

Aatu Mikkonen

GRAPHICS PROGRAMMING THEN AND NOW

How the ways of showing pixels on screen have changed

GRAPHICS PROGRAMMING THEN AND NOW

How the ways of showing pixels on screen have changed

Aatu Mikkonen
Bachelor’s Thesis
Spring 2021
Bachelor’s Degree of Information Tech-
nology
Oulu University of Applied Sciences

ABSTRACT

Oulu University of Applied Sciences
Bachelor’s degree of Information technology

Author(s): Aatu Mikkonen
Title of the thesis: Graphics Programming Then and Now
Thesis examiner(s): Kari Laitinen
Term and year of thesis completion: Spring 2021 Pages: 20

Graphics programming is relatively unknown form of programming even though everyone uses its
capabilities every day, e.g., writing documents, creating art on a computer and playing or creating
video games. Graphics programming, at least in Finland, does not have much literature written for
it. The purpose of this report is to examine how the graphics programming has evolved from the
old times to modern times, and examine how the tools for writing graphics programming has
changed.

The author applied background knowledge learned in school and in free time about the research.
The work was carried out by using the internet with search engines and online documentation
searches. A variety of books, videos, articles and documentation pages were used as materials.

The main results are a brief overview on the differences in graphics programming from the old times
to modern times, descriptions on the areas graphics programming handles and a small example
on the implementation of graphics program.

Keywords:
graphics, graphics programming, graphics history, api

4

CONTENTS

TERMINOLOGY AND ABBREVIATIONS .. 5

1 INTRODUCTION ... 6

2 GRAPHICS PROGRAMMING ... 7

2.1 Graphics in the 1980s .. 7

2.1.1 Character sets and sprite sheets ... 8

2.2 Modern time graphics ... 9

2.2.1 Software rendering ... 9

2.2.2 Hardware rendering ... 10

3 APPLICATION PROGRAMMING INTERFACES FOR GRAPHICS 11

3.1 Comparison of Graphics APIs .. 11

3.1.1 OpenGL ... 11

3.1.2 Vulkan .. 12

3.1.3 DirectX ... 12

3.1.4 Metal .. 13

3.1.5 WebGL ... 13

3.2 Graphics API comparison results ... 14

4 GRAPHICS PROGRAM IMPLEMENTATION .. 15

4.1 Initialization... 15

4.2 Shaders .. 15

4.2.1 Fragment shaders .. 16

4.2.2 Vertex Shaders .. 17

5 CONCLUSIONS .. 18

REFERENCES .. 19

5

TERMINOLOGY AND ABBREVIATIONS

AMD Advanced Micro Devices

API Application Programming Interface

C64 Commodore 64

GLSL OpenGL Shading Language

GLUT OpenGL Utility Toolkit

GPU Graphics Processing Unit

HLSL High-Level Shading Language

MSL Metal Shading Language

NES Nintendo Entertainment System

OS Operating System

ROM Read-only Memory

6

1 INTRODUCTION

This thesis is an explanation about graphics programming in game development in the old times

and about the development of a simple graphics program without the need of a game engine, using

modern technology and tools. There is no client for the project. The author’s objective is to learn

about graphics programming and improve general programming knowledge.

This thesis is going to cover topics on how the graphics programming in game development has

changed from circa 1980 to modern days, also the development and implementation of a graphics

program written from the ground up. The reason for the author to write graphics programming with

game development in mind is that the author feels that graphics programming is more prevalent in

game development than in desktop application on web application development in general. The

program’s source code will be hosted on web via git.

The program is going to display two simple textures, where both will be fading in and out using a

shader program. The author wrote the program in conjunction to a tutorial on the Internet to learn

about how to draw a shape and how to apply a texture to it. The language of the program used is

C. OpenGL and its shader language was used to display a texture on the program window.

7

2 GRAPHICS PROGRAMMING

Graphics programming is a form of programming where the developer implements everything that

is visually shown on the screen. Graphics programming could be considered a fairly low level pro-

gramming language for front-end developers, even though in modern times and depending on the

dimensions the developer works on, the requirements of graphics programming more relate to dis-

playing 3D and shading correctly then and project them to the camera of the 3D scene.

