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Abstract:  

Air quality has become a major concern for most of the cities around Europe due to rapid 

urbanization and industrialization. Smart City is an initiative to solve such problems by 

integrating information and communication technology with citizens. Smart City, through 

smart computing technologies, allows capturing of huge data and the real picture of the 

domain problem. Provided by huge sensor data, air quality can be considered an essential 

component of the Smart City concept. The current thesis utilized the data from the Horizon 

2020 mySMARTLife project, in which pollution detection sensors were deployed on pub-

lic transport vehicles (trams) for continuous monitoring of pollution concentrations such as 

NO, NO2, CO, and O3 throughout the day. The study applied widely used several deep 

learning methods such as Convolutional Neural network (CNN), Recurrent Neural Net-

work (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) for 

predicting hourly pollutant concentration based on spatial and meteorological information. 

The study also proposed an evaluation of features selection with different combinations of 

features for the model’s performance and showed the accuracy is increased by fusing me-

teorological variables and temporal feature engineering data. To figure out the best model 

performance, four evaluation measures such as coefficient of determination (r2), Mean 

Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) 

along with model parameter optimization were applied. It is observed that all the models 

performed comparatively well in prediction at 24-hour window horizons. Particularly, 

LSTM architecture outperforms all the models in prediction quality having lower MAE 

values of 0.09, 0.056, 0.096, and 0.114 for NO, NO2, CO, and O3 respectively. Neverthe-

less, given the computational efficiency of the CNN algorithm, it can substitute deep feed-

backward networks such as RNN, LSTM, and GRU models to predict pollutants rapidly 

and accurately in case of big data. 
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1 INTRODUCTION 

This chapter provides an overview of the challenges about the air quality around the cities 

and the motivation for this research, followed by research aims and limitations. Lastly, 

the outline of this thesis structure is presented. 

 

1.1 Background  

Air quality is one of the most important indicators defining an environment to be healthy. 

Apart from urbanization and industrialization, the increasing population and its automo-

biles are polluting the air at an alarming rate in major cities around the world. Air pollu-

tion refers to the contamination of the air by excessive quantities of harmful substances 

(pollutants) either in gaseous or particulate matter forms. The common such pollutants 

emitted into the atmosphere are particulate matter (PM), CO, NO, NO2 and O3. The 

sources of such pollutions are largely man-made such as energy production and utilization 

(IEA, 2018). The presence of these pollutants in the air deteriorates the quality of air, 

which eventually affects human health. Particularly children, elderly people, and those 

who suffer from asthma, cardiovascular problems, and respiratory issues are at high risk 

of being prone to effects of air pollution (Masih, 2018a). For example, a short-term O3 

exposure could bring acute coronary events in middle-aged adults without heart diseases 

(Ruidavets et al., 2005). Globally, about 4.2 million deaths were recorded attributed to air 

pollution during the year 2015 (Cohen et al., 2017). From another source such as Interna-

tional Energy Agency (IEA), about 6.5 million premature deaths were reported globally 

due to air pollution (World Energy Outlook Special Report, 2016). A regional study in 

Sweden reported 3000-5000 premature deaths every year because of inhaling pollutant 

air particles (Frisk & Partiklar, 2015). Therefore, it is important to address the air quality 

issue with real-time pollution concertation in a city so that people can arrange their activ-

ities accordingly, both in time and location. 
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1.2 Motivation 

Air pollution forecasting- the prediction of the air pollutant concentrations for a given 

time and location is a hot spot of a current research topic. With an accurate air quality 

forecast and better knowledge, one can arrange his/her activities considering air pollution 

health effects. Such as one can choose the right choice for the cleanest routes for the 

commute, the best time for outdoor activities, and other daily activities. On a national 

level, accurate forecasting will assist the government for planning and establishing pro-

cedures to reduce the effect of air pollution.  

The air quality issue is of major concern for many European citizens and one of the areas 

in which the EU has been focused seriously, to take preventive and regulatory measures. 

Followingly, Clean Air Force Europe (CAFE) initiative has been formed and set out the 

strategies and objectives among the member states. This initiative underlines a common 

framework of methods and criteria for direct comparison of air quality in different mem-

ber states, as well as forecasting and management of air quality. Moreover, the CAFE 

Directive (2008/50/EC) includes mandates for the provision of air pollutant information 

and their predictions for the next days to the public (EC Directive, 2008). Thus, air quality 

information and their prediction are in demand by citizens, the EU, and the government 

alike. Foremostly, in Finland, air quality information and its predictions are urgently 

needed for improving the health of the citizen under CAFE guidelines.  

Smart city initiative is on the rise in most cities around Europe, given the importance of 

increased attention on air quality from environment managers and citizens. One such 

smart city initiative is to mitigate the effect of air pollution by creating awareness with 

the emerge of new tools. The aim of the smart city initiative is to create a smarter envi-

ronment and improve the quality of its citizen’s lives. This is done with the help of smart 

technologies available using the Internet of Things (IoT). In other words, Smart City is 

urban computing which is a process of acquisition, integration, and analysis of a large 

amount of heterogenous data generated by diverse sources in urban spaces (Yu et al., 

2014). In the process, several sensors can be installed for example on a running vehicle 

in the city, to effectively monitor and forecast the air pollutant such as NO, CO and O3 in 

smart cities. Next, IoTs can be used to transfer the information and data to the monitoring 
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servers for data monitoring and tracking. However, for a smart city, merely monitoring 

the data is not enough, rather necessitates producing information from the data after anal-

ysis. Therefore, big data analysis techniques can be used such as machine learning algo-

rithms for effectively monitoring, managing, and providing weather and air pollutant con-

centration information to the citizen. In this paper, we will apply artificial intelligence to 

accurately forecast various pollutant concentrations in the short future. 

 

1.3 Aims of the study  

The overall aim of this project is to create deep learning algorithms that will be able to 

predict the hourly pollutant concentration in the atmosphere. The specific research objec-

tives of this project are: 

1. A critique review of existing literature on forecasting air quality using deep learn-

ing algorithms 

2. To discover the correlation between dependent variables particularly meteorolog-

ical components and concentration level of pollutants (NO, NO2, O3, CO) and the 

hotspot of different air pollutants in the city 

3. To investigate which features/variables have the highest impact on the machine 

learning algorithm’s ability to accurately perform prediction 

4. To implement and evaluate the deep neural networks such as Convolutional Neu-

ral Network (CNN), Recurrent Neural Network (RNN), Long Short-Term 

Memory (LSTM), and Gated Recurrent Unit (GRU) in forecasting air pollutant 

concentrations 

 

1.4 Limitations 

The thesis project has been completed according to its requirement, however, there were 

some limitations particularly the data measurement. The dataset period of this project is 

only from February through August of 2019. The sensor used in collecting the data was 

an experimental project of Horizon 2020 mySMARTLife. The continuation of data 
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collection for the whole year was not possible due to the costly calibration of the sensor. 

In addition, the quality of the data was degraded due to the inability to auto-calibrate the 

sensor. The dataset used for building the model was from February through June rather 

than through August because of the discontinuity of data which was caused by sensor 

degradation. 

 

1.5 Thesis structure 

The thesis is structured as follows: Chapter 2 introduces the knowledge necessary to un-

derstand the domain of the problem such as air pollution and quality followed by the 

Artificial Neural Network methods investigated in this study. Chapter 3 presents the ex-

isting and related works similar to the data model and prediction of this study. Chapter 4 

describes the implementation of the models, along with data preprocessing methods used 

in this study as well as the evaluation of the models. Chapter 5 presents the results, vali-

dation, and discussion of the results followed by the conclusions and future works in 

chapter 6. 
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2 BACKGROUND THEORY 

This chapter introduces the relevant theory of air pollution and the related work of air 

quality prediction with deep learning methods for the reader to pick up on key issues and 

concepts on the research topics. Section 2.1 defines air pollution and its main causes and 

air quality index in the context of Europe. Section 2.2 presents a brief introduction of the 

deep learning methods considered for prediction study. 

 

2.1 Air pollution 

Air pollution refers to the contamination of the air, irrespective of indoors or outdoors, 

by the excessive amounts of harmful substances (pollutants). The pollutants could be ei-

ther in the form of gases, particulates matter, or biological molecules. Air pollution occurs 

when the pollutants enter the atmosphere which is a combination of gases and after mix-

ing up makes the air dirty and difficult for plants, animals, and humans to survive 

(Akimoto, 2003; Seinfeld et al., 2012).  

 

2.1.1 Air quality 

Air quality refers to the condition of the air within particular surroundings. Good air qual-

ity describes the condition when the air is clean, clear, and free from pollutants as men-

tioned in Table 1. Thus, clean air is considered to be a basic requirement for human and 

well-being. The most common type of pollutants along with their sources and short de-

scriptions are listed in the table. On the other hand, the air with impurities implies poor 

air quality which causes the risk to the lives on earth e.g for humans, plants, animals, and 

natural resources, and deterioration of the environment from acid rain to global warming.  
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Table 1. The main types of pollutants. Nox, CO, and O3 are the pollutants of interest in this thesis  

Pollutants Sources and descriptions 

CO2 Carbon dioxide from various types of combustion in industrial and do-

mestic environments, power plants, and transport. 

CO Carbon monoxide primarily from motor vehicle exhaust and machinery 

that burns fossil fuel. Naturally present in the air and transformed into 

CO2 over time. 

SOX Sulfur oxides (SO2 and SO3) from the combustion of coal or oil. The 

emission of gases by the industry is high. 

