

Nhan Tran

Design and Implementation of a Signal
Reading Device for an Analog Output
Module

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology Degree Programme

Bachelor’s Thesis

30 April 2021

 Abstract

Author
Title

Number of Pages
Date

Nhan Tran
Design and Implementation of a Signal Reading Device for an
Analog Output Module
46 pages + 1 appendix
30 April 2021

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Smart Systems

Instructors

Marco Välimäki, Senior Hardware Specialist, EKE-Electronics
Ltd.
Keijo Länsikunnas, Senior Lecturer

An Analog Output Module (AOM) is a multichannel signal generating device provided by
EKE-Electronics Ltd, and there is a need for monitoring the AOM channels concurrently
during testing phases or customer project work at the company. In this project, a prototype
of a device was designed and implemented to measure different signal types such as volt-
age, current, and the PWM signal from the AOM. The analog signals were read by being
dropped on a resistor, the value of which could be altered depending on the signal type. This
was done to produce a voltage as an input to an ADC integrated circuit. On the other hand,
the AOM PWM signal could be measured by an input capturing the peripheral of a micro-
controller chip.

The obtained results do not meet the desired requirements perfectly. The signal reading
device is not entirely capable of detecting the smallest changes of the AOM signals. How-
ever, in conclusion, the results do satisfy the demand of testing and monitoring the AOM
signals. The device is able to measure the AOM channels simultaneously, and the errors
are insignificant enough so that the data is considered trustable.

Keywords AOM, signal reader

Contents

List of Abbreviations

1 Introduction 1

2 Requirements 2

2.1 Input Side 2

2.2 Output Side 3

3 Device Functional Blocks 3

4 Background 6

4.1 Analog Switch vs MOSFET 6

4.1.1 MOSFET 6

4.1.2 Analog Switch 7

4.1.3 Multiplexer (MUX) 9

4.2 Analog to Digital Converter 10

4.2.1 Successive Approximation Converter 10

4.2.2 Sigma-delta ADC 11

5 Block Design and Interface Definition 14

5.1 Input Block 14

5.1.1 Reading Current Signal 15

5.1.2 Reading Voltage Signal 17

5.1.3 Mode Detection 18

5.1.4 Reading PWM Signal 18

5.2 Processing Block 19

 Analog to Digital Converter Block 19

5.3 Output Block 20

6 Schematics and Software Implementation 22

6.1 Schematics and Component Selection 22

6.2 Software Implementation 26

6.2.1 Overall Descriptions 26

6.2.2 Reading ADC Data 27

6.2.3 Mode Detecting Shell Command - Getmode 29

6.2.4 Signal Reading Shell Command - Read 29

6.2.5 Live Signal Reading Shell Command - Readlive 31

7 Prototyping and Testing 31

7.1 Prototyping 31

7.2 Testing and Measurement Compensation 37

7.2.1 Voltage compensation 37

7.2.2 Current Compensation 40

7.2.3 Reading PWM test 42

8 Conclusion 44

References 45

Appendices

Appendix. Code Snippets

List of Abbreviations

ADC Analog to Digital Conversion. The process of sampling at a high rate a con-

tinuous analog signal and matching the samples to the closest discrete se-

quence of predefined values.

AOM Analog Output Module. The modular device, developed by EKE-Electron-

ics Ltd., which can generate industrial standard current loops, bipolar volt-

ages, and PWM signals.

DAC Digital to Analog Converter. The counter process of ADC which converts

digital to analog signals.

HAT Hardware Attached on Top. A type of add-on boards to be connected on

top of Raspberry Pi computers through the computers’ header array.

IC Integrated Circuit. A semiconductor technology that embeds a functional

circuit to a compact module called a chip to reduce complexity of circuit

designing.

ICU Input Capture Unit. An STM32 microcontroller’s peripheral used for captur-

ing PWM inputs.

LSB Least Significant Bit. The lowest weighted bit of a binary number.

MISO Master In Slave Out. An SPI communication line connecting from the mas-

ter’s input to the slave’s output.

MOSI Master Out Slave In. An SPI communication line connecting from the mas-

ter’s output to the slave’s input.

MSB Most Significant Bit. The highest weighted bit of a binary number.

PC Personal Computer.

PCB Printed Circuit Board. An electronic circuit built on a solid board.

PWM Pulse Width Modulation. A modulation method that varies the duty cycle of

a rectangular digital signal.

SCLK Serial Clock. The SPI clock signal driven by the SPI master.

SPST Single Pole Single Throw. A configuration of switches that only one terminal

of a switch connects and disconnects to the other terminal of that switch.

UART Universal Asynchronous Receiver Transmitter. A serial data transfer pro-

tocol widely used by microcontrollers.

1

1 Introduction

EKE-Electronics Ltd., a subsidiary of EKE Group, is a rolling stock company providing

solutions for train system integration, train automation, onboard communication, safety

improvement and remote monitoring. One of the products of EKE-Electronics is the An-

alog Output Module (AOM) which can generate industrial standard analog signals such

as current loops and bipolar voltages.

The AOM has up to 24 output channels. In real fleets, it is typical that all the channels

are utilized to control different subsystems. This results in the need of testing or monitor-

ing multiple AOM channels simultaneously. Using a multimeter or an oscilloscope for this

purpose would be impractical as they both have a very limited amount of measuring

channels. Moreover, in the production process, testing AOMs by measuring their chan-

nels one after another with multimeters or oscilloscopes is also time and work consum-

ing, and that would be even worse when the number of AOMs increases. For this reason,

a device with a sufficient number of input channels and a single result displaying unit

would be beneficial in saving time and workload when testing both the AOM in the pro-

duction process and the software of the customer projects for EKE. Therefore, the goal

of this project was to design and implement a signal reading device for the AOM. This

device will also be referred to as the signal reader later in this document. The signal

reader will measure all the AOM signal types, namely voltage, current and PWM before

transmitting the results to a Raspberry Pi computer.

The signal reader was implemented as a proof concept on an add-on board for a Rasp-

berry Pi computer in the form of a HAT board which means there is a PCB size constraint

of roughly 65×56 mm for the signal reader [16]. Moreover, all 24 outputs of the AOM

were divided into four identical groups, so this project consisted of designing and imple-

menting both hardware and software for the signal reader to read only one group of

channels (among four identical ones) from the AOM.

2

2 Requirements

2.1 Input Side

The signal reading device is cascaded to output group 1 of an AOM. This output group

of the AOM contains two heavy duty and two regular analog channels, which are capable

of driving up to 1 kΩ and 500 Ω of resistance in the current mode respectively. Each

analog channel can be configured to be either current loop transmitters or bipolar voltage

outputs. Additionally, there are two other digital pins dedicated to generating PWM sig-

nals [18].

The requirements are to detect the operating mode (current and voltage mode) of the

AOM and read the corresponding signal. The operating mode detection is done purely

by the device itself without user intervention. The reading process must be done fast

enough so that the user can observe the real time output of the AOM. The data refresh

rate is expected around 1 refresh per second. In addition, the reading device should be

able to detect the smallest step of every AOM signal type which are voltage, current, and

PWM.

When an AOM channel is configured as a voltage output, its signal varies from -12 to 12

V with the resolution of 1 mV per step. In turn, in the current mode, an AOM channel can

source a current from 0 to 24 mA with the resolution of 1 µA. The signal reader’s input

range must be wide enough to accommodate this signal span, and it must also be precise

enough to detect the smallest change of the AOM in both modes. Furthermore, the AOM

PWM signal has the frequency range from 10 Hz to 10 kHz with the resolution of 0.1%

and the output level of either 5 V or 15 V. This behaviour of the AOM must also be taken

into account that the signal reading device is fast enough and has a required resolution

to detect the minimum change of the AOM’s PWM frequency within its range. The signal

reader is also required to adapt with both PWM logical 1 voltage levels.

The device is intended to be an HAT extension board of a Raspberry Pi computer mean-

ing that it will use the power supply from the Pi [15]. Therefore, the risk of over voltage

or reverse voltage is considered as out of scope and shall be simplified in this thesis.

Instead, another voltage issue is that if the AOM heavy duty channels are configured as

current outputs, and are open circuited, their voltage can rise up to 24.5 V thanks to the

3

AD5755 digital to analog drivers inside the AOM [2, 37]. The signal reader must, there-

fore, have a solution to deal with such a high voltage. Moreover, if an AOM voltage-

configured channel is shorted, the AOM itself has an ability to handle the error by enter-

ing the safe mode, and the voltage channel is then disabled. This feature should of

course be tested by the signal reader. In other words, there should be a mechanism to

simulate the short circuit condition for the voltage channels of the AOM to verify that the

AOM channel can handle the error.

2.2 Output Side

All the reading results from all the channels of the AOM need to be transferred to a

Raspberry Pi computer via serial connection. The user can run a shell from the Rasp-

berry Pi computer to interface with the AOM signal reader. The data produced by the

output of the signal reader is as follows: an individual analog channel operating mode,

current and voltage readings, PWM channels’ frequency, period and duty cycle. The

sending process must be done fast enough so that the user can observe the real time

output of the AOM. The expected pace is 1 second between data refreshments.

3 Device Functional Blocks

The signal reader is divided into three main blocks: input, processing, and output blocks.

The input block consists of a select-channel subblock, a convert-to-voltage subblock,

and a read-voltage subblock. The processing block is a microcontroller doing mode de-

tection and calculations for the measurements. The output block is a virtual one which

can be considered as the connection between the processing block and the Raspberry

Pi computer. The distribution of the subblocks is better illustrated in Figure 1. The input

block first selects AOM channels one by one to route the signal through. It then converts

the selected signal into a voltage level called VAOM. The processing block then calculates

the AOM measurements based on VAOM before transmitting the results to a Raspberry

Pi computer through a shell for displaying to the user.

