

Jiayi Li

 TIME RECORDER ANDROID

APPLICATION

Technology and Communication
2021

2

ACKNOWLEDGEMENTS

I have got a lot of encouragement and support during the composition of my

thesis.

To my supervisor, Ms. Pirjo Prosi, I would like to offer my sincerest thanks，

whose expertise was invaluable in formulating the research questions and

methodology. Your insightful feedback pushed me to sharpen my thinking

and brought my work to a higher level.

I gratefully acknowledge the effort that I received from Dr. Seppo Mäkinen

and Dr. Ghodrat Moghadampour before. There is no doubt that any attempt

at any level cannot be satisfactorily completed without the help of you.

In addition, I am deeply indebted to my parents for all their great support,

not only on the financial level but also on the mental during the study period.

I thank you for your wise counsel and sympathetic ear. You have always

been there for me, giving me all support I need and unconditionally love me.

I am grateful for you.

3

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Jiayi Li
Title Time Recorder Android Application
Year 2021
Language English
Pages 89
Name of Supervisor Prosi Pirjo

This thesis project aims to develop a time tracking system which allows
users to record their working time at anytime and anywhere. In addition,
they can also search the history records and send the result to their email
if they want. Because of the portability of smartphone and the compatibility
of Android operating system, the Android mobile operating system is
chosen as a design and implementation platform of the project.

Then, in the phase of implementation, the core technologies such as the
implementation of the GUI design, network communication and data
storage have been studied. In details, the primary and advanced
components of Android have been combined to compete the client user
interface, with SharedPreferences, SQLite and MySQL database used for
client data storage by situation. Volley framework was used to interact with
HTTP communication between the client and server sides with PHP and
Golang used for server side development. Finally, the functional
requirements of system demand analysis and performance requirement
were completed.

The last but not the least, the program was tested in functional modules.
The tests showed that the system achieved the requirement of
comprehensive functions and great performance. With the diligent work of
the program developer, this mobile application can satisfy the practical
requirements and improve the efficient of recording time for daily use.

Keywords Android, SQLite, PHP, MySQL, HTTP,JSON, Java

4

CONTENTS
ACKNOWLEDGEMENTS .. 2

1 INTRODUCTION ... 13

2 RELEVANT TECHNOLOGIES AND TOOLS 15

2.1 Application Development Environment.. 15

2.1.1 Operating System ... 15

2.1.2 Java JDK .. 16

2.1.3 Android SDK ... 16

2.1.4 Android Studio .. 16

2.2 Application Technologies .. 17

2.2.1 Android ... 17

2.2.2 XAMPP ... 18

2.2.3 MySQL Database ... 21

2.2.4 Volley .. 21

2.2.5 PHP .. 22

2.2.6 JSON .. 23

2.2.7 Go Language .. 23

3 APPLICATION DESCRIPTION .. 25

3.1 Requirements Analysis of Mobile Tracking System 25

3.2 Use Case Diagram .. 27

3.3 Sequence Diagram.. 28

3.3.1 Sequence Diagram for User Registration 28

3.3.2 Sequence Diagram for User Login 29

3.3.3 Sequence Diagram for User Add Work Case 30

3.3.4 Sequence Diagram for User Edit Category 31

3.3.5 Sequence Diagram for User Check History and Send Result

to Email ... 32

3.3.6 Sequence Diagram for User Log Out 33

4 APPLICATION DESIGN ... 35

4.1 System Architecture .. 35

4.2 Design of Communication ... 36

4.3 User Interface Design .. 38

5

4.3.1 Activity .. 38

4.3.2 Android UI Components ... 39

4.3.3 Fragment .. 48

4.3.4 Graphical User Interface Design 54

4.4 Data Storage Design ... 60

4.4.1 SharedPreferences ... 60

4.4.2 SQLite database ... 60

4.4.3 MySQL database .. 61

5 IMPLEMENTATION ... 64

5.1 Implementation of Registration .. 64

5.2 Implementation of Login .. 66

5.3 Implementation of Home Page .. 69

5.4 Implementation of Edit Page ... 72

5.5 Implementation of History Page .. 73

5.6 Implementation of Navigation Drawer ... 78

6 TESTING ... 81

7 CONCLUSION ... 82

8 FUTURE IMPROVEMENT ... 84

REFERENCES .. 85

APPENDICES

6

ABBREVIATIONS

CRUD Create, Read, Update, and Delete

C/S Client/Server

ER diagram Entity Relationship diagram

FTP File Transfer Protocol

GPS Global Positioning System

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

ID Identity Document

IDE Integrated Development Environment

I/O Input/Output

JDK Java SE Development Kit

JSON JavaScript Object Notation

JVM Java Virtual Machine

OS Operating System

QFD Quality Function Deployment

7

SDK Software Development Kit

UI User Inteface

URL Uniform Resource Locator

XML Extensible Markup Language

8

LIST OF FIGURES AND TABLES

Figure 1. Android architecture ... 18

Figure 2. XAMPP Control Panel ... 19

Figure 3. XAMPP dashboard .. 19

Figure 4. MySQL service running ... 20

Figure 5. phpMyAdmin page with database tables 20

Figure 6. Use Case Diagram .. 27

Figure 7. Sequence Diagram of User Register 29

Figure 8. Sequence Diagram of User Login 30

Figure 9. Sequence Diagram of User Add Working Case 31

Figure 10. Sequence Diagram of User Edit Category 32

Figure 11. Sequence Diagram of User Check History and Send Result

to Email .. 33

Figure 12. Sequence Diagram of User Logout 34

Figure 13. System Architecture ... 35

Figure 14. The lifecycle of Activity .. 39

Figure 15. Determinate and Indeterminate ProgressBar 40

Figure 16. Spinner items ... 41

Figure 17. TimePicker Dialog .. 42

Figure 18. DatePicker Dialog .. 43

https://d.docs.live.net/8f92cf3d228fcb1e/文档/thesis_model_2020_%20(修复的).docx#_Toc71402417

9

Figure 19. Chronometer .. 43

Figure 20. simple AlterDialog .. 44

Figure 21. Toast message .. 44

Figure 22. Sliding Navigation Drawer .. 47

Figure 23. Two separate versions of the same screen, each with a

different screen size... 49

Figure 24. The lifecycle of Fragment .. 50

Figure 25. Comparison of Fragment and Activity lifecycle 51

Figure 26. Register Page .. 55

Figure 27. Login Page .. 56

Figure 28. Home Page .. 57

Figure 29. Edit Category Page .. 58

Figure 30. History Page .. 59

Figure 31. Email with result table .. 59

Figure 32. ER diagram .. 62

Figure 33. loginregister database ... 63

Table 1. Quality Function Deployment for Teacher 25

Table 2. Non-function Requirement for System Development 26

Table 3. Development environment of Android client 64

Table 4. Test Case table…………………………………………………87

https://d.docs.live.net/8f92cf3d228fcb1e/文档/thesis_model_2020_%20(修复的).docx#_Toc71402421

10

Code Snippet 1. StringRequest example .. 37

Code Snippet 2. TimePicker code .. 42

Code Snippet 3. DatePicker code ... 42

Code Snippet 4. ListView adapter ... 45

Code Snippet 5. ListViewAdapter class .. 46

Code Snippet 6. FragmentTransaction ... 52

Code Snippet 7. MainFragment class ... 53

Code Snippet 8. MainActivity class ... 54

Code Snippet 9. StringRequest object in SignUpActivity 66

Code Snippet 10. register.php file ... 66

Code Snippet 11. StringRequest object in LoginActivity 68

Code Snippet 12. Login.php file .. 69

Code Snippet 13. Handler object in MianActivity 70

Code Snippet 14. addworkcase.php file ... 71

Code Snippet 15. ChangeFragment method in MainActivity............. 72

Code Snippet 16. SQLiteHelper class .. 73

Code Snippet 17. StringRequest object of searching history in

MainActivity ... 75

Code Snippet 18. WorkinghourAdapter class 76

Code Snippet 19. Search history function in Golang 76

11

Code Snippet 20. StringRequest object of send email in MainActivity

 .. 77

Code Snippet 21. Send email function in Golang 78

Code Snippet 22. Navigation methods ... 79

Code Snippet 23. onClick properties of Navigation items 80

12

LIST OF APPENDICES

APPENDIX 1. Testing case table

13

1 INTRODUCTION

This thesis focused on the development of an Android time recording appli-

cation to help lecturers keep track of their working hours more efficiently.

Advances in mobile technology have improved people's lifestyles over the

last decade, making their lives more convenient. Meanwhile, people's reli-

ance on mobile phones allows mobile applications to thrive, promoting the

rapid development of mobile applications. For instance, people get used to

replying to emails while waiting for a plane at the airport. Young people have

long been used to chatting with friends on social media while riding the bus.

Due to portability, people have become accustomed to using smartphones

to deal with daily affairs. It is widely acknowledged that the mobile internet

era has arrived.

At present, the major platforms are primarily the Android and iOS operating

systems. The Android phones have gradually overcome their lagging issues

thanks to continuous improvements in smartphone hardware configuration

and operating system optimization. Furthermore, Android-based mobile de-

vices are more popular than iOS-based mobile devices due to Google's

openness and tolerance for Android. Android devices offer a wider range of

services and applications, as well as a greater number of free downloads.

Mobile phones which run the Android OS hold 83.8 percentage shares of

the market in 2021 /1/. Since the emergence and breakthrough of new tech-

nologies, developers have begun to try to apply new technologies in variety

application scenarios.

There are several time management applications on the market, such as

TimeRecorder and Hours. The time management applications record the

time that customers spend and summarize the trend of time usage. The

objective of this thesis project was to develop a time tracking application

which records teachers’ working hours, summarizing and analyzing the time

spent by the lecturers. Finally, a full-time report will be sent to lecturers'

14

email, therefore the teachers can better stay within the given hourly re-

sources.

The research purpose of this topic is to explore the entire development pro-

cess of this Android application including the design of user interface, back-

end logic, network communication protocol and data storage from scratch.

In the implementation of user interfaces, the key components, such as dif-

ferent layouts, navigation drawer and fragment were studied. For the net-

work communication, the Volley framework was chosen, which can deal

with the HTTP request successfully. In the data storage part, suitable stor-

age solution was made according to the requirement of different business

scenarios. For example, MySQL database was used to store the user’s reg-

istration information and working records data. The SQLite database was

used to store working categories value and SharedPreferences to store the

user’s id and email; when the user logs in and reuses these data when sav-

ing the working records and sending email.

This thesis is structured as follows. Chapter 2 gives the theoretical research

about technologies. Chapter 3 describes the application description. Chap-

ter 4 describes the application design work. Chapter 5 provides the imple-

mentation work. Chapter 6 presents the test results of the project. Chapters

7,8 concludes the overall work and future improvement.

15

2 RELEVANT TECHNOLOGIES AND TOOLS

The related technology and tools used in software development are de-

scribed in this section. The tools used in the application development envi-

ronment are introduced first, followed by the technologies used in applica-

tion implementation and testing.

