Automatisk rengöring av klordioxidanalysator

Jonas Öst

Examensarbete för ingenjör (YH)-examen

Utbildningsprogrammet för Automationsteknik och IT

Ekenäs 2012
Sammanfattning

Den automatiserade rengöringen underlättar vardagen för underhållsarbetarna på fabriken och minskar riskerna i det vardagliga underhållsarbetet, samtidigt som noggrannheten för mätningen förbättras.

Språk: Svenska

Nyckelord: Klordioxidanalysator, MetsoDNA, sekvensprogram
Summary

This thesis deals with the cleaning process on an analyzer, which analyzes the chlorine dioxide water from the chlorine dioxide production, at UPM-Kymmene's pulp mill in Pietarsaari. The goal of this work was to automate the cleaning process of the analyzer. Previously, the analyzer has been cleaned manually with water and hydrochloric acid. The work was realized by means of a container for hydrochloric acid, valves, a sequence program and a graphical interface for controlling the program.

The automated cleaning process makes life easier for maintenance workers at the plant and reduces the risks in the everyday maintenance work, and the accuracy of the measurement is improved.
OPINNÄYTETYÖ

Tekijä: Jonas John Alfred Öst
Koulutusohjelma ja paikkakunta: Automationsteknik och IT, Raasepori
Suuntautumisvaihtoehto/Syventävät opinnot: Elplanering
Ohjaaja: Ulf Lemström

Nimike: Klooridioksidianalysaattorin automaattinen pesu / Automatisk rengöring av kloridioksidanalysator

Päivämäärä: 29.8.2012 Sivumäärä: 38 Liitteet: 8

Tiivistelmä

Tämä automatisoitu puhdistus helpottaa kunnossapitotyöntekijöiden arkea ja vähentää riskejä jokapäiväisissä kunnossapitotöissä, samalla mittauksen tarkkuus parantuu.

Kieli: Ruotsi
Avainsanat: Klooridioksidianalysaattori, MetsoDNA, sekvenssiohjelma
Innehållsförteckning

Bilageförteckning

1 Inledning ... 1

1.1 Uppgift ... 1

1.2 Företaget ... 1

2 Framställning av pappersmassa .. 3

2.1 Sammanfattning av fabriken i Jakobstad ... 3

2.1.1 Styrsystemet .. 5

2.2 Processen .. 7

2.2.1 Timmerhantering .. 8

2.2.2 Kokning .. 8

2.2.3 Blekning .. 11

2.2.4 Återvinning ... 12

2.2.5 Avfallsvatten .. 14

2.3 Klordioxid .. 15

2.3.1 Klordioxidanalysator ... 16

2.4 Saltsyra ... 17

3 Funktion .. 18

3.1 Uppbyggnad ... 19

3.1.1 Ventiler .. 21

3.1.2 Mjukvara ... 22

3.2 Låsningar .. 23

3.2.1 Läsning av mätvärde ... 24

3.2.2 Ventillåsningar ... 24

3.3 Sekvensprogram ... 25
3.4 Användargränssnitt ... 28
3.5 Dynamiska beskrivningar ... 29

4 Testning ... 30
 4.1 Ventiler .. 30
 4.2 Sekvensprogram .. 31
 4.3 Funktion .. 31
 4.4 Optimering .. 32

5 Diskussion .. 33

Ordlista .. 34

Källförteckning ... 37
Bilagförteckning

Bilaga 1: Program- och läsningssidor för ventilerna 567-QV-38.1-5.

Bilaga 2: Kopplingsschema för analysatorn 567-QC-38.

Bilaga 7: Styrning av sekvensprogram pr:567-SQ-38.

Bilaga 8: Funktions- och låsningsbeskrivningar.
1 Inledning

I detta kapitel presenteras det företag som jag har gjort mitt arbete hos. Jag ger också en kort definition av syftet med arbetet.

Uppdragsgivare för mitt arbete var UPM-Kymmenes fabrik i Jakobstad och som handledare på företaget fungerade förmannen för instrumentunderhållet, Mikael Karf.

1.1 Uppgift

Uppgiften var att automatisera tvättningen av en analysator som mäter kloridhalt i processen vid kemikaliemodelningar till blekerierna vid UPM-Kymmenes cellulosa fabrik på Alholmen i Jakobstad. Tvättningen av analysatorn hade tidigare genomförts manuellt med hjälp av vatten och saltsyra av en underhållsmechaniker. I arbetet fanns riskmoment eftersom analysatorn skulle rengöras med en frätande kemikalie och tvättningen skulle ske dagligen.

Med en automatiserad tvätt får man bort riskmoment och mätningen av kloridhalt blir jämnare, eftersom analysatorn blir ordentligt rengjord.

1.2 Företaget

Företaget växte och Schauman utvidgade sin verksamhet på Alholmen i Jakobstad med en såg för förädling av trävaror och ett sockerbruk. (Schybergson 1983, s. 46–52)

Före sin död 1911 endast 54 år gammal grundade Schauman även en fabrik för fanertillverkning i Jyväskylä. (Ahlström 1973, s. 123–132, s. 203–208).

Enligt Schaumans testamente gick alla hans tillgångar till företaget Wilh. Schauman Ab som var grundat 1903, aktierna blev jämnt uppdela i familjen och värdet uppsteg till 1,5 miljoner mark. (Tuuri 1990a, s. 447).

År 1934 byggde Jakobstad Cellulosa Ab en sulfitcellulosafabrik och cellulosatillverkningen startade på Alholmen. Produktionen var då 40 000 ton cellulosa per år, 1960 fusionerade familjebolagen och byggde i mitten på 1970 en sulfatcellulosafabrik och en pappersfabrik på Alholmen, produktionen var då 210 000 ton cellulosa per år.

