

Dennis Bäckström

Mission Creator Plug-in, a Developer Tool for

Unreal Engine 4

Bachelor of Engineering

Information and communica-
tions technology

Spring 2021

Tiivistelmä

Tekijä(t): Bäckström Dennis

Työn nimi: Liitännäinen tehtävien tekemiseen, kehittäjän työkalu Unreal Engine 4:lle

Tutkintonimike: Insinööri (AMK), tieto- ja viestintätekniikka

Asiasanat: C++, UE4, liitännäinen, tehtävä

Opinnäytetyön aihe tuli saksalaiselta yritykseltä NeXR Technologies, tarkemmin VRiday:lta yrityksen VR oh-
jelmistokehityspuolelta. Tämän työn tarkoituksena oli ohjelmoida liitännäinen Unreal Engine 4:lle, jonka
avulla pystyisi luomaan tehtäviä peleihin tai muihin UE4:llä tehtäviin projekteihin, jolloin loppukäyttäjä pys-
tyisi näitä tehtäviä suorittamaan.

Liitännäisen vaatimuksina oli pystyä tekemään tehtäviä yksinkertaisesti käyttäen graafista editoria, tehtä-
villä tuli olla alku ja loppu sekä mahdollisuus haaroittamaan tehtävän kulkua. Tehtäviin tuli myös pystyä
lisäämään toimintoja tehtävän eri vaiheisiin.

Työn ohjelmointiosuus toteutettiin käyttäen C++ ohjelmointikieltä, ohjelmointiosuus koostui tehtävä ob-
jektista ja siihen liittyvien objektien teosta sekä graafisesta editorista tehtävien tekoon. Ohjelmoinnin teh-
tyä tuli testata tämän liitännäisen kaikkia toimintoja ja korjata mahdolliset ongelmat. Työssä käytiin ensin
läpi tausta tietoa liitännäisistä, Unreal Engine 4:stä ja tehtävistä, jonka jälkeen hieman työn implementaa-
tion tärkeämmistä luokista ja funktioista, viimeisenä testaus menetelmästä.

Työn parissa tuli lisää osaamista UE4:n käytöstä, editorin laajentamisesta sekä objektien sarjallistami-
sesta, testaamisen jälkeen muutaman toiminnon korjattua liitännäinen toimi suunnitelman mukaisesti ja
liitännäisen perusvaatimukset täyttyivät.

Abstract

Author(s): Bäckström Dennis

Title of the Publication: Mission Creator Plug-in, a Developer Tool for Unreal Engine 4

Degree Title: Bachelor of Engineering, information and communications technology

Keywords: C++, UE4, plug-in, mission

The subject for this thesis came from a German company called NeXR Technologies, more specifically from
the VR software development department VRiday. The purpose of the thesis was to create a plug-in for
Unreal Engine 4, enabling the creation of missions for games or other types of projects done with UE4, and
these missions could be completed by the end user.

The plug-in requirements were to be able to create a mission in a simple way with a graph editor, and the
missions would need a start and an end, and possibility to branch out the mission flow. Additional require-
ment was the possibility to attach events along the mission’s flow.

The work was done by using C++. The programming part consisted of creating the mission and its related
objects, and a graph editor for creating the missions. After the programming was done, a throughout test-
ing of all the features in the plug-in was done. First in this thesis, some basic knowledge of what plug-ins,
Unreal Engine 4 and missions are, were brought up, then some of the plug-in implementation’s more im-
portant classes and functions, and lastly the testing method was explained.

During the process of making the plug-in, knowledge was gained about extending the editor in UE4 and
serializing data for saving. After the testing and fixing some broken functionality, the plug-in worked as
planned and the mission plug-ins basic requirements were fulfilled.

Contents

1 Introduction ... 1

2 Plug-ins, add-ons, and extensions ... 2

3 Unreal Engine .. 4

4 Missions, quests, and objectives ... 7

5 Development tools and methods .. 10

6 Implementation ... 11

6.1 Mission object ... 13

6.2 Mission node objects .. 18

6.3 Mission manager and mission save object ... 20

6.4 Editor module setup, style, and asset type actions .. 22

6.5 Mission’s custom editor .. 25

6.6 Mission graph nodes ... 27

6.7 Node widgets and pins .. 27

7 Testing ... 28

8 Conclusion ... 30

References ... 31

1

1 Introduction

The purpose of this thesis is to create a developer tool plug-in for Unreal Engine 4 (UE4). This

plug-in would allow the creation of missions, that would then be completed by the end users in

the final product. Extending UE4 with features such as a custom editor is not that well docu-

mented, and therefore this thesis may be of help as some guidance, while going through some of

the implementation process of this mission plug-in developed for a company called NeXR Tech-

nologies.

NeXR Technologies is a technology company based in Berlin, Germany. They have expertise in

areas such as motion capturing, 3D person scanners and VR software. This plug-in was for the VR

software development team VRiday, to aid them easily create missions for the end user to com-

plete. In a likely scenario these missions could be, for example, tutorials, such as learning to grab

objects in VR and then interacting with them in a specific way, or how to use included locomotion

systems.

With this plug-in, the developer should be able to create inside UE4 an object which includes a

graph editor. In the graph editor, the developer should be able to create different types of named

nodes with a description, such as begin, end, and objective nodes which could be combined to

create the hierarchy of a mission. Currently, by default UE4 does not provide an efficient way to

create missions, therefore a plug-in like this is beneficial to have, while very basic or short type of

missions might not need a plug-in like this, but longer missions that for example could branch into

multiple sub-missions could see a very good use of a plug-in like this. Similar and other types of

plug-ins exist for UE4 and can be bought, for example, from the Epic Game’s Unreal Engine Mar-

ketplace.

2

2 Plug-ins, add-ons, and extensions

Plug-ins are also often known as add-ons or extensions. Software that has plug-in support usually

allows adding new functionality without modifying the underlying software. Easy extendibility is

a good thing when it comes to software development, a software’s lifetime might be long, and

one might not know the wanted and needed features initially. Giving the internal development

team or even outsiders the access and capability to extend the software in a simple way, might

be a great approach depending on the product being developed. However, sometimes plug-ins

might cause security issues, for example there have been cases of malicious plug-ins uploaded to

the Chrome Web Store, where some Chrome users have downloaded these extensions and fallen

victims of malware (1). Plug-ins can be found for many different software, both as freeware and

commercial. Plug-ins are not usually interchangeable between completely different software and

new updated versions of the same software might break existing plug-ins and then the creators

of the plug-ins need to provide an update for those plug-ins to work again. How these plug-ins

are enabled depends on the software. Some plug-ins do have an installer, when executed it in-

stalls the plug-in to the correct location and can even check if the installed software exists or if

the version is suitable, whereas in other cases the plug-in must be manually copied into the cor-

rect folder often in the install location of the software or some other common folder, such as for

Windows OS the My Documents folder.

