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An Analog Output Module (AOM) is a multichannel signal generating device provided by 
EKE-Electronics Ltd, and there is a need for monitoring the AOM channels concurrently 
during testing phases or customer project work at the company. In this project, a prototype 
of a device was designed and implemented to measure different signal types such as volt-
age, current, and the PWM signal from the AOM. The analog signals were read by being 
dropped on a resistor, the value of which could be altered depending on the signal type. This 
was done to produce a voltage as an input to an ADC integrated circuit. On the other hand, 
the AOM PWM signal could be measured by an input capturing the peripheral of a micro-
controller chip. 

The obtained results do not meet the desired requirements perfectly. The signal reading 
device is not entirely capable of detecting the smallest changes of the AOM signals. How-
ever, in conclusion, the results do satisfy the demand of testing and monitoring the AOM 
signals. The device is able to measure the AOM channels simultaneously, and the errors 
are insignificant enough so that the data is considered trustable. 
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List of Abbreviations 

ADC Analog to Digital Conversion. The process of sampling at a high rate a con-

tinuous analog signal and matching the samples to the closest discrete se-

quence of predefined values. 

AOM Analog Output Module. The modular device, developed by EKE-Electron-

ics Ltd., which can generate industrial standard current loops, bipolar volt-

ages, and PWM signals. 

DAC Digital to Analog Converter. The counter process of ADC which converts 

digital to analog signals. 

HAT Hardware Attached on Top. A type of add-on boards to be connected on 

top of Raspberry Pi computers through the computers’ header array. 

IC Integrated Circuit. A semiconductor technology that embeds a functional 

circuit to a compact module called a chip to reduce complexity of circuit 

designing. 

ICU Input Capture Unit. An STM32 microcontroller’s peripheral used for captur-

ing PWM inputs. 

LSB Least Significant Bit. The lowest weighted bit of a binary number. 

MISO Master In Slave Out. An SPI communication line connecting from the mas-

ter’s input to the slave’s output. 

MOSI Master Out Slave In. An SPI communication line connecting from the mas-

ter’s output to the slave’s input. 

MSB Most Significant Bit. The highest weighted bit of a binary number. 

PC Personal Computer. 

PCB Printed Circuit Board. An electronic circuit built on a solid board. 



 

 

PWM Pulse Width Modulation. A modulation method that varies the duty cycle of 

a rectangular digital signal. 

SCLK Serial Clock. The SPI clock signal driven by the SPI master. 

SPST Single Pole Single Throw. A configuration of switches that only one terminal 

of a switch connects and disconnects to the other terminal of that switch. 

UART Universal Asynchronous Receiver Transmitter. A serial data transfer pro-

tocol widely used by microcontrollers. 
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1 Introduction 

EKE-Electronics Ltd., a subsidiary of EKE Group, is a rolling stock company providing 

solutions for train system integration, train automation, onboard communication, safety 

improvement and remote monitoring. One of the products of EKE-Electronics is the An-

alog Output Module (AOM) which can generate industrial standard analog signals such 

as current loops and bipolar voltages. 

The AOM has up to 24 output channels. In real fleets, it is typical that all the channels 

are utilized to control different subsystems. This results in the need of testing or monitor-

ing multiple AOM channels simultaneously. Using a multimeter or an oscilloscope for this 

purpose would be impractical as they both have a very limited amount of measuring 

channels. Moreover, in the production process, testing AOMs by measuring their chan-

nels one after another with multimeters or oscilloscopes is also time and work consum-

ing, and that would be even worse when the number of AOMs increases. For this reason, 

a device with a sufficient number of input channels and a single result displaying unit 

would be beneficial in saving time and workload when testing both the AOM in the pro-

duction process and the software of the customer projects for EKE. Therefore, the goal 

of this project was to design and implement a signal reading device for the AOM. This 

device will also be referred to as the signal reader later in this document. The signal 

reader will measure all the AOM signal types, namely voltage, current and PWM before 

transmitting the results to a Raspberry Pi computer. 

The signal reader was implemented as a proof concept on an add-on board for a Rasp-

berry Pi computer in the form of a HAT board which means there is a PCB size constraint 

of roughly 65×56 mm for the signal reader [16]. Moreover, all 24 outputs of the AOM 

were divided into four identical groups, so this project consisted of designing and imple-

menting both hardware and software for the signal reader to read only one group of 

channels (among four identical ones) from the AOM. 
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2 Requirements 

2.1 Input Side 

The signal reading device is cascaded to output group 1 of an AOM. This output group 

of the AOM contains two heavy duty and two regular analog channels, which are capable 

of driving up to 1 kΩ and 500 Ω of resistance in the current mode respectively. Each 

analog channel can be configured to be either current loop transmitters or bipolar voltage 

outputs. Additionally, there are two other digital pins dedicated to generating PWM sig-

nals [18]. 

The requirements are to detect the operating mode (current and voltage mode) of the 

AOM and read the corresponding signal. The operating mode detection is done purely 

by the device itself without user intervention. The reading process must be done fast 

enough so that the user can observe the real time output of the AOM. The data refresh 

rate is expected around 1 refresh per second. In addition, the reading device should be 

able to detect the smallest step of every AOM signal type which are voltage, current, and 

PWM. 

When an AOM channel is configured as a voltage output, its signal varies from -12 to 12 

V with the resolution of 1 mV per step. In turn, in the current mode, an AOM channel can 

source a current from 0 to 24 mA with the resolution of 1 µA. The signal reader’s input 

range must be wide enough to accommodate this signal span, and it must also be precise 

enough to detect the smallest change of the AOM in both modes. Furthermore, the AOM 

PWM signal has the frequency range from 10 Hz to 10 kHz with the resolution of 0.1% 

and the output level of either 5 V or 15 V. This behaviour of the AOM must also be taken 

into account that the signal reading device is fast enough and has a required resolution 

to detect the minimum change of the AOM’s PWM frequency within its range. The signal 

reader is also required to adapt with both PWM logical 1 voltage levels. 

The device is intended to be an HAT extension board of a Raspberry Pi computer mean-

ing that it will use the power supply from the Pi [15]. Therefore, the risk of over voltage 

or reverse voltage is considered as out of scope and shall be simplified in this thesis. 

Instead, another voltage issue is that if the AOM heavy duty channels are configured as 

current outputs, and are open circuited, their voltage can rise up to 24.5 V thanks to the 
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AD5755 digital to analog drivers inside the AOM [2, 37]. The signal reader must, there-

fore, have a solution to deal with such a high voltage. Moreover, if an AOM voltage-

configured channel is shorted, the AOM itself has an ability to handle the error by enter-

ing the safe mode, and the voltage channel is then disabled. This feature should of 

course be tested by the signal reader. In other words, there should be a mechanism to 

simulate the short circuit condition for the voltage channels of the AOM to verify that the 

AOM channel can handle the error. 

2.2 Output Side 

All the reading results from all the channels of the AOM need to be transferred to a 

Raspberry Pi computer via serial connection. The user can run a shell from the Rasp-

berry Pi computer to interface with the AOM signal reader. The data produced by the 

output of the signal reader is as follows: an individual analog channel operating mode, 

current and voltage readings, PWM channels’ frequency, period and duty cycle. The 

sending process must be done fast enough so that the user can observe the real time 

output of the AOM. The expected pace is 1 second between data refreshments. 

3 Device Functional Blocks 

The signal reader is divided into three main blocks: input, processing, and output blocks. 

The input block consists of a select-channel subblock, a convert-to-voltage subblock, 

and a read-voltage subblock. The processing block is a microcontroller doing mode de-

tection and calculations for the measurements. The output block is a virtual one which 

can be considered as the connection between the processing block and the Raspberry 

Pi computer. The distribution of the subblocks is better illustrated in Figure 1. The input 

block first selects AOM channels one by one to route the signal through. It then converts 

the selected signal into a voltage level called VAOM. The processing block then calculates 

the AOM measurements based on VAOM before transmitting the results to a Raspberry 

Pi computer through a shell for displaying to the user.  
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Figure 1: Three main blocks of the AOM signal reading device 

The channel selecting block in Figure 1 is a multiplexer (also known as MUX) that allows 

only one selected AOM signal at a time to pass through to the voltage converting block 

[3, 1]. This next block is a system of different-value resistors connecting from the output 

of the MUX to the ground plane. Only one of these resistors is activated or closed cir-

cuited at a time depending on whether the AOM channel is in the current or voltage 

mode. The other resistors will be open circuit or disconnected from the MUX output. 