NOX Nitrogen oxides (NO, NO2 and N2O) from vehicle, industry, and agri-

cultural, and livestock activities. The presence of this element in the 

atmosphere destroys ozone layer. 

O3 Ozone is not emitted directly but is formed from exposure to sunlight. 

It generates chemical reactions with other components and becomes 

into hazardous element. 

PM Particulate matter highly dependent on local conditions such as climate, 

traffic, and pollution. Two diameter classes (in microns) of PM2.5 and 

PM10 are most common. 

VOC Volatile organic compounds like methane, hydrocarbons, chlorofluoro-

carbons mostly come from industrial production.   

 

2.1.2 Sources of air pollutants 

Various emission sources can reduce air quality. The sources of air pollutants could be 

primary and secondary pollutants sources. The primary pollutants are emitted from the 

source either natural or man-made to the atmosphere directly. Natural sources could be 

e.g sandstorms, volcanic eruptions, forest fires, and biological decay where human-made 

sources could be industrial emissions, vehicle emissions, burning wood or coal, power 
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plant, etc. The secondary air pollutants result from the chemical or physical interactions 

between primary pollutants such as photochemical oxidants and particulate matter. 

 

2.1.3 Air quality index 

As most of the air pollutants are known to hazardous to health, the US Environmental 

Protection Agency (EPA) measures the levels of these pollutions in order to control the 

overall air quality. EPA thus has set standards for the level of these pollutants for provid-

ing allowable guidelines. Similar standards and guidelines are also set by the EU and 

other national environmental agencies which are expressed as air quality index. The air 

quality index (AQI) is an indicator created to report air quality, describe how clean or 

unhealthy air is, and potential health risks especially to vulnerable groups. The AQI fo-

cuses on the various health effect that people might experience within a few hours or days 

after being exposed to polluted air. The AQI values differ from country to country and 

higher AQI indicates the greater risk to the health of people.  Table 2 below describes the 

different classifications of AQI for Europe (EEA, 2017). 

 Table 2. AQI level classification for Europe 

 

Index level Pollutant (pollutant concentration in μg/m3) 

PM 2.5 PM10 NO2 O3 SO2 

Good 0-10 0-20 0-40 0-50 0-100 

Fair 10-20 20-40 40-90 50-100 100-200 

Moderate 20-25 40-50 90-120 100-130 200-350 

Poor 25-50 50-100 120-230 130-240 350-500 

Very Poor 50-75 100-150 230-340 240-380 500-750 

Extremely poor 75-800 150-1200 340-1000 380-800 750-1250 
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2.2 Artificial Neural Network Methods  

The objective of this project is to develop machine learning models in forecasting air 

quality concentration for a short period time. And to implement the research objective, 

ANN architecture is applied. ANN is a mathematical model that imitates the function of 

biological neurons. An earlier ANN architecture such as Multilayer Perceptron (MLP) 

has already shown good performance and applied widely. However, MLP which consists 

of neural networks of fully connected architecture is a kind of shallow neural network 

and fails to perform effectively when data complexity is high. At present, many deep 

neural network architectures have been developed for ANN. In this project, the main deep 

neural network architecture is Convolutional Neural Network (CNN). In addition, we will 

apply Recurrent Neural Network (RNN) based Long Short-Term Memory (LSTM) and 

Gated Recurrent Network (GRU) methods for a comparative performance evaluation. We 

will apply RNN and its variants because they can forecast with sequential information as 

for time series data by connecting with previous events. 

 

2.2.1 Convolutional Neural Network (CNN) 

Although CNN is particularly well known for its success in image analysis, it can be 

effectively applied to time series analysis because of its weight sharing and sparse con-

nectivity concept. CNN algorithms comprise of multiple-layers and the layers can be 

grouped into three parts.  

Part one mainly deals with convolution. The input or the output of the previous layer is 

convolved with the kernel, which is a sliding window, to extract the sequential features 

of time series data.  

Part two is concerned with the pooling layer. The pooling layer provides translational 

invariance, aiming to preserve the features in a smaller representation by discarding less 

significant data. Max pooling operates by sliding the window sequentially on the input 

vector and then takes the maximum value of the window region and gets rid of the other 

values.  
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Part three concatenates all vectors together to form a long vector which is called Fully 

Connected Layer. It is usually a Multilayer perceptron (MLP) which is a kind of feedfor-

ward neural network and consists of three layers of nodes such as input layer, an output 

layer, and a hidden layer. In any Neural Network (NN), the hidden layers play a critical 

role in the back-propagation algorithm process. For example, a network with a single 

hidden layer can approximate any function between input and output vectors by selecting 

a suitable set of connecting weights and transfer/activation functions (Hornik et al., 1989). 

 

2.2.1.1 Feed Forward propagation 

In the multilayer perceptron neural network, the input is passed through the hidden layer 

to the output layer in a feed-forward manner. The feed-forward maps the MLP layers to 

that of the output layers/values using an activation function (ʃ), which is also known as 

the transfer function. The activation function aims to introduce nonlinearity to the neural 

network and the function is applied to every layer of the network except the input nodes. 

In literature, there are two kinds of activation functions available such as the tangent func-

tion whose output ranges from -1 to 1 and the sigmoid function with range from 0 to 1 

(Karlik et al., 2015). 

In CNN the training procedure is similar to that for a standard NN using the back-propa-

gation algorithms and associates with biases (b) and errors for the training. The purpose 

of using biases is to preserve the universal approximation of the neural network (Hornik 

et al., 1989; Cai et al.2009). 

 

2.2.1.2  Weight update 

The weight share and update concept are the main parameter of CNN that differs it from 

MLP. The back-propagation process calculates the error function and thus updates the 

synaptic weight (W) of the input nodes to reduce the loss function (Cai et al.2009; Battiti, 

1992). The error functions are backpropagated through the network and adjust the weight 

to that of error until the desired output is achieved in the output layers. In the back-prop-

agation training method, the weight is updated using the delta rule which is given by 

gradient descent on the square error (Battiti, 1992). Delta rule determines the iterative 

process to achieve the reduced error between the desired output and network output. 
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In this algorithm, a parameter called learning rate is used to determines the weight for 

each updating step and thus to achieve gradient descent in error functions. A smaller 

learning rate takes a longer time to achieve gradient descent, while a bigger learning rate 

requires a larger modification of weight to achieve gradient descent. A diagram of deep 

CNN architecture is presented in figure 1 below, where k = input number, ln=Input, 

Out=Output, continuous lines = weights, and bias (Bassam et al., 2010). 

 

 

 

Figure 1. A diagram of CNN architecture (CNN). 

 

2.2.2 Recurrent Neural Network (RNN) 

RNN differs from CNN and MLP in its consideration of time sequence. RNN provides 

continuity of information flow, based on which time series analysis is performed. Figure 

2 shows the RNN architecture with its unfold version (LeCun et al., 2015). The symbol 

xt is input sequence, ot is output sequence, st is hidden state vector, and W, U, V weight 

matrices. RNN maps an input sequence (xt) into an output sequence (ot) according to the 

recursive formulas of RNN as follows: 

st = tanh (Wst-1 + Uxt)       (1) 

ot = Vst-1         (2) 
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Figure 2. The architecture of recurrent neural network (RNN). 

 

2.2.3 Long Short-Term Memory (LSTM) 

LSTM is a modified version of RNN (Gers et al. 2003). It differs from traditional RNN 

by introducing a memory block i to reduce/vanish the gradient problem of RNN. In 

LSTM, each neuron in its structure performs as a memory cell. The structure of LSTM 

functions in such a way that the current cell uses the information from the previous 

memory cell during processing. In this way, data is transferred from one cell to another 

and temporal dependencies are stored. Moreover, LSTM can be used in modeling longer 

sequence data and it differs from other types of learning models with its three-gate struc-

ture (forget gate, input gate, output gate). The architecture of LSTM is presented in figure 

3 below (Yang et al., 2020), which is composed of cells and intercellular data transfer. 

The symbols in the figure are xt is the input of current cell, ct is the cell memory, ht is the 

output of current cell which will be used in the next cell as a hidden layer. ct-1 and ht-1 

represent previous cells and ensures sequential dependency. σ is the Sigmoid activation 

function and tanh is the Hyperbolic Tangent activation function.  

σ 

Figure 3. The architecture of Long Short-Term Memory (LSTM). 
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The equations below show how LSTM cells in recurrent layers process data forward 

through different gates (forget gate, input gate, output gate). In the equations, i refers to 

the operation of input, o refer to output operation and f refers to forgetting gate operation, 

t is the current time, t-1 is previous time, h refers to hidden state and C refers to cell state, 

W and b are the weight and bias vector, σ is Sigmoid activation function and tanh is 

Hyperbolic Tangent activation functions.  