2.1 Application Development Environment

In order to start developing an Android application, the appropriate devel-

opment environment needs to be set up firstly.

2.1.1 Operating System

First of all, an operating system (OS) is required because it manages differ-

ent resources of the computer. A user interface is also established by the

OS and OS can execute for multiple applications. The Microsoft Windows,

Linux, Apple macOS, Android and Apple’s iOS are the most common oper-

ating systems. However, the hardware needs to be appropriately chosen in

order to avoid some unexpected problems when developing the Android

applications. For instance, the powerful M1 chip is not perfect for developing

Android applications yet. It is not possible to install Intel HAXM for Android

Emulator, yet even though there is an Android Emulator provider for M1.

The emulator is still in the preview stage /2/. The appropriate OS for Android

application development are:

• Microsoft Windows 8 or later version

• Linux (includes the GNU C Library) 2.7 or later version

• Mac OS X 10.5.8 or later version (Intel chip)

16

2.1.2 Java JDK

Java Development Kit (JDK) is a software development kit which contains

essential tools to write Java programs. The JDK includes a compiler to con-

vert the Java code into bytecode. All JDK versions comes bundled with the

Java Runtime Environment (JRE). The JRE is a piece of software which

contains class libraries, loader class, Java Virtual Machine (JVM) and other

supporting files. The JVM that has many libraries, tools and frameworks of-

fers a platform-independent way of executing the Java source code. The

JVM comes with a Just-in-Time compiler which converts the source code

into machine language. Java JDK 5 and JRE 6 are the minimum required

versions for Android application development.

2.1.3 Android SDK

The Android software development kit (SDK) contains a comprehensive set

of software development tools, libraries, sample code and documentation.

The corresponding SDK that comes with the Google newly released update

of Android is included in the Android Studio Integrated Development Envi-

ronment (IDE). The Android SDK provides all needed tools for developing

programs from scratch, debugging and testing on virtual devices.

2.1.4 Android Studio

Android Studio that is an official IDE for Android development was an-

nounced at the Google I/O conference in 2013. Google and JetBrains de-

veloped the Android Studio specifically for Android development. The IDE

can be downloaded from the official developer’s website. Android Studio

consists of all necessary tools for building Android applications.

17

2.2 Application Technologies

2.2.1 Android

Android is a Linux-based operating system. It was announced by Google on

5 November 2007 with the Smartphone operating system. The platform con-

sists of operating system, middleware, user interface and application soft-

ware. It is regarded as the first fully open and comprehensive mobile termi-

nal software.

It is comparatively easier to build and release applications on Android due

to Google's open source and openness policies than on iOS. Developers

can call the hardware devices such as mobile phones, GPS, gyroscope,

camera and so on according to their own application needs, and can also

access local contacts, calendars and other information. The development of

applications on Android does not require Google authentication, so the

whole application market of Android is flourishing.

Android can seamlessly integrate with Google's map service, email system

and search service, and some of them have even been embedded into the

Android system. Android was released in 2007 and the latest version is An-

droid 8.0.

From top to bottom, the Android device architecture is separated into five

layers: the application layer, application framework layer, system runtime

layer, hardware abstraction layer, and Linux kernel layer. Figure 1 presents

the system architecture of Android.

18

Figure 1. Android architecture /3/

2.2.2 XAMPP

XAMPP (Apache-MySQL-PHP-PERL) is a powerful station-building integra-

tion package whose original name was LAMPP, but the new version was

changed to XAMPP to prevent confusion. It works on a variety of operating

systems, including Windows, Linux, Mac OS X, Solaris, and others.

Installing Apache servers is not easy, as many users have discovered from

their own experiences. Adding MySQL, PHP, and Perl to the combination is

even more difficult. XAMPP was developed as an easy-to-install Apache

distribution with MySQL, PHP, and Perl to prevent these complicated steps.

After downloading XAMPP, we can launch the XAMPP Control Panel, as

shown in Figure 2:

19

Figure 2. XAMPP Control Panel

When starting the Apache program, the word 'Apache' turns green. Then it

can open the browser to reach localhost (or 127.0.0.1 IP address), and the

view shown in Figure 3 indicates that the server environment was success-

fully installed.

Figure 3. XAMPP dashboard

Next, XAMPP can be used to test the MySQL service. By clicking ‘Admin'

after the MySQL service has started, as shown in Figure 4 and the

phpMyAdmin page shown in Figure 5 will come up:

20

Figure 4. MySQL service running

Figure 5. phpMyAdmin page with database tables

21

2.2.3 MySQL Database

Database refers to a data set that is stored together in a certain way, can

be shared with multiple users, has as little redundancy as possible, and is

independent of the application program. It can be regarded as an electronic

filing cabinet - the place where electronic files are stored. Users can add,

query, update and remove data on the file, as well as other operations. A

warehouse used to access and manage certain data.

MySQL is a relational database management system developed by MySQL

AB company in Sweden, and currently belongs to Oracle company. MySQL

is a relational database management system. Rather than storing all data

in a massive warehouse, the relational database saves it in separate tables,

which improves speed and flexibility.

Since MySQL uses a C/S architecture, there are two programs in operation.

The MySQL server program, also known as the mysqlId program, is one of

them. It is responsible for monitoring and handling service requests from

network clients and operates on the database server. According to these

requests, it accesses the contents of the database, and then sends the rel-

evant information back to the client /4/. The other program is the MySQL

client program, which is responsible for connecting to the database server

and issuing commands to tell the server what it wants to operate.

2.2.4 Volley

We almost always have network technologies to use when building Android

applications, and most applications will transmit and receive network data

through the HTTP protocol. The two main HTTP communication methods

supported by the Android system are HttpURLConnection and HttpClient.

These two classes can be found and used frequently in almost every project

code.

22

The use of HttpURLConnection and HttpClient, on the other hand, is com-

plicated. It is possible to have to write plenty of repetitive code if it is not

properly encapsulated. As a result, several Android network communication

systems, such as AsyncHttpClient, have been developed. In the internal,

AsyncHttpClient encapsulates all HTTP communication information. By

simply calling a few lines of code, it can complete the communication oper-

ation. Another example is Universal-Image-Loader, which simplifies the pro-

cess of viewing network pictures on the interface. Developers will not have

to worry about how to get pictures from the internet, how to start threads,

how to recycle picture tools, or any other information. Universal-Image-

Loader has done an excellent job.

The Android development team recognizes the need to simplify HTTP com-

munication, so at the 2013 Google I/O conference, they introduced Volley,

a new network communication system /5/. Volley combines the benefits of

both AsyncHttpClient and Universal-Image-Loader. It can not only interact

with HTTP as efficiently as AsyncHttpClient, but it can also load images over

the network as efficiently as Universal-Image-Loader. Volley has made sig-

nificant performance improvements in addition to being quick and easy to

use. Its purpose in design is to be well-suited to network activity with little

data but regular contact. Volley's efficiency would be low for network oper-

ations which involve large amounts of data, such as uploading files.

2.2.5 PHP

PHP is a server-side HTML scripting language. It is a versatile scripting lan-

guage widely used in open source, especially suitable for web development

and can embed HTML. Its syntax is close to C, Java and Perl, and it is easy

to learn. The language allows web developers to write dynamic and interac-

tive web pages quickly.

23

2.2.6 JSON

JSON is a data structure that can be used instead of XML. It is more light-

weight than XML and has the same definition potential as XML. Because of

its compactness, data transmission flow in the network would be reduced.

While JSON is just a string, the elements are labelled with symbols.

{ }: Objects are indicated by curly brackets.

[]: Square brackets are used to represent an array.

"": A property or value is included inside the double quotation marks.

: The colon means that the value of the latter is equal to the value of the

former (this value can be a string, a number, or another array or object)

So {"name": "Michael"} can be understood as an object containing the name

of Michael.

And [{"name": "Michael"}, {"name": "Jerry"}] represents an array containing

two objects.

Of course, it can also use {"name": ["Michael", "Jerry"]} to simplify the above

part. This is an object that has a list of names.

2.2.7 Go Language

Go (also known as Golang) is a programming language developed by

Google, it is strongly typed, compiled, parallel and has garbage collection

function. The Go language is specially optimized for the programming of

multiprocessor system applications. The program compiled by go language

is comparable to the speed of C or C++ code, and it is more secure and

supports parallel processes. The Go language is mainly used for server-

side development and is suitable for the development of "large-scale soft-

24

ware". It has a long development cycle, supports cloud computing, and com-

bines the efficiency of traditional compiler language with the ease of use

and expressiveness of script language. /6/

25

3 APPLICATION DESCRIPTION

This chapter first describes the requirements analysis process of the mobile

tracking system, then analyses the system's function and performance re-

quirements from the system development. After obtaining the overall archi-

tecture scheme of the system illustrated by Use Case Diagram, each func-

tion module of the system will be presented by Sequence Diagram.

3.1 Requirements Analysis of Mobile Tracking System

The requirements analysis of the system is an important step before the

system development. The further implementation and testing can be done

smoothly only by clarifying the system criteria priorities and rendering a rea-

sonable and feasible architecture scheme. Quality Function Deployment

(QFD) is a process and collection of tools for defining consumer require-

ments and converting them into comprehensive engineering specifications

and plans for manufacturing the products that meet those requirements. The

Quality Function Deployment (QFD) process is perhaps the most powerful

methodology for catching and listening to the “voice of the customer” /7/.

Table 1 below declares the function requirements expected from the users

by priority.

Table 1. Quality Function Deployment for The User

Must have Requirement with priority level 1

• The application must have authentication pages.

• The user must be able to login the system by providing email and password.

• The user must be able to logout the system from the home page.

• The application must have time tracking system, for example, chronometer.

• The user must be able to select date, working types and record working

hours from home page.

• The user must be able to add/delete working categories.

• The corresponding list must be able to be updated with newest value.

• The user must be able to retrieve history records and send result to email.

26

• The application must be able to calculate total hours of retrieving list.

Should have Requirement with priority level 2

• The user should be able to see response result if authentication fails.

• The user should be able to reset chronometer for error operation.

• The user should be warned if no records satisfying the filters conditions.

• The application should be user-friendly.

Nice to have Requirement with priority level 3

• The user can see the summary of history record in pie chart.

• The user can reset the password if forgetting password.

Table 2. Non-functional Requirements for System Development

Requirement Description

Safety Only registered users can access to the program. Users need to

login to the program with registered information.

Usability The user interface is fancy, so the new users can operate system

without doubt.

Functionality The program can provide users with various operations and accu-

rate result.

Maintainability The system should be able to operate continuously and stably af-

ter development and testing

Table 2 states the non-functional requirements which are requested to

achieve for system development. The system must first be smooth and fea-

sible, then maintain safe running, and eventually, in the latter stages of the

project, simple maintenance.