Figur 1. UPM-Kymmenes logo. (UPM 2012).
2 Framställning av pappersmassa

Detta kapitel handlar om hur man framställer cellulosa, från timmerhantering till färdigt blekt pappersmassa samt hur återvinningen på en cellulosafabrik fungerar. Kapitlet behandlar även styrsystem, eftersom styrsystemet var en viktig del av mitt arbete.

2.1 Sammanfattning av fabriken i Jakobstad

Cellulosafabriken i Jakobstad tillverkar följande produkter:

- Wisapine, framställs av gran och tall. Massan har långa fibrer och passar därför till papperstillverkning för att ge pappret styrka. Massan levereras både blekt och oblekt.
- Wisabetula, är kortfibrigt och är viktigt för papprets tryckegenskaper. Det används för tidskrifter, kataloger, böcker, blanketter och kuvert, s.k. finpapper.
- Wisathin, framställs av barrved från förstagallringar och används för etikett-tillverkning.
- Wisaeuca, Har liknande egenskaper som Wisabetula men tillverkas av importerade eukalyptusträd.

Till övriga produkter som fabriken tillverkar hör metanol, tallolja, terpentin, ånga, el och bark. (UPM Intranet 2012).
Cellulosatillverkningen i Jakobstad består av följande delmoment:

1. Barktrummor och flishuggar.
2. Flisstackar.
4. Tvätteri.
5. Blekeri.
6. Mellanlagring av cellulosa.
7. Torkmaskiner.
8. Sodapanna för återvinning.

Figur 2. Översikt över en del av UPM-Kymmenes fabriksområdet i Jakobstad.

(Käll 2012).

På UPM-Kymmenes fabriksområdet i Jakobstad finns även elkraftverket Alholmens kraft, Billeruds papperstillverkning, Walki som tillverkar specialpapper och Alholmens såg. På fabriksområdet finns även en brandstation.
2.1.1 Styrsystemet

Styrsystemet som används i Jakobstad för processen är MetsoDNA, systemet är uppbyggt av moduler och komponenter och är väldigt omfattande. Olika givare samlar in data och mätvärden, med hjälp av dessa kan styrningar på ventiler och pumpar i processen utföras av en människa eller automatiskt av systemet, t.ex. reglering och sekvensstyrning. Figur 3 visar ett skåp med Metsos komponenter, hit kommer signaler från olika givare in till styrsystemet och härifrån sänds signaler från styrsystemet till pumpar och ventiler. (Knowpulp 2012b).

Figur 4. Översikt av styrkrets i processen. (Know-pulp 2012a).

Figur 5. Grafisk körarbild från UPM-Kymmene i Jakobstad.
För att programmera program till processen används fbCAD, där programmerar man funktioner med grafiska block. Med programmet DNAuseeditor ritar man grafiska kördbilder. Debuggern är ett annat verktyg som används till att läsa eller modifiera signaler inne i styrsystemet, programmet används främst av instrumentpersonalen.

Figur 6. Exempel på avläsning av signal i styrsystemet med hjälp av debuggern.

Med debuggern kan man avläsa eller ändra en signal inne i styrsystemet, i figur 6 är utsignalen på kopieringsblocket 1ccob avläst, kopieringsblocket finns på ventilsidan 567-QV-38.1, se bilaga 1.

2.2 Processen

2.2.1 Timmerhantering

Timret kommer till fabriksområdet med lastbil, tåg eller båt som rundtimmer. För att kunna dela på vedens beståndsdelar, cellulosafibrer och lignin i sulfatmassaprocessen måste veden först flisas. (Skogs Sverige 2012a).

På fabriksområdet finns två barktrummor en för varje flishugg, barktrummorna är långa roterande rör där rundveden tumlar runt och tappar sin bark. Bark är en oönskad råvara i processen eftersom den ökar mängden kemikalier kokning och blekning. Alholmens kraft har en barkpanna på fabriksområdet där barken förbränns.

När rundveden är barkad tvättas stockarna av och flisas till 20-40 mm långa och 5-8 mm tjocka flis i två flishuggar, fliset transporteras på transportband till två stackar, en för barrved och en för lövved, se figur 2. (Skogs Sverige 2012b).

2.2.2 Kokning

När rundveden är flisad transporteras den till kokerierna via mellanlagringsflisstackar. På fabriksområdet finns två stycken kokerier, en Kamyr-kokare (tvåans kokeri) som är en kontinuerlig kokare. Det betyder att koket inte behöver göras satsvis, utan att man fyller på med flis och vitlut i toppen av kokaren, ånga blåses in från sidan av kokaren och flis/massa rör sig nedåt i kokaren, se figur 7. (Skogs Sverige 2012b).
Kamyr-kokaren används huvudsakligen till kokning av flis från lövträd. Eftersom lövträd är hårdare än barrträd behövs det längre koktid för att dela på cellulosafibrerna och ligninet. (Skogs Sverige 2012b).

Treans kokeri består av åtta satskokare. Med satskokare menas att kokningen sker satsvis. I satskokarna kokar man bara flis från barrträd. Flis, vitlut och svartlut tillsätts i toppen av kokaren och ånga blåses in, se figur 8. (Skogs Sverige 2012b).
Båda kokarna använder sig av den så kallade sulfatprocessen som har fått sitt namn av natriumsulfat (Na\(_2\)SO\(_4\)). Tidigare användes natriumsulfat för att ersätta förlusterna av svavel och natrium. Processen har utvecklats, så nuförtiden är dessa förluster normalt små och behovet av natriumsulfat är litet.