What is produced afterwards is a voltage level (VAOM in Figure 1) readable to an ADC 

chip at the next block. The voltage read by the ADC is then transferred to a microcon-

troller where the data is used to detect the AOM operating mode or to be simply displayed 

to the user later. The PWM channels, on the other hand, can be read directly by the 

microcontroller. The AOM PWM outputs, however, can be configured to generate 15 V 

for logic level 1 and 0 V for level 0 logic, resulting in the need for a voltage limiting circuit 

to clamp the 15 V level to a safe value accepted by the microcontroller. 
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Figure 2: Voltage converting block 

As mentioned, the voltage converting block consists of four different resistors 0 Ω, 1 kΩ, 

390 Ω, and 20 kΩ connecting from the output of the multiplexer (the previous block) to 

the ground by turning on corresponding switches as shown in Figure 2 to detect the AOM 

operating modes and reading the values from it. Only one appropriate resistor is acti-

vated depending on the detected mode to result a voltage for the next block. During 

operation, the AOM voltage can be negative. Thus, regular MOSFET switches are not 

suitable for controlling the resistors because MOSFETs relies on the gate to source volt-

age to turn on or off. Analog switches will be employed for this block instead due to their 

independence from drain, source voltages. More detail will be discussed in the next sec-

tion. At the last stage of the signal processing chain is the microcontroller for which the 

STM32F417 will be used. It has a 12-bit ADC peripheral which is insufficient for the res-

olution of the AOM signals. For that reason, a separate ADC chip is required. Successive 

Approximation Converter (SAR ADC) and Sigma-Delta ADC are the two most popular 

types of ADC chips in the market for the time being. The next section will also address 

the two ADC types and explain why SAR ADC is utilized for the signal reader. 
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4 Background 

4.1 Analog Switch vs MOSFET 

4.1.1 MOSFET 

In most applications where there is only the presence of positive voltages, MOSFETs 

are commonly used to switch on or off other electronic components. Nevertheless, as 

mentioned in the previous section, there is a key feature that analog switches are more 

preferable to MOSFETs in this project, which is explained below. 

A Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is an electronic compo-

nent consisting of a Source and a Drain terminal [17]. It can block or allow current to flow 

through the two terminals depending on the voltage applied to the third terminal called 

the Gate. MOSFETs are categorized into N-channel and P-channel types. For N-channel 

MOSFETs, when the voltage between the Gate and Source terminal (VGS) is higher than 

the threshold voltage, typically 3 V or logical 1 level, the transistor will be turned on, and 

the current can pass through the Drain and Source terminal. When VGS is lower than the 

threshold voltage (VGSTH), depicting the logical 0 level, the MOSFET is turned off blocking 

the current flow across the transistor. On the other hand, P-channel works based on the 

opposite manner of VGS. That is, for VGS being higher and lower than VGSTH, the MOSFET 

is switched off and on respectively. The behaviour of both types of MOSFETs described 

above can be considered as a normally open switch or enhancement type. In practice, 

there is another form of MOSFETs called depletion type. However, that is out of the 

scope of this project and hence will not be discussed. 
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Figure 3: A MOSFET acting as a switch for positive input voltage only 

The problem with MOSFETs is that they cannot switch negative voltages. Figure 3 shows 

that when VGS is higher or lower than VGSTH, the MOSFET is turned on or off respectively 

and hence it connects or disconnects the resistor to the AOM output channel. This is 

only true when the voltage from the AOM is positive. When the AOM is in voltage mode 

where its voltage can be negative, the MOSFET cannot block the signal due to the par-

asitic diode between the Source and Drain gate. When VAOM is -12V for example, and 

the MOSFET Q1 is required to disconnect the R1 resistor by pulling VGS to logical 0 level. 

In that case, Q1 still fails to be off because of the parasitic diode conducting electric 

current from the ground to the AOM channel. For this reason, the alternative solution is 

using analog switches. 

4.1.2 Analog Switch 

Analog switches are also driven by voltage. They inherit while improving MOSFETs’ 

characteristics by having a P-channel connected in parallel with an N-channel MOSFET. 

The Source and Drain terminal of the P-type transistor are connected to the Source and 

Drain of the N-type transistor. Their Gate terminals are complementary to each other by 

the help of a logical NOT gate which is the left side of Figure 4. The right side of the 

figure is the P and N channel MOSFET. [3, 2.] 



8 

  

 

Figure 4: Components of an analog switch. Reprinted from Analog Devices, Inc [3]. 

Analog switches overcome MOSFETs’ disadvantage by having parasitic or body diodes 

organized in a different way as illustrated in Figure 5. The diodes’ locations are where 

the leakage currents exist. To be exact, the diodes are the source of the leakage depicted 

in the figure. This arrangement enables analog switches to work both when the Source 

terminal voltage is larger and smaller than the Drain terminal’s because the switches rely 

on the controlling the Gate voltage with respect to the ground rather than the Gate to 

Source voltage like MOSFETs do. Despite having a solution to the parasitic diode issue, 

in practice, analog switches introduce leakage currents that might shift the signal creating 

an offset error at the output of the switch. On resistance (RON) – the resistance between 

the Source and Drain terminals of the analog switches when it is turned on – is also a 

contributing factor to the errors of the signal path. [3, 5.] 

 

Figure 5: Equivalent circuit of an analog switch. Reprinted from Analog Devices, Inc [3]. 
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It is important to assume that an input signal is applied to the Source terminal of the 

analog switch in Figure 5, and an output voltage is expected at the Drain terminal. Ideally, 

when the switch is closed, the output and input are exactly the same. However, in reality, 

there exists on-resistance between the Source and Drain terminal of the switch distorting 

the output signal. In addition, the on-resistance usually varies with temperature and input 

voltage resulting in nonlinearity at the output. This can be significantly improved by hav-

ing a voltage buffer IC in the signal path because the buffer often has an input impedance 

of up to megaohms. This will greatly reduce the effect of the on-resistance. Detailed 

design will be described in section 5. 

4.1.3 Multiplexer (MUX) 

The circuit design of the signal reader involves a multiplexer for selecting the AOM chan-

nel. Multiplexers employ analog switches having one common terminal so that different 

input can be routed to a single output and vice versa [3, 1]. (See Figure 6.) By using 

analog switches as building blocks, multiplexers also inherit the error source from the 

switches which are leakage currents and on-resistance. 

 

Figure 6: Function blocks of a typical MUX. Reprinted from Maxim Integrated, Inc [4]. 

By providing different combinations of logic levels to the control inputs (SA0 and SA1 of 

unit A in the figure), a specific terminal from A0 to A3 will be routed to the common 

terminal ACOM. The same principal also applies for unit B of the multiplexer. 
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4.2 Analog to Digital Converter 

4.2.1 Successive Approximation Converter 

Successive Approximation Register Converter, or SAR ADC, is one of the most common 

ADC types available in the market for the time being. This type of ADC has low power 

consumption, and latency since the ADC continuously samples the input signal and does 

the conversions [6]. This makes SAR ADC suitable for measuring multiple signals sim-

ultaneously. The SAR converter only performs one sample for each conversion, and the 

sampling process is triggered by a starter signal. As a result, this ADC type is also usually 

put in use in applications that require precise control of when the samplings occur. More-

over, many models of the SAR ADC architecture are provided in small size packages 

which are also suitable for space constrained PCBs, for example, a circuit board that is 

attached on top of a Raspberry Pi computer. [6.] 

 

Figure 7: SAR ADC function blocks. Reprinted from Maxim Integrated [5]. 