4

Figure 1: Three main blocks of the AOM signal reading device

The channel selecting block in Figure 1 is a multiplexer (also known as MUX) that allows

only one selected AOM signal at a time to pass through to the voltage converting block

[3, 1]. This next block is a system of different-value resistors connecting from the output

of the MUX to the ground plane. Only one of these resistors is activated or closed cir-

cuited at a time depending on whether the AOM channel is in the current or voltage

mode. The other resistors will be open circuit or disconnected from the MUX output.

What is produced afterwards is a voltage level (VAOM in Figure 1) readable to an ADC

chip at the next block. The voltage read by the ADC is then transferred to a microcon-

troller where the data is used to detect the AOM operating mode or to be simply displayed

to the user later. The PWM channels, on the other hand, can be read directly by the

microcontroller. The AOM PWM outputs, however, can be configured to generate 15 V

for logic level 1 and 0 V for level 0 logic, resulting in the need for a voltage limiting circuit

to clamp the 15 V level to a safe value accepted by the microcontroller.

5

Figure 2: Voltage converting block

As mentioned, the voltage converting block consists of four different resistors 0 Ω, 1 kΩ,

390 Ω, and 20 kΩ connecting from the output of the multiplexer (the previous block) to

the ground by turning on corresponding switches as shown in Figure 2 to detect the AOM

operating modes and reading the values from it. Only one appropriate resistor is acti-

vated depending on the detected mode to result a voltage for the next block. During

operation, the AOM voltage can be negative. Thus, regular MOSFET switches are not

suitable for controlling the resistors because MOSFETs relies on the gate to source volt-

age to turn on or off. Analog switches will be employed for this block instead due to their

independence from drain, source voltages. More detail will be discussed in the next sec-

tion. At the last stage of the signal processing chain is the microcontroller for which the

STM32F417 will be used. It has a 12-bit ADC peripheral which is insufficient for the res-

olution of the AOM signals. For that reason, a separate ADC chip is required. Successive

Approximation Converter (SAR ADC) and Sigma-Delta ADC are the two most popular

types of ADC chips in the market for the time being. The next section will also address

the two ADC types and explain why SAR ADC is utilized for the signal reader.

6

4 Background

4.1 Analog Switch vs MOSFET

4.1.1 MOSFET

In most applications where there is only the presence of positive voltages, MOSFETs

are commonly used to switch on or off other electronic components. Nevertheless, as

mentioned in the previous section, there is a key feature that analog switches are more

preferable to MOSFETs in this project, which is explained below.

A Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is an electronic compo-

nent consisting of a Source and a Drain terminal [17]. It can block or allow current to flow

through the two terminals depending on the voltage applied to the third terminal called

the Gate. MOSFETs are categorized into N-channel and P-channel types. For N-channel

MOSFETs, when the voltage between the Gate and Source terminal (VGS) is higher than

the threshold voltage, typically 3 V or logical 1 level, the transistor will be turned on, and

the current can pass through the Drain and Source terminal. When VGS is lower than the

threshold voltage (VGSTH), depicting the logical 0 level, the MOSFET is turned off blocking

the current flow across the transistor. On the other hand, P-channel works based on the

opposite manner of VGS. That is, for VGS being higher and lower than VGSTH, the MOSFET

is switched off and on respectively. The behaviour of both types of MOSFETs described

above can be considered as a normally open switch or enhancement type. In practice,

there is another form of MOSFETs called depletion type. However, that is out of the

scope of this project and hence will not be discussed.

7

Figure 3: A MOSFET acting as a switch for positive input voltage only

The problem with MOSFETs is that they cannot switch negative voltages. Figure 3 shows

that when VGS is higher or lower than VGSTH, the MOSFET is turned on or off respectively

and hence it connects or disconnects the resistor to the AOM output channel. This is

only true when the voltage from the AOM is positive. When the AOM is in voltage mode

where its voltage can be negative, the MOSFET cannot block the signal due to the par-

asitic diode between the Source and Drain gate. When VAOM is -12V for example, and

the MOSFET Q1 is required to disconnect the R1 resistor by pulling VGS to logical 0 level.

In that case, Q1 still fails to be off because of the parasitic diode conducting electric

current from the ground to the AOM channel. For this reason, the alternative solution is

using analog switches.

4.1.2 Analog Switch

Analog switches are also driven by voltage. They inherit while improving MOSFETs’

characteristics by having a P-channel connected in parallel with an N-channel MOSFET.

The Source and Drain terminal of the P-type transistor are connected to the Source and

Drain of the N-type transistor. Their Gate terminals are complementary to each other by

the help of a logical NOT gate which is the left side of Figure 4. The right side of the

figure is the P and N channel MOSFET. [3, 2.]

8

Figure 4: Components of an analog switch. Reprinted from Analog Devices, Inc [3].

Analog switches overcome MOSFETs’ disadvantage by having parasitic or body diodes

organized in a different way as illustrated in Figure 5. The diodes’ locations are where

the leakage currents exist. To be exact, the diodes are the source of the leakage depicted

in the figure. This arrangement enables analog switches to work both when the Source

terminal voltage is larger and smaller than the Drain terminal’s because the switches rely

on the controlling the Gate voltage with respect to the ground rather than the Gate to

Source voltage like MOSFETs do. Despite having a solution to the parasitic diode issue,

in practice, analog switches introduce leakage currents that might shift the signal creating

an offset error at the output of the switch. On resistance (RON) – the resistance between

the Source and Drain terminals of the analog switches when it is turned on – is also a

contributing factor to the errors of the signal path. [3, 5.]

Figure 5: Equivalent circuit of an analog switch. Reprinted from Analog Devices, Inc [3].

9

It is important to assume that an input signal is applied to the Source terminal of the

analog switch in Figure 5, and an output voltage is expected at the Drain terminal. Ideally,

when the switch is closed, the output and input are exactly the same. However, in reality,

there exists on-resistance between the Source and Drain terminal of the switch distorting

the output signal. In addition, the on-resistance usually varies with temperature and input

voltage resulting in nonlinearity at the output. This can be significantly improved by hav-

ing a voltage buffer IC in the signal path because the buffer often has an input impedance

of up to megaohms. This will greatly reduce the effect of the on-resistance. Detailed

design will be described in section 5.

4.1.3 Multiplexer (MUX)

The circuit design of the signal reader involves a multiplexer for selecting the AOM chan-

nel. Multiplexers employ analog switches having one common terminal so that different

input can be routed to a single output and vice versa [3, 1]. (See Figure 6.) By using

analog switches as building blocks, multiplexers also inherit the error source from the

switches which are leakage currents and on-resistance.

Figure 6: Function blocks of a typical MUX. Reprinted from Maxim Integrated, Inc [4].

By providing different combinations of logic levels to the control inputs (SA0 and SA1 of

unit A in the figure), a specific terminal from A0 to A3 will be routed to the common

terminal ACOM. The same principal also applies for unit B of the multiplexer.

10

4.2 Analog to Digital Converter

4.2.1 Successive Approximation Converter

Successive Approximation Register Converter, or SAR ADC, is one of the most common

ADC types available in the market for the time being. This type of ADC has low power

consumption, and latency since the ADC continuously samples the input signal and does

the conversions [6]. This makes SAR ADC suitable for measuring multiple signals sim-

ultaneously. The SAR converter only performs one sample for each conversion, and the

sampling process is triggered by a starter signal. As a result, this ADC type is also usually

put in use in applications that require precise control of when the samplings occur. More-

over, many models of the SAR ADC architecture are provided in small size packages

which are also suitable for space constrained PCBs, for example, a circuit board that is

attached on top of a Raspberry Pi computer. [6.]

Figure 7: SAR ADC function blocks. Reprinted from Maxim Integrated [5].

Figure 7 above illustrates elemental function blocks of a SAR ADC device. It has a hold

register to store the value of input voltage to be measured. This voltage is then compared

with VDAC – a voltage produced by a Digital to Analog Converter (DAC) element. In gen-

eral, the DAC block is to replicate the input voltage with the help of the comparator. It

keeps adjusting its value converging to the input as long as the comparator perceives a

difference between VIN and VDAC. The digital value of the DAC block that produces the

closest voltage to the input voltage is then the measurement result. The DAC block is

governed by the content of the N-bit register which is afterwards the result register of the

11

SAR ADC. To be specific, at first, all the bits in the register are reset to 0s, except the

MSB which is set to 1. This register setup yields a voltage at the output of the DAC

(VDAC) being VREF/2. After that, VDAC is compared with VIN to check whether VIN is

higher. If this true, the MSB is kept as 1. Otherwise, it is reset to 0. After that, the SAR

logic block moves the interest to the second MSB of the N-bit register. This bit is also

forced to 1 and is combined with the found MSB. The DAC voltage is produced according

to the value of the N-bit register, and the procedure is repeated until the LSB value is

found. The content of the N-bit register is the AD conversion result. [5.]

Figure 8: Decision made to generate the N-bit register value to replicate input voltage.
Reprinted from Maxim Integrated [5]

Figure 8 describes how the DAC voltage is generated according to the 4-bit register. At

first, the register value is 1000. VDAC is then VREF/2 and is greater than VIN resulting

in the MSB reset to 0. Secondly, the next MSB is set to 1, so the register value is 0100

which is 4 in decimal or VREF/4. This voltage is lower than VIN, and, of course, the

currently considered bit is 1. Similarly, the logic repeats until all four bits are found. [5.]

4.2.2 Sigma-delta ADC

Sigma-delta ADC uses over sampling, digital filtering, and noise shaping to achieve high

SNR performance. The other advantages of this ADC type are also high resolution and

integration, and low power consumption. When an analog signal is sampled and digital-

ized by an ADC in general, the output signal is introduced with some distortion since a

finite number of samples is used to rebuild a continuous signal of infinite values. [7.] This

12

distortion also known as the noise floor of the output can be visualized by FFT analysis

in Figure 9. The name noise floor depicts that the noise frequencies are distributed

equally from zero to half of the sampling frequency.