Plug-ins started to appear more in software in the early 1990s, and one of the early software that

supported plug-ins was Adobe Photoshop in 1991 when version 2.0 was released. Photoshop the

graphics and photo editing software has seen a lot of plugins since then, for a software like Pho-

toshop this enabled it to get a lot of new features along with the version updates from Adobe

themself. (2,3) Plug-ins for Photoshop can be found, for example, from Adobe’s Adobe Exchange

platform, where plug-ins can be bought or found for free, and from there the plug-ins directly

syncs with one’s Adobe account and can then be used in Photoshop. From other third-party sites

plug-ins might need to be manually moved into place to work. One can still to this day develop

new plug-ins for Photoshop by joining Adobe’s developer program and getting access to their

SDK’s and tools.

Another popular appearing of plug-ins in the 1990s was within audio software. The company

Steinberg had created in 1991 a software called Cubase, a digital audio workstation for short

DAW. This software enabled making audio recordings directly into the computer, and Cubase

then later in 1996 received an update with a feature called Virtual Studio Technology, VST for

3

short. In 1997, Steinberg made VST as an open standard for everyone and so it is one of the most

popular plug-in formats for DAWs. DAWs allow creation and mixing of music with multiple tracks

and MIDI connections, MIDI which is a sort of interface between digital instruments and software,

the VST plug-ins allows for example new simulated instruments and audio processing to be in-

cluded in the host DAW software. With some audio, math, and programming knowledge one can

go and create VST plug-ins using for example C++ programming language. Many old DAWs such

as Cubase are still up to date and have received several updates along the years, VST plug-ins can

be found both newer ones but also older VST plug-ins remain available on the internet and pop-

ular to this day. (4-7)

Popular game engines such as Unity and UE4 also support plug-ins. The two companies behind

these two engines both offer online stores where one can upload and sell the created plug-ins for

others to use in their projects. Often games and especially game series coming from within the

same game engine tend to have similarities and can assume some reasons for the similarities such

as of course the game engine itself, but also possibly some plug-ins that are used in the engine

and toggled on for specific projects, allowing more easily to bring over the content across several

projects.

 Unity game engine provides support for plug-ins called managed plug-ins and native plug-ins.

Managed plug-ins in Unity are dynamically linked libraries, so these plug-ins are compiled outside

Unity and the DLL files are then added to the project by dragging the files into the project, with

these plug-ins the source code is not included with the plug-in. The native plug-ins in Unity can

be written in languages such as C or C++, even when the language used in Unity is C#. Unity has a

plug-in inspector that can be used to manage used plug-ins.

UE4 also has a few different types of plug-ins it supports, these plug-ins can be for example con-

tent only which would not have any code, only assets for example audio, art, or blueprint scripts.

The plug-ins that include code consists of modules, these modules which whole UE4 is built upon

enables the separation within a plug-in with module types such as editor and runtime modules,

where the editor module would not be available for the end user. Plug-ins for UE4 can be installed

on a per project or engine basis, by either placing the plug-in into the engine’s plugin folder or

the projects.

So, plug-ins vary a lot between the implementations depending on to which software they are

created to. They vary a lot in complexity, used for example in game development, music produc-

tion and graphic design software and more.

4

3 Unreal Engine

Unreal Engine is a popular game engine by the company Epic Games. The engine is far from just

a game engine today. It is currently on the 4th generation of the engine and nearing the release

of Unreal Engine 5. UE4 is used, for example, in the film, game, and automotive industry. Recently,

UE4 has been used, for example, in the making of Westworld and The Mandalorian TV shows,

upcoming Hummer EV truck by General Motors Truck Company is told to be the first out running

the in-vehicle infotainment on Unreal Engine. There has been a lot of games created with UE4,

for example big games such as Fortnite made by Epic Games themself, Final Fantasy VII Remake,

Tekken 7, and Borderlands 3 made by other companies. (8-11)

The journey started as Unreal Engine saw its first game created on it, released in 1998 called

Unreal. Unreal was a first-person shooter game that really took ground among the other famous

shooters around that time like Quake and Doom, the engine provided good graphics, enabling

real-time level changes, and even let access to a level editor for the players. Editor view for first

Unreal Engine looked like in Figure 1. (12-14)

Figure 1. Unreal Engine’s editor called UnrealEd. (15)

5

 The main person behind the story of Unreal Engine is Tim Sweeney, current CEO of Epic Games.

Tim Sweeney has told in an interview that he did most of the code in the first engine. Before the

4th generation of the engine, engine used a script language made by Tim Sweeney called Unre-

alScript, it was like Java the object-oriented language. The purpose of it was to allow a more sim-

plified and powerful language to use for the internal and third-party Unreal Engine developers

compared to the other existing programming languages. The focused feature of Unreal Engine

was extendibility, shortly after the Unreal game launched the engine was licensed out to multiple

companies. There was a good communication between the Unreal Engine team and companies

using the engine, which allowed it to improve in the areas game companies thought it was lacking

or just needed improvements. As the hardware heavily improved with things such as dedicated

graphics cards, faster central processing units and more system memory the Unreal Engine re-

ceived updates with the engine generations to take the most out of this more capable hardware.