As the programming language goes lower level, the involvement from the developer rises as there

are less abstractions which help the programmer to write the code more safely and make the code

more readable. Every modern language is considered high level as basically the only low-level

programming language is assembly where each line resembles a machine code instruction. In as-

sembly there can be unique instructions on each different processor architecture, though there can

be similarities.

2.1 Graphics in the 1980s

Graphics in the years late 1970s to early 1980 was primitive as the computers, especially commer-

cial ones, were simple, where the most common microprocessor was an 8-bit microprocessor. The

most famous example of early computers, and which used an 8-bit microprocessor was the Com-

FIGURE 1. Hierarchy of programming language levels

8

modore 64, C64 [1]. The microprocessor that the C64 ran on was a variation of an 8-bit micropro-

cessor called “MOS 6502”, which had variations for other well-known computers and consoles such

as the Atari 2600 and the original NES.

Writing any sort of software to old hardware such as the MOS 6502 required the developer to write

the code in assembly language. There were made some high-level programming languages for the

processors of that time, such as the BASIC language, which depended on the platform, their own

modifications and possibly were not compatible with each other. Even though there were higher

level languages to help the programmer, they were not applicable to write anything else, but a

simple program. If the software needed speed, talking machine code via the help of assembly was

required as it could be highly optimized.

2.1.1 Character sets and sprite sheets

The most common way to draw graphics was to print the characters written to a character ROM,

or overwritten to a character set in C64’s case. Consoles such as the original NES generally had

the sprite sheets flashed to a character ROM chip on the game cartridge.

In the case of NES, the character ROM consists of two individual sprite sheets, one for foreground

sprites and the other for background elements. Each sprite can be made of 4 different colors and

the colors can be changed to a specific palette to make the colors different. There could be up to

FIGURE 2. A .chr file containing a very simple tileset for the NES

9

four unique palettes, where each of them could hold up to three unique colors taken from a fixed

palette like in FIGURE 3, with one shared background color [2].

NES sprite sheets could hold 256 sprites each, 16 sprites horizontally and 16 sprites vertically as

seen in FIGURE 2. Each sprite sheet took four kilobytes of space and generally there was eight

kilobytes of character ROM available, enough for a foreground and background sprite sheet. A NES

cartridge can hold up to 40 kilobytes of ROM in total without modifications, so that makes the game

logic have 32 kilobytes of space [3].

Even though in modern times as the technology has evolved and the processors are more powerful,

sprite sheets are still used to increase performance by decreasing load calls and to organize im-

ages to a single file.

2.2 Modern time graphics

Graphics in modern time can be split into two different types of graphics rendering modes: software

and hardware rendering. While software rendering is still usable, using it instead of hardware ren-

dering is not advisable as hardware rendering gives the developer more performance overall com-

pared to software rendering.

2.2.1 Software rendering

Software rendering is graphics rendering that happens on the CPU. Software rendering has an

advantage over hardware rendering that the graphics implementation is not tied to the graphics

processor's implementations of graphics APIs, which gives the developer more freedom on how

the drawing is made.

FIGURE 3. An example range of available colors for the NES

10

A CPU is designed to handle a wide variety of different calculations and instructions given to it.

Even though a CPU can display graphics, it cannot do it as efficiently as a GPU, because they are

not specifically designed to calculate graphics related calculations such as vertex and pixel calcu-

lations.

2.2.2 Hardware rendering

Hardware rendering is happening on the GPU and uses the help of graphics APIs to help draw to

the screen. While technically possible, writing graphics without the help of an API is not feasible

as the GPUs implemented APIs do most of the heavy lifting to make graphics code run on the unit.

GPUs are designed to handle a very high amount of parallel calculations consisting of models,

textures, camera positions, camera projection, lights calculation and the pixels that displays on the

screen [4]. A GPU can have thousands of processing cores for the spatial calculations in the GPU

die itself.

11

3 APPLICATION PROGRAMMING INTERFACES FOR GRAPHICS

Application Programming Interface, or API, is as the name suggests, an interface that provides the

developer with a set of functions to help the developer to write code with [5, p. 10], [6]. The imple-

mentation of the API may not be ever known to the developer at all. In the case of graphics pro-

gramming, the APIs are only specifications, which tell what the API should do [see 7]. API imple-

mentation is usually written by the graphics card manufacturers (e.g. NVIDIA and AMD) partly to

the driver on the OS and partly on the GPU. The manufacturers themselves decide what parts of

the specification they want to support [see 8].