Figure 9: FFT of digital output. Reprinted from Maxim Integrated [7].

In Sigma-Delta ADCs, the noise magnitudes are greatly reduced since the sampling fre-

quency is raised to a considerably high value, and the noise power is hence spread over

a much wider frequency range. As shown in Figure 10, the noise attenuated by over

sampling is then filtered even further by a digital lowpass filter. The part of the noise,

colored in red, which has higher frequency than the cut-off frequency of the filter will be

supressed leaving only the signal and a small amount of the low frequency noise. [7.]

Figure 10: Reduced noise magnitude is further filtered. Reprinted from Maxim Integrated [7].

13

The remaining noise power discussed above can be eliminated even more with a noise

shaping technique in which the input signal will be fed into a sigma-delta modulator as

described in Figure 11. This modulator acts as a lowpass filter to the signal and a

highpass filter to the sampling noise, so what is produced at its output is a low frequency

sampling noise portion being distributed in a higher frequency area. [7.]

Figure 11: Sigma-delta modulator. Reprinted from Maxim Integrated [7].

Figure 12 shows the noise distribution at the output of the integrator. If this signal is fed

into the digital filter mentioned in Figure 10, the remaining noise power is even less [7].

This is to prove that Sigma-delta ADC is a considerable option for high SNR perfor-

mance.

Figure 12: The noise distribution created by the integrator. Reprinted from Maxim Integrated [7].

Despite the outstanding performance of Signa-Delta ADCs in signal-to-noise ratio, the

latency of this type of ADC is quite high since Signa-Delta ADC does not have sample-

14

and-hold mechanism as SAR ADC does. It will take a longer time for a Signa-Delta chip

to read multiple AOM channels simultaneously than its competitor – SAR ADC. That is

the reason SAR ADC will be applied in this project.

5 Block Design and Interface Definition

5.1 Input Block

Figure 13 shows the circuitry to process four AOM current or voltage signals to a voltage

readable to the ADC block. Starting from the AOM outputs, 1 out of 4 of the signals is

routed by a MAX14778 multiplexer. The most striking feature of this IC to be adopted is

the support for a wide input signal range up to ±25 V. Moreover, there are two multiplexer

units in 1 single 5 mm × 5mm package. [4, 1.] Although only one unit is currently em-

ployed, it is advantageous for future development when more AOM channels are to be

monitored. The unused MUX B of the multiplexer will be disabled by grounding the ENB

pin with a 10 kΩ resistor, and bypass capacitors are also needed for the stability of the

IC. The capacitor values are selected as recommended by the datasheet [4, 10]. At the

input side of the MUX, there are four transzorb diodes SMAJ18A to ground any transient

voltage that is more than 18 V for each AOM channel before it enters and damages the

MUX. Cascaded to the multiplexer is the voltage converting block which takes both the

current and voltage signal and produces a voltage level at its output. By alternating three

different resistors, 390 Ω, 1 kΩ, and 20 kΩ, the signal reader can adapt to the AOM

operating mode. The software is implemented so that only one of them is active (con-

necting the signal to the ground by closing the corresponding analog switch) at a time.

Even though there is a variety of different types of analog switches in the market, the

ones that support over-the-rail signal voltage are quite limited. An impressive candidate

for a large signal range application like this project is the MAX14761 - a double SPST

analog switch having decent performance such as low on resistance (2 Ω maximum), on

resistance flatness of 5.1 mΩ, and leakage current, wide input signal range. MAX14761

is also a compact dual single pole/single throw (SPST) switch. It is available in a 10-pin

TDFN package with the size of 3 mm × 3mm. [9, 2.] Two packages will be needed be-

cause three switch units are required for the resistors and one for simulating the short

circuit condition for the AOM in which the AOM enters a safe state.

15

Figure 13: From 4 current/voltage signals to 1 readable voltage

To continue with the signal flow, the voltage from the active resistor described previously

is passed through an RC lowpass filter (R1 and C3) to trip off the unwanted high fre-

quency noise before being fed to a voltage limiting unit. The filter’s cut-off frequency is

calculated by the following formula.

𝑓𝑐 =
1

2𝜋𝑅𝐶
≈ 80 𝐻𝑧

The circuit is followed by a Zener diode D6 - CLL5244B to clamp the AOM voltage to 14

V in case the AOM produces higher voltage than the signal reader’s safety limit. This is

further discussed in the next section. The purpose of D1 is to block the current from the

ground to the signal wire ADC_chx when the AOM is outputting a negative voltage in the

voltage mode. The signal chain is ended by a buffer op-amp LM7332 for safety in case

the AOM channel is overloaded. Again, this buffer is chosen due to its support for high

dynamic range input with typical input range from -15 to 15 V [10, 1].

5.1.1 Reading Current Signal

Within one AOM output group, there are two channels which can provide 24 mA to a 1

kΩ resistors in the current mode. On the other hand, the remaining analog channels are

capable of driving up to 500 Ω resistors also at 24 mA. According to Ohm’s law presented

by equation (1), the resistor value will be selected to be 390 Ω. Switch 3 in Figure 13 will

16

be turned on routing the current through R6 to the ground. As a result, the voltage drop

between the plus and minus pin of the current channels is from 0 to 9.36 V as the AOM

outputs 0 to 24 mA of current. Similarly, the Ohm’s law also shows that the voltage drop

will increment/decrement 0.39 mV for every 1 µA of change in the output current.

 𝑉 = 𝐼 × 𝑅 (1)

When the current channels are over driven by being applied with a resistance greater

than the rated value or even open circuit, the voltage at AOM channels 3 and 4, which

are capable of providing 24 mA to a 500 Ω resistor, is driven to the maximum value of

12 V. On the other hand, channels 1 and 2, which can drive up to 1 kΩ at 24 mA, generate

about 24 V. This voltage is limited to a safe number of 14 V by the Zener diode mentioned

in the previous section unless it will damage the ADC channel of the signal reader. To

sum up, for the input current from 0 to 24 mA and a step change of 1 µA, the produced

voltage after going through the input block is from 0 to 9.36 V with the step of 0.39 mV.

In practice, active components like the transzorb and Zener diodes, multiplexers, analog

switches, buffer, and the ADC in Figure 13 introduce a considerable amount of leakage

current as an error to the reading results. That is because in the current mode, the AOM

channels output constant current signals without caring if the produced current gets lost

during the path to the signal reader. During the operation of an AOM channel, the total

leakage current from the AOM to the processing block involves the multiplexer the on-

leakage current of input and output pin, the on-leakage current of one analog switch and

off-leakage current from the three others since there is only one conducting analog

switch at a time. The summation of the listed leakages can be considered as a constant

offset leakage since it makes the signal reader measurements drift away from the true

values. Fortunately, it can be compensated by software. The process is quite simple.

First, the AOM is configured to generate zero current. The signal is then measured by

the signal reader. The readings are expected to be non-zero due to the offset current.

This non-zero value is the offset error of the design, and in the future measurements, the

final results will be the subtraction of the crude readings from the AOM by the offset. For

example, when the AOM is putting out 0 mA, the signal reader perceives that as 20 mA.

This number is the offset current. Hence, in later reading, if the measurement is 30 mA,

the true value is in fact 30 mA – 20 mA = 10 mA.

17

5.1.2 Reading Voltage Signal

The AOM voltage channels can be monitored directly by the signal reader. The driving

capacity of each AOM channel is 10 mA. Therefore, the minimum resistance between

the plus and minus pin of the AOM is 1 kΩ. In fact, the output spans from -12 to 12 V

with a 1 mV step instead of just -10 to 10 V due to the over range ability of the AOM.

Hence, in case of over range operation, the resistance between the plus and minus

channel must be at least 1.2 kΩ so that the current is within a driving capacity of 10 mA.

In the voltage mode, the active resistor value is 20 kΩ, and switch 4 in Figure 13 is turned

on so that resistor R7 is connected while the other switches are turned off to disable the

corresponding resistors. Fortunately, leakage currents have no effects to the signal re-

ceived by the processing block. This is because the AOM channel, which is a voltage

source in this case, will regulate its current to make sure the voltage is the same as the

designated value. In other words, the input block’s input voltage is equal to its output

voltage.

𝑉𝑖𝑛 = 𝑉𝑜𝑢𝑡

That is the theory. In practice, the multiplexer offers an on resistance between its input

and output terminal when a MUX channel is selected. To make it worse, this resistance

is dependent on temperature and other factors for example the input voltage of the mul-

tiplexer. This dependency is often referred to as on resistance flatness. [4, 3.] As a result,

even if the voltage at the multiplexer input is regulated, the output side voltage can be

different than that. Being similar to the offset in the current reading mode, the voltage

difference can be eliminated by calibration when the AOM is outputting zero voltage sig-

nals. Later in the testing phase of the project, it is found that the ADC chip also offers an

error proportional to the AOM voltage signal which means the so-called gain error will

change linearly with the input voltage [11, 1]. This type of error escalates when the inter-

nal reference voltage (4.096 V) of the ADC is selected. In this project, the internal refer-

ence selection cannot be done differently because the supply voltage of the ADC is ±15

V. Choosing the available 5 V from the Raspberry Pi will result in the ADC input span

from -15 to 15 V, which is the same as the power supply, and is not a good practice. Due

to the linearity of the error, it can also be calibrated by software. The procedure will be

18

addressed in the testing section later when the slope of the line is known by collecting

measured values corresponding to AOM signals.