 

2.2.3.1 Forget gate 

Forget gate decides how much state data to preserve. At forget gate, the output from pre-

vious cell ht-1 is combined with the input of current cell xt and this combination is intro-

duced into Sigmoid functions as in Eq. 3. Then, it determines the extent of the existing 

forgotten information according to the multiplication of the output of Sigmoid function 

and Ct-1 as in eq. 4. The Sigmoid function output is between 0 and 1, where 0 denotes 

complete forgetting and 1 denotes complete remembering. 

st = 1/1 + e-t         (3) 

ft = σ (Wf . [ht-1, xt] + bf )      (4) 

 

2.2.3.2 Input gate 

The input gate layer is composed of the Sigmoid layer and tanh layer. The Sigmoid layer 

decides which value will be updated as in eq. 5 whereas, tanh layer generates candidate 

value of Ĉt as in eq. 6. The output of these two layers is added to the function ct after 

element-wise multiplication as in eq. 7. 

it = σ (Wi . [ht-1, xt] + bi )      (5) 

Ĉt = tanh (Wc . [ht-1, xt] + bc )     (6) 

ct = ft * ct-1  +  it * Ĉt       (7) 
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2.2.3.3 Output gate 

The output gate decides cell output at time t as in eq. 8 where the output of ht-1and input 

of xt is combined within a Sigmoid function. This output determines how much infor-

mation will be retrieved from the cell state. The cell output is determined according to the 

eq. 9. 

ot = σ (Wo . [ht-1, xt] + bo)      (8) 

ht = ot * tanh (ct)        (9) 

 

2.2.4 Gated Recurrent Unit Network (GRU) 

GRU is an extension of LSTM architecture (Dey & Salem, 2017). It consists of update 

and forget/reset gates which together balance the flow of data inside the unit (LeCun et 

al., 2015). The structure of a GRU is shown in figure 4 as described by Yang et al. (2020).  

 

Figure 4. The architecture of gated recurrent unit (GRU). 

 

The principal difference between LSTM and GRU lies in their gates and weights. The 

update gate performs functions similar to the forget and input gates of the LSTM as in eq. 

10 where update gate controls new information and previous information of cell/unit. The 

forget gate indicates how much past information to forget as in eq. 11 that shows which 

forget gate is included in candidate activation. The eq. 12 and eq. 13 combine the candi-

date state with previous output and filter the data to obtain the output of the current state. 

In the formulae below x denotes the input vector, h is the output vector, z is the update 
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gate vector, r is the reset/forget gate vector, w and b are the weight and biases respectively, 

and t is the time. 

zt = σ (Wz . [ht-1, xt] + bz)      (10) 

rt = σ (Wr . [ht-1, xt] + br )      (11) 

ĥt = tanh (W . [rt * ht-1, xt] + bh )    (12)  

ht = zt . ĥt + (1 – zt) * ht-1      (13) 
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3 LITERATURE REVIEW 

This chapter presents the related work of air quality prediction with machine learning and 

deep learning methods. This chapter also addresses the concept and related work of the 

smart city project imitative. 

 

3.1 Background  

Traditionally, the methods for modeling and forecasting air quality data can roughly be 

divided into deterministic and statistical methods. The first approach is theoretical and 

employs mostly meteorological emissions and chemical models (Jeong et al., 2011). 

These models are based on simulations that quantify the deterministic relationship be-

tween the pollutant sources including its remittance, exchange, diffusion and expulsion 

process, meteorological processes, chemical changes and pollutant concentrations, and so 

on (Baklanov et al., 2008). For example, chemical models e.g WRF-Chem was used in a 

deterministic way for forecasting urban PM10 and PM2.5 concentrations (Saide et al, 

2011),  simulated meteorological model (Kim et al., 2010),  and deterministic Lagrangian 

trajectory model (Schlink et al., 2003) were developed in studying the urban ozone con-

centration. On the other hand, the statistical approach simply uses statistical modeling 

techniques such as multiple linear regression (MLR) (Li et al., 2011), autoregression 

moving average (ARMA) (Box et al., 2015), and so on. However, these methods rely on 

extensive historical measurements at spatially distributed monitoring stations. In addition, 

the statistical approach generally is based on strong assumptions such as specifying a 

priori and the error distribution and cannot address the issue of multicollinearity, i.e., the 

high degree of correlation between two or more independent variables. 

However, they yield limited accuracy in prediction quality due to for example insufficient 

theoretical information, incomplete knowledge on the pollutant sources and underlying 

complex meteorological conditions in case of deterministic method, and inability to 

model nonlinear pattern in data for simple statistical method. Air quality data is large and 

inherently complex composed of both temporal and spatial data and characterized by non-

linear patterns of data. Thus, the prediction of air pollutant concentrations using these 
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methods is not exact (Goyal et al., 2006). A promising alternative to solve the above 

shortcomings are artificial neural networks (ANNs) (Sánchez et al., 2013; Gardner & 

Dorling, 1998). 

 

3.2 ANNs in Air quality  

In the last several years, ANNs have been increasingly applied to improve the accuracy 

of predictive models and forecast the air quality. ANN method can be applied successfully 

as tools for efficient decision making and problem-solving for better atmospheric man-

agement (Azid et al., 2013). ANNs are the specialized mathematical framework for mod-

eling a large variety of non-linear data. They are modeled in a way to mimic the functions 

of the human brain where several layers containing nodes (like neurons in the human 

brain), usually at least three, are connected to form a network for parallel processing of 

data input. The nodes apply an activation function on the inputs from previous layers and 

pass through. Lastly, an output layer generates the probability of outputs based on the 

previously hidden layers. 

 

3.3 Shallow Vs Deep ANNs 

3.3.1 Shallow ANNs 

The most common ANN models are multilayer perceptron (MLP), recurrent neural net-

works (RNN), and radial basis function networks (RBFN) (Kuremoto et al., 2014). Over 

the years, these techniques have been applied and incorporated into multiple approaches 

in predicting air quality forecasting (Wang et al., 2017; Peng et al., 2016). However, these 

methods concern limitations regarding the performance of such methods. For example, 

the MLP method which is composed of three layers-input layers, hidden layer, and output 

layer are regarded as universal function approximation, meaning that they can be applied 

to different arbitral and multi-dimensional functions. However, to approximate the statis-

tical distribution of the data and to avoid local error minima, a back-propagation 
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algorithm is applied by adapting weights in the hidden and output layers. This necessitates 

definition of a priori and leads to overfitting which demands the employment of an adap-

tive structure (Panchal et al., 2011). The details of MLPs and back-propagation algorithm 

learning are mentioned in the study by Zell (1994). Moreover, they also require the de-

termination of optimum network structure (number of input variables, or hidden layers). 

Over the years, many extensions on MLP have been developed for tackling specific data-

driven problems such as Seasonal Artificial Neural Network (SANN), Time Lagged Neu-

ral Networks (TLNN), Probabilistic Neural Network (PNN), Generalized Regression 

Neural Network (GRNN) (Oludare et al., 2018). 

To overcome the problems attributed to MLP NN like local minima and overfitting, sup-

port vector machine (SVM) NN algorithms are developed. The main goal of SVM is to 

provide a well-generalized decision rule for selecting subgroups from the support vectors 

(training data) and can solve a linearly constrained quadratic problem as a training. Nev-

ertheless, the accuracy of SVM is poor while a large training dataset is used because the 

computational resources increase the complexity in processing (Adhikari & Agrawal, 

2013). Based on SVMs other extensions have been developed such as the Least Square 

Support Vector Machines (LS-SVM) algorithm and its variants, i.e. the Recurrent Least 

Square Support Vector Machines (RLSSVM), the Dynamic Least Square Support Vector 

Machines (DLS-SVM), etc. and in all these proper choice of parameters in needed for 

better model accuracy. 

 

3.3.2 Deep ANNs 

Because of these limitations, the aforementioned neural networks which are a ‘shallow’ 

type of NN, produce substandard model accuracy, and therefore, the use of ‘deep’ neural 

networks emerges (Bengio et al., 2007). A deep learning algorithm consists of a hierar-

chical architecture with many layers each of which constitutes a complex and non-linear 

information processing unit. The concept of deep learning originated from the study on 

Artificial Neural Network (ANNs) (Hinton & Salakhutdinov, 2006) as mentioned in the 

shallow NNs. The first deep learning technique was proposed in 2006 by Hinton (Hinton 

& Osindero, 2006) which was a training method of a layer-wise-greedy-learning 
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algorithm. The idea behind the layer-wise-greedy-learning is that unsupervised learning 

should be performed for network pre-training before the subsequent layer-by-layer train-

ing. A detailed overlook of the principles of deep neural networks (DNN) is explained in 

Liu et al. (2017). Deep learning architectures have been applied using four main tech-

niques along with their variants as explained in Liu et al. paper such as Restricted Boltz-

mann Machine (RBM), Deep Belief Networks (DBM), Auto-Encoders (AE), and Convo-

lutional Neural Networks (CNN). 

 

3.4 Shallow ANNs in air quality forecast 

A previous study showed that non-linear model like ANN was more accurate than linear 

models in predicting air quality which because of clear nonlinear pattern present in air 

quality data (Gardner & Dorling, 1998; Prybutok et al., 2000). Gardner and Dorling de-

scribed that MLP neural network method while using temporal variations (time of day 

and day of the week) as an input variable, is powerful in forecasting NO2 concentration 

in London relative to other statistical modeling methods. They also found consistent per-

formance for the neural network approach when simple meteorological input variables 

were used. In another study in Stockholm, the MLP NN approach yielded a more accurate 

regression model in forecasting NO2 concentrations over other statistical methods 

(Kolehmainen et al., 2001). In a study in Santiago, Chile, multilayer NN gave the best 

results in forecasting the hourly concertation of PM2.5 (Perez et al., 2000). An EU-funded 

project named APPETISE (Air Pollution Episodes: Modelling Tools for Improved Smog 

Management) indicated a neural network-based model as better in predicting O3 concen-

tration in Germany, Italy, UK, and the Czech Republic (Schlink et al., 2003). 