Figure 7 above illustrates elemental function blocks of a SAR ADC device. It has a hold 

register to store the value of input voltage to be measured. This voltage is then compared 

with VDAC – a voltage produced by a Digital to Analog Converter (DAC) element. In gen-

eral, the DAC block is to replicate the input voltage with the help of the comparator. It 

keeps adjusting its value converging to the input as long as the comparator perceives a 

difference between VIN and VDAC. The digital value of the DAC block that produces the 

closest voltage to the input voltage is then the measurement result. The DAC block is 

governed by the content of the N-bit register which is afterwards the result register of the 
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SAR ADC. To be specific, at first, all the bits in the register are reset to 0s, except the 

MSB which is set to 1. This register setup yields a voltage at the output of the DAC 

(VDAC) being VREF/2. After that, VDAC is compared with VIN to check whether VIN is 

higher. If this true, the MSB is kept as 1. Otherwise, it is reset to 0. After that, the SAR 

logic block moves the interest to the second MSB of the N-bit register. This bit is also 

forced to 1 and is combined with the found MSB. The DAC voltage is produced according 

to the value of the N-bit register, and the procedure is repeated until the LSB value is 

found. The content of the N-bit register is the AD conversion result. [5.] 

 

Figure 8: Decision made to generate the N-bit register value to replicate input voltage. 
Reprinted from Maxim Integrated [5] 

Figure 8 describes how the DAC voltage is generated according to the 4-bit register. At 

first, the register value is 1000. VDAC is then VREF/2 and is greater than VIN resulting 

in the MSB reset to 0. Secondly, the next MSB is set to 1, so the register value is 0100 

which is 4 in decimal or VREF/4. This voltage is lower than VIN, and, of course, the 

currently considered bit is 1. Similarly, the logic repeats until all four bits are found. [5.] 

4.2.2 Sigma-delta ADC 

Sigma-delta ADC uses over sampling, digital filtering, and noise shaping to achieve high 

SNR performance. The other advantages of this ADC type are also high resolution and 

integration, and low power consumption. When an analog signal is sampled and digital-

ized by an ADC in general, the output signal is introduced with some distortion since a 

finite number of samples is used to rebuild a continuous signal of infinite values. [7.] This 
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distortion also known as the noise floor of the output can be visualized by FFT analysis 

in Figure 9. The name noise floor depicts that the noise frequencies are distributed 

equally from zero to half of the sampling frequency. 

 

Figure 9: FFT of digital output. Reprinted from Maxim Integrated [7]. 

In Sigma-Delta ADCs, the noise magnitudes are greatly reduced since the sampling fre-

quency is raised to a considerably high value, and the noise power is hence spread over 

a much wider frequency range. As shown in Figure 10, the noise attenuated by over 

sampling is then filtered even further by a digital lowpass filter. The part of the noise, 

colored in red, which has higher frequency than the cut-off frequency of the filter will be 

supressed leaving only the signal and a small amount of the low frequency noise. [7.] 

 

Figure 10: Reduced noise magnitude is further filtered. Reprinted from Maxim Integrated [7]. 
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The remaining noise power discussed above can be eliminated even more with a noise 

shaping technique in which the input signal will be fed into a sigma-delta modulator as 

described in Figure 11. This modulator acts as a lowpass filter to the signal and a 

highpass filter to the sampling noise, so what is produced at its output is a low frequency 

sampling noise portion being distributed in a higher frequency area. [7.] 

 

Figure 11: Sigma-delta modulator. Reprinted from Maxim Integrated [7]. 

Figure 12 shows the noise distribution at the output of the integrator. If this signal is fed 

into the digital filter mentioned in Figure 10, the remaining noise power is even less [7]. 

This is to prove that Sigma-delta ADC is a considerable option for high SNR perfor-

mance. 

 

Figure 12: The noise distribution created by the integrator. Reprinted from Maxim Integrated [7]. 

Despite the outstanding performance of Signa-Delta ADCs in signal-to-noise ratio, the 

latency of this type of ADC is quite high since Signa-Delta ADC does not have sample-
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and-hold mechanism as SAR ADC does. It will take a longer time for a Signa-Delta chip 

to read multiple AOM channels simultaneously than its competitor – SAR ADC. That is 

the reason SAR ADC will be applied in this project. 

5 Block Design and Interface Definition 

5.1 Input Block 

Figure 13 shows the circuitry to process four AOM current or voltage signals to a voltage 

readable to the ADC block. Starting from the AOM outputs, 1 out of 4 of the signals is 

routed by a MAX14778 multiplexer. The most striking feature of this IC to be adopted is 

the support for a wide input signal range up to ±25 V. Moreover, there are two multiplexer 

units in 1 single 5 mm × 5mm package. [4, 1.] Although only one unit is currently em-

ployed, it is advantageous for future development when more AOM channels are to be 

monitored. The unused MUX B of the multiplexer will be disabled by grounding the ENB 

pin with a 10 kΩ resistor, and bypass capacitors are also needed for the stability of the 

IC. The capacitor values are selected as recommended by the datasheet [4, 10]. At the 

input side of the MUX, there are four transzorb diodes SMAJ18A to ground any transient 

voltage that is more than 18 V for each AOM channel before it enters and damages the 

MUX. Cascaded to the multiplexer is the voltage converting block which takes both the 

current and voltage signal and produces a voltage level at its output. By alternating three 

different resistors, 390 Ω, 1 kΩ, and 20 kΩ, the signal reader can adapt to the AOM 

operating mode. The software is implemented so that only one of them is active (con-

necting the signal to the ground by closing the corresponding analog switch) at a time. 

Even though there is a variety of different types of analog switches in the market, the 

ones that support over-the-rail signal voltage are quite limited. An impressive candidate 

for a large signal range application like this project is the MAX14761 - a double SPST 

analog switch having decent performance such as low on resistance (2 Ω maximum), on 

resistance flatness of 5.1 mΩ, and leakage current, wide input signal range. MAX14761 

is also a compact dual single pole/single throw (SPST) switch. It is available in a 10-pin 

TDFN package with the size of 3 mm × 3mm. [9, 2.] Two packages will be needed be-

cause three switch units are required for the resistors and one for simulating the short 

circuit condition for the AOM in which the AOM enters a safe state. 
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Figure 13: From 4 current/voltage signals to 1 readable voltage 

To continue with the signal flow, the voltage from the active resistor described previously 

is passed through an RC lowpass filter (R1 and C3) to trip off the unwanted high fre-

quency noise before being fed to a voltage limiting unit. The filter’s cut-off frequency is 

calculated by the following formula. 

𝑓𝑐 =
1

2𝜋𝑅𝐶
≈ 80 𝐻𝑧 

The circuit is followed by a Zener diode D6 - CLL5244B to clamp the AOM voltage to 14 

V in case the AOM produces higher voltage than the signal reader’s safety limit. This is 

further discussed in the next section. The purpose of D1 is to block the current from the 

ground to the signal wire ADC_chx when the AOM is outputting a negative voltage in the 

voltage mode. The signal chain is ended by a buffer op-amp LM7332 for safety in case 

the AOM channel is overloaded. Again, this buffer is chosen due to its support for high 

dynamic range input with typical input range from -15 to 15 V [10, 1]. 

5.1.1 Reading Current Signal 

Within one AOM output group, there are two channels which can provide 24 mA to a 1 

kΩ resistors in the current mode. On the other hand, the remaining analog channels are 

capable of driving up to 500 Ω resistors also at 24 mA. According to Ohm’s law presented 

by equation (1), the resistor value will be selected to be 390 Ω. Switch 3 in Figure 13 will 
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be turned on routing the current through R6 to the ground. As a result, the voltage drop 

between the plus and minus pin of the current channels is from 0 to 9.36 V as the AOM 

outputs 0 to 24 mA of current. Similarly, the Ohm’s law also shows that the voltage drop 

will increment/decrement 0.39 mV for every 1 µA of change in the output current. 