Modern graphics programming almost always happened through graphics APIs as described in the

earlier chapters.

3.1 Comparison of Graphics APIs

This section compares the following graphics APIs: OpenGL, Vulkan, Direct3D, Metal and WebGL.

These APIs are the most used in graphics development on desktop computers.

3.1.1 OpenGL

Open Graphics Library, or OpenGL is a graphics API developed by the Khronos group. The first

release of OpenGL was in 1992 and from since it has become the most widely used and supported

graphics API [9].

OpenGL is free to use for application developers, but generally closed source platform distributors

(e.g. graphics card manufacturers) must pay Khronos Group a license fee [10], [11].

OpenGL in the old times had a programming mode called immediate mode which was easy to use,

as the OpenGL hid most of the functionality and calculations which limited the flexibility for the

developers [5, p. 10]. This functionality was deprecated in 2008 when the version 3.0 of OpenGL

specification was released in favour of OpenGL core mode which disallows the usage of depre-

cated functions and forces the use of modern practices [12].

12

OpenGL has a shading language, called GLSL which resembles C, but has some functions to help

on maths and calculations related to graphics programming.

3.1.2 Vulkan

Vulkan is a new generation graphics API which aims to bring better performances and more control

for the developer with less abstraction between the application layer and the GPU. Vulkan is based

on older technology which was made by AMD in conjunction with the game studio DICE. [13]

As with OpenGL, Vulkan is free to use for application developers, but if a developer wants the

Vulkan API implemented and advertise it as being a Vulkan implementation, they are required to

pay a conformance fee for Khronos Group. [11]

Vulkan uses GLSL as its shading language, such as OpenGL.

Vulkan can run on most of the main desktop OSs, including MacOS with MoltenVK which runs on

top of Apple's own graphics API, Metal.

3.1.3 DirectX

DirectX is Microsoft's collection of propertiary API. This collection of components can be used to

develop multimedia applications, but it is more geared towards game development. Some of its

components include APIs for 3D and 2D graphics rendering, text rendering, audio and lately also

raytracing.

The most relevant APIs in graphics programming perspective from the DirectX are Direct2D and

Direct3D, both of which handle their own area of graphics. Direct2D handles 2D graphics, such as

2D geometry, bitmaps and text and Direct3D handles drawing of triangles lines or points per frame

to the screen.

13

DirectX's latest version is 12, which mostly enables the use of ray tracing and performance boosts

like with Vulkan compared to its predecessor, DirectX11. DirectX 12 is only available for users with

Windows 10.

DirectX's shading language is called High-Level Shading Language, or HLSL. It is closely similar

to C programming language.

3.1.4 Metal

Metal is Apple's own implementation of a low-level graphics API. Metal is used to enable high

performance graphics on most of the Apple designed products: iOS, macOS and tvOS.

Metal uses it’s own shading language, MSL, which is closely similar to C++14 and can use similar

directives such as overloading, templates and pre-processing directives. [14]

3.1.5 WebGL

A JavaScript API which enables the web developer to use hardware-accelerated 3D graphics tech-

nology in a browser. WebGL has been implemented on every major browser according to “caniuse”,

a utility, which displays up-to-date support table for browser features [15]. Many game engines also

support compiling a program to WebGL.

The main application for WebGL is the ability to publish games online and make them playable on

a browser. Although applications can also be made into WebGL, doing so would not be feasible

due to general user interface and website programming is done way easier and simpler with tradi-

tional HTML and JavaScript.

WebGL also uses GLSL as its shading language, like OpenGL and Vulkan.

14

3.2 Graphics API comparison results

Different graphics APIs have different use cases and support different system, so choosing a fitting

graphics API requires consideration from the developer. The developer must choose whether they

want ease of use or more control on how the graphics run and what platforms they want to support.

Helping the developers to make their choice are ready made game engines. Developers do not

have to think about how to implement the graphics on a specific platform as the game engine

developers have done the graphics API support for the developers themselves. The same could

be applied to windowing systems and application developers.