 

3.5 Deep ANNs in air quality forecast 

With the rapid development of computation techniques, machine learning techniques 

have hugely shifted towards deep learning DNN algorithms. Their complexity and accu-

racy have improved the solutions for existing problems particularly in air quality 



26 

 

prediction where the data are characterized with high complexity. Ong et al. (2016) intro-

duced a novel method called Dynamic pre-training (DynPT) for time series prediction of 

air quality. Their research might be one of the first DNN techniques to apply in forecast-

ing PM2.5 concentration levels. Another novel technique based on deep learning (DL) to 

forecast air quality levels in Beijing is proposed by Wang and Song (Wang & Song, 

2018). They applied LSTM using both historical and meteorological data and the model 

increased the prediction accuracy over other machine learning methods. 

Given the complexity of air pollutant data which could be explained with a progressive 

connection with meteorological conditions, several DL methods such as RNN, LSTM, 

and GRU were applied by Athira et al. (2018). They found the GRU model superior to 

other models in air quality forecasting considering the changeability of air quality predic-

tion. In another study proposed by Wen et al. (2019), high accuracy for air quality pre-

diction of different Spatio-temporal scales was established using both novel LSTM and 

Extended Convolutional Long-short Term Memory Neural Network (C-LSTME) models. 

  

3.6 Deep hybrid ANN in air quality forecast 

Evidence also showed that a combination of different non-linear models which is called 

a hybrid model demonstrates satisfying predictive performance than the single model 

used (Sánchez et al., 2013; Chen et al., 2013). In a recent study, a hybrid deep learning 

model called Deep flexible sequential (DFS) was also proposed by Kaya & Öguducu 

(2020). They utilized different deep learning algorithms e.g CNN, LSTM, and Dropout 

layers together in forecasting the PM10 in the atmosphere using multivariate time series 

data. 

Qi et al. (2019) proposed a hybrid model to improve the forecasting of PM2.5 concentra-

tion levels. In their approach, they applied a combination of Graph Convolutional Net-

work (GCN) to extract spatial dependencies between different stations and an LSTM to 

capture temporal dependencies among observations at different times. They also stated 

that their hybrid method outperforms an MLP and a naïve LSTM for the same dataset. 
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Zhou et al. (2019) developed a Deep Learning based Multi-output LSTM Neural Network 

(DM-LSTM) using 2 hidden layers and three combined DL algorithms in predicting mul-

tiple air quality outputs. Their hybrid version improved the prediction quality compared 

to other versions of the LSTM network. 

 

3.7 Deep learning in Smart City project 

Smart City initiatives aim at creating a smarter environment to improve the quality of 

citizens lives. The idea behind the smart city is the utilization of smart technologies and 

equipping the city with the functions of such technologies. For example, a smart urban 

sensing system architecture using the Internet of Things (IoT) to monitor PM2.5, temper-

ature, and noise (Liu et al., 2015). They equipped IoTs with sensing and monitoring sys-

tems to efficiently collecting data for analysis and strategy evaluation, particularly in fore-

casting PM2.5 in the city. Europe is not far behind the smart city initiatives. There are 

many smart city projects to monitor the weather and surrounding environment using IoTs 

that are equipped with smart sensing systems. For example, a smart city project in Upp-

sala, Sweden along with the collaboration of IBM, Ericsson, and Uppsala University. A 

pollution detection sensor was deployed all over Uppsala to monitor pollution concentra-

tions and developing a machine learning model in forecasting the pollution concentrations 

(Subramanian, 2016). Apart from these projects, the EKOBUS project in Serbia where 

sensors being placed on bus rooftops to give real-time pollution data (Libelium World, 

2015), RESCATAME project in Salamanca, Spain to monitor pollution sources (Li-

belium World, 2015), just to name a few. A similar smart city initiative, which is a part 

of the Horizon 2020 mySMARTLife project was paved in Helsinki city, where sensor 

systems were installed on trams to monitor the air pollutant sources. This master thesis 

project is developed based on the mySMARTLife project data. 

Smart city projects are capable to generate heterogeneous IoT data with the advancement 

of sensor technology. Luckily, such various, heterogenous, high-volume and real-time 

data obtained from smart cities are not challenging, rather the Big Data Platform makes 

the process successful. A deep neural network e.g deep autoencoder was applied in de-

tecting pollutant sources in a smart city project conducted by Zhang et al. (2016). 
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4 MATERIALS AND METHODS 

This chapter describes the dataset, data preprocessing, and the individual model imple-

mented in the thesis. This chapter also presents the methods and libraries used during the 

project. 

 

4.1 Dataset 

4.1.1 Dataset description 

The dataset is a part of the Horizon 2020 mySMARTLife project and about air quality 

data collected using Aeromon BH-12 measurement devices installed on trams in Helsinki 

during 2019 from February through August. The source of the data is Forum Virium Hel-

sinki Oy and publicly available. Three sensor sets were installed on the trams that have 

been moving on the streets of Helsinki and one has been constantly measuring the data at 

Helsinki Environmental Services (HSY) measuring station located at Mäkelänkatu. A to-

tal of 60,52,856 records were collected with a sampling measurement rate of one second.  

The data include meteorological information such as air pressure (in pascal), humidity (in 

%), and temperature (in degree Celsius). The important attributes of the dataset are 

timestamp divided into month, day, hour, geocoordinate (latitude and longitude), NO, 

NO2, O3, and CO. The dependent variables are NO, NO2, CO, and O3 that contain con-

centration level information in ppm and the rest of the attributes are used as independent 

variables which also portrays an important role in predicting the air quality.  

 

4.1.2 Primitive background correction of the data 

The data quality was hampered by the uncertainty due to calibration or gas tolerance of 

the sensor. There was no automated background compensation technique in the Aeromon 

device used for collecting the data. Thus, the device read noise (data beyond the detection 

range) to the data. The unstable power supply to and from tram also caused reading of 

data beyond the detection range. Thus, this thesis performed a primitive background 
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correction to the data. For this, the median value of the signal for 5 minutes window/slice 

was calculated and then, subtracted that median value from all the data points within that 

time window, and the process was applied to the whole dataset. 

 

4.1.3 Exploratory data analysis (EDA) 

4.1.3.1 Visualization of trend in the dataset 

The trends in the air pollutant concentration and meteorological data are shown in Figure 

5 and Figure 6 respectively. This first visualization of time-series data serves us as a de-

scriptive tool to show both trend and seasonality, potential outliers, detecting range out-

side of actual concentration or discontinuities in the data, and also allows us to choose 

appropriate techniques for forecasting the time series model. For example, figure 5 below 

shows that there exist clear abnormal peaks for CO pollutants which were caused due to 

the abruption of power to the devices. 

Figure 5. Hourly NO, NO2, CO, and O3 concentration of data. 
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Figure 6. Hourly meteorological data for pressure, humidity, and temp (temperature). 

 

4.1.3.2 Statistical descriptions 

A short descriptive statistic of the different pollutants and meteorological variables such 

as minimum, maximum, mean, standard deviation, quantiles, kurtosis, and skewness is 

provided in table 3. This table shows a high value of skewness for most of the concentra-

tion values which indicate the presence of a sharp increase in the data. The high value of 

kurtosis indicates the existence of the data discontinuities which is mainly due to disrup-

tion of power supply. The high standard deviation for different variables indicates high 

sensitivity to uncertainties.  
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Table 3. Statistical descriptions of the dataset   

  NO NO2 O3 CO Pressure Humidity Temperature 

count 5095036 5095028 5067860 4986279 6052856 6052856 6052856 

mean 1.12 0.08 0.04 0.08 101577.02 22.68 25.75 

std 3.42 1.39 0.21 17.78 1327.14 8.52 8.08 

min -9.62 -7.74 -9.38 -13.78 97668.00 8.51 3.02 

25% -1.26 -0.54 -0.08 -3.42 100679.00 16.95 19.73 

50% 0.14 -0.01 0.03 -0.41 101687.00 20.56 25.39 

75% 3.09 0.49 0.14 0.35 102645.00 25.86 31.12 

max 56.63 8.49 8.71 1036.75 104266.00 85.14 51.46 

skew 1.72 1.48 0.49 36.73 -0.47 1.58 0.22 

kurt 5.36 5.72 9.50 1856.62 -0.38 3.23 -0.12 

 

 

4.1.4 Map of the study site 

A map was created showing the tram routes, based on the information received from the 

route coordinators in Helsinki city using folium bubble map in Python. Figure 7 shows 

three tram lines or routes indicated by different colors that are run in the sampling site for 

collecting the data. 

 

 

Figure 7. Routes of trams for collecting the data using the sensor. 
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4.1.5 Check for data stationarity 

As the dataset is a timeseries dataset, the study first checks whether the dataset is station-

ary or not. Although for the neural network model, the data is not necessary to be station-

ary like the ARIMA model. However, the time series forecasting models perform well 

with stationary data during the process of training and fitting the model. A dataset is sta-

tionary if its statistical properties like mean, variance, and autocorrelation do not change 

over time. Although from the plots e.g pollutant trends (figure 5), it is visible that the 

pollutants variables are non-linearly distributed indicating the stationarity of the data. 

However, both visualizations, as well as Augmented Dickey Fuller (ADF) statistical test, 

were applied for checking the stationarity of the data. In the test, if the p-value is very 

small (p < 0.05), then the data set is stationary. 

 

4.2 Data-preprocessing 

Data-preprocessing is a vital step in any machine learning and deep learning process as it 

impacts the generalization ability of the learning algorithm. As the study utilizes neural 

networks, there will be many different layers in the execution including hidden layers. 

The objective here is to make the process simple by decreasing the processing time and 

also the lessen the number of attributes. This study performs different data preprocessing 

techniques such as handling data outside of detecting range (negative value), missing data 

imputation, outlier detection, data transformation, and feature engineering. The first two 

techniques will help to have more accurate and complete sets of data, while the third 

technique will provide more uniformly distributed data and minimize the data variability. 