Efter kokning vill man ha så lite lignin som möjligt kvar i cellulosan, så att förbrukningen av blekningskemikalier hålls nere. Orsakerna är såväl ekonomiska som miljövänliga skäl. (Skogs Sverige 2012b).
2.2.3 Blekning

Efter kokningen sköljs och tvättas pappersmassan, cellulosa skiljs då från kok-kemikalierna. Kemikalierna som blir över från kokningen kallas gemensamt för svartlut och de transporteras till sodapannan för återvinning.

\[\text{Kappatal} = k \cdot (\text{ligninhalten i procent}) \]

Där \(k \) är en konstant som blir uträknad från processförhållanden och vedslag. (Svensk Standard 1992, s. 216).

![Figur 9. Processbild över blekeri ett i Jakobstad.](image-url)
För att göra blekerierna mera överskådliga har man enats om förkortningar för olika bleksteg, se även figur 10:
- O = Syrgassteg
- D = Klordioxidsteg
- E = Alkalisteg
- P = Peroxidsteg
- Z = Ozonsteg
- Q = Benhandlingssteg med komplexbildare

![Figur 10. ECF och TCF blekningssekvens. (Skogs Sverige 2012d).](image)

Före och efter blekning mäter man ljusheten på massan. Man mäter ljushet för pappersmassa i ISO-ljushet, som anges i procent av absolut vithet. Oblekt pappersmassa har en ljushet på ca.25 procent ISO, efter blekning kan man uppnå en ljushet på över 90 procent ISO. (Skogs Sverige 2012d).

2.2.4 Återvinning

effektiv förbränning som möjligt i sodapannan bör svartluten ha en så hög torrhalt som möjligt, vanligtvis mellan 80–85 procents torrhalt. Efter indunstningen kallar man svartlut för tjocklut. (Skogs Sverige 2012c).

Figur 11. Teoretisk bild över en sodapanna. (Skogs Sverige 2012c).

Tjockluten sprutas in i sodapannan genom speciella munstycken. En sodapanna är en ångpanna som är anpassad för att förbränna svartlut.

Ur sodapannans botten rinner en smälta ut. Den består i huvudsak av natriumkarbonat och natriumsulfid. Smältan löses upp i svaglut och kallas då grönlut, se figur 11. Energin från förbränningen används till att koka vatten till ång. Ångan omvandlas sedan till elektricitet i en ångturbin, och används sedan som uppvärmningsmedium i processen.

Sista steget i återvinningen är att grönluten går vidare till kausticering. Där återfås vitlut genom att blanda släckt kalk med grönlut. Mesa som bildas när man blandar grönlut med släckt kalk, förbränns i ett långt roterande rör, s.k. mesaugn, se figur 12.
2.2.5 Avfallsvatten

Det går åt stora mängder vatten när man tillverkar pappersmassa. UPM-Kymmene i Jakobstad förbrukar 2,5–3 m³/s vatten, dygnet runt. Vattnet tas från en intilliggande sjö och renas mekaniskt eller kemiskt beroende på var i processen det skall användas.

Innan vattnet släpps ut i havet går det genom olika rengöringssteg. Reningen av avloppsvatten går till på följande sätt:

- Försedimentering, Där sjunker de fasta partiklarna till botten av en bassäng varifrån de sedan avlägsnas.
- Näringsämnen, För att mikroberna i luftningsbassängen skall fungera tillsätts urea och fosforsyra i vattnet.
- Neutralisering, Vattnets pH-värde neutraliseras till 6-8 med hjälp av kalk, lut eller svavelsyra.
- Kylning, vattnet kyls ner till ca 35 C°.
- Luftning, i luftningsbassängerna bryter naturens egna mikrober och protozoer ned de organiska ämnena i vattnet.
- Slutsedimentering, i slutsedimenteringsbassängen sjunker bioslammet till botten av bassängen och det renade vattnet leds ut i vattendraget.

Avloppsvattnet kan innehålla:
- Fast substans så som biomassa från reningsverket, fiberrester och kemikalierester.
- Biologiskt syreförbrukande ämnen (BOD).
- Kemiskt syreförbrukande ämnen (COD).
- Klorerade organiska föreningar (AOX).
- Fosfor- och kväveföreningar.

För att möjliggöra jämförelser med andra cellulosafabriker, anger man alla mätvärden per producerat cellulosa ton. (Wisaforest och miljö 1995b, s. 70-77).

2.3 Klordioxid

Klordioxid, ClO₂ används inom pappersindustrin framförallt i blekningsprocessen, klordioxid används i ECF-blekning i D-stegen. Det löser upp ligninet så att det blir vattenlösligt och går att tvätta ur cellulosan. Tidigare använde man klor i blekningen, men det används inte alls längre p.g.a. höga AOX-utsläpp.

2.3.1 Klordioxidanalysator

Klordioxidanalysatorn, som är en del av mitt arbete, mäter klordioxidhalten i vatten efter absorberingstornet i klordioxidtillverkningen, se figur 13. Mätaren består av en omvandlare och en sensor av märket Optek och går under beteckningen 567-QC-38, se bilaga 2 för kopplingsschema.
Mätningen fungerar med fotometri. Se figur 14, Ljus från ljuskällan (9) är riktad exakt genom en optisk modul (8), den fortsätter sedan genom ett fönster (2) och sedan genom klordioxidvattnet (1). Ljusstrålen delas (3) och filtreras (4),(6) och träffar därefter fotosensorer (7),(5).

Resultatet av ljusstrålen blir sedan förstärkt, konverterad och analyserad av omvandlaren se figur 15, och därefter sänd till styrsystemet. (Optek C4000 2012).