 𝑉 = 𝐼 × 𝑅 (1) 

When the current channels are over driven by being applied with a resistance greater 

than the rated value or even open circuit, the voltage at AOM channels 3 and 4, which 

are capable of providing 24 mA to a 500 Ω resistor, is driven to the maximum value of 

12 V. On the other hand, channels 1 and 2, which can drive up to 1 kΩ at 24 mA, generate 

about 24 V. This voltage is limited to a safe number of 14 V by the Zener diode mentioned 

in the previous section unless it will damage the ADC channel of the signal reader. To 

sum up, for the input current from 0 to 24 mA and a step change of 1 µA, the produced 

voltage after going through the input block is from 0 to 9.36 V with the step of 0.39 mV. 

In practice, active components like the transzorb and Zener diodes, multiplexers, analog 

switches, buffer, and the ADC in Figure 13 introduce a considerable amount of leakage 

current as an error to the reading results. That is because in the current mode, the AOM 

channels output constant current signals without caring if the produced current gets lost 

during the path to the signal reader. During the operation of an AOM channel, the total 

leakage current from the AOM to the processing block involves the multiplexer the on-

leakage current of input and output pin, the on-leakage current of one analog switch and 

off-leakage current from the three others since there is only one conducting analog 

switch at a time. The summation of the listed leakages can be considered as a constant 

offset leakage since it makes the signal reader measurements drift away from the true 

values. Fortunately, it can be compensated by software. The process is quite simple. 

First, the AOM is configured to generate zero current. The signal is then measured by 

the signal reader. The readings are expected to be non-zero due to the offset current. 

This non-zero value is the offset error of the design, and in the future measurements, the 

final results will be the subtraction of the crude readings from the AOM by the offset. For 

example, when the AOM is putting out 0 mA, the signal reader perceives that as 20 mA. 

This number is the offset current. Hence, in later reading, if the measurement is 30 mA, 

the true value is in fact 30 mA – 20 mA = 10 mA. 
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5.1.2 Reading Voltage Signal 

The AOM voltage channels can be monitored directly by the signal reader. The driving 

capacity of each AOM channel is 10 mA. Therefore, the minimum resistance between 

the plus and minus pin of the AOM is 1 kΩ. In fact, the output spans from -12 to 12 V 

with a 1 mV step instead of just -10 to 10 V due to the over range ability of the AOM. 

Hence, in case of over range operation, the resistance between the plus and minus 

channel must be at least 1.2 kΩ so that the current is within a driving capacity of 10 mA. 

In the voltage mode, the active resistor value is 20 kΩ, and switch 4 in Figure 13 is turned 

on so that resistor R7 is connected while the other switches are turned off to disable the 

corresponding resistors. Fortunately, leakage currents have no effects to the signal re-

ceived by the processing block. This is because the AOM channel, which is a voltage 

source in this case, will regulate its current to make sure the voltage is the same as the 

designated value. In other words, the input block’s input voltage is equal to its output 

voltage. 

𝑉𝑖𝑛 = 𝑉𝑜𝑢𝑡  

That is the theory. In practice, the multiplexer offers an on resistance between its input 

and output terminal when a MUX channel is selected. To make it worse, this resistance 

is dependent on temperature and other factors for example the input voltage of the mul-

tiplexer. This dependency is often referred to as on resistance flatness. [4, 3.] As a result, 

even if the voltage at the multiplexer input is regulated, the output side voltage can be 

different than that. Being similar to the offset in the current reading mode, the voltage 

difference can be eliminated by calibration when the AOM is outputting zero voltage sig-

nals. Later in the testing phase of the project, it is found that the ADC chip also offers an 

error proportional to the AOM voltage signal which means the so-called gain error will 

change linearly with the input voltage [11, 1]. This type of error escalates when the inter-

nal reference voltage (4.096 V) of the ADC is selected. In this project, the internal refer-

ence selection cannot be done differently because the supply voltage of the ADC is ±15 

V. Choosing the available 5 V from the Raspberry Pi will result in the ADC input span 

from -15 to 15 V, which is the same as the power supply, and is not a good practice. Due 

to the linearity of the error, it can also be calibrated by software. The procedure will be 
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addressed in the testing section later when the slope of the line is known by collecting 

measured values corresponding to AOM signals. 

5.1.3 Mode Detection 

The operating mode detection of a channel can be done by assuming that the AOM is in 

the voltage mode and closing switch 4 as shown in Figure 13. If the AOM is actually in 

the current mode, the 20 kΩ resistor R7 surely overloads the AOM current channel, and 

the maximum capable voltage will be drawn from the AOM channels. This maximum 

voltage is typically 24.5 V for channels 1 and 2 and 15 V for the other analog channels. 

With the help of the voltage clamp circuit, the mentioned voltage is kept under 15 V as 

discussed in 5.1.1. This is distinguishable from the voltage mode because in that case, 

the AOM can only output maximum 12 V even in the over range condition. If, on the other 

hand, the voltage received from the AOM channels is lower than 12 V, it is still uncertain 

to tell the operating mode yet. Further action can be done by activating switch 2 to enable 

the 10 kΩ resistor. If the voltage drop on the active resistor retains the same as the last 

voltage drop, the AOM channel is in the voltage mode. Otherwise, it is in the current 

mode. 

5.1.4 Reading PWM Signal 

The PWM reading method is using the microcontroller’s timers. There are two independ-

ent timers needed. The first timer measures the time between two consecutive rising 

edges to obtain the period while the second timer is used to get an interval between a 

rising and the next falling edge for the duty cycle. There is still an issue with the AOM’s 

PWM high level voltage of 15 V. This level is far beyond the safe margin of the micro-

controller STM32F417 input. The high voltage can be overcome by utilizing Zener diodes 

D7 and D8 (see Figure 14) the Zener voltage of which is 3.3 V. This means the voltage 

at the cathodes of these diodes is regulated to 3.3 V. Resistors R14 and R15 are to limit 

the current through the diodes. 
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Figure 14: PWM reading circuit 

The microcontroller STM32F417 has a dedicated peripheral for reading PWM signals 

called ICU (Input Capture Unit) driver which will ease the pain of manually setting up the 

timers and reading count values in the timers’ registers. The software configuration to 

enable this peripheral is further described in this paper in a later section. 

5.2 Processing Block 

5.2.1 Analog to Digital Converter Block 

The selected ADC device for this project was MAX1301. It is available in a 20 pin TSSOP 

package offering four reading channels in which only one is used [12, 1]. The remaining 

three channels will be useful for the future development of the project when all four chan-

nels of the AOM are to be monitored. Again, this ADC IC was chosen for its wide input 

dynamic range. Having an option of input signal range from -3×VREF to 3×VREF, and the 

reference voltage of 4.096 V, the dynamic range of the ADC will be from -12.288 V to 

12.288 V. [12, 1.] The MX1301 has a 16-bit resolution, so within the full-scale range, 

there are 65536 different ADC codes. This means the step size is: 

12.288 − (−12.288)

65536
= 0.375 𝑚𝑉 
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The smallest change of AOM signals in the voltage mode is 1 mV, and 1 µA in the current 

mode will result in 0.39 mV as discussed previously in section 5.1.1. The ADC’s resolu-

tion is just enough to handle the AOM signal step change in the current mode. 

5.3 Output Block 

The output block utilizes the UART protocol to both transmit measurements to and re-

ceive commands from the Raspberry Pi’s shell. As already mentioned in section 3, the 

output block is required to send data fast enough for data visualization, so it would be 

beneficial to identify the data payload size in every operating mode. With a given UART 

baud rate, the time required to transmit a data packet, which is the minimum duration 

between transmissions, can then be determined. Data will be presented on the shell 

console in two tables, analog and PWM. The user interface is shown below. 