5.1.3 Mode Detection

The operating mode detection of a channel can be done by assuming that the AOM is in

the voltage mode and closing switch 4 as shown in Figure 13. If the AOM is actually in

the current mode, the 20 kΩ resistor R7 surely overloads the AOM current channel, and

the maximum capable voltage will be drawn from the AOM channels. This maximum

voltage is typically 24.5 V for channels 1 and 2 and 15 V for the other analog channels.

With the help of the voltage clamp circuit, the mentioned voltage is kept under 15 V as

discussed in 5.1.1. This is distinguishable from the voltage mode because in that case,

the AOM can only output maximum 12 V even in the over range condition. If, on the other

hand, the voltage received from the AOM channels is lower than 12 V, it is still uncertain

to tell the operating mode yet. Further action can be done by activating switch 2 to enable

the 10 kΩ resistor. If the voltage drop on the active resistor retains the same as the last

voltage drop, the AOM channel is in the voltage mode. Otherwise, it is in the current

mode.

5.1.4 Reading PWM Signal

The PWM reading method is using the microcontroller’s timers. There are two independ-

ent timers needed. The first timer measures the time between two consecutive rising

edges to obtain the period while the second timer is used to get an interval between a

rising and the next falling edge for the duty cycle. There is still an issue with the AOM’s

PWM high level voltage of 15 V. This level is far beyond the safe margin of the micro-

controller STM32F417 input. The high voltage can be overcome by utilizing Zener diodes

D7 and D8 (see Figure 14) the Zener voltage of which is 3.3 V. This means the voltage

at the cathodes of these diodes is regulated to 3.3 V. Resistors R14 and R15 are to limit

the current through the diodes.

19

Figure 14: PWM reading circuit

The microcontroller STM32F417 has a dedicated peripheral for reading PWM signals

called ICU (Input Capture Unit) driver which will ease the pain of manually setting up the

timers and reading count values in the timers’ registers. The software configuration to

enable this peripheral is further described in this paper in a later section.

5.2 Processing Block

5.2.1 Analog to Digital Converter Block

The selected ADC device for this project was MAX1301. It is available in a 20 pin TSSOP

package offering four reading channels in which only one is used [12, 1]. The remaining

three channels will be useful for the future development of the project when all four chan-

nels of the AOM are to be monitored. Again, this ADC IC was chosen for its wide input

dynamic range. Having an option of input signal range from -3×VREF to 3×VREF, and the

reference voltage of 4.096 V, the dynamic range of the ADC will be from -12.288 V to

12.288 V. [12, 1.] The MX1301 has a 16-bit resolution, so within the full-scale range,

there are 65536 different ADC codes. This means the step size is:

12.288 − (−12.288)

65536
= 0.375 𝑚𝑉

20

The smallest change of AOM signals in the voltage mode is 1 mV, and 1 µA in the current

mode will result in 0.39 mV as discussed previously in section 5.1.1. The ADC’s resolu-

tion is just enough to handle the AOM signal step change in the current mode.

5.3 Output Block

The output block utilizes the UART protocol to both transmit measurements to and re-

ceive commands from the Raspberry Pi’s shell. As already mentioned in section 3, the

output block is required to send data fast enough for data visualization, so it would be

beneficial to identify the data payload size in every operating mode. With a given UART

baud rate, the time required to transmit a data packet, which is the minimum duration

between transmissions, can then be determined. Data will be presented on the shell

console in two tables, analog and PWM. The user interface is shown below.

Live analog signals:
!--!
Channel	1	2	3	4
Mode	Voltage	Current	No signal	No signal
------------	------------	------------	------------	------------
Value	11.999 V	12.345 mA	N/A	N/A
!--!				
Live PWM signals:				
!------------------------------------!				
Channel	1	2		
--------------	----------	----------		
Frequency Hz	10000	10000		
--------------	----------	----------		
Period ms	099.1	099.1		
--------------	----------	----------		
Duty Cycle %	077.7	066.6		
!------------------------------------!
Enter 'q' to quit.

In the current loop mode, the current varies from 0 to 24 mA with the resolution of 1 µA.

The measurement of each AOM current channel has, therefore, nine characters in the

form of “AB.XYZ mA” and “Current” for the Value and Mode row respectively. The column

of channel 2 in the Live analog signals table above is a good example for this. Similarly,

the voltage output mode readings range from -12 to +12 V with a resolution of 0.5 mV,

and the format is “-AB.XYZ” or “+AB.XYZ mV” for the Value row and “Voltage” for the

Mode row. The worst case, where the maximum payload is reached, happens when all

the channels are of the voltage type. There will be 68 bytes to be transmitted for the

analog table in this case. Lastly, for the PWM channels, the data includes a frequency

21

maximum value of which is 10000 Hz and a duty cycle with the largest percentage of

100% and 0.1% of resolution. For the PWM table, the fix payload to be transferred is 46

bytes for both channels. The whole display will need 114 bytes in total.

Each character is transmitted by a UART frame which normally contains 1 start bit, 5 to

9 data bits, 1 parity bit and 1 stop bit [13, 1]. In this project, the payload is configured to

1 byte for each UART frame and the parity bit is suppressed. This results in a 10-bit

UART frame. There will be no parity bit attached to the frame because communication

between the output block and the Raspberry Pi occur in real time. There will be a decent

traffic in the communication channel, so the probability for the user to witness the error

data on the display is considerably low. With 114 characters embedded in 10-bit frames,

there will be a total of 1140 bits for every transmission from the output block to the Rasp-

berry Pi. If a baud rate of 115200 kbps is selected, the time required to send that payload

is calculated as below.

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 =
𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑠𝑖𝑧𝑒

𝑏𝑎𝑢𝑑 𝑟𝑎𝑡𝑒

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 =
1140

115200
= 11.81 𝑚𝑠

This transmission time is also the minimum duration required between transmissions. In

this project, the time between transmissions is chosen to be 100 ms since it clearly sat-

isfies the 11.8 ms requirement, and the cycle time of the AOM program is 100 ms as

well.

22

6 Schematics and Software Implementation

6.1 Schematics and Component Selection

Figure 15 shows the early stage of the input block where the signals from the AOM chan-

nels are multiplexed by MAX14778 so that an interested channel is selected among four

channels. First, 4 transzorb diodes SMAJ18AC will ground any transient voltage exceed-

ing 19 V at the 4 AOM channels [14, 2]. The rated power of every transzorb diode is 400

W [14, 1]. Next, the multiplexed signal, in the form of voltage or current, is then input to

the analog switch MAX14761. This results in a voltage at AOM_chx which is later low-

pass filtered by an RC circuit (C3 and R1). The cut-off frequency of this filter is approxi-

mately 80 Hz to suppress high frequency noise while keeping the low frequency signal.

The purpose of the Zener diode CLL5244B is to limit the voltage at ADC_chx in case a

high capability current channel from the AOM is open circuited by the analog switches.

These channels can produce up to 24.5 V at ADC_chx turning the general diode

PMLL4148L into the forward bias state. A voltage of 14.8 V is created by the combination

of diode PMLL4148L’s forward voltage and the Zener voltage of diode D6. This voltage

is a safe limit for the buffer LM7332 the functionality of which is to prevent the AOM

channels from being overloaded. The approach of using a general purpose and a Zener

diode instead of a transzorb diode is that the breakdown voltage response of transzorbs

is not as sharp as that of Zeners.

23

Figure 15: Input processing schematic

24

The buffered signal ADC_chx_in is input to the ADC MAX1301BEUP as illustrated in

Figure 16. The ADC chip operates with a single 5 V power supply, but it can support an

input swing from -3×VREF to 3×VREF where VREF is the ADC’s internal reference, the volt-

age being 4.096 V. Only 1 input channel of the ADC is used in this project, and the other

3 channels are grounded by 1 kΩ resistors for stability. MAX1301 is also a good option

for future development of this thesis project where the remaining output groups of the

AOM are taken into use. In addition to the bypass capacitors at the ADC’s power pins,

the pull-up resistors for the SPI bus are needed to create a default state for the SPI lines

when its master, the STM32 microcontroller, is reset.

Figure 16: Analog to digital converter MAX1301BEUP

The AOM inputs including the voltage/current and PWM signals are acquired and fed to

the multiplexer MAX14778 by the DB9 connector J1 in Figure 17. The header J2 is where

the whole circuit board gets the power supply from. The 3.3 V and 5 V supply are pro-

vided by the Raspberry Pi computer through the header J2. The UART communication

between the Raspberry Pi and the STM32 microcontroller also happens through this

header. Moreover, for debugging purposes, 5 GPIO pins are connected between the two

entities. In the middle of the figure is how the PWM signals are processed and input into

the STM32. Since the AOM PWM signal is 15 V for logic 1, it must be limited to a safe

level for the STM32, 3.3 V. The Zener diodes BZV55-C3V3 are used for this purpose as

they offer 3.3 V of limiting voltage. The 10 kΩ resistors are to limit the current from the

AOM channels to the ground when the Zener diodes conduct.

25

Figure 17: Input and output connectors

Figure 18 shows how the STM32F417VET microcontroller connects with the reset con-

troller TPS3703A and the crystal oscillator HC3325. The reset controller monitors the

voltage supply of the STM32 and resets the microcontroller if the supply voltage is out of

the safe margin longer than 200 ms. This time period is selected by using a 10 kΩ pull-

up resistor at pin 3 – CT or Capacitor Time. Pin 6 (Manual Reset) is controlled by a GPIO

pin from the Raspberry Pi so that the STM32 can be actively reset by the Raspberry Pi.

In addition to the reset controller, an external crystal oscillator HC3325, whose frequency

is 25 MHz, is required because the built-in LC oscillator of the STM32 is not so precise.