27

3.2 Use Case Diagram

Diagrams for case use are often used to define functions and the connec-

tions between roles and use cases. They describe who will be using the

system and what they will be able to do with it. A use case diagram contains

multiple model elements, such as systems, actors, and use cases, and

shows various relationships between these elements, such as generaliza-

tion, association, and dependency. It displays to an external user a func-

tional model diagram of the system. /8/

The actors in this application are users. Users need to first create accounts

on the Registration page before they can login to the program with their

registered information. After signing into the program, users can use the

chronometer to record working hours, edit working categories, access his-

tory records using the filters feature, and submit a list of results to users’

email addresses. They can also log out of the system at any time. The use

case diagram is presented in Figure 6.

Figure 6. Use Case Diagram

28

3.3 Sequence Diagram

A sequence diagram is a diagram that depicts the relationship between ob-

jects in sequential order. The sequence diagrams show the interaction be-

tween objects as well as the order in which messages are exchanged be-

tween them. The sequence diagram's modeling elements primarily include:

actor, lifeline, message, and so on. In this section, there are several se-

quence diagrams that demonstrate the key use case of running this android

program in order to get a better understanding of the role of each part of

each Activity.

3.3.1 Sequence Diagram for User Registration

The user register page is the first page that appears after starting the pro-

gram. The user should fill in his or her details to the specified blank fields

on this page, such as the full name, email address, password, and confirm

password. After clicking the "SignUp" button, the user may send the details.

If any blank fields are not filled or the password does not fit the confirm

password, the device will show an error message. While all information is

filled out correctly, the device will transfer the data to the server side using

the Volley framework, and the server will encrypt the password into a hash

model to accomplish the purpose of securing the user's privacy. The server

side would then use PHP scripts and INSERT INTO statement of SQL to

insert the data into the MySQL database. The register page will show the

message "Register Success!" If the procedure for entering user data into

the database is correct. Otherwise, the recipient will get an error message

that says "Register Error!". In addition, if the user already has an account,

there is a link below the submit button that the user may choose to press.

As a result, the registration page will redirect to the login page, allowing

users to log in directly. Figure 7 shows the sequence diagram for this whole

process.

29

Figure 7. Sequence Diagram of User Register

3.3.2 Sequence Diagram for User Login

After creating an account, the user can access the application using his or

her email address and password. First, the user must fill in the blank fields

with the registered information and press the Login button; then, using the

Volley framework, the filled data will be posted to the server side. After that,

the Login server can use the SELECT statement of SQL query with email

data as a condition parameter to retrieve the user's registered password

value from the MySQL database. The Login server would then need to verify

that the registered password value matches the password entered by the

user on the Login page. If these two values are the same, this page will

show the confirmation message "Login Success!" before returning to the

home page. Otherwise, an error message would be shown on the Login

page. Figure 8 shows the sequence diagram for this whole process.

30

Figure 8. Sequence Diagram of User Login

3.3.3 Sequence Diagram for User Add Work Case

This key responsibility of this application is to track of teachers' working

hours. After logging into the program, the user will be taken to the home

screen, which has a sliding menu in the top corner. On this home page, the

user can choose the working date, the working types from two drop-down

lists, and the working hours from three measurement methods. The first

method involves pressing the chronometer's start button before he or she

begins working and then pressing the stop button when the job is completed.

The second method is to enter the start and end times. The last method

allows the user to input the working hours value directly into the result view-

ing space of the first two methods, which is clearly more convenient than

the other methods. Once the user has completed all the fields and clicked

the Save button, the device will send all the information to the server side.

The data would then be inserted into the MySQL database using PHP

scripts and INSERT INTO statement of SQL by the server. If the operation

is successful, the server will receive the MySQL confirm response and dis-

play the message "Data added success!" on the home page. Otherwise, the

server will receive an error response from the database and display the error

31

message instead. Figure 9 shows the sequence diagram for this whole pro-

cess.

Figure 9. Sequence Diagram of User Add Working Case

3.3.4 Sequence Diagram for User Edit Category

To make the process of recording time more flexible, the user can add or

remove values from a single drop-down list showing the working type that

appears on the home page. After pressing the Edit button next to the list,

the user would be taken to the edit page. On this page, the user can fill in

the blank space with the category value he or she wishes to add to the list,

then press the ADD button. The value will be entered into the CATEGORY

table of the SQLite database. By entering the category name and clicking

the REMOVE tab, the user may also delete category values that are no

longer in the list. Finally, the user must press the UPDATE button to display

the updated values in the list. In order to achieve that, the SELECT state-

ment of a SQL query will be used in the SQLiteHelper Object to search and

retrieve all the category values in the CATEGORY to the ArrayList. The ob-

32

ject would then use Arrayadapter to set all the group values into the display-

ing list. As a result, the spinner on the home page and the list that appears

on the edit page will both simultaneously refresh with the most recent array

values. Figure 10 shows the sequence diagram for this whole process.

Figure 10. Sequence Diagram of User Edit Category

3.3.5 Sequence Diagram for User Check History and Send

Result to Email

There is a sliding menu in the top left corner that appears on the home

screen. Three options are included in this menu, home, history and logout.

If the user wishes to review the record history, then the user is sent to the

History page by clicking on the History icon. On this page, the user can

choose the two values of the working types and set the start/end date that

he or she wants to see. When he or she has configured all the filters, the

data will be posted to server side using Volley framework after the user

33

clicks the SET button. The server would then search for the user's history

records in the MySQL database using the SELECT statement of a SQL

query with posted data as parameters to retrieve the user's history rec-

ords. Finally, on the History page, all recovered records will be put in the

ListView below the SET button. As a result, the user will view the history

records based on the given period and different categories, with the total

working hours shown below the column. If the user wishes to send the result

report by email, the SEND EMAIL button is pressed after receiving the result

records. The Email Server will directly set the result record value into a table

written in HTML format as the email content. Following that, the user will

receive an email with the same table result that appears on the history page.

Figure 11 shows the sequence diagram for this whole process.

Figure 11. Sequence Diagram of User Check History and Send Result to

Email

3.3.6 Sequence Diagram for User Log Out

If a person has logged into the program, he or she can also log out. After

entering the login information and successfully reaching the home page, the

user can press the Logout value in the sliding menu as previously men-

tioned, and a dialog with the warning message "Are you sure you want to

34

log out?" appears. If you are unsure about that, click the NO button. In com-

parison, if the user clicks the YES button, the application page will be redi-

rected to the Login page. Figure 12 shows the sequence diagram for this

whole process.

Figure 12. Sequence Diagram of User Logout

35

4 APPLICATION DESIGN

This section mainly introduces the system architecture, design of communi-

cation protocol, the user interface design, database design.

4.1 System Architecture

There are two sections of this system, the first section is the client side which

displays the user interface of the application. The other section is the server

side which provide server of storing data. For the server side, the main body

uses Apache + MySQL + PHP to construct the application software for the

corresponding server architecture of the HTTP request module. The server

solution includes the Apache architecture, which is used to create the main

structure of the server, and MySQL, which is used to store the back-

end data as seen in Figure 13. The development of the client side is based

on the Android operation system and the server side is deployed on XAMPP.

Figure 13. System Architecture

The client uses the HTTP protocol to reach the server, which then executes

the requested process and returns the corresponding data. The JSON data

format is used when exchanging data between the client and the server.

36

4.2 Design of Communication

The communication protocol serves as the connection between the client

and the server in a C/S architecture system. The HttpURLConnection pro-

vided by JDK (java development kit), HttpClient supported by Apache, and

some mainstream open-source frameworks are the main ways to achieve

network communication on the Android platform.

In this program, the Volley framework was used in the HTTP network com-

munication of the Android client module's "register and login," "add work

case," "check history," and "send email" functions.

Volley is quite simple to use. First, it will submit an HTTP request and get

an HTTP response to the most fundamental HTTP correspondence. To start,

it first needs to obtain a RequestQueue object that can be obtained with the

following method:

RequestQueue mQueue =Volley.newRequestQueue(context);

The RequestQueue object obtained here will cache all HTTP requests and

then submit these requests simultaneously according to an algorithm. Be-

cause RequestQueue is well suited to high concurrency, in any activity that

needs to communicate with the network basically, one RequestQueue ob-

ject is created. /9/

Next, it is needed to create a StringRequest object to submit an HTTP re-

quest as seen in Code Snippet 1:

37

StringRequest stringRequest = new StringRequest(Request.Method.POST,
url, new Response.Listener<String>() {
 @Override
 public void onResponse(String reposnse){
 Log.e("TAG", response);
 },

new Response.ErrorListener() {
 @Override
 public void onErrorResponse(VolleyError error) {
 Log.e("TAG", error.getMessage(), error);
 }
 }) {
 @Override
 protected Map<String, String> getParams() throws AuthFail ureEr-

ror {
 Map<String, String> map = new HashMap< >();
 map.put("params1", value1);
 map.put("params2", value2);
 return map;
 }
};

Code Snippet 1. StringRequest example

StringRequest requires four parameters to be passed to its constructor. The

first parameter is the HTTP function, the second parameter is the URL ad-

dress of the target server, the third parameter is the callback for an effective

response from the server, and the fourth parameter is the callback for a

failure response from the server. Volley can attempt to obtain the POST

parameters by calling the getParams() method in Request, the parent class

of StringRequest.

Finally, as shown below, add this StringRequest object to RequestQueue:

mQueue.add(stringRequest);

Furthermore, since Volley would need to connect to the Internet, the Internet

permission must be added to the AndroidManifest.xml:

<uses-permission android:name=”android.permission.INTERNET” />

38

4.3 User Interface Design

4.3.1 Activity

Activity is one of the four major components of Android. It is a visual inter-

face that gives users a window to process instructions. We must call the

setContentView method after we have generated the Activity to complete

the presentation of the interface and provide users with an integrated en-

trance. Activity is the most common used component in development since

almost everything that can be seen in the Android APP depends on Activity.

Activity is managed by the Activity task stack. If we now open an Activity A,

the Activity B will be put on top of the stack and labelled as running state

when we open a new Activity B. At the same time, Activity A is tucked under

the stack and goes into the background. If Activity B, which has just been

opened, is destroyed, Activity A will return to the top of the list.

Figure 14 illustrates the lifecycle of Activity, the rectangles represent the

methods that Activity needs to callback between states. The colored ovals

represent the mainly states that Activity is in.

39

Figure 14. The lifecycle of Activity /10/

4.3.2 Android UI Components

Some Android common layouts were used in the project. There are five

common layouts in the system SDK in Android. All layouts inherit View-

Group, namely LinearLayout, RelativeLayout, FrameLayout, AbsoluteLay-

out, TableLayout.

LinearLayout is a linear layout control, a subclass of ViewGroup, that sorts

the child views according to the value of the android:orientation attribute and

can arrange them vertically or horizontally. Each LinearLayout subview will

appear on the screen in the order that they appear in the XML.

RelativeLayout is a relative layout in which the component location is deter-

mined based on its relative position. A component needs to depend on an-

other control or a parent component. In actual layouts, this is one of the

40

most widely used layout methods. It is more flexible, and has many attrib-

utes, but it is still more complex to use. (For example, to build a text view

with the attribute toLeftOf=”@id/my button” to put a text view on the left side

of a button.)