Figur 4. Bild av omvandlaren, Optek Converter C4000. (Optek 2012)

2.4 Saltsyra

Väteklorid är en färglös, starkt luktande gas som löst i vatten kallas saltsyra HCl, som i koncentrerad form är mycket starkt frätande. (Karamäki 1962, s. 40–41).

Eftersom saltsyra är mycket starkt frätande så är den passande till att använda som rengöringsmedel i klordioxidanalysatorn. Till rengöringen används HCl 10 %, saltsyran blandas på fabriksområdet av laboratiepersonal.
3 Funktion

Målet för detta arbete var att rengöra sensorn i klorioxidanalysatorn med hjälp av vatten och saltsyra. Rengöringen skulle ske automatiskt en gång om dagen utan att störa processen och den skulle gå att styra och övervaka från manöverrummet.

Denna rengöringsprocess förverkligades med hjälp av fem ventiler och en behållare för saltsyra. Behållaren är placerad 6 meter ovanför analysatorn, så saltsyra sköljer ur analysatorn med självtryck, se figur 16.

Styrsystemet för ventilerna sker via ett sekvensprogram. För att göra rengöringen så optimal som möjligt sker tvättningen i följande steg:

- Ventilen för ClO₂-provtagning stängs.
- Rester av ClO₂-sköljs ur analysatorn med hjälp av vatten.
- Analysatorn fylls med HCl, syran får reagera 1 till 10 minuter.
- Mera HCl fylls på i analysatorn, denna gång reagerar syran i 5 minuter.
- Rester av HCl sköljs bort med vatten.
- Systemet normaliseras och klorioxidanalysatorn mäter halten klorioxid normalt igen.
3.1 Uppbyggnad

YIT förverkligade installationen av ventilerna. Ventilerna monterades på en lodrät rad mellan analysators sensor och omvandlare, se figur 17. Ventilerna anslöts med Imperial eastman 88p 1/2”x0,062 polyetenslangar, och som styrdär till ventilerna användes KJAAM 4x(2+1)x0,5. Styrdätarna går till kopplingslådan 567-CB-85, från kopplingslådan går det en JAMAK 24x(2+1)x0,5 till korskopplingsutrymmet, först till skåpet 567-CC-100 därefter till 567-XD-101 där Metsos I/O kort finns, se bilaga 1 för kopplingschema och figur 16 för överblick. Ventilerna får också 7 bars tryckluft från förgreningslådan 567-AS-78, se bilaga 3 för kopplingsschema över ventilerna.

Behållaren är cylindrisk och har en diameter på 215 mm och en höjd på 750 mm detta ger den en volym på 27 liter. På dess sida finns en nivåmätare för optisk kontroll av HCl-nivå. På undersidan av behållaren finns en handventil för manuell avstängning av HCl-flöde. Handventilen kan användas vid behov av underhåll av tvättsystemet, se figur 18.
Ventiler och reglerventiler är viktiga komponenter i reglersystem. Ventiler finns av olika slag och med olika styrningar beroende på ändamål.

3.1.2 Mjukvara

Mjukvaran programmerades i fbCAD med grafiska funktionsblock, först gjordes programmen till ventilerna och ventilernas läsnings program, se bilaga 1. Dessa program ger ut en binär signal det vill säga en etta eller en nolla, Metsos I/O-kort omvandlar sedan signalen till 24 VDC till magnetventilen. Ventilerna sänder även information om de befinner sig i öppet eller stängt läge, signalerna omvandlas i Metsos I/O-kort till binära signaler som styrsystemet uppfattar.
Ventilernas position:

- 567-QV-38.1 = provventil
- 567-QV-38.2 = HCl 10 %-ventil
- 567-QV-38.3 = vattenventil
- 567-QV-38.4 = kanalventil
- 567-QV-38.5 = provreturventil

För att processkörarna skall få en bra överblick av tvättsystemet gjordes ett grafiskt gränssnitt där tvättsystemets funktion syns. I gränssnittet kan man lägga sekvensen av och på, och även ställa in hur ofta tvättningen skall ske och hur länge saltsyran skall reagera inne i analysatorn, man får även reda på i vilket steg sekvensen befinner sig.

3.2 Låsningar

Låsningar används för att förhindra fel vid automatisk och manuell körning, t.ex. att förhindra uppstart av en pump om inte ventilerna till den är ställda i rätt läge.

I detta arbete användes låsningar på ventiler för att förhindra fel körning, det skall med andra ord förhindra att en ventil ändrar läge om dess villkor inte uppfylls. Detta är viktigt eftersom man kan få saltsyra med i processen eller fylla hela saltsyrebehållaren med vatten om ventiler inte befinner sig i rätt läge.

Alla låsningssidor slutar på L i detta arbete t.ex. 567-QV-38.1L och finns i bilaga 1 och bilaga 4.
3.2.1 Läsning av mätvärde

Läsning av mätvärde var nödvändigt för att tvättprocessen inte skulle störa mätningen från analysatorn. Mätvärdet låses när tvättprocessen börjar och hålls läst så länge som sekvensen fortsätter.

Detta förverkligades genom att första händelsen i sekvensen startar en nedräkning, pulsblocket 5pls på sida 1 i 567-QC-38L. Därefter går en inverterad signal in till två kopieringsblock 3 och 4 ccoa på sida 567-QC-38, mätvärdet hålls läst så länge kopieringsblocken får signal. I detta fall hålls mätvärdena låst i 20 minuter, så länge som sekvensen behöver för att fullfölja tvättningsprocessen, se bilaga 4.