Finally, the fifth step will be used to obtain a new dataset which will be more informative. 

The last step of data preprocessing is typically composed of feature extraction and feature 

selection. In the following, the author describes these steps in detail. 
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4.2.1 Negative value processing 

First, this thesis handled the presence of negative values in the dataset that was countered 

due to the environmental factors altering the sensor. Table 4 shows the percentage of data 

below the detection limit (negative value) for different pollutant sources. The data below 

the detection limit (negative value) was replaced by half of the average detection limit 

values, following the method described by Polissar & Hopke (1998). 

 

Table 4. The percentage of negative value and null values in the dataset 

Pollutants Negative value % Missing value % 

NO 0.41 0.16 

NO2 0.43 0.16 

CO 0.54 0.18 

O3 0.35 0.16 

 

 

4.2.2 Missing data imputation 

In the dataset, most missing data is present in the air pollutant concentration such as NO, 

NO2, CO, and O3 (Table 4). Given that, the missing data percentage across different var-

iables is less, it was decided to replace the missing data rather than discard. Backfilling 

technique was applied to handle the missing data for different concentrations. This 

method was adopted because it outperformed the other imputation method such as series 

mean and forward filling. 

 

4.2.3 Outlier detection and replacement 

Outliers if present in the dataset, can lead to many errors which consequently can bring 

down the accuracy of the implemented models. This thesis applied both quantitative and 

visual techniques for detecting outliers. An irregular behavior was observed in the CO 

data, as shown in Figure 5, where before the sensor start reading normal data, the starting 

level was unexpectedly higher approximately 1000 ppm for one device and 300 ppm for 



34 

 

other devices. These were observed during turning on the power cycle at the tram for that 

sensor. As these observations are outliers, we discarded those data for CO concentrations. 

Additionally, the process of finding outliers was carried out from the summary statistics 

on the variables as presented in table 3. The table illustrates the irregular pattern for CO 

indicated by minimum and maximum values of -13 and 1036 respectively, which are in-

correct. As most machine learning algorithms assume that data follow a normal (or Gauss-

ian) distribution, the author also applied the skewness value of the features in detecting 

the presence of extreme value. Based on the skewness of the variables which should be 

between -1 and +1, the author determined the presence of extreme values by observing 

any major deviation from the range. The study has also detected the outliers visually by 

using a boxplot and skewed distribution pattern for each variable (Figure 8). The boxplot 

method revealed that most of our features have outliers and so, it was decided not to use 

the mean value for replacing the outliers. However, the variables/features are character-

ized as having a skewed distribution pattern as in figure 8, the study thus opted to use the 

median value instead of the mean value for a good replacement of the outliers. All the 

values above the 95th percentile in the data were replaced by the median value as outlier 

treatment. 
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Figure 8. The boxplot and distribution plot of pollutants for outlier detection. 

 

4.2.4 Data transformation 

In neural networks, feature scaling can be done by different methods. This thesis has used 

the MinMaxScaler method of the Sklearn package in Python to normalize the data within 

a particular range. Because the neural network method utilizes the activation function 

such as ReLU and feature scaling or data transformation will help to reduce the training 

time by assisting the activation functions of the network. The activation function works 

better if the values are above 0 to avoid vanishing gradients, and below 1 to avoid explod-

ing gradients. In general, the min-max normalization function scales the feature values 

within the range 0 and 1. The scaling was performed on the training dataset after splitting, 

and the same scaling was reused to scale the testing set for validation.  
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4.2.5 Feature Engineering 

4.2.5.1 Temporal feature engineering 

As the dataset contain the DateTime component, the author used this component to obtain 

new temporal features. This can help us in providing seasonality or a particular period of 

information. Using the advantage of DateTime type of variable, the author extracted dif-

ferent features namely hour of the day (0-23), day of the week (1-7), day of the month (1-

30), month number (1-12) and weekend added as a Boolean feature. This study also added 

another variable named daypart to see how different parts of the day correlate with the 

dependent variable. Four daypart types were created such as morning (4-9), noon (10-15), 

evening (16-21), and night (22-3). Finally, the author visualizes the data after feature en-

gineering to see how well the new features separate the data for inference (Figure 9).  
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Figure 9. Temporal features of the pollutants grouped by day of the week and duration of the day. 
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4.2.5.2 Statistical feature engineering 

This study created more features by applying a set of mathematical functions to the time 

series data. For example, in time-series data, lags are considered a backshift in the series 

and are used to measure the important phenomena, called series autocorrelation. This 

study defined the appropriate time lags or the number of lag variables per pollutant based 

on autocorrelation function (ACF) and partial autocorrelation function (PACF). ACF is 

the correlation between observations that are n time periods apart. While PACF is the 

correlation between series values that are n intervals apart, accounting for the values of 

the intervals between. ACF function was used to determine the lag number for moving 

average, moving minimum, moving maximum, and moving standard deviation features. 

Since the air concentration data is highly variable which is due to the underlying complex 

process and dependency on the mereological parameters (Demuzere et al., 2009), the 

study also utilized rolling minimum, rolling maximum, and rolling deviation functions 

which will help to reflect the fluctuation in the data in the model training phase. While 

PACF function was used to determine the lag difference features. The author performed 

such exploratory analysis in determining lag numbers for the elimination of redundant 

features which is an important step in forecasting. In general, this procedure helps to im-

prove the overall model accuracy and gives a better understanding of the underlying pro-

cess (Ribeiro et al., 2011). In  figure 10, it is observed that in the PACF plot after 3 or 4 

observation there is no correlation (assuming the confidence interval of 80 %) and only 

the first three or four lags were considered as relevant for all the pollutant series. While 

in the ACF plot it is observed that after 5 observations there is no correlation and only a 

5-lag time window was considered for obtaining a rolling mean for all pollutant series 

except O3 where the lags were determined as 10.  

Finally, after the feature extraction phase, the complete dataset contains 36 features. In 

particular, during the feature extraction phase, we created the following variables: 4 lag 

variables for the pollutant concentration, 4 rolling mean, 4 rolling max, 4 rolling min, and 

4 rolling standard deviation variables for each pollutant concentration, one variable for 

the hour of the day, one variable for the day of the week, one Boolean variable for the 

weekend, one variable for season and variables for the day. 

 

 



39 

 

 

a) NO autocorrelation and partial autocorrelation 

 

b) NO2 autocorrelation and partial autocorrelation 

 

c) CO autocorrelation and partial autocorrelation 

 

d) O3 autocorrelation and partial autocorrelation 

Figure 10. ACF and PACF plots for NO, NO2, CO, and O3 in Helsinki city. 
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4.2.6 Feature selection 

After the successful feature engineering of data, the author prepared the data for feature 

selection from the 36 features. The feature selection process helps to reduce dataset di-

mensionality and eliminate the presence of collinearity. As the study aimed at predicting 

air pollutants with the help of several meteorological attributes and given that air pollutant 

concentration depends on meteorological factors and local topography (Dominick et al., 

2012) and in particular, the meteorological condition can impact the air pollutant concen-

tration through complex interactions between various processes such as emission, trans-

portation, transformation and dispersion (Demuzere et al., 2009), this thesis kept all var-

iables related to meteorological conditions in the dataset. The Pearson correlation-based 

feature selection was used as suggested in (Zhao & Magoul´es, 2011) to select all the 

other features. For this, a heatmap graph was created to show the existences of collinearity 

between the features (Figure 11). After careful observations, the less important features 

which show high correlation (correlation among independent features) were removed in 

the process of feature selection. For this, a function was created to determine the high 

correlation above the 0.8 threshold level. 
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Figure 11. Pearson’s correlation heatmap with correlation coefficients of the independent and 

dependent features. 

 

4.3 Implementation of deep learning algorithms 

4.3.1 Convolutional Neural Networks (CNN) 

A one-dimensional CNN model was applied in this study. A one-dimensional CNN is a 

CNN model that has a convolutional hidden layer that operates over a 1D sequence and 

in this study the time series data is 1D sequence data. The CNN does not view the data as 

having time steps, instead, it is treated as a sequence over which convolutional read op-

erations are performed, as a one-dimensional image.  
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To start with, this thesis first instantiated the Sequential class which is a sequential model. 

This study defined the convolutional layer 64 filter maps and a kernel size of 2 and then 

added a pooling layer whose job is to distill the output of the convolutional layer to the 

most salient elements. The study has added more layers into the model for learning more 

complex features to increase the accuracy and added a dropout layer to avoid overfitting. 

The convolutional and pooling layers are followed by a dense fully connected layer. A 

flatten layer is used between the convolutional layer and the dense layer to reduce the 

feature maps to a single one-dimensional vector. The model was fit using efficient Adam 

or RMSProp versions of stochastic gradient descent with a rectified linear unit (Relu) 

activation function and optimized using mean squared error or ‘mse’ loss function. The 

neural network was iterated for 20-40 epochs (vary on pollutants). Figure 12 below shows 

all the parameters for the implementation of the CNN algorithm. 

 

 

Figure 12. Implementation of CNN parameters output. 
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4.3.2 Recurrent Neural Network (RNN) 

The RNN model is also a sequential model. In the first step, this study instantiated the 

Sequential class which is the sequential model. Then, added the RNN layer with 128 

neurons or nodes followed by adding dropout layer to the model to avoid over-fitting, 

which is a phenomenon where the machine learning model performs better on the training 

data compared to the test data. To make the model more robust a dense layer was added 

at the end of the model. Finally, the study complied with the RNN model before train it 

on training data. Mean squared error was used as a loss function and an optimizer which 

is Adam / RMSProp optimizer was used to reduce the loss or optimize the algorithm. 