Figure 18: STM32F417VET microcontroller

26

The SPI bus of the STM32 is connected to the SPI of the ADC chip MAX1301 so that

the STM32 acts as the master and the ADC operates as the slave. For debugging pur-

poses, there are 2 STM32 GPIO pins connected to 2 LED lights and 5 GPIO pins con-

necting from the STM32 to the Raspberry Pi. Last but not least, the STM32 - Raspberry

Pi communication is done through USART6_TX and USART_RX. Those two wires go

from the STM32 to the header J2 which is compatible with the output header of Rasp-

berry Pi.

6.2 Software Implementation

6.2.1 Overall Descriptions

The operation of the whole circuit is governed by the software embedded in the micro-

controller STM32F417. Figure 19 outlines the structure of the entire software. The

STM32 controls the closed/opened state of the analog switches to enable/disable the

corresponding resistors and decides the AOM operating mode. Furthermore, it reads the

ADC data from the MAX1301 to calculate the current or voltage depending on the AOM

signal type. The STM32 also communicates with the Raspberry Pi computer through a

shell where the user can enter different commands.

Figure 19: Software element diagram

27

The software implementation for multiplexing the AOM channel as well as controlling the

analog switches is simple and straightforward. Thus, the code shall not be presented in

this paper.

6.2.2 Reading ADC Data

The ADC IC MAX1301 is quite a simple yet special. It can be interfaced with by the SPI

protocol, and it has only two registers for analog configuration and mode selection. The

1-byte analog configuration register holds the information for channel to read from, dif-

ferential or single-ended input signal, and input range. Channel 0, the single-ended sig-

nal type and the dynamic range of ±3VREF are the configuration information to be written

to the register [12, 14]. The mode control register only stores its mode of operation for

which the mode of using an external clock from the STM32 microcontroller is employed

[12, 23].

With the control, configuration being pre-set, a 16-bit reading result will be available after

a conversion start byte. The result is output at the MISO pin of the slave MAX1301 from

the start of the third byte. As a result, in order to obtain the full result bytes, 4 bytes of

SCLK signal must be provided. This way of working can be visualized by the timing dia-

gram in Figure 20.

28

Figure 20: Timing diagram of reading a conversion from MAX1301 [12, 15]

The software function for reading ADC data from the MAX1301 takes no input argument

and returns a measurement result as an integer number. It first starts the SPI with the

configuration of a 2 MHz clock signal, clock polarity being low in idle, data being sampled

at rising edge and output at falling edge, most significant bit first. Then, the analog con-

figuration byte followed by the mode control byte is sent to the MAX1301 from the micro-

controller. Right after that, a 4-byte SPI exchange function is called to obtain the ADC

data. The exchange starts on the third byte from when the start conversion byte is re-

ceived by the MAX1301, and the received bytes from the ADC are stored in an 8-bit

buffer (rxbuf). The first received data byte will, therefore, be shifted 8 bits to the left and

added with the second received data byte to get the 16-bit result value – misocode. This

result is still crude and needs more calculation to get the voltage produced by the AOM

because the ADC chip MAX1301 outputs a code from 0x0000 to 0xFFFF for input voltage

from -3VREF to +3VREF. The full-scale span (±3VREF) is divided into 65536 steps, so the

voltage of -3VREF and +3VREF corresponds to -32768 and 32767 respectively. The rela-

tionship becomes an output code from 0x0000 to 0xFFFF for input code from -32768 to

32767. The formulas to calculate the voltage at input resistors produced by the AOM are

as follows:

𝐼𝑛𝑝𝑢𝑡 𝑐𝑜𝑑𝑒 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑐𝑜𝑑𝑒 − 32768

𝐼𝑛𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝐼𝑛𝑝𝑢𝑡 𝑐𝑜𝑑𝑒 ×
3𝑉𝑅𝐸𝐹 − (−3𝑉𝑅𝐸𝐹)

65536

29

The code snippet showing the implementation of the ADC data reading function is in the

appendix. The function name is readADC().

6.2.3 Mode Detecting Shell Command - Getmode

The user can interact with the signal reader through a shell running in the Raspberry Pi.

One of the different commands the user can query the signal reader is detecting the

AOM’s operating mode. The procedure is the same as the mode detecting method men-

tioned in section 5.1.3. All 4 AOM channels are looped through, and the getmode() func-

tion is called for each channel. The results will also be displayed on the console. The

getmode() function takes an argument about the channel from which the operating mode

is obtained. Based on that, it controls the MUX to activate the channel for the signal to

get to the input resistor. The function closes the analog switches and reads the produced

voltage with the help of the readADC() function in the previous section. Depending on

how the input voltage is generated, the function decides the AOM operating mode ac-

cordingly. Since the getmode() function is later used by other shell commands, it does

not print anything to the console unless the argument --verbose” is provided, e.g. get-

mode --verbose. The verbose argument is just for debugging purposes, and thus can be

ignored in normal use. The software implementation of the mode detecting command

can be found at the appendix section.

6.2.4 Signal Reading Shell Command - Read

The AOM voltage or current signal can be retrieved by the command read [signal] [chan-

nel], where [signal] can be either “voltage”, “current”, or “pwm” and [channel] can be from

“1” to “4”. It is important to note that this command does nothing related to mode detec-

tion which means the AOM operation mode of the interested channel must be known in

advance. The function first acquires the signal type to read and the interested channel.

If the argument is “voltage”, it activates both the MUX channel corresponding to the input

and the analog switch of the 20 kΩ resistor. After reading the input voltage twice with a

delay of 20 milliseconds in between, the second ADC data received is the actual voltage

of the AOM. The result of the first read is not usable because, in the idle state, the AOM

is isolated from the signal reader. The input voltage is pulled to around 13 V by the volt-

age buffer U2 – LM7332 which is not correct, and the reading result (of around 13 V)

persists there in the ADC register until it is read by the microcontroller. This is a known

30

issue that should be improved in future development if higher data throughput is needed.

Then, an important part of the calculation is the error compensation. For the voltage

mode, the error source is the offset and gain error voltage noted in section 5.1.2. In the

program, the quantity found for this error voltage by testing is around 21 mV which is

symbolized by CALIB_VOL. Then the gain error is compensated by multiplying with a

constant coefficient as shown in the code snippet below. Again, the cmd_read() function

is also called by another function. That is the reason for a user argument called “--result-

only”. When this argument is provided, only one number is printed with a voltage unit

letter “V”. Otherwise, more comprehensive words are shown as in the code snippet (see

Appendix 1).

When the user inputs “current” as the argument for the read command, the same proce-

dure is repeated but the 390 Ω resistor is activated instead, and the read voltage is di-

vided by the resistance by Ohm’s law for the current. The offset error compensation is

accomplished by the calibcurrent() function. Depending on the current measurement,

this function subtracts the measurement by a specific offset found during testing. The “-

-result-only” argument also works for this case in the same way as reading voltages.

Last but not least, if the argument “pwm” is applied, the ICU peripheral of the microcon-

troller is started for the provided channel. The default configuration is 10 MHz for the

peripheral clock frequency and the PWM input is at logic 1 when active. When the fre-

quency of the PWM signal is lower than 120 Hz, the ICU driver is too fast to read input

which means there will be overflows in the ICU counters. This situation is fortunately

detected by the ICU callback functions. When this happens the overflow callbacks will

change the configuration, lowering the ICU frequency to 100 kHz. This is effective from

the next iteration of the PWM reading until the measured PWM frequency is detected to

be higher than 160 Hz where the configuration is reverted to the default (10 MHz ICU

clock frequency). The readPWM() function only configures and initializes processes for

measuring the PWM signal. Instead, the period and duty cycle counters are available

with reading values when the callback functions icuGetWidthX() and icuGetPeriodX() are

called. The displaying of the results also has two options, in the normal and “result-only”

mode. The content of the signal reading function is shown in the appendix as the com-

mand cmd_read().

31

6.2.5 Live Signal Reading Shell Command - Readlive

The live signal reading shell command is called to read and display all types of AOM

signals from all the channels. The command is run by readlive. To have the measure-

ments in real-time, the function loops through all the AOM analog and PWM channels. It

reads the signals according to the detected mode by calling the getmode and read com-

mand described in sections 6.2.3 and 6.2.4 respectively. In this function, escape se-

quences are utilized to move the console cursor around the display to print template

tables where data is filled in. After the setup phase, which consists of hiding the blinking

cursor, moving it to the origin, clearing the screen and printing the template tables, all

the analog channels are scanned to detect the modes. The observed modes are then

shown in the table where appropriate before the program calls the read command for

each channel depending on the detected mode. The obtained signals are also to fill in

the tables. After that, the PWM table is updated with the measured PWM signals’ duty

cycle and frequency/period. The procedure is repeated continuously every 400 ms until

the user enters a terminating character ‘q’ because there is a delay of 100 ms for reading

each analog channel. The implementation of the live signal reading command and tem-

plate table printing function can be seen in the appendix as the command cmd_readlive()

and the function printtemplate().

7 Prototyping and Testing

7.1 Prototyping

In addition to the first page of the project schematic illustrated in Figure 15, the two re-

maining pages describe the ±15 V power supply circuit, the microcontroller STM32F417

and its supporting ICs such as the reset manager U8 – TPS3703A and the external 25

MHz crystal U9 - HC3325. The ±15 V power supply circuit is a ready-made design at

EKE Ltd. and is reused in this project with the author’s permission. There are also some

LEDs for debugging purposes and some GPIO connections between the STM32 and the

Raspberry Pi which were planned at the schematic designing phase in case there is

need, yet those GPIO connections are not used for the time being.

32

Figure 21: +/- 15 V power supply

33

Figure 22: Microcontroller and its supporting units

34

With the schematic being ready, the prototyping process from layout design to PCB com-

ponent assembly is reported starting from Figure 23 to Figure 28. When the board is

manufactured and all the electronic components are gathered, the prototyping starts with

applying soldering paste to the board. This is made easy by the stencil that is provided

along with the board by the manufacturer shown in Figure 24. When that is completed,

all the components are placed onto their footprints on the board according to the layout.