3.2.2 Ventilläsningar

För att göra ventilläsningar gjordes först en villkorslista för varje ventil.

- Provventilen får köras om HCl 10 %-ventilen är stängd, vattenventilen är stängd, och kanalventilen är stängd.
- HCl 10 %-ventilen får köras om provventilen är stängd, vattenventilen är stängd, kanalventilen är öppen och provreturventilen är stängd.
- Vattenventilen får köras om provventilen är stängd, HCl 10 %-ventilen är stängd, kanalventilen är öppen och provreturventilen är stängd.
- Kanalventilen får köras om provventilen är stängd och provreturventilen är stängd.
- Provreturventilen får köras om HCl 10 %-ventilen är stängd, vattenventilen är stängd och kanalventilen är stängd

På varje ventil finns ett gränslägespaket. I paketet finns två gränslägesgivare en som känner av om ventilen är helt öppen och en som känner av om ventilen är helt stängd. På så sätt får styrsystemet information om ventilernas position. T.ex. för att kunna köra provventilen så måste styrsystemet forst få signal från HCl 10 %-ventilens och
kanalventilens gränslägesgivare för stängt läge, när kraven är uppfyllda så kan man köra ventilen.

Figur 20. Figuren visar en del av låsningssidan till 567-QV-38.1L.

3.3 Sekvensprogram

Ett sekvensprogram är ett program som utför uppgifter i en bestämd ordning. Programmet har klara villkor som måste uppfyllas innan det kan påbörja nästa steg i sekvensen. Varje steg i sekvensen utför en eller flera operationer. Den skickar med andra ord iväg ettor och nollor till olika program. Sekvensprogrammet i detta arbete består av 15 steg och styr de olika ventilerna i rengöringssystemet, det skickar därför ettor och nollor till ventilernas styrprogram.
Före själva programmeringen måste uppgifterna i varje steg bestämmas. Uppgifterna för sekvensen 14 steg:

Steg 1: Alla ventiler ställs i automatiskt körläge. Provventilen och provreturventilen stängs.

Steg 2: Kanalventilen öppnar.

Steg 3: Vattenventilen öppnar, rester av ClO\textsubscript{2}-vatten sköljs bort ur analysatorn.

Steg 4: Vattenventilen stängs,

Steg 5: HCl 10 %-ventilen öppnar.

Steg 6: HCl 10 %-ventilen stängs, HCl 10 % reagerar i analysatorn 1 – 10 min.

Steg 7: HCl 10 %-ventilen öppnar.

Steg 8: HCl 10 %-ventilen stängs, HCL 10 % reagerar i analysatorn 5 min.

Steg 9: Vattenventilen öppnar, vatten sköljer bort HCl 10 % ur analysatorn.

Steg 10: Vattenventilen stängs.

Steg 11: Kanalventilen stängs.

Steg 12: Provventilen öppnar, provretur ventilen öppnar.

Steg 13: Om sekvensen är på automat börjar den om igen efter 1-24 timmar.

Steg 14: Om ett fel i sekvensen uppstår eller om sekvensen är på manuell körning så hoppar sekvensen till detta steg, här normaliseras alla ventiler och ställs in på manuell körning.

Steg 15: Slutsteg, markerar att sekvensen är slut.

För att få en översiktsbild av ventilernas rörelser i sekvensen gjordes texten även om till en grafisk bild där varje vents rörelser syns steg för steg, se figur 21. I figuren syns alla ventiler och deras rörelsemönster i sekvensen.
Programmet till sekvensen heter sq:567-SQ-38 och finns i bilaga 5. För att varje sekvenssteg skall gå vidare krävs det att villkoren är uppfyllda. Villkoren för att sekvensen skall gå vidare till nästa steg är samma som steget gör. D.v.s. för att sekvensen skall gå från steg ett till steg två måste alla ventilerna ha blivit ställda i automatiskt körläge och provventilen samt provreturventilen ha öppnats. Villkoren är till för att kontrollera om ventilerna fungerar som de skall. Låt oss säga att provventilen stannar i öppet läge i steg ett, då kommer sekvensen att stanna på steg ett och efter 100 sekunder alarmerar sekvensen

För att kunna ställa in tiden som HCl 10 % skall reagera i analysatorn på 1–10 min, och för att kunna ställa in hur ofta rengöringssekvensen skall köras under 1–24 timmar, gjordes ett skilt program med räknare. Programmet heter pr:567-SQ-38 och finns i bilaga 7.

För att en sekvens skall gå vidare måste villkoren för steget först bli uppfyllda. Se figur 23. En etta kommer in från villkorssidan (vänstra sidan på figuren) om villkoren är uppfyllda, ettan öppnar därmed ”grinden” och sekvensen hoppar till nästa steg. Om ettan uteblir i 100 sekunder alarmerar sekvensen och funktionsblocket 01–42ccos sänder sekvensen till steg 14, där ventilerna normaliseras.

3.4 Användargränssnitt

Användargränssnittet, den så kallade körarbilden gjordes grafiskt i DNAuseeditor, och är till för att ge en visuell överblick över systemet och för att styra sekvensen. I körarbilden kan man ställa in tiden som saltsyran skall reagera inne i analysatorn och hur ofta tvättprogrammet skall köras. Den tid som har förflutit sedan senaste tvätt och tiden som saltsyran har reagerat inne i analysatorn visas även på körarbilden.
Körarbilden visar också på vilket steg sekvensen befinner sig. Man kan även ställa in alla ventiler i manuell körning och köra dem manuellt om så behövs, se figur 24.

Figur 24. Styrning av tvätt sekvensen.