FrameLayout is one of the simplest layouts in Android, which simply opens

a blank space on the phone. All components will be located on the upper

left corner of this field when adding components to it. Only the top compo-

nent can be shown at the same time if all the components are the same size.

Of course, the alignment can be defined by adding the layout_gravity attrib-

ute to the component.

Some Android primary components were used in the project. In Android, the

ProgressBar is most widely used. There are two forms of ProgressBars:

determinate and indeterminate. What is determinate is that the progress can

be seen clearly, and what is indeterminate is that it is not clear, and it is not

sure how long an operation will take to complete. In real enterprise devel-

opment, a determinate progress bar is generally used to indicate the pro-

gress of downloading files, and an indeterminate progress bar is used to

indicate that the network is being accessed. Figure 15 below shows these

two types of progress bars.

Figure 15. Determinate and Indeterminate ProgressBar

Spinner is a drop-down control of the Android system. A collection list oc-

curs when the spinner is pressed, and it looks like a button. A spinner col-

lection list is shown in Figure 16. The XML android:entries attribute can be

41

used to specify a spinner option, or you can use a data adapter to program-

matically load items.

TimePicker Dialog is the time control in Android applications appearing as

a pop-up dialog box to let user choose time. It needs to implement the On-

TimeSetListener interface as seen in Code Snippet 2. The result time can

be set in specific format by calling SimpleDateFormat object and the result

is as Figure 17 shows.

final Calendar calendar = Calendar.getInstance();
 TimePickerDialog.OnTimeSetListener timeSetListener = new
TimePickerDialog.OnTimeSetListener() {
 @Override
 public void onTimeSet(TimePicker view, int hourOfDay, int
minute) {
 calendar.set(Calendar.HOUR_OF_DAY, hourOfDay);
 calendar.set(Calendar.MINUTE, minute);
 SimpleDateFormat simpleDateFormat = new SimpleDateFor-
mat("HH:mm");
 time.setText(simpleDateFormat.format(calendar.get-
Time()));
 }
 };
 new TimePickerDialog(getActivity(), timeSetListener, calen-
dar.get(Calendar.HOUR_OF_DAY), calendar.get(Calendar.MINUTE),
true).show();

Figure 16. Spinner items

42

Code Snippet 2. TimePicker code

Figure 17. TimePicker Dialog

In Android applications, date controls include DatePicker and DatePicker-

Dialog, which are essentially the same. The use of DatePickerDialog is a

little more complicated. It appears as a pop-up dialog box and needs to im-

plement the OnDateSetListener interface (mainly the onDateSet method).

Calendar calendar = Calendar.getInstance();
 final int year = calendar.get(Calendar.YEAR);
 final int month = calendar.get(Calendar.MONTH);
 final int day = calendar.get(Calendar.DAY_OF_MONTH);
 DatePickerDialog datePickerDialog = new DatePickerDialog(Main-
Activity.this, new DatePickerDialog.OnDateSetListener() {
 @Override
 public void onDateSet(DatePicker view, int year, int
month, int day) {
 month = month + 1;
 String date = year + "-" + month + "-" + day;
 editText.setText(date);
 }
 }, year, month, day);

Code Snippet 3. DatePicker code

In this way, when the date in DatePickerDialog is changed, the date in edit-

Text changes accordingly. The result is seen in Figure 18:

43

Figure 18. DatePicker Dialog

Chronometer can be used as a timer to see the time passage rather than

the phase rise. It is extremely helpful when recording the time, a user takes

to carry out an action, or when limiting the time in the game is required. Here,

the Chronometer object format property can be used to configure the text

around the viewing time. The time and additional text only appears in after

calling the start() method To interrupt the timer, the stop() method may be

called. The setBase() method is used to set the starting point of the timer.

When the timer is set to 0, the timer will start from the last time the phone

was restarted. Figure 19 below presents the effect picture of Chronometer.

Figure 19. Chronometer

When developing for Android, it is common to bring up several dialog boxes

on the Android app, such as to ask the user a question or to give the user a

choice (such as deleting dialog box, warning dialog box). The AlertDialog

dialog box implements these features with the title, content, image, and two-

button listen events set. Figure 20 depicts the running influence.

44

Toast is a prompt method in the Android system, displaying a paragraph to

prompt the user. The function of the Toast is to inform the user of what is

going on right now. It cannot interfere with the user's operation, so the user

will only passively acknowledge it. Toast is very easy to use; the official SDK

has contributed to encapsulating it. The easiest way to use it is to call the

static method makeToast of the Toast class and enter three parameters:

context, prompt content, and display duration:

Toast.makeText(this,"This is a toast",Toast.LENGTH_LONG).show();

The makeText method returns the Toast object that appears while the show

method is called. Figure 21 illustrates the operational effect.

Figure 21. Toast message

Figure 1: simple AlterDialog Figure 20. Simple AlterDialog

45

Some Android advanced components were used in the project. In Android

development, ListView is a very common component, which displays the

specific class content in the form of a list and can be displayed adaptively

according to the length of the data.

The display of the list requires three elements:

• ListView: This is the view that is used to display the list.

• Adapter: A data mapping intermediary that connects the data to the

ListView.

• Data source: Each row of data in the data source corresponds to a row

of View in the ListView.

Using a pre-made adapter class is the simplest way to connect data to a

view. SimpleAdapter can be used to map static data stored in an array. Sim-

pleCursorAdapter makes it simple to bind data from a query. Both adapters

need several parameters to map the underlying data to each item's display

structure. A simple example is seen in Code Snippet 4:

SimpleCursorAdapter adapter = new SimpleCursorAdapter(this, an-
droid.R.layout.simple_list_item1, cursor, new String[] {TITLE}, new
int[] {android.R.id.text1});
setListAdapter(adapter);

Code Snippet 4. ListView adapter

The code creates a SimpleCursorAdapter that can bind data to the built-in

simple_list_item1 layout. This layout is used to represent a single line of text

in the ListView. All data is mapped to the ID of the view in the layout based

on the marked column of the database. Once the adapter is created, it will

be bound to the AdapterView, which will display the data to the user.

When there are just a few views, a simple adapter will suffice, but for more

complex data, a custom adapter is required. To create a custom adapter, it

is needed to override the Adapter class and implement the getView method.

46

We create a ListViewAdapter class, derived from BaseAdapter, and we

override four methods as seen in Code Snippet 5.

public class ListViewAdapter extends BaseAdapter{
 private List<String> data;
 private LayoutInflater inflater;

public ListViewAdapter(Context context,List<String> data){
 Inflater=LayoutInflater.from(context);
 this.data=data;
}
@Override
public int getCount(){
 return data.size();
}
@Override
public Object getItem(int position){
 return data.get(position);
}
@Override
public long getItemId(int position){
 return position;
}
@Override
public View getView(int position, View converView, ViewGroup parent){
 ViewHolder viewholder;
if(converView==null){
 viewholder=new ViewHolder();
 converView = inflater.inflate(android.R.layout.simple_list_item_1,
parent, false);
 viewholder.text1 = (TextView) convertview.findViewById(an-
droid.R.id.text1);
 converView.setTag(viewHolder);
}else{
 viewHolder=(ViewHolder) convertView.getTag():
}
viewHolder.text1.setText(data.get(position));
return convertView;
}
private class ViewHolder{
 private TextView text1;
}
}

Code Snippet 5. ListViewAdapter class

When the ListView begins to draw, the system first calls the getCount() func-

tion to determine the listView's length based on the return value, and then

calls getView() to draw each line one by one based on this length. The writ-

ing of this adapter is a relatively standard fixed writing so far. The

47

ViewHolder class is used in the getView method. This is due to ListView's

RecycleBin mechanism, which reuses the ItemView while the list is scrolled.

The advantage of this is that no matter how far down the list scrolls, only a

screen of View can be generated.

In Android applications, more and more developers will put their menu in-

terfaces in a list, and then users can slide to the right (or left) to see all the

application features. Navigation Drawer is a panel on the left edge of the

screen to display application navigation items. The navigation drawer is not

visible much of the time, but it can appear in two situations: one is swiping

right from the left side of the screen, and the other is clicking the application

icon in the toolbar. When using a navigation drawer, DrawerLayout is used

as the user interface's root view. Two subviews need to be placed under the

DrawerLayout view. One is used to show the navigation drawer and the

other is used to show the main content of the screen (when the navigation

drawer is hidden).

Figure 22. Sliding Navigation Drawer /11/

In the program, the click event of the navigation item is actually the click

event of different TextView including Home, History and Logout. It is needed

to change the main content according to the clicked items. The view that

48

displays the main content will generally be an Activity at runtime. Therefore

just need to switch the current Activity to the corresponding Activity to

achieve the purpose of page changing.

4.3.3 Fragment

Fragment is an Android 3.0 API that is mostly visible in the more dynamic

and versatile UI architecture of large screen devices (such as tablet). Within

an activity, a fragment describes an action or a modular portion of the user

interface.

Fragment has its own lifecycle and layout management capabilities. It can-

not exist on its own; it needs to be hosted by an activity or another fragment.

Many fragments may be combined in a single operation to create a multi-

pane user interface with the following benefits:

49

• Deal with UI issues that appear on various screens, such as the

mobile phone and tablet adaptation issue shown in Figure 23.

Figure 23. Two separate versions of the same screen, each

with a different screen size /12/

• Make activity more modular, and many business logics can be

processed in the corresponding fragment, requiring only the ac-

tivity reveal and hide the fragment.

• Different activities may make use of fragment. An activity can, of

course, load multiple fragments.

Figure 24 depicts the fragment lifecycle. Readers who are familiar with ac-

tivity components will note that the fragment and activity have a lot in com-

mon in terms of lifecycle.

50

Figure 24. The lifecycle of Fragment /12/

Figure 25 shows another picture that compares fragments to activity. The

activity State method is on the left, and the lifecycle callback methods of

fragment is on the right.

51

Figure 25. Comparison of Fragment and Activity lifecycle

As shown in Figure 25, fragment has the following methods more than ac-

tivity:

onAttach():When a fragment is first attached, the managing ac-

tivity calls it.

onCreateView(): onCreate() is called, followed by onCreat-

eView(). onCreateView()is where you set up your user interface.

onActivityCreated(): the onCreate method of the activity bound

to fragment has been executed.

onDestroyView(): destroy views related to fragment.

onDetach(): unbind activity.

52

In an activity, FragmentManager is used to handle fragments. It is possible

to use a fragment in an activity to obtain a FragmentManager event. get-

FragmentManager() is a method that returns a fragment manager.

The getSupportFragmentManager() method is used to get the correspond-

ing FragmentManager while using the support extension package. It should

be remembered that the fragment in the SDK and the fragment in the sup-

port extension package are two separate classes, as are these two Frag-

mentManagers. They cannot be mixed together.