Many of the components are so tiny that a microscope is necessary (see Figure 25 and

Figure 26).

Figure 23: PCB layout design and 3D view

Figure 24: Applying soldering paste with the help of a stencil

35

Figure 25: All the components put in place

Figure 26: Soldering tiny components using a microscope

36

Figure 27: The board being heated inside a reflow heater for the solder paste to work

Figure 28: The ready circuit after the reflow soldering

The process continues by putting the PCB, with all the electronic components in place,

into a reflow heater. The applied heat is varied in a certain way illustrated by the graph

in Figure 27. This function of heat over time will melt the soldering paste in a controlled

manner, and when everything cools down afterwards, the components are soldered to

37

the board as shown in Figure 28. Some big components like connectors and diodes can

be soldered later by a soldering iron.

7.2 Testing and Measurement Compensation

7.2.1 Voltage compensation

Testing is done by configuring the AOM to output different voltage and current values.

For convenience, all four channels of the AOM will generate the same value, for example

1000, 2000 or 3000 mV as shown in the AOM column of Table 1 and Table 3. It is ob-

served that voltage readings (see Table 1) of all four channels do not have noticeable

difference. For that reason, the signal reader channels’ measurements will be combined

into average values. The error between the AOM source signal and the measured volt-

ages is also taken into account for compensation. Drawing a line graph from Table 1

shows that the relationship between the signal reader measurements and the true AOM

data linear, and the measurement graph is a line displaced and slightly rotated from the

data of the AOM. Because of the overwhelming amplitude of the data compared to the

error, the error is drawn alone versus the unity gain line whose equation is y = x for ease

of visualization (see Figure 29). This error is also called gain error because it varies

depending on the AOM input signal. To sum up, the measurement graph, which is the

combination of the linear AOM output and the linear error, can be approximated as a line

passing two points, A(-12000,-11996) and B(12000,12038), and the objective is to shift

the line and rotate it so that it passes two points, A’(-12000,12000) and B’(12000,12000),

by compensation. Since the measurement line is now passing vector 𝐴𝐵⃗⃗⃗⃗ ⃗ =

(2400,24034), its normal vector is �⃗� = (−24034,2400). The measurement graph which

has the normal vector �⃗� and which passes point A can be represented in 2-dimentional

metric by the following equation:

−24034(𝑥 + 1200) + 24000(𝑦 + 11996) = 0

𝑜𝑟 𝑦 =
24034

24000
𝑥 + 21

From the equation above, it is obtained that the offset error is 21 mV and the gain error

is 24034/24000. The compensation process is simply reversing the equation so that it

38

becomes the equation y = x. Of course, this is done by subtracting the y (the signal

reader measurements) by 21 and by multiplying it by 24000/24034.

Table 1: AOM voltages read by the signal reader

Types AOM Signal reader Error

Value
(mV)

-12000 -11996 4

-11000 -10994 6

-10000 -9993 7

-9000 -8991 9

-8000 -7989 11

-7000 -6987 13

-6000 -5986 14

-5000 -4986 14

-4000 -3984 16

-3000 -2983 17

-2000 -1981 19

-1000 -980 20

0 19 19

1000 1021 21

2000 2023 23

3000 3025 25

4000 4026 26

5000 5027 27

6000 6028 28

7000 7030 30

8000 8031 31

9000 9032 32

10000 10034 34

11000 11036 36

12000 12038 38

39

Figure 29: Voltage measurement errors (gain error) compared to ideal gain

After applying compensation, voltage readings are improved noticeably with the maxi-

mum error of 2 mV. Table 2 shows the compensation results for different AOM signal

values in millivolts. The highest and lowest magnitudes of the measurements among four

channels of the signal reader are listed.

Table 2: Signal reader measurement after compensation

AOM signal Highest measurement Lowest measurement

-12000 -12000 -11998

-11000 -11000 -10.998

-10000 -9998 -9998

-9000 -8998 -8998

-8000 -7999 -7998

-7000 -6999 -6998

-6000 -5999 -5998

-5000 -4999 -4998

-4000 -3999 -3997

-3000 -2999 -2997

-2000 -1998 -1998

-1000 -999 -998

0 1 0

1000 1001 1000

2000 2002 2000

40

3000 3000 3000

4000 4001 4000

5000 5000 5000

6000 6001 6000

7000 7001 7000

8000 8001 8001

9000 9003 9001

10000 10001 10001

11000 11003 11001

12000 12001 12001

It is observed that measurements persist at certain values most of the time as long as

the AOM signals do not change. Although there are occasional fluctuations within a 2

mV range, this is considered acceptable behaviour since noise cannot be completely

avoided.

7.2.2 Current Compensation

Current compensation is done similarly to compensation for voltage that includes setting

up the AOM’s four channels to generate different constant currents and reading the cur-

rents at the signal reader side. However, in this case, the error behaves in a noisier way

which means the signal reader measurements fluctuate between the values shown in

Table 3. For ease of testing and compensating, the error in the measurements is simpli-

fied based on the observation of what values are mainly shown during testing. For ex-

ample, when the AOM current is 7000 µA, the signal reader oscillates from 7056 to 7058

and to 7061 µA, but the error of 56 µA is selected because 7056 is the main value shown

from the reading. In addition, a software filter that calculates the average current of each

channel is also implemented to reduce fluctuation, although that delays the correct cur-

rent to be shown on the terminal. It is observed from Table 3 that the error current only

depends on the leakage current of the circuit. The error virtually retains its value over the

AOM signal span from 0 to 24000 µA and only changes due to different leakage current

– input current relationship of the electronic components of the circuit. Hence, current

compensation only involves applying different offset current compensation for different

AOM input currents.

41

Table 3: AOM currents retrieved by the signal reader

Channel AOM Signal reader Simplified error

Value (µA)

0 53-56 56

1000 1053-1056 56

2000 2053-2056 56

3000 3053-3056 56

4000 4053-4056 56

5000 5056-5058 56

6000 6056-6058 56

7000 7056-7058-7061 56

8000 8056-8058 56

9000 9056-9058-9061 56

10000 10056-10058 56

11000 11053-11056-11058 56

12000 12053-12056-12059 56

13000 13053-13056 56

14000 14053-14057 56

15000 15051-15053 53

16000 16048-16051-16053 53

17000 17048-15051-17053 51

18000 18048-18051 51

19000 19046-19048-19051-19053 50

20000 20046-20048-20051 48

21000 21043-21046-21048-21051 48

22000 22046-22048-22051 48

23000 23046-23048-23054 48

24000 24046-24048-24055 48

After applying the compensation and doing a retest, the current reading becomes more

presentable yet slightly less performant because of the software filter. The filter reduces

fluctuations by continuously calculating the average values of the measurements for

each channel. While this algorithm reduces the variations, it also delays how long the

signal reader can read correct AOM signals since the averaged measurements are slow-

ing reaching the real AOM data.

Table 4: Current measurements after compensation

Channel AOM Highest measurement Lowest measurement

Value (µA)

0 2 0

1000 1002 1000

42

2000 2000 1998

3000 3000 2999

4000 3999 3998

5000 5000 4999

6000 6000 5999

7000 6999 6998

8000 8000 7999

9000 8999 8997

10000 10002 10000

11000 11001 10999

12000 12001 12000

13000 13001 12999

14000 14000 13999

15000 15000 14997

16000 16002 16001

17000 17002 17001

18000 18001 17999

19000 19001 19000

20000 20002 20000

21000 21002 21000

22000 22001 21999

23000 23001 22999

24000 24001 23999

Although the fluctuations are greatly suppressed by the software filter, there are still var-

iations in the current measurements with the maximum error up to 3 µA occasionally.

The highest and lowest reading values among the four channels are listed in Table 4.

7.2.3 Reading PWM test

Two issues were found after the PWM reading test. The first problem was an unexpected

error of the duty cycle counter value. For example, a 50% duty cycle AOM PWM signal

with the frequency of 10 kHz would result in the period counter value of 100 and the duty

cycle counter value of 50 at the signal reader side. In reality, 58 was the value of the duty

cycle counter of the signal reader. This was debugged to be the slew time of the AOM

PWM signal from 15 V to VIL (low level input voltage) of the STM32 microcontroller. To

be more specific, it is necessary to reuse the example above where the AOM PWM fre-

quency is 10 kHz, which means a period of 0.1 ms and the duty cycle being 50%. From

t = 0 to t = 0.05 ms, the PWM voltage is at the high level or 15 V. When t = 0.05 ms, the

43

voltage starts to drop from 15 V to VIL (the voltage where the STM32 considers it as a

low logic level). It is important to denote this time interval as the slew time tslew. During

the time from t = 0.05 ms to t = 0.05 ms + tslew, the STM32 still consider its input to be

high logic level. Thus, the STM32 keeps increasing the duty cycle counter. Fortunately,

this issue is easily overcome by subtracting a constant compensation from the duty cycle

counter as the slew time remain intact regardless of the duty cycle and the frequency of

the PWM signals.

The second issue is more challenging which is that the period and frequency counter of

the STM32 get overflowed for the PWM signals the frequency of which is less than

around 100 Hz. Although the ICU driver of the STM32 microcontroller is capable of de-

tecting an overflow, trying to correct the PWM reading is not necessarily more practical

than lowering the ICU driver frequency since the AOM measurements are to be streamed

in real-time to the console. Specifically, the frequency is decreased from 10 MHz to 100

kHz when the overflow occurs, which implies that the AOM is currently generating low

frequency PWM. On the other hand, the ICD driver frequency is reversed back to 10

MHz when the read PWM frequency is higher than 160 Hz.