Live analog signals: 
!----------------------------------------------------------------! 
| Channel    | 1          | 2          | 3          | 4          | 
|------------|------------|------------|------------|------------| 
| Mode       | Voltage    | Current    | No signal  | No signal  | 
|------------|------------|------------|------------|------------| 
| Value      |  11.999 V  | 12.345 mA  | N/A        | N/A        | 
!----------------------------------------------------------------! 
Live PWM signals: 
!------------------------------------! 
| Channel      | 1        | 2        | 
|--------------|----------|----------| 
| Frequency Hz | 10000    | 10000    | 
|--------------|----------|----------| 
| Period    ms | 099.1    | 099.1    | 
|--------------|----------|----------| 
| Duty Cycle % | 077.7    | 066.6    | 
!------------------------------------! 
Enter 'q' to quit. 

In the current loop mode, the current varies from 0 to 24 mA with the resolution of 1 µA. 

The measurement of each AOM current channel has, therefore, nine characters in the 

form of “AB.XYZ mA” and “Current” for the Value and Mode row respectively. The column 

of channel 2 in the Live analog signals table above is a good example for this. Similarly, 

the voltage output mode readings range from -12 to +12 V with a resolution of 0.5 mV, 

and the format is “-AB.XYZ” or “+AB.XYZ mV” for the Value row and “Voltage” for the 

Mode row. The worst case, where the maximum payload is reached, happens when all 

the channels are of the voltage type. There will be 68 bytes to be transmitted for the 

analog table in this case. Lastly, for the PWM channels, the data includes a frequency 
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maximum value of which is 10000 Hz and a duty cycle with the largest percentage of 

100% and 0.1% of resolution. For the PWM table, the fix payload to be transferred is 46 

bytes for both channels. The whole display will need 114 bytes in total. 

Each character is transmitted by a UART frame which normally contains 1 start bit, 5 to 

9 data bits, 1 parity bit and 1 stop bit [13, 1]. In this project, the payload is configured to 

1 byte for each UART frame and the parity bit is suppressed. This results in a 10-bit 

UART frame. There will be no parity bit attached to the frame because communication 

between the output block and the Raspberry Pi occur in real time. There will be a decent 

traffic in the communication channel, so the probability for the user to witness the error 

data on the display is considerably low. With 114 characters embedded in 10-bit frames, 

there will be a total of 1140 bits for every transmission from the output block to the Rasp-

berry Pi. If a baud rate of 115200 kbps is selected, the time required to send that payload 

is calculated as below. 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 =
𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑠𝑖𝑧𝑒

𝑏𝑎𝑢𝑑 𝑟𝑎𝑡𝑒
 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 =
1140

115200
= 11.81 𝑚𝑠 

This transmission time is also the minimum duration required between transmissions. In 

this project, the time between transmissions is chosen to be 100 ms since it clearly sat-

isfies the 11.8 ms requirement, and the cycle time of the AOM program is 100 ms as 

well. 
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6 Schematics and Software Implementation 

6.1 Schematics and Component Selection 

Figure 15 shows the early stage of the input block where the signals from the AOM chan-

nels are multiplexed by MAX14778 so that an interested channel is selected among four 

channels. First, 4 transzorb diodes SMAJ18AC will ground any transient voltage exceed-

ing 19 V at the 4 AOM channels [14, 2]. The rated power of every transzorb diode is 400 

W [14, 1]. Next, the multiplexed signal, in the form of voltage or current, is then input to 

the analog switch MAX14761. This results in a voltage at AOM_chx which is later low-

pass filtered by an RC circuit (C3 and R1). The cut-off frequency of this filter is approxi-

mately 80 Hz to suppress high frequency noise while keeping the low frequency signal. 

The purpose of the Zener diode CLL5244B is to limit the voltage at ADC_chx in case a 

high capability current channel from the AOM is open circuited by the analog switches. 

These channels can produce up to 24.5 V at ADC_chx turning the general diode 

PMLL4148L into the forward bias state. A voltage of 14.8 V is created by the combination 

of diode PMLL4148L’s forward voltage and the Zener voltage of diode D6. This voltage 

is a safe limit for the buffer LM7332 the functionality of which is to prevent the AOM 

channels from being overloaded. The approach of using a general purpose and a Zener 

diode instead of a transzorb diode is that the breakdown voltage response of transzorbs 

is not as sharp as that of Zeners. 
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Figure 15: Input processing schematic 



24 

  

The buffered signal ADC_chx_in is input to the ADC MAX1301BEUP as illustrated in 

Figure 16. The ADC chip operates with a single 5 V power supply, but it can support an 

input swing from -3×VREF to 3×VREF where VREF is the ADC’s internal reference, the volt-

age being 4.096 V. Only 1 input channel of the ADC is used in this project, and the other 

3 channels are grounded by 1 kΩ resistors for stability. MAX1301 is also a good option 

for future development of this thesis project where the remaining output groups of the 

AOM are taken into use. In addition to the bypass capacitors at the ADC’s power pins, 

the pull-up resistors for the SPI bus are needed to create a default state for the SPI lines 

when its master, the STM32 microcontroller, is reset. 

 

 

Figure 16: Analog to digital converter MAX1301BEUP 

The AOM inputs including the voltage/current and PWM signals are acquired and fed to 

the multiplexer MAX14778 by the DB9 connector J1 in Figure 17. The header J2 is where 

the whole circuit board gets the power supply from. The 3.3 V and 5 V supply are pro-

vided by the Raspberry Pi computer through the header J2. The UART communication 

between the Raspberry Pi and the STM32 microcontroller also happens through this 

header. Moreover, for debugging purposes, 5 GPIO pins are connected between the two 

entities. In the middle of the figure is how the PWM signals are processed and input into 

the STM32. Since the AOM PWM signal is 15 V for logic 1, it must be limited to a safe 

level for the STM32, 3.3 V. The Zener diodes BZV55-C3V3 are used for this purpose as 

they offer 3.3 V of limiting voltage. The 10 kΩ resistors are to limit the current from the 

AOM channels to the ground when the Zener diodes conduct. 
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Figure 17: Input and output connectors 

Figure 18 shows how the STM32F417VET microcontroller connects with the reset con-

troller TPS3703A and the crystal oscillator HC3325. The reset controller monitors the 

voltage supply of the STM32 and resets the microcontroller if the supply voltage is out of 

the safe margin longer than 200 ms. This time period is selected by using a 10 kΩ pull-

up resistor at pin 3 – CT or Capacitor Time. Pin 6 (Manual Reset) is controlled by a GPIO 

pin from the Raspberry Pi so that the STM32 can be actively reset by the Raspberry Pi. 

In addition to the reset controller, an external crystal oscillator HC3325, whose frequency 

is 25 MHz, is required because the built-in LC oscillator of the STM32 is not so precise. 

 

Figure 18: STM32F417VET microcontroller 
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The SPI bus of the STM32 is connected to the SPI of the ADC chip MAX1301 so that 

the STM32 acts as the master and the ADC operates as the slave. For debugging pur-

poses, there are 2 STM32 GPIO pins connected to 2 LED lights and 5 GPIO pins con-

necting from the STM32 to the Raspberry Pi. Last but not least, the STM32 - Raspberry 

Pi communication is done through USART6_TX and USART_RX. Those two wires go 

from the STM32 to the header J2 which is compatible with the output header of Rasp-

berry Pi. 

6.2 Software Implementation 

6.2.1 Overall Descriptions 

The operation of the whole circuit is governed by the software embedded in the micro-

controller STM32F417. Figure 19 outlines the structure of the entire software. The 

STM32 controls the closed/opened state of the analog switches to enable/disable the 

corresponding resistors and decides the AOM operating mode. Furthermore, it reads the 

ADC data from the MAX1301 to calculate the current or voltage depending on the AOM 

signal type. The STM32 also communicates with the Raspberry Pi computer through a 

shell where the user can enter different commands. 

 

Figure 19: Software element diagram 
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The software implementation for multiplexing the AOM channel as well as controlling the 

analog switches is simple and straightforward. Thus, the code shall not be presented in 

this paper. 

6.2.2 Reading ADC Data 

The ADC IC MAX1301 is quite a simple yet special. It can be interfaced with by the SPI 

protocol, and it has only two registers for analog configuration and mode selection. The 

1-byte analog configuration register holds the information for channel to read from, dif-

ferential or single-ended input signal, and input range. Channel 0, the single-ended sig-

nal type and the dynamic range of ±3VREF are the configuration information to be written 

to the register [12, 14]. The mode control register only stores its mode of operation for 

which the mode of using an external clock from the STM32 microcontroller is employed 

[12, 23]. 