Over time Unreal Engine had been licensed out to companies such as Square Enix, EA, Disney, and

Ubisoft. Later when Unreal Engine 4 arrived on 19th March 2014, while previous generations re-

lied on licensing it out and having smaller teams out from considering it because of high cost, this

time Unreal Engine launched as a monthly fee of $19 and royalties based on sales made by using

the engine, it also had the whole source code available for developers. Being much cheaper made

it easier for smaller developers to start using Unreal Engine. Around a year later Tim Sweeney

announced that UE4 became free to use and only the royalties based on sales were left. (12-

14,16-18)

In UE4, programming is done by C++ or Blueprint, as C++ replaced the old UnrealScript language

in this generation and Blueprint visual scripting replaced the older similar Kismet. Projects can be

created for many of recent devices such as PC and VR platforms, Consoles, iOS, and Android de-

vices. Since its launch, UE4 has seen many updates with new and replacing features. Raytracing

has been added after graphic cards supporting the technology started to appear, older particle

and effect system has been replaced by a more powerful Niagara, and currently the physics en-

gine is being replaced by a new one called Chaos, which is replacing the third-party PhysX imple-

mentation. UE4 has also in the recent update 4.26 included beta features such as rigging skeletal

meshes directly inside UE4, which means creating animations for characters directly inside UE4

instead of software such as Blender or Maya. Also, a water plug-in that enables creating islands

and river streams for example into a landscape. As UE4 is open source, with all the updates Epic

Games releases they also, for example, include a wide variety of bug fixes made by the UE4 de-

veloper community.

6

The visuals and overall features in the editor view have also changed a lot since the first genera-

tion of the engine. UE4’s editor view can be seen in Figure 2 below. The only thing that still looks

a bit like the first engine’s editor is the viewport, which is quite standard looking when it comes

to software with editing viewports, such as Unity, Maya or Blender has viewports which looks

similar and can be divided to four different camera views.

Figure 2. Editor View in Unreal Engine 4.

UE4 provides short ready-made templates for different categories when choosing to create a new

project as seen in Figure 3 below. These categories have inside furthermore specific templates

for more specific use cases, such as for games there are templates for First Person, Puzzle, Vehicle

and Virtual Reality.

Figure 3. UE4 template categories in a new project creation window.

7

4 Missions, quests, and objectives

In some video games and interactive experiences, one can come across missions also often called

quests. It usually depends on the type of game, more often in role-playing games one gets quests,

while for example in some first-person shooter game one would more likely get missions. These

then might have some objectives that tell more specifically what one is supposed to do to com-

plete the mission or quest.

For the end user, these missions provide a way to have something they strive to complete, be it

a mission aiding to know the user interface and controls, or just a mission related to a story. How

the user knows about these missions, there is usually a UI that provides the required information.

It can vary a lot, as an example below in Figure 4 shows how it is in a third-person shooter game

called Mafia: Definitive Edition and in an RPG game called Divinity: Original Sin 2. In the Mafia

game, the player only has one mission at a time, and it shows the current objective of it on the

upper left corner, while for the RPG game the player has a journal that they open to look through

several quests and can choose which ones they make as active and track.

Figure 4. Objective examples: left one Mafia: Definitive Edition, right one Divinity: Original Sin 2.

8

 From the development side there is quite a variety of ways to enable the creation of these mis-

sions, as it is for almost everything programming related there is almost always another way to

implement. In this thesis, the mission creator is made as a plug-in and capable of using it in any

UE4 project, it will feature executable events, in which different functionality would be attached

to. But a larger mission creation tool could for example feature built in tools for creating dialogue,

rewards, tracking missions, NPC AI routing and more.

For basic mission functionality, there needs to be a manager object that can take care of checking

current missions, giving out, cancelling missions, and updating objectives. Missions and their ob-

jectives would need a name and description so that the UI can include these and show to the end

user, just like in the Figure 4. The progress of the mission needs to be able to be saved in its

current state, which includes already done objectives and current objective progress, one would

not want to have the end user go through the same things again because he had to close the

game and it did not save the progress. Missions need a starting and an end point, on these points

one should be able to connect functionality that would execute on triggering the point. This func-

tionality could be for example to create an item in the game world or when ending the mission it

would give a reward or clean up mission related things.

Some companies provide tools to modify their game with additional content, most likely slightly

modified of what they use within the company, Ubisoft a large game company provides for ex-

ample for their Assassin’s Creed Odyssey (2018) game a story creator tool. With this tool anyone

owning the game can create story content for the game. It has features such as choosing the start

location of the mission and how it should trigger, creating a name and thumbnail for the mission,

modifying the NPC characters in the mission, with things like character customization, choosing

factions, where some factions react differently to other faction’s characters, or what quest items

should the NPC carry and can the character die. Quest objectives can be set, for example, as talk,

destroy, escort, free prisoners. The quests are created by a node system as shown in Figure 5.

This mission creator has advanced features such as travel behaviour where one can make an NPC

go somewhere after certain activity is completed. It also includes a dialogue system to create

one’s own dialogue. (19)

9

Figure 5. Assassin's Creed Odyssey’s story creator quest example. (19)

 Another game company called CD Project Red provides a tool for the public called REDkit, with

which the user can create new content for The Witcher 2 (2012) game if one owns the game. This

tool also includes capability to create quests among other features. Similarly, to the Ubisoft’s

story creator tool, this one provides a graph-based editor to create the quest hierarchy as seen in

Figure 6. It can be used together with the other tools in the kit to create quests with cutscenes,

dialogues and different kinds of objectives with rewards and NPC characters doing things such as

working, fighting, and walking. (20)

Figure 6. REDkit quest editor view. (21)

10

5 Development tools and methods

UE4 can be run on Windows, Linux and MacOS. This plug-in was created on a PC with Windows

OS, with Visual studio 2019 as the IDE, 2017 version is still also supported. UE4 can be downloaded

from Epic Games Launcher or the source release from GitHub, used version was the binary 4.25.4

downloaded from the launcher, for making this plug-in there is no need for the things that the

source release provides, compared to what the binary release provides. Using the binary release,

it will automatically install the required DirectX components and Visual C++ redistributables. If

using the source, it might not install automatically so one would need to run an executable found

inside the engine install location in Extras folder which would install them, along the additional

other steps for compiling and running the source release. When using the binary release, it will

not by default include the symbols for debugging editor so this must be enabled for it to download

them, it can be found from the downloaded engine options menu in Epic Games Launcher, this

will be necessary to debug any problems appearing with the created custom editor that this plug-

in will feature. In UE4 a plug-in can be created in any project, existing or new, this plug-in was

started from an empty blank project without additional starting content, the quality settings did

not either matter when creating this plug-in.

The hardware for just creating a plug-in does not necessarily need to be like computers that Epic

Games uses or used previously as listed in Figure 7. But compile times are kept at minimum when

combined with strong performing high core count CPU’s and fast SSD’s.