If the prompt parameter types do not fit when used, search to see if the

import fragment and the fragment manager are in the same package. They

can be modified to the same package path if they are not compatible.

FragmentTransaction has direct access to Fragment. The FragmentMan-

ager often calls the beginTransaction() method to start a transaction. They

are normally accompanied by a sequence of acts, such as adding, replacing,

or doing something else. The FragmentTransaction.commit() method must

be called after the operation on Fragment is completed to commit the trans-

action. /13/

fm.beginTransaction()
 .add(R.id.fragment_list_container, mFragment
 .commit()

Code Snippet 6. FragmentTransaction

The common methods used by FragmentTransaction are listed as below:

add(): Add a Fragment to Activity.

remove(): Remove a Fragment from Activity.

replace(): Replaces the current Fragment by the new Fragment.

hide(): Hide Fragment.

show(): Display Fragment.

commit(): Commit transaction.

53

Communication between Fragment and Activity takes place as follows:

An internal callback interface is defined in the fragment, then the activity

which contains the fragment implements it so that the fragment can call the

callback method to send data to the activity. To help readers understand the

communication between Fragment and Activity, Code Snippets 7 and 8

have been attached.

public class MainFragment extends Fragment{
 public FragmentListener mListener;

 //MainFragment public interface
 public static interface FragmentListener{

 //jump to page 5
 void toH5Page();

 //display message
 void showMsg(String str);
 }
 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);
 //
 if(activity instance FragmentListener){

 mListener = ((FragmentListener)activity);

 }
 }
 ...

 mButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 msgListener.showMsg("Hello pass data to Activity to dis-
play.");
 }
 });
}

Code Snippet 7. MainFragment class

…
public class MainActivity extends FragmentActivity implements
FragmentListener{

54

@override
public void toH5Page(){…}

@override
public void showMsg(String str){…}
 Toast.makeText(MainActivity.this, str, Toast.Lenfth_SHORT).show();
 }
}

Code Snippet 8. MainActivity class

4.3.4 Graphical User Interface Design

The user interfaces of this Android application are designed using XML

which is a markup language for front-end design. All XML files are stored in

the layout directory of this application package, there are five pages of this

program including register page, login page, home page, edit category page

and history page.

The user register page allows users to register an account for this program

by providing user’s personal information including full name, email address,

password and confirm password. After entering all the information, the data

will be sent to database by clicking SIGNUP button. Besides, there is an-

other link below the button which can take the user to the Login page if the

user already has an account. Figure 26 illustrates the user register page.

55

Figure 26. Register Page

The login page allows users to fill in the user’s information with email ad-

dress and password. After entering the user’s information and clicking the

LOGIN button, the system will check whether the offered data match to the

user’s saved data in the database. If it is correct, the user will be taken to

the home page immediately. There is another link below the LOGIN button

which will take user to the register page in case the user does not have

registered. Figure 27 below illustrates the login page.

56

Figure 27. Login Page

The user home page allows users to operate chronometer or input start time

and end time manually with other data for instance date and working types

together to record working information. There are two methods that the user

can use to record working hours by clicking corresponding buttons without

switching to another page. The technology behind it is using Frag-

mentTransaction to replace the first chronometer fragment with manual in-

put fragment and vice versa. Above the total time, there is a button which

must be clicked after the user have finished recording time. As the result the

value of working hours in each fragment will be sent to the home activity

and will be inserted into MySQL database with other required data in this

page after clicking the SAVE button. Figure 28 below illustrates the teacher

home page.

57

Figure 28. Home Page

The edit category page allows users to add or delete working categories to

the display list as they want by entering category name and clicking corre-

sponding button. This page contains a ListView which is used to displaying

all the working categories one by one on each row and it has capability to

scroll down. Users can also come back to the home page by clicking button

on the top of the page after finishing the editing. The spinner on the home

page will receive the newest data list and update immediately. Figure 29

below illustrates edit category page.

58

Figure 29. Edit Category Page

Finally, the history page allows users to view the qualified records based on

the selected working categories and given periods. These records will be

displayed on the ListView below the SET button. Furthermore, the program

will automatically calculate total hours of every working hour in the list and

display the value of it below the ListView. For an addition features, users

can send the qualified records to their email writing with HTML language.

Figures 30 and 31 illustrate history page and received email with the same

record list.

59

Figure 30. History Page

Figure 31. Email with result table

60

4.4 Data Storage Design

Often when developing an application on product level we need to store

those data on the mobile device locally, including user details after logging

in. The advantage is that the user details can be accessed if the mobile

phone is not running the application. Local data management in Android

primarily comprises SharedPreferences, SQLite database, file storage,

ContentProvider storage data and network storage data. /14/

Different functional requirements should be based on the characteristics of

storage methods to design different storage solutions, so as to optimize use

of storage space and data resources to achieve the storage requirements

of the system under the premise of rational use of system hardware re-

sources.

4.4.1 SharedPreferences

SharedPreferences is stored in an XML file as a key-value pair. Other ap-

plications do not have operation permission in usual conditions, so it is rel-

atively safe. When users uninstall an application or clear application data in

the device settings, they can, of course, delete SharedPreferences file.

SharedPreferences can store some simple data, such as user information

after login.

Compared with SQLite database, the SharedPreferences object removes

certain operations, such as creating database, creating table and writing an

SQL statement, which is simpler and straightforward. However, only five

simple data types can be stored such as String, int, Boolean, float, long and

no conditional queries can be made. /15/

4.4.2 SQLite database

SQLite is a lightweight database that uses relatively few storages. In em-

bedded systems, a few hundred kilobytes of memory can be sufficient. /16/

61

It supports windows, Linux, Unix, and other popular operating systems, and

it can be used with a variety of programming languages, including C#, PHP,

Java, and so on.

SQLite has the following advantages:

1) Lightweight: SQLite is separate from C / S mode database software.

There is no database client or server because it is an in-process data-

base engine. It have only one of its dynamic libraries to carry using

SQLite to experience all its features.

2) No need to "Install": The main engine of SQLite itself does not rely on

any applications from third parties, and it does not need to "Install" to

use it, which is a bit like green software.

3) Single file: all the information in the database (such as tables, views, etc.)

are contained in one file. This file can be copied freely to other directories

or machines. It is convenient to transfer data between different activities

or even different applications.

The application of SQLite database in this project is to store the working

types of teachers, so as to facilitate the addition and deletion of working

categories in the future.

4.4.3 MySQL database

MySQL Workbench is the design tool for the MySQL database. Database

architects, program developers, and system planners may use MySQL

Workbench to visualize SQL development, database modeling, and data-

base management.

The ER diagram is used to describe a conceptual schema of static data

structures. It will combine three basic concepts for example entities, rela-

tionships and attributes to summarize the basic structure of data. There are

three types of relationships between entities for instance one-to-one, one-

to-many and many-to-many. /17/

62

In this project, two database tables are needed to store user registration

information and records of user working hours separately. Figure 32 below

illustrates that users table with primary key ID has one-to-many relationship

with table working_hour with foreign key user_id, which is the same with ID

in users table which means that one user could have zero to many records

of working hours.

Figure 32. ER diagram

After forwarding the ER diagram to the MySQL database in server side.

Figure 33 below illustrates these two tables in loginregister database which

is stored in MySQL database management system—phpMyAdmin.

63

Figure 33. loginregister database

64

5 IMPLEMENTATION

This chapter will clarify how to transform the system requirements analysis

and feature design from the previous chapters into a practical project. Firstly,

the main function modules of Android client are introduced, including regis-

tering and login, adding work cases, editing work category, viewing history

records and sending e-mail. Then the navigation drawer in the system im-

plementation process is chosen to be explained.

The development environment of Android client of mobile tracking system

is shown in Table 3. Explanation of proper nouns: IDE is the integrated de-

velopment environment, JDK is the software development kit of Java lan-

guage, and Android SDK is the Android Software Development Kit.

Table 3. Development environment of Android client

Operating system Development

language

IDE Android SDK

Window 10 Java Android Studio 10.0 version

5.1 Implementation of Registration

First, in Code Snippet 9, a StringRequest object is created to submit an

HTTP POST request to the URL link and Volley will obtain the POST pa-

rameters including full name, email address and password by calling the

getParams() method in Request. There are two internal interfaces, Listener

and ErrorListener, which can represent the callback after successful request

and failed request respectively. The JSONObject object will take response

for receiving HTTP response from the callback of onResponse() method in

JSON format. If the value of ‘sucess’ defined as “success” value in

JSONObject response is equals to 1 which means the result of insert three

65

parameters into the database which was written in register.php file is suc-

cessful as seen in Code Snippet 10, the user will receive the confirm mes-

sage “Register Success!” and move to the login page immediately. Finally,

a RequestQueue object is created to cache all HTTP requests and then

submit these requests simultaneously. And the StringRequest object will be

added to RequestQueue.

StringRequest stringRequest = new StringRequest(Request.Method.POST,
 URL_REGIST, new Response.Listener<String>() {

 @Override

 public void onResponse(String response) {

 try {

 JSONObject jsonObject = new JSONObject(response);

 String sucess = jsonObject.getString("success");

 if (sucess.equals("1")) {

 Toast.makeText(getApplicationContext(), "Register Success!",

Toast.LENGTH_SHORT).show();

 Intent intent = new Intent(getApplicationContext(), LogInActiv-

ity.class);

 startActivity(intent);

 }

 } catch (JSONException e) {

 e.printStackTrace();

 Toast.makeText(getApplicationContext(), "Register Error!" +

e.toString(), Toast.LENGTH_SHORT).show();

 progessBar.setVisibility(View.GONE);

 }

 }

 },

 new Response.ErrorListener() {

 @Override

 public void onErrorResponse(VolleyError error) {

 Toast.makeText(getApplicationContext(), "Register Error!" + er-

ror.toString(), Toast.LENGTH_SHORT).show();

 progessBar.setVisibility(View.GONE);

 }

 }

) {

 @Override

 protected Map<String, String> getParams() throws AuthFailureError {

 Map<String, String> params = new HashMap<>();

 params.put("fullname", fullname);

 params.put("email", email);

 params.put("password", password);

 return params;

 }

 };

 RequestQueue requestQueue = Volley.newRequestQueue(getApplication-

Context());

66

 requestQueue.add(stringRequest);

Code Snippet 9. StringRequest object in SignUpActivity

 <?php

if ($_SERVER['REQUEST_METHOD'] =='POST'){

 $fullname = $_POST['fullname'];
 $email = $_POST['email'];
 $password = $_POST['password'];
 $password = password_hash($password, PASSWORD_DEFAULT);
 require_once 'connect.php';

 $sql = "INSERT INTO users (fullname, email, password) VALUES ('$fullname', '$email', '$pass-
word')";

 if (mysqli_query($conn, $sql)) {
 $result["success"] = "1";
 $result["message"] = "success";

 echo json_encode($result);
 mysqli_close($conn);

 } else {

 $result["success"] = "0";
 $result["message"] = "error";

 echo json_encode($result);
 }
mysqli_close($conn);
}
?>

Code Snippet 10. register.php file

5.2 Implementation of Login

The implementation of login is quite similar with registration with difference

in POST parameters and one more JSONArray object. The Volley will obtain

the POST parameters including email address and password by calling the

getParams() method in Request. In onResponse() method, JSONArray ob-

ject is created to represent the “login” value in JSONObject object which

67

receives the HTTP response from server side. If the provided data matched

with value in MySQL database the user will also get a confirm message

“Login Success!” and be taken to the home page which is shown in Code

Snippet 11. In addition, user’s id number and email address will be stored

using SharedPreferences after login successfully everytime in order to dis-

tinguish users with their user id in adding work cases and acquiesce in the

email is the receiving email in the future operation. In details, the user’s id

and email are obtained from JSONObject object when the system receives

the HTTP response from the server side and then the value is saved in the

form of XML files in the system by using SharedPreferences. When these

data are to be used later, the system can fetch the value from SharedPref-

erences.