Figure 13 below shows the implementation of RNN architecture.  

 

 

Figure 13. Implementation of RNN parameters output. 

 

4.3.3 Long Short-term Memory (LSTM) 

The long short-term memory known as LSTM is a type of RNN architecture. The differ-

ence between RNN and LSTM is that LSTM includes a memory cell that can maintain 

information for long periods by using a set of gates such as input, output, and forget gate 

(for details see in chapter 2). As in process of implementation, the author added the LSTM 

layer to the model which has 128 neurons. It was also specified that the layer will have a 

Relu activation function which helps the network learn from non-linearities, next added 

a dropout layer of 0.2-0.3 (depends on the optimization) and this regularize the network 
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by turning off 20-30 % of the neurons in the previous layer. This eventually prevents 

overfitting which occurs when models become so powerful that they represent the random 

noise in the data, in addition to the true signal. Regularization is especially important for 

neural networks because of the millions of parameters that they can handle. Lastly, the 

author added a linear output layer (dense layer). The implementation of the LSTM model 

architecture is shown in Figure 14. 

 

 

Figure 14. Implementation of LSTM parameters output. 

 

4.3.4 Gated Recurrent Unit (GRU) 

The GRU, known as the Gated Recurrent Unit is an RNN architecture, which is similar 

to LSTM units. The GRU comprises the reset and update gates instead of input, output, 

and forget gate of the LSTM. The implementation plan of the GRU model is similar to 

the LSTM model as mentioned above, the GRU layer was just added instead of the LSTM 

layer. Figure 15 shows the architecture of GRU algorithms. 
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Figure 15. Implementation of GRU parameters output. 

 

Before model training, the dataset was split into two sets, the first set is to train the data 

(80% of data) and the second set is to validate the data (20% of data). This study applied 

a thorough optimization/hyperparameter tuning using GridsearchCV to ensure that every 

model’s performance is optimal in case of 24-hour predictions and the same parameters 

were used for 48 hours prediction. Different parameters were used such as increasing the 

number of epochs in case of no flatlined loss function, adjusting the batch size, adding a 

dropout layer to avoid overfitting, different optimizers for yielding minimum error with 

fewer epoch values. The specification of the hyperparameter is presented in Table 5. All 

the models were compiled and fit the training set, using the test set as validation. After 

running the model, we look for the similarity between the training and loss functions 

which shows that the model will generalize well to a new dataset. 

 

Table 5. Hyperparameter optimization for the neural networks. Optimizer A indicates Adam and 

R indicate RMSProp optimizer 

Parameters 
RNN LSTM GRU CNN 

NO/NO2/CO/O3 NO/NO2/CO/O3 NO/NO2/CO/O3 NO/NO2/CO/O3 

Batches 16/16/16/16 32/16/16/16 16/16/32/32 16/64/32/16 

Epochs 30/20/30/30 20/30/30/30 20/20/30/30 40/40/30/40 

Dropout rate 0.2/0.3/0.3/0.2 0.2/0.2/0.2/0.2 0.2/0.2/0.3/0.2 0.3/0.2/0.3/0.2 

Optimizer R/A/A/R R/R/A/R A/R/A/R A/R/R/R 
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4.4 Index of performance 

To evaluate the model prediction error rates and model performance (goodness of the 

results) of the proposed methods, four measures including coefficient of determination 

(r2), the mean square error (MSE), root mean square error (RMSE), and mean absolute 

error (MAE) were used in this study. These indicators can be formulated as follows: 

r2 = 
∑ (𝑦𝑖−ŷ𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−�̅�)
2𝑛

𝑖=1

 

MSE = 
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)

2𝑛
𝑖=1  

RMSE = √
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)2
𝑛
𝑖=1  

MAE = 
1

𝑛
∑ |𝑦𝑖 − ŷ𝑖|
𝑛
𝑖=1  

where n is the number of sampled data in the test set, ŷi is the observed value of i sample, 

and yi is the predicted value of i sample and ӯ is the mean of observed true data. 

The coefficient of determination known as r2 value was chosen to see the goodness of fit 

of regression models. The coefficient of determination value does not consider the over-

fitting issue as it shows to what extent the variance of one variable explains the variance 

of the other variable and a value near to 1 indicates a better model. The author chose MSE 

as it is one of the most commonly used metrics and is most suitable for the dataset that 

contains a lot of noise such as outliers or unexpected values. A lower MSE value indicates 

a better model. RMSE was chosen as the evaluation metric due to its ability to penalize 

large errors in the dataset by assigning a higher weight to larger errors. Here, the errors 

are squared before they are averaged. RMSE also gives a higher error metric for large 

outliers, which are desirable in the case of air quality concentration forecasting, and as 

such it is well suited for the comparison of different model’s performance. The lower the 

RMSE value the better the model performance is. The author also used another popular 

error metric MAE which does not penalize large errors and reflect possible outliers in the 

dataset in the same way as RMSE does (Chai et al., 2014). The lower the MAE value, the 

better is the model’s performance.  
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4.5 Software and Libraries 

For the successful execution of this research project Python programming language has 

been used by launching Spyder (Python 3.7) Notebook in Anaconda Navigator (Ana-

conda3). Several Python (3.7) libraries had been used in this project such as Pandas, 

Numpy, Sklearn, Seaborn, Matplotlib, os, and DateTime. Python folium library was also 

used for producing the Helsinki city map indicating the sampling routes. This thesis re-

search has applied Tensor Flow and Keras of python libraries for the development of the 

prediction algorithms. They are largely accepted in the research community as tools to 

implement robust algorithms for data analysis using ANN and the deep learning method. 
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5 RESULTS AND DISCUSSION 

This chapter describes the experimental setup with dataset specification according to the 

objectives. Then the experimental results are presented both visually and textually. Fol-

lowing the results are discussed and validated with dataset specification and objectives. 

 

5.1 Results 

5.1.1 Feature correlation experiment and pollutant’s hotspot 

To find the answer to  research question 2 that was discovering the correlation between 

dependent variables particularly meteorological components and concentration level of 

pollutants (NO, NO2, O3, CO) that affect the air quality, a pair plot analysis was per-

formed. Figure 16 shows the distribution of the single variable and the relationship be-

tween the variables. The figure describes that the pollutant variables are positively corre-

lated, for example, higher NO tends to produce higher NO2, although it does not prove 

that one causes the other. The correlation between the independent variable e.g pollutants 

and the dependent variables e.g meteorological variables are also evident from the figure. 

For example, high temperature ensures higher pollutants concentration for NO, NO2, and 

CO, while high humidity gives lower pollutant concentration for NO, NO2, CO, and O3. 

Given that air pollutant concentrations are highly dependent on the meteorological varia-

ble particularly local temperature, this study further explored the relationship between 

pollutants and temperature using day of the week and duration of day variables created 

from DateTime index feature engineering (Figure 17). 
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Figure 16. Pair plot of dependent variables (temperature, humidity, and air pressure) and the 

pollutants (NO, NO2, CO, and O3). 
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Figure 17.  The correlation between temperature and pollutants by different dayparts and days 

of the week. 

 

Figure 17 observes how temperature can be related to the pollutant concentrations by 

different parts of the day as well as days of the week. High correlation, r2 value ranging 

from 0.25 to 0.33 was observed during the weekday for almost all the pollutants. The 
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results for daypart indicate that noon daypart has a higher correlation for all the pollutants 

having r2 value ranging between 0.22-0.33 except for O3 (r
2 value of 0.15). The analysis 

also indicates that during evening and night along with the weekend, there seems no cor-

relation between temperature and different pollutants except NO concentration. This 

might be because during night or evening or even weekend the frequency of public 

transport and other modes of transport is less. Among the pollutants, NO concentration 

shows higher a correlation respective to daypart and weekday compared to other pollu-

tants.  

 

The author created a heatmap with the data collected by the sensor on the trams using a 

folium map. The heatmap does not show the air pollutant concentration but indicates 

which locations have the most data points. The red areas have relatively more data points, 

in other words, have high density of the pollutant concentrations and the lighter colors 

have less. It is possible to have multiple data points on a single location for example when 

two trams cross each other. In that situation, the data points may overlap with each other 

and give the location a higher value. Locations that have more data points appear red on 

the map and lighter color has fewer data points. By using a heatmap, it is easy to under-

stand which locations of Helsinki city are mostly covered by the sensor on the tram and 

thus indicate the hotspot for pollutant sources (Figure 18). From the map, it is clear that 

the presence of NO and O3 is stronger in the Helsinki city location. The CO concentration 

was less significant in the location of Helsinki city. It is also evident that the concentration 

of pollutants is prevalent in the inner-city part compared to the city periphery. 
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NO hotspot          NO2 hotspot  

 

CO hotspot          O3 hotspot  

Figure 18. Heatmap of pollutant concentrations (NO, NO2, CO, and O3) in the study area (Hel-

sinki city). 