With the control, configuration being pre-set, a 16-bit reading result will be available after 

a conversion start byte. The result is output at the MISO pin of the slave MAX1301 from 

the start of the third byte. As a result, in order to obtain the full result bytes, 4 bytes of 

SCLK signal must be provided. This way of working can be visualized by the timing dia-

gram in Figure 20. 

 



28 

  

 

Figure 20: Timing diagram of reading a conversion from MAX1301 [12, 15] 

The software function for reading ADC data from the MAX1301 takes no input argument 

and returns a measurement result as an integer number. It first starts the SPI with the 

configuration of a 2 MHz clock signal, clock polarity being low in idle, data being sampled 

at rising edge and output at falling edge, most significant bit first. Then, the analog con-

figuration byte followed by the mode control byte is sent to the MAX1301 from the micro-

controller. Right after that, a 4-byte SPI exchange function is called to obtain the ADC 

data. The exchange starts on the third byte from when the start conversion byte is re-

ceived by the MAX1301, and the received bytes from the ADC are stored in an 8-bit 

buffer (rxbuf). The first received data byte will, therefore, be shifted 8 bits to the left and 

added with the second received data byte to get the 16-bit result value – misocode. This 

result is still crude and needs more calculation to get the voltage produced by the AOM 

because the ADC chip MAX1301 outputs a code from 0x0000 to 0xFFFF for input voltage 

from -3VREF to +3VREF. The full-scale span (±3VREF) is divided into 65536 steps, so the 

voltage of -3VREF and +3VREF corresponds to -32768 and 32767 respectively. The rela-

tionship becomes an output code from 0x0000 to 0xFFFF for input code from -32768 to 

32767. The formulas to calculate the voltage at input resistors produced by the AOM are 

as follows: 

𝐼𝑛𝑝𝑢𝑡 𝑐𝑜𝑑𝑒 =  𝑂𝑢𝑡𝑝𝑢𝑡 𝑐𝑜𝑑𝑒 − 32768 

𝐼𝑛𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 =  𝐼𝑛𝑝𝑢𝑡 𝑐𝑜𝑑𝑒 ×
3𝑉𝑅𝐸𝐹 − (−3𝑉𝑅𝐸𝐹)

65536
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The code snippet showing the implementation of the ADC data reading function is in the 

appendix. The function name is readADC(). 

6.2.3 Mode Detecting Shell Command - Getmode 

The user can interact with the signal reader through a shell running in the Raspberry Pi. 

One of the different commands the user can query the signal reader is detecting the 

AOM’s operating mode. The procedure is the same as the mode detecting method men-

tioned in section 5.1.3. All 4 AOM channels are looped through, and the getmode() func-

tion is called for each channel. The results will also be displayed on the console. The 

getmode() function takes an argument about the channel from which the operating mode 

is obtained. Based on that, it controls the MUX to activate the channel for the signal to 

get to the input resistor. The function closes the analog switches and reads the produced 

voltage with the help of the readADC() function in the previous section. Depending on 

how the input voltage is generated, the function decides the AOM operating mode ac-

cordingly. Since the getmode() function is later used by other shell commands, it does 

not print anything to the console unless the argument --verbose” is provided, e.g. get-

mode --verbose. The verbose argument is just for debugging purposes, and thus can be 

ignored in normal use. The software implementation of the mode detecting command 

can be found at the appendix section. 

6.2.4 Signal Reading Shell Command - Read 

The AOM voltage or current signal can be retrieved by the command read [signal] [chan-

nel], where [signal] can be either “voltage”, “current”, or “pwm” and [channel] can be from 

“1” to “4”. It is important to note that this command does nothing related to mode detec-

tion which means the AOM operation mode of the interested channel must be known in 

advance. The function first acquires the signal type to read and the interested channel. 

If the argument is “voltage”, it activates both the MUX channel corresponding to the input 

and the analog switch of the 20 kΩ resistor. After reading the input voltage twice with a 

delay of 20 milliseconds in between, the second ADC data received is the actual voltage 

of the AOM. The result of the first read is not usable because, in the idle state, the AOM 

is isolated from the signal reader. The input voltage is pulled to around 13 V by the volt-

age buffer U2 – LM7332 which is not correct, and the reading result (of around 13 V) 

persists there in the ADC register until it is read by the microcontroller. This is a known 
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issue that should be improved in future development if higher data throughput is needed. 

Then, an important part of the calculation is the error compensation. For the voltage 

mode, the error source is the offset and gain error voltage noted in section 5.1.2. In the 

program, the quantity found for this error voltage by testing is around 21 mV which is 

symbolized by CALIB_VOL. Then the gain error is compensated by multiplying with a 

constant coefficient as shown in the code snippet below. Again, the cmd_read() function 

is also called by another function. That is the reason for a user argument called “--result-

only”. When this argument is provided, only one number is printed with a voltage unit 

letter “V”. Otherwise, more comprehensive words are shown as in the code snippet (see 

Appendix 1). 

When the user inputs “current” as the argument for the read command, the same proce-

dure is repeated but the 390 Ω resistor is activated instead, and the read voltage is di-

vided by the resistance by Ohm’s law for the current. The offset error compensation is 

accomplished by the calibcurrent() function. Depending on the current measurement, 

this function subtracts the measurement by a specific offset found during testing. The “-

-result-only” argument also works for this case in the same way as reading voltages. 

Last but not least, if the argument “pwm” is applied, the ICU peripheral of the microcon-

troller is started for the provided channel. The default configuration is 10 MHz for the 

peripheral clock frequency and the PWM input is at logic 1 when active. When the fre-

quency of the PWM signal is lower than 120 Hz, the ICU driver is too fast to read input 

which means there will be overflows in the ICU counters. This situation is fortunately 

detected by the ICU callback functions. When this happens the overflow callbacks will 

change the configuration, lowering the ICU frequency to 100 kHz. This is effective from 

the next iteration of the PWM reading until the measured PWM frequency is detected to 

be higher than 160 Hz where the configuration is reverted to the default (10 MHz ICU 

clock frequency). The readPWM() function only configures and initializes processes for 

measuring the PWM signal. Instead, the period and duty cycle counters are available 

with reading values when the callback functions icuGetWidthX() and icuGetPeriodX() are 

called. The displaying of the results also has two options, in the normal and “result-only” 

mode. The content of the signal reading function is shown in the appendix as the com-

mand cmd_read(). 
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6.2.5 Live Signal Reading Shell Command - Readlive 

The live signal reading shell command is called to read and display all types of AOM 

signals from all the channels. The command is run by readlive. To have the measure-

ments in real-time, the function loops through all the AOM analog and PWM channels. It 

reads the signals according to the detected mode by calling the getmode and read com-

mand described in sections 6.2.3 and 6.2.4 respectively. In this function, escape se-

quences are utilized to move the console cursor around the display to print template 

tables where data is filled in. After the setup phase, which consists of hiding the blinking 

cursor, moving it to the origin, clearing the screen and printing the template tables, all 

the analog channels are scanned to detect the modes. The observed modes are then 

shown in the table where appropriate before the program calls the read command for 

each channel depending on the detected mode. The obtained signals are also to fill in 

the tables. After that, the PWM table is updated with the measured PWM signals’ duty 

cycle and frequency/period. The procedure is repeated continuously every 400 ms until 

the user enters a terminating character ‘q’ because there is a delay of 100 ms for reading 

each analog channel. The implementation of the live signal reading command and tem-

plate table printing function can be seen in the appendix as the command cmd_readlive() 

and the function printtemplate(). 