Table 5: PWM measurement results

AOM

frequency

(Hz)

Measured

frequency

(Hz)

AOM

duty cycle

channel (%)

Measured

duty cycle

channel 1 (%)

AOM

duty cycle

channel 2 (%)

Measured

duty cycle

channel 2 (%)

10 10 9.9 9.9 67.4 67.4

50 50 9.9 9.9 64.5 64.5

100 100 9.9 9.9 61.1 61.1

200 200 9.9 9.9 62.7 62.7

1000 1000 9.9 9.9 75.1 75.1

2000 2000 9.9 9.9 15.1 15.1

3333 3333 78.9 78.9 75.1 75.1

5004 5002.5 9.9 9.9 71.9 71.9

6789 6788.8 12.0 12.0 83.6 83.6

6000 5998.8 77.7 77.6 7.5 7.4

7000 6997.9 77.7 77.7 75.5 75.4

8000 8000 77.7 77.7 85.0 85.0

44

9000 9000.9 77.7 77.7 93.3 93.2

10000 10000 9.9 9.9 11.4 11.4

Afterwards, the PWM reading results prove to be trustable. However, the performance

of reading PWM signals is quite dependent on the source signals’ frequency because

there are rounding errors in calculating the measured frequencies. The tested PWM

measurements are shown in Table 5 above.

8 Conclusion

To sum up, the project’s goal was to create a device to simultaneously monitor the AOM

signals with a precise resolution. The device was expected to detect the AOM channels’

operating mode and recognize the smallest changes in the AOM signals. Afterwards, a

signal reader consisting of a circuit board and embedded software were implemented.

The device routes the signal from each AOM channel to an ADC chip for data measure-

ments. The reading results are then transferred to a Raspberry Pi computer and are

displayed through a shell command interface. In terms of precision, the signal reader

does not quite fulfill the requirement to detect the smallest changes in the AOM signals.

The voltage reading has the maximum error of 2 mV which doubles the minimum step

size of the AOM’s voltage. For current measurement, the maximum error is a little worse

with 3 µA, which appears occasionally. There are also frequent fluctuations of 2 µA away

from the AOM values. The PWM capture, in some cases, has the worst precision among

the reading of AOM’s other signal types due to rounding errors. In many other cases

without rounding errors, the PWM reading results are retrieved perfectly. Although the

ambitious goals are not fully achieved in that the signal reader cannot detect every small-

est change of the AOM signals, the end result of this project is acceptable and can be

utilized for its dedicated purpose, which is testing multiple channels of the AOM.

In the future, the signal reader could be improved in many ways. The current input block,

multiplexing and converting various signals to readable voltage, can be duplicated to

enable the signal reader to read from the remaining channel groups. Another enhance-

ment can be increasing the precision while suppressing the measured signal fluctuations.

45

References

1 Analogue Output Module (AOM) [online]. Espoo, Finland: EKE-Electronics Ltd;
18 June 2018.
URL: https://www.eke-electronics.com/analogue-output-module-aom. Accessed
29 April 2020.

2 Quad Channel, 16-Bit, Serial Input, 4 mA to 20 mA and Voltage Output DAC, Dy-
namic Power Control [online]. Norwood, MA, USA: Analog Devices, Inc.
URL: https://www.analog.com/media/en/technical-documentation/datasheets/
AD5755.pdf. Accessed 29 April 2020.

3 Analog Switches and Multiplexers Basics [online]. Norwood, MA, USA: Analog
Devices, Inc.
URL: https://www.analog.com/media/en/training-seminars/tutorials/MT-088.pdf.
Accessed 12 May 2020.

4 MAX14778 Dual ±25V Above- and Below-the-Rails4:1 Analog Multiplexer
[online]. San Jose, CA, USA: Maxim Integrated, Inc.; July 2020.
URL: https://datasheets.maximintegrated.com/en/ds/MAX14778.pdf. Accessed
15 January 2021.

5 Understanding SAR ADCs: Their Architecture and Comparison with other ADCs
[online]. San Jose, CA, USA: Maxim Integrated, Inc.; 2 October 2001.
URL: https://www.maximintegrated.com/en/design/technical-documents/
tutorials/1/1080.html. Accessed 23 June 2020.

6 SAR ADCs vs. Delta-Sigma ADCs: Different Architectures for Different Applica-
tion Needs [online]. Dallas, TX, USA: Texas Instruments, Inc.
URL: https://training.ti.com/ADCwebinar. Accessed 23 June 2020.

7 Sigma-Delta ADCs [online]. San Jose, CA, USA: Maxim Integrated, Inc.; 31 Janu-
ary 2003.
URL: https://www.maximintegrated.com/en/app_notes/index.mvp/id/1870. Ac-
cessed 27 June 2020.

8 Curran, Ryan. Exploring Different SAR ADC Analog Input Architectures [online].
Norwood, MA, USA: Analog Devices, Inc.
URL: https://www.analog.com/en/technical-articles/
exploring-different-sar-adc-analog-input-architectures.html. Accessed 22 May
2020.

9 MAX14759/MAX14761/MAX14763 Above- and Below-the-Rails Low On-Re-
sistance Analog Switches [online]. San Jose, CA, USA: Maxim Integrated, Inc.;
August 2012.
URL: https://datasheets.maximintegrated.com/en/ds/MAX14759-MAX14763.pdf.
Accessed 15 January 2021.

https://www.analog.com/media/en/technical-documentation/data-sheets/AD5755.pdf.%20Accessed%2029%20April%202020
https://www.analog.com/media/en/technical-documentation/data-sheets/AD5755.pdf.%20Accessed%2029%20April%202020

46

10 LM7332 Dual Rail-to-Rail Input and Output30-V, Wide VoltageRange,High Out-
put,Operational Amplifier [online]. Dallas, TX, USA: Texas Instruments, Inc.;
March 2013.
URL: https://www.ti.com/lit/ds/symlink/lm7332.pdf. Access 18 January 2021.

11 The ABCs of Analog to Digital Converters: How ADC Errors Affect System Per-
formance [online]. San Jose, CA, USA: Maxim Integrated, Inc.
URL: https://www.maximintegrated.com/en/design/technical-documents/
tutorials/7/748.html. Access 10 November 2020.

12 MAX1300/MAX1301 8- and 4-Channel, ±3 x VREF Multirange Inputs, Serial 16-
Bit ADCs [online]. San Jose, CA, USA: Maxim Integrated, Inc.; December 2011.
URL: https://datasheets.maximintegrated.com/en/ds/MAX1300-MAX1301.pdf.
Accessed 15 January 2021.

13 Basic of UART [online]. URL: https://openlabpro.com/guide/basics-of-uart/. Ac-
cess 12 June 2020.

14 SMAJ5.0A Thru SMAJ300CA Surface Mount Transient Voltage Suppressor
[online]. SMC Diode Solutions.
URL: https://www.digikey.fi/htmldatasheets/production/1914723/0/0/1/
SMAJ-Series.pdf/. Access 12 November 2020.

15 Adams, James. Introducing Raspberry Pi HATs [online]. Cambridge, England:
Raspberry Pi Foundation; 31 July 2014.
URL: https://www.raspberrypi.org/blog/introducing-raspberry-pi-hats. Accessed
15 January 2021.

16 Adams, James. Introducing Raspberry Pi HATs [online]. Cambridge, England:
Raspberry Pi Foundation; 16 March 2018.
URL: https://github.com/raspberrypi/hats/blob/master/hat-board-mechanical.pdf.
Accessed 15 January 2021.

17 The MOSFET [online]. Cambridge, MA, USA: Electronics Tutorial.
URL: https://www.electronics-tutorials.ws/transistor/tran_6.html. Accessed 15
January 2021.

18 Pulse Width Modulation [online]. Cambridge, MA, USA: Electronics Tutorial.
URL: https://www.electronics-tutorials.ws/blog/pulse-width-modulation.html. Ac-
cessed 15 January 2021.

Appendix

1 (9)

Code Snippets

/***/
//! \brief Read voltage at ADC channel 0
//!
//! Precondition: the MUX channel and analog switch must be enabled in ad-
vance
//! @param none
//!
//! @return int: voltage (mV)
//
/***/
int readADC(void)
{
 double voltage;
 int misocode, signedcode, millivolt;

 spiAcquireBus(&SPID1); /* Acquire ownership of the bus. */
 spiStart(&SPID1, &spicfg); /* Setup transfer parameters. */

 spiSelect(&SPID1); /* Slave Select assertion. */
 spiSend(&SPID1, 1, analog_cfg); /* Send analog input configuration */
 spiUnselect(&SPID1); /* Slave Select de-assertion. */

 spiSelect(&SPID1);
 spiSend(&SPID1, 1, mode_select); /* Send mode selection byte */
 spiUnselect(&SPID1);

 spiSelect(&SPID1);
 spiExchange(&SPID1, 4, start_conv, rxbuf); /*Atomic transfer operations*/
 spiUnselect(&SPID1);
 spiReleaseBus(&SPID1); /* Ownership release. */

 misocode = rxbuf[2] << 8;
 misocode |= rxbuf[3];

 signedcode = misocode - 32768;
 voltage = signedcode * 6 * 4.096 / 65536;
 millivolt = (int) (voltage * 1000);

 return millivolt;
}

Appendix

2 (9)

/***/
//! \brief Get mode command
//!
//!
//
/***/
void cmd_getmode(BaseSequentialStream *chp, int argc, char *argv[])
{
 if (argc == 1)
 {
 if (strcmp(argv[0], "--verbose") == 0)
 {
 verbose = TRUE;
 }
 }

 for(int i = 1; i < 5; i++)
 {
 chxmode[i-1] = getmode(i);
 channelmode[i-1] = chxmode[i-1];
 }
 PRINT("Channel: 1\t 2\t 3\t 4\n\r");
 PRINT("Mode: %s %s %s %s\n\r",
 modetxt[chxmode[0]], modetxt[chxmode[1]], modetxt[chxmode[2]],

modetxt[chxmode[3]]);