StringRequest stringRequest = new StringRequest(Request.Method.POST,
 URL_LOGIN, new Response.Listener<String>() {

 @Override

 public void onResponse(String response) {

 try {

 JSONObject jsonObject = new JSONObject(response);

 String success = jsonObject.getString("success");

 JSONArray jsonArray = jsonObject.getJSONArray("login");

 if (success.equals("1")) {

 for (int i = 0; i < jsonArray.length(); i++) {

 JSONObject object = jsonArray.getJSONObject(i);

 String name = object.getString("fullname");

 String email = object.getString("email");

 int id = object.getInt("id");

 String id1 = String.valueOf(id);

 Toast.makeText(getApplicationContext(), "Login Success!",

Toast.LENGTH_SHORT).show();

 Intent intent = new Intent(getApplicationContext(), MainActiv-

ity.class);

 startActivity(intent);

 SharedPreferences sharedPreferences = getSharedPrefer-

ences("user", Context.MODE_PRIVATE);

 SharedPreferences.Editor editor = sharedPreferences.edit();

 editor.putString("userid", id1);

 editor.putString("useremail", email);

 editor.commit();

 progessBar.setVisibility(View.GONE);

 }

 }

 } catch (JSONException e) {

 e.printStackTrace();

68

 progessBar.setVisibility(View.GONE);

 Toast.makeText(getApplicationContext(), "Error" + e.toString(),

Toast.LENGTH_SHORT).show();

 }

 }

 },

 new Response.ErrorListener() {

 @Override

 public void onErrorResponse(VolleyError error) {

 progessBar.setVisibility(View.GONE);

 Toast.makeText(getApplicationContext(), "Error" + er-

ror.toString(), Toast.LENGTH_SHORT).show();

 }

 }) {

 @Override

 protected Map<String, String> getParams() throws AuthFailureError {

 Map<String, String> params = new HashMap<>();

 params.put("email", email);

 params.put("password", password);

 return params;

 }

 };

 RequestQueue requestQueue = Volley.newRequestQueue(getApplication-

Context());

 requestQueue.add(stringRequest);

Code Snippet 11. StringRequest object in LoginActivity

<?php

if ($_SERVER['REQUEST_METHOD']=='POST') {

 $email = $_POST['email'];
 $password = $_POST['password'];

 require_once 'connect.php';

 $sql = "SELECT * FROM users WHERE email='$email' ";
 $response = mysqli_query($conn, $sql);
 $result = array();
 $result['login'] = array();

 if (mysqli_num_rows($response) === 1) {
 $row = mysqli_fetch_assoc($response);
 if (password_verify($password, $row['password'])) {

 $index['fullname'] = $row['fullname'];
 $index['email'] = $row['email'];
 $index['id'] = $row['id'];

69

 array_push($result['login'], $index);

 $result['success'] = "1";
 $result['message'] = "success";
 echo json_encode($result);

 mysqli_close($conn);
 } else {

 $result['success'] = "0";
 $result['message'] = "error";
 echo json_encode($result);

 mysqli_close($conn);
 }
 }
}
?>

Code Snippet 12. Login.php file

5.3 Implementation of Home Page

In the home page, user can enter the date, select two working types from

spinners and operate the chronometer or input time manually. These are

inserted with user’s id number to the working_hour table in loginregister da-

tabase of MySQL. It is needed to use Handler and post a Runnable then put

the PutData code within the run method. To begin, two arrays are created,

one for the parameter's field name and the other for the data. These arrays,

the URL and the request method are passed as arguments when creating

the PutData object. When calling startFetch() to start the process, it will get

a boolean value back. Using onComplete(), which returns a boolean value,

to determine when the process is finished and call getResult() to obtain the

result value as seen in Code Snippet 13.

Handler handler = new Handler(Looper.getMainLooper());
 handler.post(new Runnable() {
 @Override
 public void run() {
 String[] field = new String[5];
 field[0] = "date";
 field[1] = "working_type1";
 field[2] = "working_type2";
 field[3] = "working_hours";

70

 field[4] = "user_id";
 //Creating array for data
 String[] data = new String[5];
 data[0] = WorkhourdateHolder;
 data[1] = Workhourtype1Holder;
 data[2] = Workhourtype2Holder;
 data[3] = WorkhourhoursHolder;
 data[4] = WorkhouruseridHolder;
 PutData putData = new PutData(URL_Work,"POST", field, data);
 if (putData.startPut()) {
 if (putData.onComplete()) {
 String result = putData.getResult();
 if (result.equals("Data added Success")) {
 Toast.makeText(getApplicationContext(), result,
Toast.LENGTH_SHORT).show();
 } else {
 Toast.makeText(getApplicationContext(), result,
Toast.LENGTH_SHORT).show();
 }
 //End ProgressBar (Set visibility to GONE)
 }
 }
 //End Write and Read data with URL
 }
 });

Code Snippet 13. Handler object in HomeActivity

<?php
require "DBAdapter.php";

class DataBase
{
 public $connect;
 public $data;
 private $sql;
 protected $servername;
 protected $username;
 protected $password;
 protected $databasename;

 public function __construct()
 {
 $this->connect = null;
 $this->data = null;
 $this->sql = null;
 $dbc = new DataBaseConfig();
 $this->servername = $dbc->servername;
 $this->username = $dbc->username;
 $this->password = $dbc->password;
 $this->databasename = $dbc->databasename;
 }

71

 function dbConnect()
 {
 $this->connect = mysqli_connect($this->servername, $this->username, $this->password,
$this->databasename);
 return $this->connect;
 }

 function prepareData($data)
 {
 return mysqli_real_escape_string($this->connect, stripslashes(htmlspecialchars($data)));
 }

 function dataadd($table, $date, $working_type1, $working_type2, $working_hours,
$user_id)
 {
 $date = $this->prepareData($date);
 $working_type1 = $this->prepareData($working_type1);
 $working_type2 = $this->prepareData($working_type2);
 $working_hours = $this->prepareData($working_hours);
 $user_id = $this->prepareData($user_id);
 $this->sql ="INSERT INTO " . $table . " (date, working_type1, working_type2, work-
ing_hours, user_id) VALUES ('" . $date . "','" . $working_type1 . "','" . $working_type2 . "','" .
$working_hours . "','" . $user_id . "')";
 if (mysqli_query($this->connect, $this->sql)) {
 return true;
 } else return false;
 }
}
?>

Code Snippet 14. addworkcase.php file

In Code Snippet 15, the ChangeFragment() method is used to replace the

current fragment with the other fragment in FrameLayout by clicking the

CHRONOMETER button or MANUAL INPUT button. And in the xml file, the

onclick property of buttons should be defined as “ChangeFragment” also.

public void ChangeFragment(View view) {
 Fragment fragment;

 if (view == findViewById(R.id.button_fragment1)) {
 fragment = new FragmentOne();
 FragmentManager fm = getFragmentManager();
 FragmentTransaction ft = fm.beginTransaction();
 ft.replace(R.id.fragment_place, fragment);
 ft.commit();
 }

 if (view == findViewById(R.id.button_fragment2)) {
 fragment = new FragmentTwo();

72

 FragmentManager fm = getFragmentManager();
 FragmentTransaction ft = fm.beginTransaction();
 ft.replace(R.id.fragment_place, fragment);
 ft.commit();
 }
 }

Code Snippet 15. ChangeFragment method in MainActivity

5.4 Implementation of Edit Page

The SQLiteHelper class inherits the SQLiteOpenHelper class and overrides

onCreate() and onUpgrade() methods. In more details, the CATEGORIES

table in TEST.db is created in onCreate() method with two columns which

are integer id as primary key and text category respectively. Next, the in-

sert_category() and delete_category() methods are used to add and delete

category value from the CATEGORIES table with the same parameter

which can be obtained from user entering in edit page. The last list_all_cat-

egories_list() method is used to search all the data in CATEGORIES table

to be included into ListView because the result will show in it. In order to

read records from the table, the Cursor class is used. The method

rawQuery() is called to execute the select query for selecting all the catego-

ries. Then, the moveToNext() method is used to go for each raw which

means the cursor will go from the first raw of the result to the end raw of the

result. Furthermore, the result data will be mapped to ListViewq through

adapter as seen in Code Snippet 16. All these methods can be called in

EditActivity.java, so the client can CRUD the TEST database easily.

public class SQLiteHelper extends SQLiteOpenHelper {
 private ArrayAdapter<Category> adapter;

 public SQLiteHelper(@Nullable Context context, @Nullable String name,
 @Nullable SQLiteDatabase.CursorFactory factory, int version) {
 super(context, "TEST.db", factory, version);
 }
 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE CATEGORIES(ID INTEGER PRIMARY KEY AUTOINCREMENT,
CATEGORY TEXT);");
 }
 @Override

73

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 db.execSQL("DROP TABLE IF EXISTS CATEGORIES;");
 onCreate(db);
 }
 public void insert_category(String category) {
 ContentValues contentValues = new ContentValues();
 contentValues.put("CATEGORY", category);
 this.getWritableDatabase().insertOrThrow("CATEGORIES", "", contentValues);
 }
 public void delete_category(String category) {
 this.getWritableDatabase().delete("CATEGORIES", "CATEGORY='" + category + "'", null);
 }
 public void list_all_categories_list(Context context, ListView listview) {
 Cursor cursor = this.getReadableDatabase().rawQuery("SELECT * FROM CATEGORIES",
null);
 final ArrayList<Category> categories = new ArrayList<>();
 Category c;

 while (cursor.moveToNext()) {
 c = new Category();
 c.setId(cursor.getInt(0));
 c.setCategory(cursor.getString(1));
 categories.add(c);
 }
 adapter = new ArrayAdapter(context, android.R.layout.simple_list_item_1, categories);
 listview.setAdapter(adapter);
 }
}

Code Snippet 16. SQLiteHelper class

5.5 Implementation of History Page

It is needed to get user id number which was stored by SharedPreferences

to be post with other parameters using Volley framework. First, the

SharedPeferences object is created and the getString() method is called to

obtain the user_id value which was stored when user logging in. Then the

WorkinghourAdapter object is created in WorkinghourAdapter.java to set

the ArrayAdapter to the ListView. After that, the StringRequest object is cre-

ated to submit an HTTP POST request with five paramteres which are ob-

tained from user selected date and working categories with user’s id as

shown is Code Snippet 17. In the onResponse() method, the JSONArrray

object is used to receive HTTP response and JSONObject will parse JSO-

NArray. The corresponding values including date, work_type1, work_type2

74

and work_hours will be mapped in to the ListView through getView() method

in WorkinghourAdapter class which inherits the ArrayAdapter class as

shown in Code Snippet 18.