Figure 7. Typical system used at Epic Games for development. (22)

11

6 Implementation

First step was creating the basic structure for the plug-in, in UE4 to create plug-ins one can either

create them manually or use the included creator which is found in the plug-ins list menu with all

existing plug-ins. The tool has a few different types of plug-in templates one can use, some of

them seen in Figure 8. Choosing the blank template for this plug-in, a blank plug-in when created

will create a folder with given plug-in name into the project’s plugins folder, in this newly created

folder it also creates the uplugin file, resources folder and a source folder with one included mod-

ule named as the created plug-in.

Figure 8. Plug-in creation window in UE4.

The uplugin file contains things such as name and version of the plug-in and contains what mod-

ules are part of the plug-in, it also has more additional options such as blacklisting or whitelisting

certain OS platforms or programs. The uplugin file is a json file so it can be edited by any text

editor. The created plug-in has only one module by default and if more modules are needed, they

need to be created manually. The plug-in was created with the name QMissionCreator, so that is

also the name of the first module, and second module had to be created. Second one was done

12

by copying the original module and renaming everything with the QMissionCreator to QMission-

CreatorEditor in the new copy, it is good practice to name the editor type modules with the name

editor in the end. In the uplugin file the modules needs to be included with the Name and Type

and the LoadingPhase which was left at Default. The Type for modules can be Runtime,

RuntimeNoCommandlet, Developer, Editor, EditorNoCommandlet, and Program. The original

module was left as a Runtime, it contains code that runs for the end user, while the new module

was included and had the type set as Editor as seen in Figure 9, an editor type module only runs

together with the editor, and this module was for the custom editor related objects and classes.

The other types such as Developer would only run for development runtime or editor builds.

Figure 9. The uplugin descriptor file for QMissionCreator plug-in.

The modules each have inside their folder a build.cs file, while UE4 is based on C++ it has some

non-runtime features built on C#. These build files mainly include which other modules this mod-

ule depends on, these modules are added either to the PublicDependencyModuleNames or Pri-

vateDependencyModuleNames. The ones added to the public ones will make that module’s clas-

ses available for this module’s public classes and private one will only be available for the private

classes.

13

With the two modules in place the structure for the plug-in looked like in Figure 10. The following

steps could have either been starting to implement the editor or runtime module. The runtime

objects in QMissionCreator were selected to be implemented first, because the editor module

relies on the runtime module a lot.

Figure 10. QMissionCreator’s folder structure with two modules.

6.1 Mission object

First the main mission object was created and parented from UObject. When creating new classes

it is good to make sure that the new classes were created to the correct module, which in this

case for the plug-in was the runtime module QMissionCreator as seen in Figure 11.

Figure 11. Creating a new C++ class in UE4.

14

UE4 takes use of multiple macros, three common macros used for a class are the UClass, UPROP-

ERTY and UFUNCTION macros. Macros are something that takes a piece of code one has defined

as macro with a name and then when used somewhere with the macro name the compiler re-

places the named piece with the code, similarly how a keyboard can have macro keys which can

be programmed to do a combination of key presses with just one key. These three macros each

have several metadata and variable specifiers that can be used. One commonly used for this plug-

in is the DocumentationPolicy metadata used in the bigger classes’ UClass macro, when set as

Strict this makes the compilation fail whenever there is a missing or duplicate comment in any

functions or variables using UFUNCTION or UPROPERTY. The UFUNCTION macro is used on func-

tions in cases such as wanting to use the function with UE4 delegates or wanting to call the func-

tion in the Blueprints by using the specifier BlueprintCallable. The UPROPERTY also has multiple

use cases, to show a variable and letting access to it in a Blueprint with specifiers such as Blue-

printReadOnly, BlueprintReadWrite, VisibleAnywhere, EditAnywhere and multiple more can be

used for different purposes. UPROPERTY makes it also possible for serialization for saving, loading

and garbage collection. The BlueprintProtected metadata with the URPOPERTY was often used,

which makes it possible to have the variable as protected in C++ and still make it available in

Blueprints. A protected variable or function makes it so that they are only available for another

class directly if it is a child of the parent with the function or variable set as protected. Also, the

Category specifier is something commonly used which makes it show up categorized with chosen

category name in property details panel for example. Some examples how these were declared

are shown in Figure 12.

Figure 12. Some use cases of the UE4 macros in the QMission class.

15

QMission class keeps a pointer to base class QMissionBaseNode of the start node, for this pointer

to stay saved even after closing the engine or custom graph editor it needs the UPROPERTY macro

even if it is just a private variable, and as it is a private variable which means it cannot be accessed

from any outside class, it needed a set function SetStartNode. Now the graph editor creating the

start node in the graph could set the start node for the mission. When the mission gets first time

created, the custom editor creates the UEdGraph object if the mission does not already have one.

UEdGraph which is the UE4 graph object itself which keeps all the graph object nodes in the graph

saved. Some structs were defined in the header file for the mission class for the save data for

mission and nodes, a good place to have the structs in, because the mission header already also

has itself but also the node class known. A separate header file was created for some commonly

used enums, one of which is the EQMissionStatus enum. This is used both for the objective and

mission status, to know status such as is it completed or is it still in progress. This enum declara-

tion has the macro UENUM and uses the BlueprintType specifier, to be able to use it in Blueprints.

EQMissionStatus enum is declared as seen in Figure 13.

Figure 13. Enum for the mission and objective status.

Delegates in UE4 are basically events that one can attach functions to, and those functions will

then be run whenever the delegate gets broadcasted, the delegates can have different amount

of parameters if wanted, and can also support multiple functions bound. In this plug-in delegates

were used both in the runtime and editor module and they were of type multicast, which makes

binding multiple functions possible. In the mission class these delegates were used to broadcast

when for example the mission was set as inactive or active and when objective was completed or

failed. The delegates used the BlueprintAssignable specifier to be able to use these within Blue-

prints as well, as seen in Figure 14.

16

Figure 14. Delegate declaration with two parameters and five use cases.

The mission class’ most essential functions are the start and complete objective, these functions

get called from the manager class when starting or completing an objective. The start function

takes the manager as an input parameter, this is so that the mission can give the player controller

to attached mission events. Both the manager and player controller exists in a world, so they work

as the world context object for an UObject which by default does not have any world context.