TABLE 1. Graphics API comparison

 OpenGL Vulkan DirectX Metal WebGL

Year of Release 1992 2016 1996 2014 2011

Shading Language GLSL GLSL HLSL MSL GLSL

Developers Khronos

Group

Khronos

Group

Microsoft Apple Khronos

Group

License Open Source Apache 2.0 Propertiary Propertiary Open Source

Desktop OS Sup-

port

Windows,

Linux & Ma-

cOS

Windows,

Linux & Ma-

cOS (via

moltenVK)

Windows MacOS Almost every

modern

browser.

15

4 GRAPHICS PROGRAM IMPLEMENTATION

As mentioned in the Introduction, OpenGL is chosen to be used with a simple program to display

how to use a graphics APIs without the use of a game engine to do everything for the developer.

The reason for the author to go along with OpenGL and not with any other graphics API came down

to wanting the program to be able to run cross-platform and because OpenGL is open source

software.

FIGURE 4. Program window flow

4.1 Initialization

Before starting to write graphics in OpenGL, a window must be displayed, and OpenGL needs to

be initialized before any graphics could be drawn in. In this program, freeGLUT is used to help

initialize and display a window and to minimize the requirement for boilerplate code. FreeGLUT, or

Free OpenGL Utility Kit, is a library for OpenGL which, along with initializing OpenGL and create

windows, also can handle input events and provide functions for creating an OpenGL program loop.

4.2 Shaders

All the listed graphics API in TABLE 1 uses a form of shading language. A shading language is a

program that is resting on the GPU. A shader is a program that takes an input and does arbitrary

modifications to it and pushes it to an output [16].

FIGURE 5. Function responsible of the smooth transition of the images

16

Shaders can be divided to two different categories: fragment and vertex shaders. Shaders can be

used to modify a model itself to a different look or change how the pixels themselves are displayed

on the model, screen or texture. In the program, shaders are used to display a texture in a correct

position and smoothly change the image in the program to a different image as in FIGURE 4.

4.2.1 Fragment shaders

Fragment shaders are programs that are run for each pixel in the given graphics state, whether it

is the screen or a texture or face of a polygon. The implemented program uses the fragment shader

to smoothly change every pixel of the texture in FIGURE 4.

FIGURE 6. Fragment shader program code

To get the shader program to change the pixels smoothly, a counter must be implemented in main

program code to increment a floating-point counter every frame. This frame time counter could be

used in the shader program itself, but in this implementation, it is used in the main program for

simplicity’s sake to change the shader program’s texture fade value also, which ranges from 0 to

1. As the program uses freeGLUT, it can be used to update the counter via a function when there

is nothing to be drawn on the screen. The fade value is then used in the shader program in FIGURE

6 to mix the two textures together which creates a fading effect.

17

4.2.2 Vertex Shaders

Vertex shaders are shader programs which are run for each point in a mesh. This allows the de-

veloper to manipulate a model in real time on the GPU. In the vertex shader program were used to

make sure the texture displays correctly on the screen. It centres the vertices to the screen’s view-

port and gives both used textures correct coordinates to be displayed in the centre (see FIGURE

7).

FIGURE 7. Vertex shader program code

18

5 CONCLUSIONS

The objective of this thesis was to find out how the graphics programming has changed from the

early years to today and how to create a graphics program without the need of a game engine to

do most of the work for you. Finding information on graphics programming, especially from the old

times, is hard to figure out. The most relevant information for the methods used in the old times

came from people who shared their methods on creating games for old platform in modern times.

During this thesis, the research on how the graphics programming worked before and works today

was mostly successful. It came to realization that finding information relevant to 30 years in the

past is hard, as official documentation can be almost impossible to find and the most relevant in-

formation in the area is upheld by an enthusiastic community.

Information on modern graphics APIs and how they are utilized is hard to write to people who are

not in the graphics programming field already as the information there relies heavily on technical

terms on the field. Graphics programming also is hard to get into, as the initial requirements to start

writing more than a simple “Hello World”-demo requires learning more complicated maths such as

matrix calculus to project an object to a 2D plane from 3D space.

Due to time constraints, learning more advanced form of graphics programming and doing more

advanced programs was out of the question. It became clear during the thesis work that graphics

programming takes a lot of time to learn, as there is a lot of information to learn on the get go and

graphics programming is quite different from traditional programming. The author gained much

needed knowledge on where to look for more information on how to start writing more advanced

graphics programs. A good way would have been to design a usable program, a game or an appli-

cation, and implement it well before the thesis to gain better understanding on the graphical pro-

gramming.