SharedPreferences sharedPreferences = getSharedPreferences("user", Context.MODE_PRI-
VATE);
 user_id = sharedPreferences.getString("userid", null);
 WorkinghourAdapter workinghourAdapter = new WorkinghourAdapter(ReportActiv-
ity.this, R.layout.list_item);
 listView.setAdapter(workinghourAdapter);
 StringRequest stringRequest = new StringRequest(Request.Method.POST,
 DATAURL, new Response.Listener<String>() {
 @Override
 public void onResponse(String response) {
 try {
 double total = 0;
 JSONArray jsonArray = new JSONArray(response);
 for (int i = 0; i < jsonArray.length(); i++) {
 JSONObject object = jsonArray.getJSONObject(i);
 String date = object.getString("date");
 String work_type1 = object.getString("working_type1");
 String work_type2 = object.getString("working_type2");
 double work_hours = object.getDouble("working_hours");
 total += work_hours;
 Workinghour wh = new Workinghour(date, work_type1, work_type2,
work_hours);
 workinghourAdapter.add(wh);
 }
 textViewtotalhour.setText(String.valueOf(total));
 } catch (JSONException e) {
 Toast.makeText(getApplicationContext(), "Error" + e.toString(),
Toast.LENGTH_SHORT).show();
 }
 }
 },
 new Response.ErrorListener() {
 @Override
 public void onErrorResponse(VolleyError error) {
 // progessBar.setVisibility(View.GONE);
 Toast.makeText(getApplicationContext(), "Error" + error.toString(),
Toast.LENGTH_SHORT).show();
 }
 }) {
 @Override
 protected Map<String, String> getParams() throws AuthFailureError {
 Map<String, String> params = new HashMap<>();
 params.put("worktype1", worktype1);
 params.put("worktype2", worktype2);
 params.put("startdate", startdate);
 params.put("enddate", enddate);
 params.put("user_id", user_id);

75

 return params;
 }
 };
 RequestQueue requestQueue = Volley.newRequestQueue(getApplicationContext());
 requestQueue.add(stringRequest);

Code Snippet 17. StringRequest object of searching history in MainActiv-

ity

public class WorkinghourAdapter extends ArrayAdapter {
 List list = new ArrayList();
 public WorkinghourAdapter(@NonNull Context context, int resource) {
 super(context, resource);
 }
 public void add(Workinghour object) {
 super.add(object);
 list.add(object);
 }
 @Override
 public int getCount() {
 return list.size();
 }
 @Override
 public Object getItem(int position) {
 return list.get(position);
 }
 @Override
 public View getView(int position, @Nullable View convertView, @NonNull ViewGroup par-
ent) {
 View row;
 row = convertView;
 WorkhourHolder workHolder;
 if (row == null) {
 LayoutInflater layoutInflater = (LayoutInflater) this.getContext().getSystemService
 (Context.LAYOUT_INFLATER_SERVICE);
 row = layoutInflater.inflate(R.layout.list_item, parent, false);
 workHolder = new WorkhourHolder();
 workHolder.tx_date = row.findViewById(R.id.tvdate);
 workHolder.tx_wt1 = row.findViewById(R.id.tvwt1);
 workHolder.tx_wt2 = row.findViewById(R.id.tvwt2);
 workHolder.tx_wh = row.findViewById(R.id.tvwhs);
 row.setTag(workHolder);
 } else {
 workHolder = (WorkhourHolder) row.getTag();
 }
 Workinghour workinghour = (Workinghour) this.getItem(position);
 workHolder.tx_date.setText(workinghour.getDate());
 workHolder.tx_wt1.setText(workinghour.getWorktype1());
 workHolder.tx_wt2.setText(workinghour.getWorktype2());
 workHolder.tx_wh.setText(String.valueOf(workinghour.getWorkhour()));
 return row;
 }

76

 static class WorkhourHolder {
 TextView tx_date, tx_wt1, tx_wt2, tx_wh;
 }
}

Code Snippet 18. WorkinghourAdapter class

A Golang script serves as intermediary between Android client side and

MySQL database. The posted parameters will be used as condition value

of select query and the query result will be written into JSON format then

will be sent back to the client side in HTTP response as shown in Code

Snippet 19.

http.HandleFunc("/hello", func(w http.ResponseWriter, r *http.Request) {
 r.ParseForm()
 worktype1:=r.Form["worktype1"]
 worktype2:=r.Form["worktype2"]
 startdate:=r.Form["startdate"]
 enddate:=r.Form["enddate"]
 user_id:=r.Form["user_id"]

 sql:=fmt.Sprintf(" select * from working_hour where date between '%v'
and '%v' and working_type1='%v' and working_type2='%v' and user_id=%v order by
date",startdate,enddate,worktype1,worktype2,user_id)

 sql=strings.ReplaceAll(sql,"[","")
 sql=strings.ReplaceAll(sql,"]","")
 fmt.Println(sql)
 var workingHours []WorkingHour
 err:=Db.Select(&workingHours,sql)
 if err != nil {
 fmt.Println("exec failed, ", err)
 return
 }
 json,_:=json.Marshal(workingHours)
 io.WriteString(w, string(json))

 })

Code Snippet 19. Search history function in Golang

Code Snippet 20 shows how the StringRequest object of the Volley

framework obtains the POST parameters including worktype1, worktype2,

startdate, enddate, user_id and mail by calling the getParams() method in

Request. And these value will be posted to the server side which is written

with Golang script.

77

SharedPreferences sharedPreferences =
 getSharedPreferences("user", Context.MODE_PRIVATE);
 user_id = sharedPreferences.getString("userid", null);
 user_email = sharedPreferences.getString("useremail", null);
 StringRequest stringRequest1 = new StringRequest(Request.Method.POST,
 MAILURL, new Response.Listener<String>() {
 @Override
 public void onResponse(String response) {
 }
 },
 new Response.ErrorListener() {
 @Override
 public void onErrorResponse(VolleyError error) {

 Toast.makeText(getApplicationContext(), "Error" + error.toString(),
Toast.LENGTH_SHORT).show();
 }
 }) {
 @Override
 protected Map<String, String> getParams() throws AuthFailureError {
 Map<String, String> params = new HashMap<>();
 params.put("worktype1", worktype1);
 params.put("worktype2", worktype2);
 params.put("startdate", startdate);
 params.put("enddate", enddate);
 params.put("user_id", user_id);
 params.put("mail", user_email);
 return params;
 }
 };
 RequestQueue requestQueue = Volley.newRequestQueue(getApplicationCon-
text());
 requestQueue.add(stringRequest1);

Code Snippet 20. StringRequest object of send email in MainActivity

In the golang file below, the posted data will be used as condition value of

select query to search out corresponding records in loginregister table and

the query result will be set into the email content table which is written in

HTML format. Then the server side will sent the email to user with the same

record result with records in the ListView in history page.

http.HandleFunc("/mail",func(w http.ResponseWriter, r *http.Request){
 r.ParseForm()
 worktype1:=r.Form["worktype1"]
 worktype2:=r.Form["worktype2"]
 startdate:=r.Form["startdate"]
 enddate:=r.Form["enddate"]
 user_id:=r.Form["user_id"]
 toMail:=fmt.Sprintf("%s", r.Form["mail"])

78

 sql:=fmt.Sprintf(" select * from working_hour where date between '%v'
and '%v' and working_type1='%v' and working_type2='%v'
 and user_id=%v",startdate,enddate,worktype1,worktype2,user_id)

 sql=strings.ReplaceAll(sql,"[","")
 sql=strings.ReplaceAll(sql,"]","")
 toMail=strings.ReplaceAll(toMail,"[","")
 toMail=strings.ReplaceAll(toMail,"]","")
 fmt.Println(sql)
 var workingHours []WorkingHour
 err:=Db.Select(&workingHours,sql)

 mailContent:=""
 var total float32
 for _,v:=range workingHours{
 mailCon-
tent+=fmt.Sprintf("<tr><td>%s</td><td>%s</td><td>%s</td><td>%.2f</td></tr>",v.Date,v.W
orkingType1,v.WorkingType2,v.WorkingHours)
 total+=v.WorkingHours
 }
 mailContent+=fmt.Sprintf("<tr><td></td><td></td><td>To-
tal:</td><td>%.2f</td></tr>",total)
 mailBody:=fmt.Sprintf("<table border=\"1\" style=\"border-collapse:
collapse;\"><tr><th>Date</th><th>Working Type1</th>
 <th>Working Type2</th><th>Working Hours</th></tr>%s</ta-
ble>",mailContent)
 if err != nil {
 fmt.Println("exec failed, ", err)
 }
 mailTo := []string{}
 mailTo=append(mailTo, toMail)
 SendMail(mailTo,"Work",mailBody)

 json,_:=json.Marshal(workingHours)
 io.WriteString(w, string(json))
 })

Code Snippet 21. Send email function in Golang

5.6 Implementation of Navigation Drawer

In Code Snippet 22, the openDrawer() method is called when user click the

menu icon in home page and the slid navigation drawer will appear with

Home, History and Logout options in this menu. When user click the Logout

textview, there will be an AlertDailog appear with “Logout” as its title and

ask the user's intention to logout. If user choose yes, the application will

79

close, but if the answer is no, it will stay on the original page. The redirec-

tActivity() method allows user switch to another page. If these two activities

are in the same application, the TaskId of two activities will be the same. If

not, the new Task will be created.

public static void openDrawer(DrawerLayout drawerLayout) {
 drawerLayout.openDrawer(GravityCompat.START);
 }
 public static void logout(final Activity activity) {
 AlertDialog.Builder builder = new AlertDialog.Builder(activity);
 builder.setTitle("Logout");
 builder.setMessage("Are you sure you want to logout?");
 builder.setPositiveButton("YES", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 activity.finishAffinity();
 System.exit(0);
 }
 });
 builder.setNegativeButton("NO", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 dialog.dismiss();
 }
 });
 builder.show();
 }
 public static void redirectActivity(Activity activity, Class aClass) {
 Intent intent = new Intent(activity, aClass);
 intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 activity.startActivity(intent);
 }

Code Snippet 22. Navigation methods

The following methods can be called in both MainActivity.java and reportAc-

tivity.java as the result, user can click the menu icon in both home page and

history page to have slide navigation of this application.

public void ClickMenu(View view) {
 openDrawer(drawerLayout);
 }

 public void ClickHome(View view) {
 recreate();
 }

 public void ClickHistory(View view) {

80

 redirectActivity(this, ReportActivity.class);
 }

 public void ClickLogout(View view) {
 logout(this);
 }

Code Snippet 23. onClick properties of Navigation items

81

6 TESTING

This chapter will test and analyze the system based on the system imple-

mentation. The function test will list the test cases of the system, and then

give the effect of the actual implementation of the system.