While the mission class also needs a SetMissionManager function to give the manager to the

mission in some other way, because the start function is not run when an in-progress mission gets

loaded from a save file. Start function also takes in a bool parameter which is for if the mission

should be set as inactive when started, this is one feature of the mission, so that a mission can be

in an inactive state. Related to this the mission class has another bool variable that decides if the

mission and objectives can be completed even if it is in an inactive state or not. In the start func-

tion the mission gets initialized to make sure it has default values, and an additional mission data

object gets created if one is provided to be used, which can be used for storing and tracking var-

iables belonging to the mission. The rest what the start function does is execute included start

events, included inactive events if it was set as inactive and loops through all the child nodes of

start node and calls for them to start as seen in Figure 15.

17

Figure 15. Start function's inactive event execution and objective starting.

The complete objective function takes in a FName as input parameter, which is for the mission’s

objective name. This objective is looked up from the mission’s in-progress nodes and tries com-

plete it if it is possible to be completed, it does nothing if no such objective is found by the given

name. If matching objective was found, then it calls the node’s end objective function with a

completed status. When an objective is completed, the OnObjectiveCompleted delegate gets

broadcasted and it has been bound to a function in the mission class, which is the RequestObjec-

tiveChange. This function then gets called, and it checks the dependencies for the children of the

completed node and adds the new found child nodes to arrays, and if some nodes were set by

some dependency to be closed, those are then added to an array for closing and failing those

objectives. If some end node was part of the possible new nodes, then the end node gets priority,

and if multiple end nodes were possible, it selects the one with the best priority to end the mission

with. If only objectives were found, then those objectives will be added to the in-progress array

and the objectives will be started. RequestObjectiveChange function can be seen in Figure 16.

Additionally, the mission can have force end events, while usually the mission ends by going to

an end node, but the mission can be forced to end from the mission manager, and while doing so

the attached end events to an end node would not run, but the force end events will instead run.

18

Figure 16. RequestObjectiveChange function procedure.

6.2 Mission node objects

As the mission works by a node tree, the node which is the root of the tree is saved and held by

the mission object, the root in this case is of type QMissionStartNode which is a child class of the

QMissionBaseNode. The start node class ended up being empty, so it only functions as cast check-

ing a base node to start node making sure a found node is of type QMissionStartNode. The base

node class QMissionBaseNode has variables for storing pointers to parent and child nodes, this is

what makes it possible to go back and forward with pointers from the start node. The base class

has functions both for removing and adding parent and child nodes, but not only that it also

needed functions to clear this node from child and parent nodes because they are also keeping

this node in arrays. Like the mission object the nodes have a name and description, the name

must be unique in the mission because the completion and saving works based on the node

names. In the base node’s class header, there is also declared a struct for the dependencies.

FQDependencyNode which stores a pointer to type QMissionBaseNode which is the node with a

dependency on when this node is hit, and then an enum type, which is what kind of dependency

is there on that node, the dependency types can be If, IfNot and Close, as seen in Figure 17.

19

The If makes so that if the node pointed by DependOnNode is done, it can go to this new being

checked node, while the IfNot is opposite, if the DependOnNode is not done it can go to this node

and lastly the Close type is that it will close as failed the DependOnNode if it is still not done. The

EQMissionDependencyNodeType enum is declared in the earlier mentioned separate header file

for commonly used enums. These dependencies are then saved in an array in the node and has

set and remove functions for the editor to access and add or remove.

Like the mission object the QMissionObjectiveNode and QMissionEndNode were made to have

events executable. For the objective, one can add events for on starting the objective and ending,

but also in active and become active events. While the objective node has also functions for start-

ing and ending the objective, which basically goes and sets the status of the objective to either

failed or completed and executes earlier mentioned events, if events were included. The end

node class only has ending events. It also has an ending status and a priority variable, the ending

status gets set from the custom editor and depending on if the editor node is a failed or com-

pleted node gets set to either completed or failed status. The priority variable is the value used

for sorting priority between multiple end nodes as back in Figure 16. The name and description

work a bit differently for the end node, the name and description are taken when ending from

this node and given to the mission where this can be used for user information such as name of

failing or completing the mission can be shown and a description can be shown for why it either

failed or completed.

Figure 17. The FQDependencyNode struct declaration in QMissionBaseNode.h header file.

20

6.3 Mission manager and mission save object

The QMissionManager class which is the mission manager was made inheriting from UActorCom-

ponent, this component makes it possible to attach the manager to actors such as the character

or pawn actor or player controller. The mission manager’s purpose is to manage the missions,

this includes loading and saving the in progress, failed and completed missions. Other functions

such as starting missions, completing objectives and force ending missions are also part of the

mission manager. The mission manager has a variable MaxActiveMissionCount, this is related to

the missions being able to be in an in active state, this integer value makes it possible to regulate

a max limit of how many missions could be active at once if wanted. One other optionally changed

variable is the UsedSaveClass, this can be set to point to another class which inherits from the

base mission save class UQMissionSaveGame. In case something else would be wanted to be

added additionally to the base save class, with a new child class that can be had.

 Like the mission object, the manager was made to have a few delegates, as the manager is basi-

cally the owner of a started mission it knows what is going on with the missions. The delegates

made for the manager are for, when a mission is started, mission is made in active or active, and

when a mission is done or when a mission was loaded from a save. And all the delegates has the

mission as parameter, as seen in Figure 18.

The more important functions such as StartMission, has input parameters for the mission object

which is supposed to be started, and a bool value for active state. The bool value is true by default

if not giving any value for it. The received mission pointer was duplicated with the DuplicateObject

function as not to save any values in the original object, between for example plays in editor.

Then some of the mission’s objective related delegates are bound to functions in the manager for

Figure 18. QMissionManager's delegate declarations.

21

some empty functions that can be overridden in a child C++ class or a Blueprint. When OnMis-

sionStarted delegate is broadcasted, mission is added to ActiveMissions array if it is starting as

active. The OnMissionEnding is bound in the BeginPlay function to function MissionEnding, this

function takes care of removing the completed mission from the arrays and moving it to either

the failed or completed array. The manager for the save and load functions uses the UE4’s

UGameplayStatics class, which is a static class, which means no object needs to be created before

accessing the functions. This class has several helper functions, and in this case the SaveGame-

ToSlot and LoadGameFromSlot were used. This saves a USaveGame object to a given slot name

and id. But before calling the save function the pointers need to be serialized in to the savegame

object, else it will not save everything needed. One way to serialize is to use the FObjectAnd-

NameAsStringProxyArchive struct class and creating a child of it and setting the ArIsSaveGame

variable inside it to true, making the archive for saving as seen in Figure 19.