 

 



53 

 

5.1.2 Feature influence experiment in model’s performance  

To answer research question 3 that was to investigate the highest impact of features/var-

iables on the machine learning algorithm’s ability to accurately perform prediction, two 

sub-experiments were conducted. The experiments use the LSTM model with different 

feature combinations such as temporal (T) and statistical (C) feature engineering with the 

two base features Spatial (S) and Meteorological (M). Both the sub-experiments use the 

same test framework to produce the prediction results for different pollutants at 24-hour 

timesteps. The first sub-experiment is about validating the temporal difference of the fea-

tures. The feature set was generated by extending the two natural features (M, S) with the 

temporal feature engineering (T) such as T, TM, TS. The second sub-experiment applies 

statistical feature engineering to find out the feature influence on the models. The same 

framework was applied as the previous sub-experiment except for the features. The fea-

tures applied in this experiment are C, CM, CS. 

 

Figure 19.  Influence of temporal (T) features with window size 24. 

 

Figure 19 shows the impact of the temporal feature engineering on the meteorological 

(TM) and spatial (TS) features. The single feature T consists of all temporal feature 
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engineering with the pollutant or independent variables and is used as a reference for the 

performance gains for the meteorological and spatial features.   

For NO, the historical values of meteorological and temporal features gave no perfor-

mance gain. However, for other pollutants, the model showed a good relationship be-

tween the historical and future observations of the meteorological and temporal features. 

For example, NO2 has a performance gain of 30 %, CO an increase of 38 %, and O3 an 

increase of 78 %. 

In the case of spatial feature extension to the temporal feature engineering, NO gave no 

performance gain at all, like meteorological feature. The NO2 also followed the same 

pattern as NO, giving no performance increase. However, CO and O3 gave 23 % and 50 

% performance gain respectively, indicating a different spatial pattern of CO and O3 com-

pared to the others.  

Overall, the historical meteorological value has the best performance gain across predic-

tions for all pollutants with a total average of 24 % increase of MAE, with O3 has the best 

increase of 34 %. 

 

 

Figure 20. Influence of statistical (C) features with window size 24. 
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Figure 20 shows the impact of statistical feature engineering on the features meteorolog-

ical (CM) and spatial (CS). The feature C is consisted of all statistical feature engineering 

with the pollutants and is used as a reference for the performance gains or loss for the 

meteorological and spatial features. 

For all the pollutant sources, the historical values of meteorology and statistical features 

gave no performance gain or increase. The model is not able to find a good relationship 

between the past and future observations of the meteorological and spatial features. The 

results showed a more than 50% loss in performance for NO2. The influence of statistical 

extension to the spatial feature (CS) does neither give any performance increase except 

for O3 pollutants, where a little performance gain of 3% was observed.  

The overall model performance for the experiments using temporal feature engineering 

is higher than the extension of the statistical technique. The temporal feature engineering 

has a total average MAE of 0.11 performance increase than the statistical MAE score. It 

indicates that the model can learn from the temporal features efficiently than the statistical 

feature values. 

 

5.1.3 Model performance experiment 

To evaluate the final research question, a range of different deep neural network algo-

rithms, each with its unique trait, was applied to find the accurate deep learning method 

for predicting air quality in Helsinki. In this experiment, the comparison of different deep 

learning models shows the results of the model’s performance. The full extent of the fea-

ture set (MSTC) was applied for this experiment.  

The general pattern of the results is presented in Table 6, with a separation of 24 and 48-

hour prediction scores. The results show a dominant LSTM model with the overall best 

performance. For NO2 and NO with 24-hour prediction, GRU outperforms in terms of r2 

score. However, GRU results for MSE, RMSE, and MAE falls shortly behind those of 

LSTM. Few models result in negative r2 values and indicate that the models do not follow 

the trend of the data. With 48-hour predictions, RNN outperforms LSTM for CO and NO 

regarding MSE, RMSE, and MAE scores. Surprisingly, irrespective of pollutants the 
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GRU models do not perform well in fitting the general pattern and this might be because 

the model is limited to overfitting of large input dimension. 

 

Table 6. Model’s result with prediction error from the coefficient of determination (r2), Mean 

Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) evalu-

ation metrics 

a) Prediction scores with window (timestep) size 24 

 

b) Prediction scores with window (timestep) size 48 

 

The study shows a better performance of LSTM for all pollutants in terms of MAE score 

followed by GRU (figure 21). LSTM and GRU have a similar score for NO2 and O3, but 

for NO2 the performance is better for both models. RNN is predicting worse for NO and 

O3 than the other pollutants, whereas for NO2 and CO the performance quality is poor 

with the CNN model. Interestingly, CNN outperforms RNN for NO2 and CO. 

Overall, LSTM showed a performance gain of just 7 % compared to GRU. However, the 

performance gain of LSTM is prominent compared to CNN which is 53%, and RNN 

which is 77%.  

R
2 MSE RMSE MAE R

2 MSE RMSE MAE R
2 MSE RMSE MAE R

2 MSE RMSE MAE

CNN 0.593 0.032 0.180 0.124 -1.019 0.009 0.097 0.075 -0.001 0.054 0.232 0.147 0.310 0.069 0.263 0.199

RNN -0.005 0.080 0.283 0.181 -0.641 0.008 0.088 0.073 -0.027 0.055 0.235 0.137 -0.011 0.101 0.318 0.240

LSTM 0.703 0.024 0.154 0.090 0.067 0.005 0.071 0.056 0.575 0.023 0.151 0.096 0.652 0.035 0.187 0.114

GRU 0.728 0.022 0.147 0.109 0.209 0.006 0.075 0.056 0.262 0.040 0.199 0.101 0.581 0.042 0.205 0.115

O3
Model

NO NO2 CO

R
2 MSE RMSE MAE R

2 MSE RMSE MAE R2 MSE RMSE MAE R2 MSE RMSE MAE

CNN -0.025 0.087 0.294 0.208 -0.011 0.101 0.318 0.240 -0.138 0.064 0.252 0.136 -0.090 0.113 0.336 0.240

RNN 0.007 0.084 0.290 0.206 -0.957 0.009 0.097 0.084 -0.074 0.056 0.237 0.138 0.487 0.053 0.230 0.188

LSTM -0.131 0.096 0.309 0.210 -0.493 0.007 0.085 0.064 -0.490 0.083 0.288 0.192 0.495 0.052 0.229 0.145

GRU -0.973 0.167 0.408 0.310 -1.564 0.012 0.111 0.074 -1.471 0.138 0.372 0.277 0.404 0.062 0.248 0.172

NO NO2 CO O3Model
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Figure 21. The performance of models in terms of MAE with different pollutants for a 24-hour 

window. 

 

The study also observed different model performance when grouped by window horizon 

of 24 and 48-hour (Figure 22). LSTM achieved the best scores for both window horizons 

presented. In addition, for the 48-hour horizon RNN performs the same way as LSTM, 

while the GRU indicates poor performance for long-term predictions.  Figure 23 displays 

the comparative prediction performance on the test dataset of each deep neural algorithm. 

 

 

Figure 22. The performance of models in terms of MAE with 24 and 48-hour window horizons. 
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a) The forecasting results of CNN for different pollutants 

 

 

 

b) Forecasting results of LSTM for different pollutants 
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c) Forecasting results of GRU for different pollutants 

 

 

 

d) Forecasting results of RNN for different pollutants 

Figure 23. The prediction results of the test data on NO, NO2, CO and O3 concentration for the 

proposed neural networks (based on the 24-hour window).  
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5.2 Discussion and Validation 

Precise prediction of air quality in an urban area is a crucial problem because of the impact 

of air quality on people’s everyday life. The study demonstrates the benefit of deep learn-

ing for short-term predictions of different air pollutants. Urban air quality prediction is a 

challenging task as it is influenced by many parameters. Meteorological information such 

as temperature, humidity, and air pressure are highly crucial to influence the air prediction 

compared to other dependent variables that have been studied, such as traffic information.  

The dataset utilized in this thesis project has been constrained with limited data in terms 

of duration. This was because data collected under Horizon2020 MySmartLife project 

was a pilot project aiming to collect data using IoT of pollution sensors. There was no 

automation of the sensor for calibration of the gas tolerance in the sensor during the data 

collection period of the project. And as a substantial budget was involved in the calibra-

tion process, the project was constrained to avail short duration data. However, with the 

background compensation of data, that was done in this thesis project (details in method 

section), the data quality has been upgraded for the machine learning process.  

As the data was limited to few months of a year, the seasonal variability was not possible 

to include in the model. However, in this study, it was observed that the model learned 

well with such a short duration of training data to predict the future. The study found tiny 

errors in the learning process of the model (see the results section) indicating the accuracy 

of the model.  

No monitoring record using pollution sensors is ever complete. There will inevitably be 

periods of missing data which might be because of unable of auto-calibration, equipment 

failure, power cut, bias and drift. The data validity is never thus 100 percent valid in the 

case of environmental monitoring data. In addition, several environmental parameters 

with their underlying complexity make the data highly variable (Demuzere et al., 2009) 

even with the presence of outliers. In the process of quality control of the dataset, neither 

the outliers were removed nor dropped the missing value, rather the author dealt with this 

with appropriate techniques (see the method section) for data certainty and integrity. 

Instrumental error or fault may occasionally produce large negative spikes in the data. 

Similarly, large positive spikes might be occurred due to the inadequate calibration 



61 

 

process of the sensor, as seen in our dataset. As the process of quality data control proce-

dure, this thesis carefully reviewed such abnormal phenomenon of the data to evaluate 

whether they are real or spurious. Unless there is a shred of good evidence to remove a 

value, it was left it in the dataset. The author did not remove all negative data from the 

dataset or replace the negative value with zero, as it will artificially increase the ambient 

concentrations. The author dealt with such data by replacing the negative value with the 

average positive value under a short period of window size (details in the method section). 

Thus, data integrity was ensured by several data pre-processing steps.  