3.5 Dynamiska beskrivningar

Dynamiska funktions- och läsningsbeskrivningar är till för dem som kör processen. Sidorna är förklaringar till hur program och sekvenser fungerar och vilka läsningar varjeventil har. Funktions- och läsningsbeskrivningar hämtar information i nutid från styrsystemet. Sidorna är till bra hjälp i felsökning och som hjälp när man vill ha reda på hur en styrning fungerar.

Beskrivningarna skrevs med hjälp av HTML-kod i Netscape Composer och är förklaringar på hur sekvensen fungerar och vad de olika stegen i sekvensen utför. Sekvensen och varjeventil har funktionsbeskrivningar, varje ventil har även en egen läsningssidan där det framkommer när en ventil får köras. Funktions- och läsningsbeskrivningar finns i bilaga 8.
4 Testning

Innan systemet anslöts till processen testades mjukvaran och hårdvaran, detta för att upptäcka fel i mjukvaran och för att kontrollera funktionen i programmet. Sekvensen testkördes även med vatten för att optimera förbrukningen av HCl och för att kontrollera eventuella läckage. När systemet hade tagits i användning kontrollerades det regelbundet under tre veckor, främst för att se att rengöringen fungerade.

4.1 Ventiler

Ventilernas funktion och styrning testades genom att en person körde ventilerna via styrsystemet och en person kontrollerade rörelserna ute på fältet. Testningen utfördes för att se om ventilerna var rätt anslutna till styrsystemet och för att kontrollera att alla gränspacket fungerade bra. Testningen genomfördes innan slangarna till ventilerna var anslutna till processen och testningen var lyckad. Ventilernas läsningar fungerade, men under testningen konstaterades att reduceringsmunstycken behövdes för att göra ventilernas rörelser mjukare, det konstaterades även att ventilerna 567-QV-38.4 och 567-QV-38.5 var korskopplade, det ordnades genom att koppla om dem i 567-CB-85.
4.2 Sekvensprogram

Sekvensprogrammet testades för att upptäcka eventuella fel i programmet. Under testningen optimerades även vänt- och övervakningstiderna i sekvensstegen. Funktionen i sekvensprogrammet testades genom att ställa in kortspolningstid och reageringstid och därefter köra programmet från det grafiska gränssnittet. När sekvensen fungerade optimalt testades det ännu med att ge en störning i sekvensen så alarmfunktionerna fungerade.

4.3 Funktion

Systemet togs i användning och kontrollerades regelbundet under tre veckor. Under funktionstestningen observerades att allt klordioxidvatten inte sköljdes bort av vatten i steg tre. Detta problem löstes genom att låta vatten spola genom systemet i 60 sekunder istället för tidigare 15 sekunder.
4.4 Optimering

Optimeringen genomfördes när allt var testat och fungerade, målet var att få optimerad förbrukning av HCl. Förbrukningen av HCl hade vid handtvättning varit 2–3 dl dagligen, samma förbrukning eftersträvades också vid automatisk tvättning.

5 Diskussion

Arbetet skulle ännu gå att utveckla med bland annat en nivågivare i behållaren för saltsyra, på så sätt skulle de som kör processen veta när det är dags för påfyllning i behållaren. Ett annat sätt att utveckla arbetet på är att ha HCl 100 % i behållaren, och blanda ut till HCl 10 % efter behållaren, på så sätt skulle påfyllning av saltsyras minskas.

Ordlista

a – Auto

amc – Auto -> manual change allowed

ana - Analog

AOX – Absorberbara organiska halogener

AS – Air supply

asfmode – Active step function mode

askfb – Funktionsblock som frågar felbit

atime – Övervakningstid

bin – Binär

BOD – Biologiskt syreförbrukande ämnen

CB – Connection box

CC – Cross connection

ccoa – Analogt kopierande funktionsblock

ccob – Binärt kopierande funktionsblock

ccos – Kopierande funktionsblock för korta strängar

ClO₂ – Klordioxid

CMP – Jämförelse funktionsblock

cng – Hopp funktionsblock

COD – Utsläpp av syreförbrukande substanser

DI – Digital input

disbo – Funktionsblock som kan välja mellan två ingångar

dlc – Process control system -> local change allowed
DNA – Dynamic Network of applications

DO – Digital Output

e6 – External input 6

ECF – Elementary chlorine free

fbCAD – Function block computer aided design

foff – Forced control off

fon – Forced control on

gd – Graphic display

HCl – Saltsyra, väteklorid

HTML Hypertext Markup Language

I/O – In/ut

I/O modul – Modul var man kan ansluta enheter men har ingen egen logik

IBC/Kortti – Kort plats

KAN – Kanava – Kanal

Kanaaliin – Till kanal

ldc – Local -> process control system change allowed

lim – Gränz funktionsblock

ma – Manual/auto

mac – Manual -> auto change allowed

mgv – Funktionsblock för magnetventiler

MIO – Metso input output

mw – Monitor window

Näyte – Prov
Näyte Palautus – Prov retur

onb – On back

PA – Prosessi asema – Process station

PID – Proportional–integral–derivative regulator

pls – Puls funktionsblock

pr – Funktionsmodul

QC – Analys reglering

QV – Analys ventil

roff – Releas off

ron – Releas on

seq – Sekvens

smask – Gränslägesbrytare maskinformation

soff – Status off

son – Status on

SQ – Sekvens analys

TCF – Totally chlorine free

Tcwd – Flytt villkor alarm

toff – Time to off

ton – Time to on

UPM – United Paper Mills

VDC Volt Direct Current - Likström

VSU – Mekaanisesti puhdistettu vesi – Mekaniskt renat vatten

wtime – Väntetid
Källförteckning

(Läst 26.7.2012 kl. 9:45).