}

Appendix

3 (9)

/***/
//! \brief Get operating mode of an AOM channel
//!
//! @param unsigned short: AOM channel number (1-4)
//!
//! @return int: enum current/voltage mode
//
/***/
int getmode(unsigned short channel)
{
 int millivolt, lastmvolt;

 sel_MUXch(channel);
 //Asume current mode, enable 20 kOhm resistor
 en_analogSW(RESISTOR20K);
 millivolt = readADC();
 chThdSleepMilliseconds(200);
 millivolt = readADC();
 lastmvolt = millivolt;

 if (verbose)
 {
 PRINT("Channel %d:\n\r", channel);
 PRINT("Voltage over 20 kOhm: %d\n\r", millivolt);
 }

 if (checkhigher(millivolt, 10000, TOLERANCE) == TRUE || checklower(milli-
volt, -10000, TOLERANCE) == TRUE)
 {
 if (verbose)
 {
 PRINT("Current mode detected\n\r");
 }
 return currentmode;
 }
 else if (checkequal(millivolt, 20, 2) == TRUE)
 {
 if (verbose)
 {
 PRINT("No signal\n\r");
 }
 return nosignal;
 }
 else //Can either be current or voltage mode
 {
 //Enable 10 kOhm resistor
 en_analogSW(RESISTOR10K);
 millivolt = readADC();
 chThdSleepMilliseconds(200);
 millivolt = readADC();

Appendix

4 (9)

 if (verbose)
 {
 PRINT("Voltage over 10 kOhm: %d\n\r", millivolt);
 }

 if(checkequal(millivolt, lastmvolt, THRESHOLD) == TRUE)
 {
 if (verbose)
 {
 PRINT("Voltage mode detected\n\r");
 }
 return voltagemode;
 }
 else
 {
 if (verbose)
 {
 PRINT("Current mode detected\n\r");
 }
 return currentmode;
 }
 }
}

Appendix

5 (9)

/***/
//! \brief Signal reading command
//!
//!
//
/***/
void cmd_read(BaseSequentialStream *chp, int argc, char *argv[])
{
 (void) argv;
 (void) argc;
 uint8_t channel;
 int millivolt;

 if (argc == 2 || argc == 3)
 {

 if (strcmp(argv[2], "--result-only") == 0)
 {
 result_only = TRUE;
 }
 else
 {
 result_only = FALSE;
 }

 if (strcmp(argv[0], "voltage") == 0)
 {
 channel = strtol(argv[1], NULL, 10);
 if (channel >= 1 && channel <= 4)
 {
 sel_MUXch(channel);
 en_analogSW(RESISTOR20K);
 /* The first read is garbage because of hw */
 millivolt = readADC();

 /* Wait a bit for the voltage to settle */
 chThdSleepMilliseconds(100);
 millivolt = readADC();
 millivolt -= CALIB_VOL;
 voltage = ceil(((double) millivolt) * 12000.0f / 12017.0f);
 voltage = voltage / 1000.0f;

 if (!result_only)
 {
 PRINT("read: Voltage: %2.3f V\n\r", voltage);
 }
 else PRINT("%7.3f V", voltage);

 }
 else PRINT("Channel must be from 1 to 4\n\r");
 }
 else if (strcmp(argv[0], "current") == 0)
 {

Appendix

6 (9)

 channel = strtol(argv[1], NULL, 10);
 if (channel >= 1 && channel <= 4)
 {
 sel_MUXch(channel);
 en_analogSW(RESISTOR390R);

 /* The first read is garbage because of hw */
 millivolt = readADC();

 /* Wait a bit for the voltage to settle */

 chThdSleepMilliseconds(100);
 millivolt = readADC();
 current = ((double) millivolt) / 390.0f;

 calibcurrent(channel, ¤t);

 if (fast_forward[channel-1])
 {
 last_current_avr[channel-1] = current;
 fast_forward[channel-1] = FALSE;
 }
 current_avr[channel-1] = ((current –
 last_current_avr[channel-1])/n) +
 last_current_avr[channel-1];

 last_current_avr[channel-1] = current_avr[channel-1];

 if (!result_only)
 {
 PRINT("read: Current: %2.3f mA\n\r", current);
 }
 else PRINT("%7.3f mA", current_avr[channel-1]);
 }
 else PRINT("Channel must be from 1 to 4\n\r");
 }
 else if (strcmp(argv[0], "pwm") == 0)
 {
 channel = strtol(argv[1], NULL, 10);
 if (channel == 1)
 {
 if(highfreqPWM1 == TRUE)
 {
 readPWM(true, 1, &icucfg1);
 }
 else
 {
 readPWM(false, 1, &icucfg1_low);
 }
 }
 else if (channel == 2)
 {
 if(highfreqPWM2 == TRUE)
 {
 readPWM(true, 2, &icucfg2);

Appendix

7 (9)

 }
 else
 {
 readPWM(false, 2, &icucfg2_low);
 }
 }
 else PRINT("Channel must be either 1 or 2\n\r");
 if(lastfrequency1 >= 160.0)
 {
 highfreqPWM1 = TRUE;
 }
 if(lastfrequency2 >= 160.0)
 {
 highfreqPWM2 = TRUE;
 }
 }
 else
 {
 PRINT("Incorrect first argument\n\r");
 PRINT("USAGE: read voltage {channel(1-4)}\n\r");
 PRINT(" read current {channel(1-4)}\n\r");
 PRINT(" read pwm {channel(1|2)}\n\r");
 }
 }
 else
 {
 PRINT("USAGE: read voltage {channel(1-4)}\n\r");
 PRINT(" read current {channel(1-4)}\n\r");
 PRINT(" read pwm {channel(1|2)}\n\r");
 }

}

Appendix

8 (9)

/***/
//! \brief Live signal reading command
//!
//!
//
/***/
void cmd_readlive(BaseSequentialStream *chp, int argc, char *argv[])
{
 char *cmd_readmode[3] = {"voltage", "current", "pwm"};
 char *cmd_readchannel[4] = {"1", "2", "3", "4"};
 uint8_t run_modedetection[4] = {TRUE, TRUE, TRUE, TRUE};
 /* For passing to cmd_read */
 char *argv_read[3] = {"", "", "--result-only"};
 /* To quit the command */
 uint8_t quit = 'a';

 if (argc == 1)
 {
 if (strcmp(argv[0], "--verbose") == 0)
 {
 ver = TRUE;
 }
 }
 /* Hide the cursor for better display */
 PRINT("\033[?25l");
 /* Clear the screen */
 PRINT("\033[2J");
 /* Move the cursor to the origin */
 PRINT("\033[0;0H");
 printtemplate();

 /* Get AOM channel modes and fill in analog table */
 do
 {
 /* Detect operating mode for analog table */
 for (int i = 0; i < 4; i++)
 {
 if (run_modedetection[i] == TRUE)
 {
 channelmode[i] = getmode(i+1);
 if (channelmode[i] != nosignal)
 {
 run_modedetection[i] = FALSE;
 }
 movetoslot(1, i+1, 'a');
 PRINT("%s", modetxt[channelmode[i]]);
 }
 }
 /* Move the cursor to the origin */
 PRINT("\033[0;0H");
 /* Loop through analog table */
 for (int i = 0; i < 4; i++)
 {

Appendix

9 (9)

 if (channelmode[i]==voltagemode || channelmode[i]==currentmode)
 {
 argv_read[0] = cmd_readmode[channelmode[i]];
 argv_read[1] = cmd_readchannel[i];
 movetoslot(2, i+1, 'a');

 cmd_read(consoleStream, 3, argv_read);
 }
 }
 argv_read[0] = cmd_readmode[2]; /* read pwm */
 for (int i = 1; i < 3; i++) /* Loop through pwm table */
 {
 movetoslot(1, i, 'p');
 argv_read[1] = cmd_readchannel[i-1];
 cmd_read(consoleStream, 3, argv_read);
 }
 quit = sdGetTimeout(&SD3, MS2ST(100)); /* 100 ms timeout */
 } while (quit != 'q');
 PRINT("\033[?25h"); /* Show the cursor */
 PRINT("\033[20;0H"); /* Move the cursor to the origin */
}

/***/
//! \brief Print template table
//!
//!
//
/***/
void printtemplate(void)
{
 //For some reason, the cursor moves to (1,1) after PRINT("\033[0;0H")
 PRINT("Live analog signals:\n\r");
 PRINT(--!\n\r");
 PRINT("| Channel | 1 | 2 | 3 | 4 |\n\r");
 PRINT("|----------|----------|----------|----------|----------|\n\r");
 PRINT("| Mode | Voltage | Current | No signal| No signal|\n\r");
 PRINT("|----------|----------|----------|----------|----------|\n\r");
 PRINT("| Value | +11.999 V| 12.345 mA| N/A | N/A |\n\r");
 PRINT("!--!\n\r");

 PRINT("Live PWM signals:\n\r");
 PRINT("!----------------------------------!\n\r");
 PRINT("| Channel | 1 | 2 |\n\r");
 PRINT("|------------|----------|----------|\n\r");
 PRINT("| Frequency | 10000 Hz | 10000 Hz |\n\r");
 PRINT("|------------|----------|----------|\n\r");
 PRINT("| Period | 099.1 ms | 099.1 ms |\n\r");
 PRINT("|------------|----------|----------|\n\r");
 PRINT("| Duty Cycle | 077.7 %c | 066.6 %c |\n\r", '%', '%');
 PRINT("!----------------------------------!\n\r");
 PRINT("Enter 'q' to quit.\n\r");
}