Moreover, the data was well represented as there have been 3 separate sensors in 3 sepa-

rate tram routes in collecting the data. As Helsinki city is considered to be environment 

healthy, the coverage by tram network for data collection was proper in comparison to 

dense network cities which demand extensive coverage. The project produced one spatial 

dataset of air pollutants using Mäkelänkatu meteorological station and this thesis utilized 

that data in the machine learning process. 

Numerous machine learning techniques have been applied in predicting air quality rang-

ing from statistical approaches to recent advances in machine learning. Deep neural net-

works had been used in the recent literature with the strong prediction for air quality pre-

diction problems as it involves several networks to address the hidden relation of data 

complexity. Of the neural network, deep feedforward and deep back forward which is 

recurrent neural network is the most common architecture in the literature. The special-

ized recurrent neural network such as LSTM and GRU has been shown to perform better 

in time series analysis. On the other hand, CNN with a one-dimensional layer has been 

shown to perform better in air quality prediction, although CNN is more accurate in image 

data analysis.  

In the literature review study, the author observed that there is no standard or unified 

framework for testing the model for air quality prediction. Rather, the variation of model 

accuracy is highly representative of the dataset utilized in the research. Besides that, dif-

ferent pollutants to focus on and validation methods are also responsible for the lack of a 

unified framework in air quality prediction. 

Based on the experiment of determining the feature influence in machine learning model 

accuracy, the study observed that an extended feature engineering approach greatly 
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improved the results of air quality prediction. Particularly, temporal feature engineering 

has shown great improvement compared to statistical feature engineering. The author hy-

pothesized that the inclusion of statistical features will include a relation of the past and 

thus it will be easier to learn in the model. But the model did not learn well with statistical 

features which might be due to too constant periodic data and the past was not able to 

give any clues to the future data. On the other hand, the wider temporal dependency of 

the dataset is logical to the time series pattern of the data, where the past was able to give 

information to the future data.  

This thesis used multiple metrics to calculate the overall error to evaluate the model as in 

the literature there is no universal metrics of such prediction accuracy. For calculating the 

erroneous of the model, according to Chai et al. (2014), the MAE is believed to be supe-

rior as it does not penalize large errors and reflect possible outliers in the dataset in the 

same way as RMSE does, which the author believe is in favor of air quality validation.  

The model performance experiment shows that LSTM is the best of all models for all the 

pollutants. In addition, the performance score of GRU was close to LSTM for few pollu-

tants. These results are in accordance with the earlier studies (Athira et al. 2018; Wen et 

al. 2019). In general, the models show no definitive convergence in terms of evaluation 

measures. Some model shows good performance for one particular dependent variable, 

while few models show poor performance (e.g negative r2) for that variable. Thus, it was 

hard to find the convergence of the models. The better accuracy for LSTM and GRU is 

likely because these models have a special unit called memory cell in addition to a stand-

ard unit. Unlike, standard RNN architecture which suffers from vanishing and exploding 

gradient problem (a problem that requires learning long-term temporal dependencies be-

cause of exponential decay of loss over time), LSTM deal with these problems by intro-

ducing new gates, such as input, output and forget gates, which allow for  better control 

over the gradient flow and enable better preservation of long-term dependencies. Simi-

larly, GRU uses a similar structure but simplified structure compared to LSTM such as 

reset and update gates. In nutshell, LSTM and GRU models use gating mechanisms to 

control the flow of both short- and long-term dependencies. LSTM has also the ability to 

update the data based on specific requirements which also provides the option to remove 

the outliers and thus improving the model performance. 
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Interestingly, this study observed that CNN outperformed the standard RNN in prediction 

quality for NO and O3 pollutants. Although CNN is very popular with image and video 

data where data is correlated in space and time. Unlike RNN where a deep feed-backward 

technique is applied, in CNN deep feed-forward neural networks work in capturing future 

observations. In this study, the neighboring information of NO and O3 pollutants was 

more relevant for CNN model prediction compared to past observations in RNN structure. 

In other words, the neighborhood information was well captured in the CNN structure for 

predicting NO and O3 pollutants.  

The research methods applied in this thesis are data-driven approaches, therefore data 

preprocessing and optimization steps might affect the outcome of the trained models and 

performance metrics. The air quality of the Helsinki region is considered on average 

healthy, numerous unpredictable functions such as extreme winter may deteriorate the air 

pollutant concentrations. Consequently, the outcome of this thesis might not give the 

same result if applied to a new dataset without being trained in the right circumstances. 

However, the dataset was collected using three sensors, where larger cities might require 

more sensors for substantial coverage and thus the right preprocessing and optimization 

steps as well. 
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6 CONCLUSIONS AND FUTURE WORKS 

The overall aim of the project was to develop deep learning algorithms for predicting the 

air pollutant concentration on an hourly basis. This chapter draws final findings based on 

the experiments and results from the previous chapter. This chapter also presents the pos-

sibility of future works based on the limitations discovered. 

 

6.1 Conclusions 

In this research work, several deep neural network methods were proposed for the pre-

diction of pollutants in Helsinki city. The neural networks can predict NO, NO2, CO, and 

O3 concentration of the next hour according to pollutant concentrations, temperature, hu-

midity, and air pressure over the last 24 hours and 28 hours. In the experiments, training 

data was used for training the model and testing data that was unused in the training phase 

was used for the computation of r2, MSE, RMSE, and MAE performance evaluations. 

The study found that neural network algorithms are worthwhile to predict air quality. 

Through combining pollutant data with spatial data and with statistical-temporal feature 

engineering techniques, the study provides valuable information on the data used for deep 

learning models. Temporal feature engineering showed a good relationship between the 

historical and future observations in improving the model accuracy. The results showed 

that model performance is more influenced by meteorological features compared to the 

spatial features of the data. The selected methods show high performance to predict each 

pollutant such as NO, NO2, CO, and O3 separately with various forecasting horizons. The 

experimental results showed that the LSTM model outperformed every model and for all 

the pollutants separately, having lower MAE values of 0.09, 0.056, 0.096, and 0.114 for 

NO, NO2, CO, and O3 respectively. In addition, GRU model performance was very close 

to that of LSTM for all pollutants having MAE value ranged 0.056 – 0.115 across the 

pollutants. The study also compared the total average MAE of prediction for all the pol-

lutants, the LSTM model was more accurate compared to all other models. The compar-

ison showed that the proposed algorithms can predict with optimal accuracy between 

LSTM and GRU models. However, for a longer time horizon (48-hour), the best accuracy 
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can be achieved between LSTM and RNN methods in predicting air pollutant concentra-

tions. Of all the pollutant sources, the NO2 concentration level was best predicted by the 

deep neural network models. 

In this paper, the comparative performance of all the proposed neural network methods 

is quite good. Particularly, the CNN architecture showed that it can predict hourly con-

centrations with sufficient accuracy by modeling the relationship between pollutants and 

meteorological variables. Even for the longer timesteps, the performance of CNN levels 

with the performance of GRU which is the memory of time-sequence based. It indicates 

that CNNs can be trained to approximate highly non-linear functions to predict non-linear 

processes related to air quality data. Concerning the training time, CNN can generate 

results within less than a minute of initiating the model compared to LSTM or GRU 

model. Thus, given the computational efficiency of the CNN algorithm, the CNN model 

can supplement back feedforward networks such as RNN and GRU models to more rap-

idly and accurately prediction of air pollution concentrations. 

 

6.2 Future works 

This section presents the possible extension of the current research to improve the pre-

diction accuracy and the solutions to the limitations that were revealed in this thesis.  

 

6.2.1 Extensive dataset 

Pollution sensors have been widely used in pollution-related projects to detect each pol-

lutant separately. The data collected using Aeromon pollution sensor was a pilot project 

of Horizon 2020 mySMARTLife and thus, during the collection period, the sensor was 

unable to automated background compensation. This eventually resulted in data range out 

of actual detection concentration or below the detection range of air pollutants. This was 

one of the reasons for having a short period of data under Horizon 2020 mySMARTLife 

project. Extensive dataset or full data set for example one full year or several years of 

data would benefit the process of learning the model. The complete dataset would also 
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reveal the seasonal phenomenon in the neural network learning step and reflect the actual 

scenario.  

 

6.2.2 External sources 

This thesis focuses on predicting the target pollutants in an urban area using meteorolog-

ical and spatial features as dependable variables. However, as the urban area is character-

ized with the dominance of traffic all the time, it would be practical to include the traffic 

data. There is evidence that vehicle emissions are considered one of the primary sources 

of air pollution in cities and contribute largely to high NO2 and CO levels (EEA, 2017), 

thus utilization of traffic volumes data would make the model training phase much 

stronger in prediction by drawing the complexity of the data. 

  

6.2.3 Feature selection 

Feature selection is an important step in any machine learning algorithm. However, in-

creased feature space might overfit the model during the training process. To improve 

this, an optimal feature dimensionality reduction technique can be utilized for the model’s 

predictions further. To mention, principal component analysis is a widely used technique 

for dealing with large feature space. It reduced the high space data into few sets of com-

ponents which try to explain as much variance of the feature as possible.  

 

6.2.4 Deployment of the model as part of Smart City Initiative 

Although the deployment of the best machine learning model for Android software is out 

of the scope of this thesis, however, the work can be further extended in developing the 

user interface for the Android application. Creation of Android application is one of the 

central outcomes of any Smart City Initiative to provide the users with real-time pollution 

concentration for any location and hourly forecasted pollution concentration in order to 

navigate the less polluted route.  
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