7 Prototyping and Testing 

7.1 Prototyping 

In addition to the first page of the project schematic illustrated in Figure 15, the two re-

maining pages describe the ±15 V power supply circuit, the microcontroller STM32F417 

and its supporting ICs such as the reset manager U8 – TPS3703A and the external 25 

MHz crystal U9 - HC3325. The ±15 V power supply circuit is a ready-made design at 

EKE Ltd. and is reused in this project with the author’s permission. There are also some 

LEDs for debugging purposes and some GPIO connections between the STM32 and the 

Raspberry Pi which were planned at the schematic designing phase in case there is 

need, yet those GPIO connections are not used for the time being.  
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Figure 21: +/- 15 V power supply 



33 

  

 

Figure 22: Microcontroller and its supporting units 
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With the schematic being ready, the prototyping process from layout design to PCB com-

ponent assembly is reported starting from Figure 23 to Figure 28. When the board is 

manufactured and all the electronic components are gathered, the prototyping starts with 

applying soldering paste to the board. This is made easy by the stencil that is provided 

along with the board by the manufacturer shown in Figure 24. When that is completed, 

all the components are placed onto their footprints on the board according to the layout. 

Many of the components are so tiny that a microscope is necessary (see Figure 25 and 

Figure 26). 

 

 

Figure 23: PCB layout design and 3D view 

 

Figure 24: Applying soldering paste with the help of a stencil 
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Figure 25: All the components put in place 

 

 

Figure 26: Soldering tiny components using a microscope 
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Figure 27: The board being heated inside a reflow heater for the solder paste to work 

 

 

Figure 28: The ready circuit after the reflow soldering 

The process continues by putting the PCB, with all the electronic components in place, 

into a reflow heater. The applied heat is varied in a certain way illustrated by the graph 

in Figure 27. This function of heat over time will melt the soldering paste in a controlled 

manner, and when everything cools down afterwards, the components are soldered to 
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the board as shown in Figure 28. Some big components like connectors and diodes can 

be soldered later by a soldering iron. 

7.2 Testing and Measurement Compensation 

7.2.1 Voltage compensation 

Testing is done by configuring the AOM to output different voltage and current values. 

For convenience, all four channels of the AOM will generate the same value, for example 

1000, 2000 or 3000 mV as shown in the AOM column of Table 1 and Table 3. It is ob-

served that voltage readings (see Table 1) of all four channels do not have noticeable 

difference. For that reason, the signal reader channels’ measurements will be combined 

into average values. The error between the AOM source signal and the measured volt-

ages is also taken into account for compensation. Drawing a line graph from Table 1 

shows that the relationship between the signal reader measurements and the true AOM 

data linear, and the measurement graph is a line displaced and slightly rotated from the 

data of the AOM. Because of the overwhelming amplitude of the data compared to the 

error, the error is drawn alone versus the unity gain line whose equation is y = x for ease 

of visualization (see Figure 29). This error is also called gain error because it varies 

depending on the AOM input signal. To sum up, the measurement graph, which is the 

combination of the linear AOM output and the linear error, can be approximated as a line 

passing two points, A(-12000,-11996) and B(12000,12038), and the objective is to shift 

the line and rotate it so that it passes two points, A’(-12000,12000) and B’(12000,12000), 

by compensation. Since the measurement line is now passing vector 𝐴𝐵⃗⃗⃗⃗  ⃗ =

(2400,24034), its normal vector is �⃗� = (−24034,2400). The measurement graph which 

has the normal vector �⃗�  and which passes point A can be represented in 2-dimentional 

metric by the following equation: 

−24034(𝑥 + 1200) + 24000(𝑦 + 11996) = 0 

𝑜𝑟 𝑦 =  
24034

24000
𝑥 + 21 

From the equation above, it is obtained that the offset error is 21 mV and the gain error 

is 24034/24000. The compensation process is simply reversing the equation so that it 
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becomes the equation y = x. Of course, this is done by subtracting the y (the signal 

reader measurements) by 21 and by multiplying it by 24000/24034. 

Table 1: AOM voltages read by the signal reader 

Types AOM Signal reader Error 

Value 
(mV) 
  
  
  
  
  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
  
  

-12000 -11996 4 

-11000 -10994 6 

-10000 -9993 7 

-9000 -8991 9 

-8000 -7989 11 

-7000 -6987 13 

-6000 -5986 14 

-5000 -4986 14 

-4000 -3984 16 

-3000 -2983 17 

-2000 -1981 19 

-1000 -980 20 

0 19 19 

1000 1021 21 

2000 2023 23 

3000 3025 25 

4000 4026 26 

5000 5027 27 

6000 6028 28 

7000 7030 30 

8000 8031 31 

9000 9032 32 

10000 10034 34 

11000 11036 36 

12000 12038 38 
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Figure 29: Voltage measurement errors (gain error) compared to ideal gain 

After applying compensation, voltage readings are improved noticeably with the maxi-

mum error of 2 mV. Table 2 shows the compensation results for different AOM signal 

values in millivolts. The highest and lowest magnitudes of the measurements among four 

channels of the signal reader are listed. 

Table 2: Signal reader measurement after compensation 

AOM signal Highest measurement Lowest measurement 

-12000 -12000 -11998 

-11000 -11000 -10.998 

-10000 -9998 -9998 

-9000 -8998 -8998 

-8000 -7999 -7998 

-7000 -6999 -6998 

-6000 -5999 -5998 

-5000 -4999 -4998 

-4000 -3999 -3997 

-3000 -2999 -2997 

-2000 -1998 -1998 

-1000 -999 -998 

0 1 0 

1000 1001 1000 

2000 2002 2000 
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3000 3000 3000 

4000 4001 4000 

5000 5000 5000 

6000 6001 6000 

7000 7001 7000 

8000 8001 8001 

9000 9003 9001 

10000 10001 10001 

11000 11003 11001 

12000 12001 12001 

It is observed that measurements persist at certain values most of the time as long as 

the AOM signals do not change. Although there are occasional fluctuations within a 2 

mV range, this is considered acceptable behaviour since noise cannot be completely 

avoided. 

7.2.2 Current Compensation 

Current compensation is done similarly to compensation for voltage that includes setting 

up the AOM’s four channels to generate different constant currents and reading the cur-

rents at the signal reader side. However, in this case, the error behaves in a noisier way 

which means the signal reader measurements fluctuate between the values shown in 

Table 3. For ease of testing and compensating, the error in the measurements is simpli-

fied based on the observation of what values are mainly shown during testing. For ex-

ample, when the AOM current is 7000 µA, the signal reader oscillates from 7056 to 7058 

and to 7061 µA, but the error of 56 µA is selected because 7056 is the main value shown 

from the reading. In addition, a software filter that calculates the average current of each 

channel is also implemented to reduce fluctuation, although that delays the correct cur-

rent to be shown on the terminal. It is observed from Table 3 that the error current only 

depends on the leakage current of the circuit. The error virtually retains its value over the 

AOM signal span from 0 to 24000 µA and only changes due to different leakage current 

– input current relationship of the electronic components of the circuit. Hence, current 

compensation only involves applying different offset current compensation for different 

AOM input currents. 
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Table 3: AOM currents retrieved by the signal reader 

Channel  AOM Signal reader Simplified error 

Value (µA) 
 
 
 
 
 
 
 
 
 
 
 
 
  

0 53-56 56 

1000 1053-1056 56 

2000 2053-2056 56 

3000 3053-3056 56 

4000 4053-4056 56 

5000 5056-5058 56 

6000 6056-6058 56 

7000 7056-7058-7061 56 

8000 8056-8058 56 

9000 9056-9058-9061 56 

10000 10056-10058 56 

11000 11053-11056-11058 56 

12000 12053-12056-12059 56 

13000 13053-13056 56 

14000 14053-14057 56 

15000 15051-15053 53 

16000 16048-16051-16053 53 

17000 17048-15051-17053 51 

18000 18048-18051 51 

19000 19046-19048-19051-19053 50 

20000 20046-20048-20051 48 

21000 21043-21046-21048-21051 48 

22000 22046-22048-22051 48 

23000 23046-23048-23054 48 

24000 24046-24048-24055 48 

After applying the compensation and doing a retest, the current reading becomes more 

presentable yet slightly less performant because of the software filter. The filter reduces 

fluctuations by continuously calculating the average values of the measurements for 

each channel. While this algorithm reduces the variations, it also delays how long the 

signal reader can read correct AOM signals since the averaged measurements are slow-

ing reaching the real AOM data. 