Functional testing is also called black box testing. Test cases are con-

structed beginning from the interface and judging the difference between

the real outcomes and the predicted results, without considering the sys-

tem's internal implementation. Functional checking is used to ensure that

the project's operations have been completed and the system's input and

performance are as anticipated. /18/

This project has been tested by the client side of the mobile phone by

Huawei Mate 30 and the test template and the results of the testing are

given in the Table 4 (Appendix 1.).

The function test verifies that the system has implemented all the project

requirement analyses' functions.

82

7 CONCLUSION

This thesis project was designed to develop a mobile work time tracking

system for teachers based on the Android platform with multiple functions

for instance authentication, record working hours, edit work categories,

search history records and send email. Teachers can analyze and manage

working hours more rationally and efficiently.

This paper expounds the complete practice process of the system according

to the background of the project, related technologies and tools, require-

ment analysis, system design, project implementation and system testing

process.

During the implementation of this program, some studies have been found

out through implementing different methodologies to solve data storage and

network communication issues. For instance, Android developers can make

suitable storage solution according to the requirement of different business

scenarios. SharedPeferences is suitable to store some simple data with

Key/Value property. In fact, the most used part of SharedPreferences in An-

droid is also used to save the configuration information in the device. The

SQLite database, a standard database that comes with Android is suitable

to store some lightweight information such as chatting records of social me-

dia applications. Because of its built-in feature, there is no need to construct

client and server sides of database when using SQLite. As the result, the

processing speed of SQLite is faster comparing with MySQL and Post-

greSQL.

The most important and most time-consuming part of developing this pro-

gram was building a network communication system between the client side

and server side. Usually when writing the business logic of network commu-

nication, there will be a large section of HttpURLConnection logic. However,

the Volley framework can simplify the writing code and realize complex com-

83

munication content by only a few lines of code because it encapsulates clas-

ses commonly used for network communication, such as HttpURLConnec-

tion. Besides, the Volley framework is suitable for scenarios where network

communication is frequent but the amount of data is small and it can greatly

improve the development efficiency.

In addition, when creating the interface for the server side to receive HTTP

requests with posted parameters from client side, the PHP scripting lan-

guage and the Go programming language were used to deal with requests

of authentication and searching history records respectively. It is found that

the amount of code writing with PHP is more than that writing with Golang

to generate the same functionality interface. Furthermore, Golang serves

more requests than almost any other language including PHP /19/. There-

fore, Go is the most extensible programming language and it will grow as

the business grows to accommodate the increasing load of the application

effectively.

In summary, this project has realized a stable, functional and interactive

mobile tracking system through the Android development technology, Vol-

ley network communication technology and mobile time recording theory

practice.

84

8 FUTURE IMPROVEMENT

The authentication function of this project can be implemented by a Fire-

base console, in which customers can sign in with their email and password

and the registration information will be stored in Firebase instead of MySQL

database. In this modern authentication method, developers can save effort

without creating a server side to deal with HTTP request from the client and

generating a database and table to store posted data. Firebase will help to

solve authentication issue and resetting the password requirement effec-

tively through adding Firebase Authentication to the application.

For the functional module of this program, the function of summarizing his-

tory records of work by providing a graphic analysis, such as pie chart can

be added to the system. Therefore, the customers can observe their working

records more intuitive based on the graphical chart in weeks, months or

years.

The target customers of this mobile application can include not only the

teachers but also the state employees. Depending on the position and the

value of working hours offered by this program, people can be paid with

relative salaries by companies also with integrity operation if this application

becomes popular in companies.

85

REFERENCES

/1/ Smartphone Market Share. Accessed 14.05.2021.

https://www.idc.com/promo/smartphone-market-share.

/2/ First View for Android Development on Apple M1 Chip Device 2021. Ac-

cessed 18.04.2021. https://medium.com/mobile-app-development-publica-

tion/first-view-for-android-development-on-apple-m1-chip-device-

e9d3d52b27aa.

/3/ Platform Architecture. Accessed 19.04.2021. https://developer.an-

droid.com/guide/platform.

/4/ mysqlId – The MySQL Server. Accessed 19.04.2021.

https://dev.mysql.com/doc/refman/8.0/en/mysqld.html

/5/ Wickham, M. 2018. Practical Android: 14 Complete Projects on Ad-

vanced Techniques and Approaches. Texas: Apress.

/6/ Donovan, A and Kernighan, B. 2015. The Go Programming Language.

Boston: Addison-Wesley Professional.

/7/ Quality Function Deployment (QFD). Accessed 23.04.2021. https://qual-

ity-one.com/qfd/.

/8/ What is Use Case Diagram. Accessed 23.04.2021. https://www.visual-

paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-dia-

gram/.

/9/ Set up RequestQueue. Accessed 25.04.2021. https://developer.an-

droid.com/training/volley/requestqueue.

/10/ Activity. Accessed 25.04.2021. https://developer.android.com/refer-

ence/android/app/Activity.

https://medium.com/mobile-app-development-publication/first-view-for-android-development-on-apple-m1-chip-device-e9d3d52b27aa
https://medium.com/mobile-app-development-publication/first-view-for-android-development-on-apple-m1-chip-device-e9d3d52b27aa
https://medium.com/mobile-app-development-publication/first-view-for-android-development-on-apple-m1-chip-device-e9d3d52b27aa
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://quality-one.com/qfd/
https://quality-one.com/qfd/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/
https://developer.android.com/training/volley/requestqueue
https://developer.android.com/training/volley/requestqueue
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity

86

/11/ Mew, K. 2016. Android Design Patterns and Best Practice. Birmingham:

Packt Puclishing.

/12/ Fragments. Accessed 28.04.2021.

https://developer.android.com/guide/fragments.

/13/ Fragments 2021. Accessed 29.04.2021. https://medium.com/mobile-

development-group/fragments-6ff6307583a4.

/14/ Storage Options. Accessed 05.05.2021.

https://stuff.mit.edu/afs/sipb/project/android/docs/guide/topics/data/data-

storage.html.

/15/ Sharedpreferences. Accessed 07.05.2021. https://developer.an-

droid.com/reference/android/content/SharedPreferences.

/16/ SQLiteDatabase. Accessed 09.05.2021. https://sqlite.org/about.html.

/17/ What is Entity Relationship Diagram (ERD)? Accessed 09.05.2021.

https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-rela-

tionship-diagram/.

/18/ Bångerius, S and Fröberg, F. 2016. Functional testing of an Android

application, pp. 3-5. Accessed 19.05.2021.

http://www.diva-portal.org/smash/get/diva2:1034457/FULLTEXT01.pdf.

/19/ Handling 1 Million Requests per Minute with Go 2015. Accessed

19.05.2021.

http://marcio.io/2015/07/handling-1-million-requests-per-minute-with-go-

lang/

https://developer.android.com/guide/fragments
https://medium.com/mobile-development-group/fragments-6ff6307583a4
https://medium.com/mobile-development-group/fragments-6ff6307583a4
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/topics/data/data-storage.html
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/topics/data/data-storage.html
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.android.com/reference/android/content/SharedPreferences
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
http://marcio.io/2015/07/handling-1-million-requests-per-minute-with-golang/
http://marcio.io/2015/07/handling-1-million-requests-per-minute-with-golang/

87

APPENDIX 1

Table 4. Testing case table

S/N Test Case Description Steps Expected System Re-

sponse

Pass/Fail

1. Check whether new user

can create an account

successfully.

1. Access to the register page

and fill in the user register in-

formation.

2. Click the SIGNUP button.

The application displays the

confirm message and redi-

rects to the login page.

Pass

2 Check whether user who

already registered can

register again.

1. Access to the register page

and fill in the exited register

information.

2. Click the SIGNUP button.

The application displays the

error message. Refresh the

register page.

Pass

3 Check for empty inputs

on register page.

1. Access to the register page

and leave the fields empty.

2. Click the SIGNUP button.

The application displays the

error message.

Pass

4 Check for clickable login

link on register page.

1. Access to the register page

and click the login link.

The application redirects to

the login page.

Pass

5. Check whether user can

login successfully who

has an account of the ap-

plication.

1. Access to the login page and

fill in the user registered in-

formation.

2. Click LOGIN button.

The application displays the

confirm message and redi-

rects to the home page.

Pass

6 Check for incorrect inputs

on login page.

1. Access to the login page and

fill in the incorrect infor-

mation.

2. Click LOGIN button.

The application displays the

error message. Refresh the

login page.

Pass

7 Check for empty inputs

on register page.

1. Access to the login page and

leave the fields empty.

2. Click the LOGIN button.

The application displays the

error message.

Pass

88

8 Check for clickable sig-

nup link on login page.

1. Access to the login page and

click the signup link.

The application redirects to

the register page.

Pass

9 Check whether can log-

out.

1. Login to the application and

access to the home page.

2. Click Logout option in navi-

gation menu.

3. Click YES when the remind

dialog appear.

The application exits. Pass

10 Add work case. 1. Login to the application and

access to the home page.

2. Select date, work type1,

work type2, and click start

button of chronometer when

the work starts and click stop

button when the work ends

or input the start time and

stop time manually.

3. Click the convert button to

calculate total hours.

4. Click SAVE button to insert

all value to the MySQL data-

base.

The application displays the

confirm message and the

working_hour table in

loginregister database has

the new record stored in.

Pass

11 Check for empty inputs

on home page.

1. Login to the application and

access to the home page.

2. Leave the required fields

empty and click SAVE but-

ton.

The application displays er-

ror message.

Pass

12 Edit work category. 1. Login to the application and

access to the home page.

2. Click Edit button next to the

spinner.

3. Access to the edit page.

The application displays the

confirm message after user

adding or deleting the work

category and displays the

new data array in the list.

Also the spinner on the

Pass

89

4. Enter the category name and

click ADD or REMOVE but-

ton.

5. Click UPDATE button to

view new value list.

home page displays the

newest data list.

13 View history records. 1. Login to the application and

access to the home page.

2. Click History in navigation

drawer and access to the

history page.

3. Choose two work types from

spinners and enter start date

and end date, then click SET

button.

The result records display

on the ListView and the sum

of working hours for all rec-

ords shows in the end of the

list.

Pass

14 Check for nonexistent

records.

1. Login to the application and

access to the home page.

2. Click History in navigation

drawer and access to the

history page.

3. Choose two work types and

enter period which do not

have corresponding records

in database.

The application displays er-

ror message.

Pass

15 Send record result to

user’s email.

1. Repeat the operation of

No.13 and click SEND

EMAIL button.

User will receive the email

with table of the same rec-

ord result shown on history

page.

Pass