Figure 19. Archive used for serializing declared in the QMissionSaveGame.h header file.

The serialized data in UE4 is stored into TArrays containing uint8 and using FMemoryWrite and

the struct from Figure 19. Then by overriding the Serialize function in the class that has things to

be serialized and making sure those variables are marked with UPROPERTY and savegame speci-

fication, Serialize is then called and given the archive as the argument, as seen in Figure 20.

This is similarly repeated for each node part of the mission and the additional save game data

object if one is used within the mission. And the order when saving and loading the different

objects needs to be same, because they are in a specific order within the data array.

The loading function first needs to create back the mission objects before serializing the data back

into the objects from the saved data, this can be done in multiple ways. In this case, it was done

by keeping stored the original mission object which was received when starting a mission in the

manager before duplicating it. When the object is created back instead of the FMemoryWrite

Figure 20. Process of serializing data from the mission into the MissionData.

22

class used when saving, now the FMemoryReader is used as seen in Figure 21. Both the

FMemoryReader and FMemoryWrite is available because of the FObjectAndNameAsStringProxy-

Archive. The node objects already exist in the original mission object, so they do not have to be

recreated except the saved data loaded similarly with the FMemoryReader.

Figure 21. Process of deserializing back the data from MissionData into the mission.

6.4 Editor module setup, style, and asset type actions

Each module needs to be able to be started and shutdown. When the plug-in was created it also

received a header and source file named the same as the original module, this is good to rename

to have module in the end of the name, so it is easier to know this is the file that implements the

IModuleInterface. The IModuleInterface contains the StartupModule and ShutdownModule func-

tions that when overridden can be used to initialize needed things, in this case the StartupModule

function was set to initialize the editor style and register the asset type actions as seen in Figure

22. And on the ShutdownModule function the asset type actions had to be unregistered when

the module is shutting down.

The editor module required access to additional modules, such as the mission’s runtime module

QMissionCreator, UnrealEd, AssetTools, GraphEditor and PropertyEditor so these were added to

the module’s build.cs file as seen in Figure 23, to get access to their classes.

Figure 22. StartupModule function, editor style initialized, and asset type actions registered.

23

Figure 23. QMissionCreatorEditor.build.cs additional public and private dependency modules.

Unlike the runtime module’s inside UE4 created classes, the header and source files for the classes

in the editor module were created directly from Visual Studio. The style class is created so that it

has static functions. The style instance is created from Initialize function which is seen called in

Figure 22. After the style instance is created a FSlateStyleSet object is also created, and that object

can then be pointed to the Resources folder in the plug-in directory. The object has set functions

for setting different styles into the style set, for this plug-in some textures for the nodes were set,

such as for the background of the nodes, and pin input or outputs as seen in Figure 24.

24

Figure 24. Style set creation and setting brushes.

The actions registered in Figure 22, are based on the FAssetTypeActions_Base class. Only the mis-

sion has a custom editor, but the event and additional data classes still both have classes that

inherits the FAssetTypeActions_Base and a factory class inheriting from UFactory, to get them all

to show up in miscellaneous category as seen in Figure 25.

Figure 25. This plug-in’s classes shown up in the create advanced asset miscellaneous category.

The UFactory has multiple functions that can be overridden, in this case in the constructor, the

SupportedClass variable is set to the object that it supports, and bCreateNew and bEditNew are

set to true, so new ones can be created and new on is opened. The FactoryCreateNew function is

the only one that needs to be overridden. It is made to call from the static helper utility class

25

FKismetEditorUtilities the function CreateBlueprint, which takes some input parameters and ba-

sically creates then a Blueprint for the asset. This is used for the event and additional data class

but for the mission which does not use a normal Blueprint, it will just instead be creating a new

object using the NewObject function as seen in Figure 26.

Figure 26. FactoryCreateNew function, mission’s factory below and mission event use the above.

The AssetTypeAction classes has more functions overridden than the UFactory based classes, the

GetCategories function is overridden to return the category variable, which was received from

the constructor, seen as being given when registering action in Figure 22. This category is an enum

variable and the type being set as Misc therefore the asset is then visible in the miscellaneous.

GetSupportedClass is overridden and made to return the respective class for each asset type. The

thing that differs from the mission asset and the rest is that the AssetTypeAction for the mission

also overrides the OpenAssetEditor function, this is where class created for the custom editor

gets created as seen in Figure 27. The object is tried to cast to the mission object, and if valid the

FQMissionCreatorEditor class is created, and its initialized function is called, the important part is

to give the mission object that is being opened to the editor as argument.

Figure 27. AssetTypeAction’s function for mission object creating custom editor and calling ini-

tialize.

6.5 Mission’s custom editor

The editor class was done to inherit from UE4’s FAssetEditorToolkit class, this class has several

functions related to creating the editor, it has for example the registering and unregistering of

26

tab spawners, which are overridden in this mission editor, to create the graph viewport and prop-

erty editor widgets. Also, the class is made to inherit from the FNotifyHook, and as the name

implies it has functions that can be overridden such as NotifyPostChange that makes it possible

to know for example if a variable has been modified. This overridden function was made to check

if the variable which changed was the mission object, and then updates the start node of the

graph. Because the start node is showing information of the mission object, so it is possible that

the start node is showing old mission name and description if those were changed there the up-

date is necessary. The initialize function, which is called in the Figure 27, is saving the mission

pointer received in the editor class, if the mission’s UEdGraph pointer is a nullptr a new UEdGraph

is created, and it is of type UQMissionCreatorEdGraph which inherits from the UEdGraph. This

graph has an initialize function which is called after being created in the editor initialize function,

this function creates the start node and initializes it as seen in Figure 28.

Figure 28. Initializes the custom UEdGraph, by creating a start node object and initializing it.