(Läst 31.7.2012 kl. 07.55).

(Läst 31.7.2012 kl. 07.55).

Optek C4000 data sheet. (Läst 31.7.2012 kl. 20.05).

UPM Intranet.

UPM Intranet.

NÄYTE

HCl 10%

567-QV-38.1 = WORCHESTER
05A4-6665RTBWBWA05-RDB4-15S00-N-A+IN 5331+NUMATICS D15/PN40
8/FY/-8.90

567-QV-38.2 = WORCHESTER
05A4-6665RTBWBWA05-RDB4-15S00-N-A+IN 5331+NUMATICS D15/PN40
8/FY/-8.90

567-CB-85
567-CC-100/XW6
567-QV-38.1
567-QV-38.2
567-AS-78
567-QIC-38 AKD pitoisuus

Toimintatapa:

- Analysaattorin automaattinen happopesu 567-SQ-38.

Hälytykset:

Tiedot muihin piireihin:

- Ohjaustieto piirille 567-FIC-36 VKE abs. tornin
- Mittaustieto piirille 567-UI-40 ClO2-laitos tuotanto
- Mittaus > HH-raja ((XD::ANA)567-QC-38:F:L_HH; g/l Akt. Cl2) piirille 567-HS-7 ClO2-reaktorin käynnistyslupa.

Lukitus
Sisällysluettelot
567-QV-38.1 Näyte venttiili

Toimintatapa:

- M-moodissa käyttäjä voi itse ohjata venttiiliä.

Hälytykset:

-

Tiedot muihin piireihin:

<table>
<thead>
<tr>
<th>Lukitukset</th>
<th>Sisällysluettelo</th>
</tr>
</thead>
</table>
567-QV-38.2 HCL 10% venttiili

Toimintatapa:

- M-moodissa käyttäjä voi itse ohjata venttiiliä.

Hälytykset:

-

Tiedot muihin piireihin:

| Lukitukset | Sisällysluettelo |
567-QV-38.3 VSU venttiili

Toimintatapa:

- M-moodissa käyttäjä voi itse ohjata venttiiliä.

Hälytykset:

- Tiedot muihin piireihin:

<table>
<thead>
<tr>
<th>Lukitukset</th>
<th>Sisällysluettelo</th>
</tr>
</thead>
</table>
567-QV-38.4 Kanaaliin venttiili

Toimintatapa:

- M-moodissa käyttäjä voi itse ohjata venttiiliä.

Hälytykset:

-

Tiedot muihin piireihin:

Lukitukset

Sisällysluettelo
567-QV-38.5 Näyte palautus venttiili

Toimintatapa:

- M-moodissa käyttäjä voi itse ohjata venttiiliä.

Hälytykset:

-

Tiedot muihin piireihin:

- Kiinni-raja 567-QIC-38 AKD pitoisuus.

Lukituksset

Sisällysluettelo
567-SQ-38 CLO2 Analysaattorin happopesu

Toimintatapa:

- CLO2 Analysaattorin linssin automaattinen pesu HCl 10% hapolla.
- Käyttäjä ohjaa pesusekvenssin käyntiin muuttamalla sekvenssin ON/OFF-kytkimen ON-tilaan.
 - Kun sekvenssi on ON- ja A-tilassa, voidaan käyttää POIS/PÄÄLLÄ painikkeita piiri-ikkunasta.
- Sopiva reagointi aika on 10 min.

Askel 1: Aloitusehdot

- Aikavalvonta: 100s
- Odotusaika: 5
- Toimenpiteet:
 - 567-QIC-38 [] Lukitsee arvon analysaattoriltta
 - 567-QV-38.1 [] Näyttö venttiili automaattille
 - 567-QV-38.2 [] HCl 10% venttiili automaattille
 - 567-QV-38.3 [] Vesi venttiili automaattille
 - 567-QV-38.4 [] Kanaaliin venttiili automaattille
 - 567-QV-38.5 [] Näyttö palautus automaattille
 - 567-QV-38.6 [] Näyttö venttiili kiinni
 - 567-QV-38.7 [] Näyttö palautus venttiili kiinni

- Ehdot seuraavaan askeleeseen siirtymiselle:
 - 567-QV-38.1 [] Näyttö venttiili kiinniraja
 - 567-QV-38.5 [] Näyttö palautus venttiili kiinniraja

Askel 2: Kanaaliin auki

- Aikavalvonta: 60 s
- Odotusaika: 10 s
- Toimenpiteet:
 - 567-QV-38.4 [] Kanaaliin venttiili auki

- Ehdot seuraavaan askeleeseen siirtymiselle:
 - 567-QV-38.4 [] Kanaaliin venttiili aukiraja

Askel 3: Vesi huuhtelu auki

- Aikavalvonta: 60 s
- Odotusaika: 10 s
- Toimenpiteet:
 - 567-QV-38.3 [] Vesi venttiili auki

- Ehdot seuraavaan askeleeseen siirtymiselle:
 - 567-QV-38.3 [] Vesi venttiili aukiraja

Askel 4: Vesi huuhtelu kiinni
- Aikavalvonta: 60 s
- Odotusaika: 15 s
- Toimenpiteet:
 - 567-QV-38.3 [] Vesi venttiili kiinni
- Ehdot seuraavaan askeleeseen siirtymiselle:
 - 567-QV-38.3 [] Vesi venttiili kiinniraja