19

REFERENCES

[1] I. Matthews. (2003). “Commodore 64 – the best selling computer in history”

https://www.commodore.ca/commodore-products/commodore-64-the-best-selling-computer-in-

history/ (visited on 05/06/2021).

[2] VblankEntertainment. (2013). “The making of: Rom city rampage”

https://www.youtube.com/watch?v=Hvx4xXhZMrU (visited on 05/03/2021).

[3] Morphcat Games. (2018). “How we fit an nes game into 40 kilobytes”

https://www.youtube.com/watch?v=ZWQ0591PAxM (visited on 03/28/2020).

[4] Computerphile. (2015). “Cpu vs gpu (what’s the difference?) - computerphile”

https://www.youtube.com/watch?v=_cyVDoyI6NE (visited on 03/21/2020).

[5] J. de Vries, Learn OpenGL - Graphics Programming. 2020.

https://learnopengl.com/book/book_pdf.pdf (visited on 04/23/2021).

[6] C. Hoffman. (2018). “What is an api?”

https://www.howtogeek.com/343877/what-is-an-api/ (visited on 05/07/2021).

[7] Khronos Group. (2019). “Opengl 4.6 (core profile)”

https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf (visited on 05/07/2021).

[8] NVIDIA Corporation. (2021). “Nvidia opengl specs”

https://developer.nvidia.com/nvidia-opengl-specs (visited on 05/07/2021).

[9] Khronos Group. (2021). “Opengl overview”

https://www.opengl.org/about/ (visited on 05/07/2021).

[10] Silicon Graphics International. (2012). “Opengl - licensing and logos”

https://web.archive.org/web/20121101073722/http://www.sgi.com/products/software/opengl/li-

cense.html (visited on 04/29/2021).

[11] Khronos Group. (2021). “Api adopter program”

https://www.khronos.org/adopters/conformance (visited on 04/29/2021).

[12] ——, (2016). “Legacy opengl”

https://www.khronos.org/opengl/wiki/Legacy_OpenGL (visited on 05/07/2021).

[13] D. Altavilla. (2013). “Amd and dice to co-develop console style api for radeon graphics”

https://www.forbes.com/sites/davealtavilla/2013/09/30/amd-and-dice-to-co-develop-console-style-

api-for-radeon-graphics/ (visited on 05/07/2021).

https://www.commodore.ca/commodore-products/commodore-64-the-best-selling-computer-in-history/
https://www.commodore.ca/commodore-products/commodore-64-the-best-selling-computer-in-history/
https://www.youtube.com/watch?v=Hvx4xXhZMrU
https://www.youtube.com/watch?v=ZWQ0591PAxM
https://www.youtube.com/watch?v=_cyVDoyI6NE
https://learnopengl.com/book/book_pdf.pdf
https://www.howtogeek.com/343877/what-is-an-api/
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://developer.nvidia.com/nvidia-opengl-specs
https://www.opengl.org/about/
https://web.archive.org/web/20121101073722/http:/www.sgi.com/products/software/opengl/license.html
https://web.archive.org/web/20121101073722/http:/www.sgi.com/products/software/opengl/license.html
https://www.khronos.org/adopters/conformance
https://www.khronos.org/opengl/wiki/Legacy_OpenGL
https://www.forbes.com/sites/davealtavilla/2013/09/30/amd-and-dice-to-co-develop-console-style-api-for-radeon-graphics/
https://www.forbes.com/sites/davealtavilla/2013/09/30/amd-and-dice-to-co-develop-console-style-api-for-radeon-graphics/

20

[14] Apple inc. (2020). “Metal shading language specification”

https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (visited on

05/07/2021).

[15] Can I Use. (2020). “Webgl - 3d canvas graphics”

https://caniuse.com/webgl (visited on 05/07/2021).

[16] J. de Vries. (2014). “Learnopengl – shaders”

https://learnopengl.com/Getting-started/Shaders (visited on 04/23/2021).

https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://caniuse.com/webgl
https://learnopengl.com/Getting-started/Shaders