From the editor’s initialize function the SGraphEditor widget is also created and its GraphToEdit

variable is set to mission’s UEdGraph object. Here is also the commands available registered to

the widget, in this case only the delete command is mapped, which makes it possible to delete

nodes in the graph. In the custom UEdGraph’s constructor the Schema is set to point to custom

created schema class of type UEdGraphSchema. This schema is responsible of creating the con-

text menu actions when right clicking and making possible to create new nodes into the graph.

The schema also has the CreateConnectionDrawingPolicy function, which is set to return the cus-

tom created drawing policy class of type FConnectionDrawingPolicy. This policy class for example

sets what colours and how the splines are drawn between the connections. The schema then has

the CanCreateConnection function, which sets how the connection are possible to be created. In

this mission graph the connections were made possible only between input and output, and from

dependency pin to dependency pin and normal pin to normal pin.

27

6.6 Mission graph nodes

Similarly like the runtime nodes, the editor nodes were made to have a base class, objective, start,

failed, and completed nodes. Here instead of one end node, they were separated, and both sets

the owner runtime nodes status to either failed or completed and they get different node back-

grounds. The editor module got another node type which is only in the editor, the dependency

node which has a different look from the other nodes, and it does not create a runtime module

representation node. These graph nodes inherit from the UEdGraphNode class, and in the con-

structors of these editor nodes the actual runtime node is constructed. The base node has a lot

of functions, it handles the background images of the nodes, and has function that gets called

when node gets destroyed so the connection can be cleared from connected nodes and remove

all the references to the destroyed node.

6.7 Node widgets and pins

The node slate widgets are based on the SGraphNode, all nodes except the dependency node is

based on same class. The dependency node has output pin areas in each side and a button to-

gether with a ListView widget for adding and showing dependencies added to that dependency

node. This when attached to another objective, failed, or completed node will add from that de-

pendency node the dependencies to that runtime owner node of that editor node. The pin slate

widgets are based on the SGraphPin class, here a base pin and a dependency pin class is made, to

differentiate the connections between objective, start, failed, and completed nodes, and connec-

tions from a dependency nodes output nodes.

28

7 Testing

For testing the mission creator, a set of test mission assets were created, to thoroughly test all

the features included. To be able to see the information required and confirm the mission is work-

ing a simple UI was setup as seen in Figure 29. This was an actor created and placed in the world,

which had a widget component attached to it, and widget class set to a widget that was created.

Figure 29. Actor in the world with a widget showing mission information.

The widget was made to have a function with the mission manager as an input parameter, so that

the mission manager that is starting the missions could be given to the widget. For easy setup,

the widget was given the manager from the level Blueprint, where one can easily take the actor

in the world and reference it in the Blueprint, and the player controller is simply received by the

GetPlayerController function which is then cast to the created player controller class. In the

widget, functions were bound to delegates from the mission manager, such as OnMissionStarted

and OnMissionEnded, then these were added to add the mission’s name to the textbox for re-

spective event. And additionally, from the OnMissionStarted, when it executes the started mis-

sion’s delegates would be used such as OnObjectiveStarted and OnObjectiveEnded, those were

also bound to functions that shows the names of the objectives in the textboxes.

29

A player controller was created, and a mission manager component was attached to it. Then on

different keyboard button prompts a test mission would be started, and the mission’s objectives

would correspond to a certain keyboard key. By pressing a key it would try to complete an objec-

tive with the name of the key. Additionally, to the keyboard, oculus touch controllers were also

bound to these, to test that it also works on the Oculus Quest series running on Android. As the

runtime module’s classes were not tested before finishing the editor module, a few issues were

discovered by the testing and those were fixed, such as android build not compiling because of

shadowing variables in function parameter names, as the compiling for android is stricter than

what runs on Windows. Other minor issues such as forgotten savegame specifier on some status

variables in mission and objective class were discovered when saving and loading was tested.

30

8 Conclusion

The purpose was to create a plug-in that makes it possible to create missions in Unreal Engine 4,

at first some background about plug-ins, UE4 and missions were brought up. In the implementa-

tion some of the key classes and functionality of this plug-in were explained.

The process of making this plug-in went as planned, some more difficulties was met with the

serialization of the missions and expanding the editor. But overall, the plug-in ended up quite well

and functioning.

Something more to add to the implementation if time would have allowed, would have perhaps

been more features in the editor module, such as being able to copy and paste nodes, and even

dragging missions into another mission, combining them into a larger mission. Maybe a compile

button for making sure the mission graph nodes are setup properly so that the mission will work,

because now it is for example possible to leave out an ending from a mission which causes a

mission to never be completed without forcing it to be completed from the manager.

31

References

(1) Menn J. Exclusive: Massive spying on users of Google's Chrome shows new security weak-
ness. 2020; Available at: https://www.reuters.com/article/us-alphabet-google-chrome-exclu-
sive-idUSKBN23P0JO.

(2) The history of Photoshop. 2005; Available at: https://www.creativebloq.com/adobe/history-
photoshop-12052724.

(3) Sterne J. Plug-in. 2019; Available at: https://www.britannica.com/technology/plug-in.

(4) Leypoldt T. What is Virtual Studio Technology (VST)? Available at: https://andyaxmu-
sic.com/what-is-virtual-studio-technology-vst/.

(5) The Steinberg Story. Available at: https://www.steinberg.net/en/company/aboutstein-
berg.html.

(6) VST3: New Standard for Virtual Studio Technology. Available at: https://www.stein-
berg.net/en/company/technologies/vst3.html.

(7) Murphy CJ. What Is a DAW (And What Can You Do With It)? 2020; Available at:
https://www.careersinmusic.com/what-is-a-daw/.

(8) Mayeda R. HBO’s Westworld turns to Unreal Engine for in-camera visual effects. 2020; Avail-
able at: https://www.unrealengine.com/en-US/spotlights/hbo-s-westworld-turns-to-unreal-en-
gine-for-in-camera-visual-effects.

(9) Haj-Assaad S. Here's Why the Unreal Engine Is Coming to Your Car. 2020; Available at:
https://www.techspot.com/article/2130-unreal-engine-in-your-car/.

(10) Drake J. 15 Great Games That Use The Unreal 4 Game Engine. 2020; Available at:
https://www.thegamer.com/great-games-use-unreal-4-game-engine/.

(11) Farris J. Forging new paths for filmmakers on "The Mandalorian". 2020; Available at:
https://www.unrealengine.com/en-US/blog/forging-new-paths-for-filmmakers-on-the-man-
dalorian.

