://code.visualstudio.com/docs/editor/intellisense
https://marketplace.visualstudio.com/items?itemName=TomiTurtiainen.rf-intellisense
https://marketplace.visualstudio.com/items?itemName=TomiTurtiainen.rf-intellisense

24

14 Gerrit. Online. <https://www.gerritcodereview.com/> Accessed May 2,
2021

15 Jenkins. Online. <https://www.jenkins.io/> Accessed May 2, 2021

https://www.gerritcodereview.com/
https://www.jenkins.io/

	1 Introduction
	2 5G
	2.1 5G explained
	2.2 5G capabilities

	3 Operations and Maintenance
	4 Current implementation and problems
	5 Concept
	6 Virtualization
	6.1 Virtual Machines
	6.2 Containers
	6.3 vRAN
	6.4 vCU & vDU

	7 Robot Framework
	8 Gerrit & Jenkins
	9 Previous implementation
	9.1 Deployment steps
	9.2 Robot test suites

	10 Conclusion and future steps
	References