Askel 5: Happa täyttö

- Aikavalvonta: 60 s
- Odotusaika: 2 s
- Toimenpiteet:
 - 567-QV-38.2 [] HCl 10% venttiili auki (15s auki)
- Ehdot seuraavaan askeleeseen siirtymiselle:
 - 567-QV-38.2 [] HCl 10% venttiili aukiraja

Askel 6: Hapon reagointi

- Aikavalvonta: 1900 s
- Odotusaika: 5 s
- Toimenpiteet:
 - 567-QV-38.2 [] HCl 10% venttiili kiinni (10min kiinni)
- Ehdot seuraavaan askeleeseen siirtymiselle:
 - Odotusaika kulunut 1-10min
 - 567-QV-38.2 [] HCl 10% venttiili kiinniraja

Askel 7: Hapon huuhtelu

- Aikavalvonta: 60 s
- Odotusaika: 2 s
- Toimenpiteet:
 - 567-QV-38.2 [] HCl 10% venttiili auki (15s auki)
- Ehdot seuraavaan askeleeseen siirtymiselle:
 - 567-QV-38.2 [] HCl 10% venttiili aukiraja

Askel 8: Happer venttiili kiinni

- Aikavalvonta: 600 s
- Odotusaika: 120 s
- Toimenpiteet:
 - 567-QV-38.2 [] HCl 10% venttiili kiinni
- Ehdot seuraavaan askeleeseen siirtymiselle:
 - 567-QV-38.2 [] HCl 10% venttiili kiinniraja

Askel 9: Vesi huuhtelu auki

- Aikavalvonta: 60 s
• Odotusaika: 7 s
• Toimenpiteet:
 o 567-QV-38.3 [] Vesi venttiili auki (30s auki)
• Ehdot askeleeseen siirtymiselle:
 o 567-QV-38.3 [] Vesi venttiili aukiraja

Askel 10: Vesi huuhtelu kiinni

• Aikavalvonta: 60 s
• Odotusaika: 10 s
• Toimenpiteet:
 o 567-QV-38.3 [] Vesi venttiili kiinni
• Ehdot seuraavaan askeleeseen siirtymiselle:
 o 567-QV-38.3 [] Vesi venttiili kiinniraja

Askel 11: Kanaaliin venttiili kiinni

• Aikavalvonta: 60 s
• Odotusaika: 7 s
• Toimenpiteet:
 o 567-QV-38.5 [] Kanaaliin venttiili kiinni
• Ehdot seuraavaan askeleeseen siirtymiselle:
 o 567-QV-38.4 [] Kanaaliin venttiili kiinniraja

Askel 12: Normalisoi

• Aikavalvonta: 60 s
• Odotusaika: 7 s
• Toimenpiteet:
 o 567-QV-38.5 [] Näyttö palautus venttiili auki
 o 567-QV-38.1 [] Näyttö venttiili auki
• Ehdot seuraavaan askeleeseen siirtymiselle:
 o 567-QV-38.5 [] Näyttö palautus venttiili aukiraja
 o 567-QV-38.1 [] Näyttöventtiili aukiraja

Askel 13: Huuhtelu väli

• Aikavalvonta: 87000 s
• Odotusaika: 5 s
• Toimenpiteet:
• Ehdot seuraavaan askeleeseen siirtymiselle:
 o Huuhtelu väli aika T1 1-24H kulunut

Askel 14: Lopetus

• Aikavalvonta: 60 s
• Odotusaika: 5 s
Toimenpiteet:
- **567-QV-38.1** [] Näyte venttiili auki
- **567-QV-38.2** [] HCl 10% venttiili kiinni
- **567-QV-38.3** [] VSU venttiili kiinni
- **567-QV-38.4** [] Kanaaliin venttiili kiinni
- **567-QV-38.5** [] Näyte palautus venttiili auki

| Lukitus | Sisällysluettelo |
567-SQ-38L CLO2 Analysaattorin happopesu

Lukitukset:

Venttiilin 567-QV-38.1 (Näyte venttiili) ohjaus on sallittu, kun:
- **567-QV-38.2** HCl 10% venttiili on kiinni-rajalla
- **567-QV-38.3** VSU venttiili on kiinni-rajalla
- **567-QV-38.4** venttiili on kiinni-rajalla

Venttiilin 567-QV-38.2 (HCl 10% venttiili) ohjaus on sallittu, kun:
- **567-QV-38.1** Näyte venttiili on kiinni-rajalla
- **567-QV-38.3** VSU venttiili on kiinni-rajalla
- **567-QV-38.4** Kanaaliin venttiili on auki-rajalla
- **567-QV-38.5** Näyte palautus venttiili on kiinni-rajalla

Venttiilin 567-QV-38.3 (VSU venttiili) ohjaus on sallittu, kun:
- **567-QV-38.1** Näyte venttiili on kiinni-rajalla
- **567-QV-38.2** HCl 10% venttiili on kiinni-rajalla
- **567-QV-38.4** Kanaaliin venttiili on auki-rajalla
- **567-QV-38.5** Näyte palautus venttiili on kiinni-rajalla

Venttiilin 567-QV-38.4 (Kanaaliin venttiili) ohjaus on sallittu, kun:
- **567-QV-38.1** Näyte venttiili on kiinni-rajalla
- **567-QV-38.5** Näyte palautus venttiili on kiinni-rajalla

Venttiilin 567-QV-38.5 (Näyte palautus venttiili) ohjaus on sallittu, kun:
- **567-QV-38.2** HCl 10% venttiili on kiinni-rajalla
- **567-QV-38.3** VSU venttiili on kiinni-rajalla
- **567-QV-38.4** Kanaaliin venttiili on kiinni-rajalla

Toimintakuvaus

Sisällysluettelo