(12) McDonald L. The scoop from a major player. 1998; Available at:
https://books.google.de/books?id=1AEAAAAAMBAJ&q=Tim+Sweeney+epic&pg=PT8&re-
dir_esc=y#v=snippet&q=Tim%20Sweeney%20epic&f=false.

(13) Thomsen M. History of the Unreal Engine. 2010; Available at: https://www.ign.com/arti-
cles/2010/02/23/history-of-the-unreal-engine.

(14) Grove R. Focus: Unreal Engine - A Brief History of Unreal. 2019; Available at: https://maga-
zine.renderosity.com/article/5330/focus-unreal-engine-a-brief-history-of-unreal.

(15) Unreal Promo Art. Available at: https://www.mobygames.com/game/unreal/promo/im-
ageType,1/promoImageId,75491/.

https://www.reuters.com/article/us-alphabet-google-chrome-exclusive-idUSKBN23P0JO
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive-idUSKBN23P0JO
https://www.creativebloq.com/adobe/history-photoshop-12052724
https://www.creativebloq.com/adobe/history-photoshop-12052724
https://www.britannica.com/technology/plug-in
https://andyaxmusic.com/what-is-virtual-studio-technology-vst/
https://andyaxmusic.com/what-is-virtual-studio-technology-vst/
https://www.steinberg.net/en/company/aboutsteinberg.html
https://www.steinberg.net/en/company/aboutsteinberg.html
https://www.steinberg.net/en/company/technologies/vst3.html
https://www.steinberg.net/en/company/technologies/vst3.html
https://www.careersinmusic.com/what-is-a-daw/
https://www.unrealengine.com/en-US/spotlights/hbo-s-westworld-turns-to-unreal-engine-for-in-camera-visual-effects
https://www.unrealengine.com/en-US/spotlights/hbo-s-westworld-turns-to-unreal-engine-for-in-camera-visual-effects
https://www.techspot.com/article/2130-unreal-engine-in-your-car/
https://www.thegamer.com/great-games-use-unreal-4-game-engine/
https://www.unrealengine.com/en-US/blog/forging-new-paths-for-filmmakers-on-the-mandalorian
https://www.unrealengine.com/en-US/blog/forging-new-paths-for-filmmakers-on-the-mandalorian
https://books.google.de/books?id=1AEAAAAAMBAJ&q=Tim+Sweeney+epic&pg=PT8&redir_esc=y#v=snippet&q=Tim%20Sweeney%20epic&f=false
https://books.google.de/books?id=1AEAAAAAMBAJ&q=Tim+Sweeney+epic&pg=PT8&redir_esc=y#v=snippet&q=Tim%20Sweeney%20epic&f=false
https://www.ign.com/articles/2010/02/23/history-of-the-unreal-engine
https://www.ign.com/articles/2010/02/23/history-of-the-unreal-engine
https://magazine.renderosity.com/article/5330/focus-unreal-engine-a-brief-history-of-unreal
https://magazine.renderosity.com/article/5330/focus-unreal-engine-a-brief-history-of-unreal
https://www.mobygames.com/game/unreal/promo/imageType,1/promoImageId,75491/
https://www.mobygames.com/game/unreal/promo/imageType,1/promoImageId,75491/

32

(16) Brightman J. An Epic Interview With Tim Sweeney. 2012; Available at: https://www.game-
sindustry.biz/articles/2012-03-13-an-epic-interview-with-tim-sweeney.

(17) Sweeney T. Welcome to Unreal Engine 4. 2014; Available at: https://www.unrealen-
gine.com/en-US/blog/welcome-to-unreal-engine-4.

(18) Sweeney T. If You Love Something, Set It Free. 2015; Available at: https://www.unrealen-
gine.com/en-US/blog/ue4-is-free#:~:text=Unreal%20En-
gine%204%20is%20now,to%20VR%2C%20film%20and%20animation.

(19) Assassin's Creed Odyssey Story Creator Mode User Manual. Available at: https://ubistatic-
a.akamaihd.net/0130/PROD/v1/docs/user-manual.pdf.

(20) REDkitEditor –Designer Basic Manual. 2018; Available at: https://nanopdf.com/down-
load/redkiteditorbasicmanual-port-of_pdf.

(21) How to create your adventure in REDkit. 2012; Available at:
https://www.youtube.com/watch?v=I-CEQFvsiTs.

(22) Hardware and Software Specifications. Available at: https://docs.unrealengine.com/en-
US/Basics/RecommendedSpecifications/index.html.

(23) How to create Unreal Engine plugins. Available at: https://docs.unrealengine.com/en-
US/ProductionPipelines/Plugins/index.html.

https://www.gamesindustry.biz/articles/2012-03-13-an-epic-interview-with-tim-sweeney
https://www.gamesindustry.biz/articles/2012-03-13-an-epic-interview-with-tim-sweeney
https://www.unrealengine.com/en-US/blog/welcome-to-unreal-engine-4
https://www.unrealengine.com/en-US/blog/welcome-to-unreal-engine-4
https://www.unrealengine.com/en-US/blog/ue4-is-free#:~:text=Unreal%20Engine%204%20is%20now,to%20VR%2C%20film%20and%20animation.
https://www.unrealengine.com/en-US/blog/ue4-is-free#:~:text=Unreal%20Engine%204%20is%20now,to%20VR%2C%20film%20and%20animation.
https://www.unrealengine.com/en-US/blog/ue4-is-free#:~:text=Unreal%20Engine%204%20is%20now,to%20VR%2C%20film%20and%20animation.
https://ubistatic-a.akamaihd.net/0130/PROD/v1/docs/user-manual.pdf
https://ubistatic-a.akamaihd.net/0130/PROD/v1/docs/user-manual.pdf
https://nanopdf.com/download/redkiteditorbasicmanual-port-of_pdf
https://nanopdf.com/download/redkiteditorbasicmanual-port-of_pdf
https://www.youtube.com/watch?v=I-CEQFvsiTs
https://docs.unrealengine.com/en-US/Basics/RecommendedSpecifications/index.html
https://docs.unrealengine.com/en-US/Basics/RecommendedSpecifications/index.html
https://docs.unrealengine.com/en-US/ProductionPipelines/Plugins/index.html
https://docs.unrealengine.com/en-US/ProductionPipelines/Plugins/index.html