Table 4: Current measurements after compensation 

Channel  AOM Highest measurement Lowest measurement 

Value (µA) 
 

0 2 0 

1000 1002 1000 
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2000 2000 1998 

3000 3000 2999 

4000 3999 3998 

5000 5000 4999 

6000 6000 5999 

7000 6999 6998 

8000 8000 7999 

9000 8999 8997 

10000 10002 10000 

11000 11001 10999 

12000 12001 12000 

13000 13001 12999 

14000 14000 13999 

15000 15000 14997 

16000 16002 16001 

17000 17002 17001 

18000 18001 17999 

19000 19001 19000 

20000 20002 20000 

21000 21002 21000 

22000 22001 21999 

23000 23001 22999 

24000 24001 23999 

Although the fluctuations are greatly suppressed by the software filter, there are still var-

iations in the current measurements with the maximum error up to 3 µA occasionally. 

The highest and lowest reading values among the four channels are listed in Table 4. 

7.2.3 Reading PWM test 

Two issues were found after the PWM reading test. The first problem was an unexpected 

error of the duty cycle counter value. For example, a 50% duty cycle AOM PWM signal 

with the frequency of 10 kHz would result in the period counter value of 100 and the duty 

cycle counter value of 50 at the signal reader side. In reality, 58 was the value of the duty 

cycle counter of the signal reader. This was debugged to be the slew time of the AOM 

PWM signal from 15 V to VIL (low level input voltage) of the STM32 microcontroller. To 

be more specific, it is necessary to reuse the example above where the AOM PWM fre-

quency is 10 kHz, which means a period of 0.1 ms and the duty cycle being 50%. From 

t = 0 to t = 0.05 ms, the PWM voltage is at the high level or 15 V. When t = 0.05 ms, the 
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voltage starts to drop from 15 V to VIL (the voltage where the STM32 considers it as a 

low logic level). It is important to denote this time interval as the slew time tslew. During 

the time from t = 0.05 ms to t = 0.05 ms + tslew, the STM32 still consider its input to be 

high logic level. Thus, the STM32 keeps increasing the duty cycle counter. Fortunately, 

this issue is easily overcome by subtracting a constant compensation from the duty cycle 

counter as the slew time remain intact regardless of the duty cycle and the frequency of 

the PWM signals. 

The second issue is more challenging which is that the period and frequency counter of 

the STM32 get overflowed for the PWM signals the frequency of which is less than 

around 100 Hz. Although the ICU driver of the STM32 microcontroller is capable of de-

tecting an overflow, trying to correct the PWM reading is not necessarily more practical 

than lowering the ICU driver frequency since the AOM measurements are to be streamed 

in real-time to the console. Specifically, the frequency is decreased from 10 MHz to 100 

kHz when the overflow occurs, which implies that the AOM is currently generating low 

frequency PWM. On the other hand, the ICD driver frequency is reversed back to 10 

MHz when the read PWM frequency is higher than 160 Hz. 

Table 5: PWM measurement results 

AOM 

frequency 

(Hz) 

Measured 

frequency 

(Hz) 

AOM 

duty cycle 

channel (%) 

Measured 

duty cycle 

channel 1 (%) 

AOM 

duty cycle 

channel 2 (%) 

Measured 

duty cycle 

channel 2 (%) 

10 10 9.9 9.9 67.4 67.4 

50 50 9.9 9.9 64.5 64.5 

100 100 9.9 9.9 61.1 61.1 

200 200 9.9 9.9 62.7 62.7 

1000 1000 9.9 9.9 75.1 75.1 

2000 2000 9.9 9.9 15.1 15.1 

3333 3333 78.9 78.9 75.1 75.1 

5004 5002.5 9.9 9.9 71.9 71.9 

6789 6788.8 12.0 12.0 83.6 83.6 

6000 5998.8 77.7 77.6 7.5 7.4 

7000 6997.9 77.7 77.7 75.5 75.4 

8000 8000 77.7 77.7 85.0 85.0 



44 

  

9000 9000.9 77.7 77.7 93.3 93.2 

10000 10000 9.9 9.9 11.4 11.4 

Afterwards, the PWM reading results prove to be trustable. However, the performance 

of reading PWM signals is quite dependent on the source signals’ frequency because 

there are rounding errors in calculating the measured frequencies. The tested PWM 

measurements are shown in Table 5 above. 

8 Conclusion 

To sum up, the project’s goal was to create a device to simultaneously monitor the AOM 

signals with a precise resolution. The device was expected to detect the AOM channels’ 

operating mode and recognize the smallest changes in the AOM signals. Afterwards, a 

signal reader consisting of a circuit board and embedded software were implemented. 

The device routes the signal from each AOM channel to an ADC chip for data measure-

ments. The reading results are then transferred to a Raspberry Pi computer and are 

displayed through a shell command interface. In terms of precision, the signal reader 

does not quite fulfill the requirement to detect the smallest changes in the AOM signals. 

The voltage reading has the maximum error of 2 mV which doubles the minimum step 

size of the AOM’s voltage. For current measurement, the maximum error is a little worse 

with 3 µA, which appears occasionally. There are also frequent fluctuations of 2 µA away 

from the AOM values. The PWM capture, in some cases, has the worst precision among 

the reading of AOM’s other signal types due to rounding errors. In many other cases 

without rounding errors, the PWM reading results are retrieved perfectly. Although the 

ambitious goals are not fully achieved in that the signal reader cannot detect every small-

est change of the AOM signals, the end result of this project is acceptable and can be 

utilized for its dedicated purpose, which is testing multiple channels of the AOM. 

In the future, the signal reader could be improved in many ways. The current input block, 

multiplexing and converting various signals to readable voltage, can be duplicated to 

enable the signal reader to read from the remaining channel groups. Another enhance-

ment can be increasing the precision while suppressing the measured signal fluctuations. 
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Code Snippets 

/***************************************************************************/ 
//! \brief Read voltage at ADC channel 0 
//! 
//! Precondition: the MUX channel and analog switch must be enabled in ad-
vance 
//! @param none 
//! 
//! @return int: voltage (mV) 
// 
/***************************************************************************/ 
int readADC(void) 
{ 
    double voltage; 
    int misocode, signedcode, millivolt; 
 
    spiAcquireBus(&SPID1);          /* Acquire ownership of the bus.    */ 
    spiStart(&SPID1, &spicfg);      /* Setup transfer parameters.       */ 
 
    spiSelect(&SPID1);              /* Slave Select assertion.          */ 
    spiSend(&SPID1, 1, analog_cfg); /* Send analog input configuration  */ 
    spiUnselect(&SPID1);            /* Slave Select de-assertion.       */ 
 
    spiSelect(&SPID1); 
    spiSend(&SPID1, 1, mode_select);        /* Send mode selection byte */ 
    spiUnselect(&SPID1); 
 
    spiSelect(&SPID1); 
    spiExchange(&SPID1, 4, start_conv, rxbuf); /*Atomic transfer operations*/ 
    spiUnselect(&SPID1); 
    spiReleaseBus(&SPID1);                     /* Ownership release.       */ 
 
    misocode = rxbuf[2] << 8; 
    misocode |= rxbuf[3]; 
 
    signedcode = misocode - 32768; 
    voltage = signedcode * 6 * 4.096 / 65536; 
    millivolt = (int) (voltage * 1000); 
 
    return millivolt; 
} 
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/***************************************************************************/ 
//! \brief Get mode command 
//! 
//! 
// 
/***************************************************************************/ 
void cmd_getmode(BaseSequentialStream *chp, int argc, char *argv[]) 
{ 
    if (argc == 1) 
    { 
        if (strcmp(argv[0], "--verbose") == 0) 
        { 
            verbose = TRUE; 
        } 
    } 
 
    for(int i = 1; i < 5; i++) 
    { 
        chxmode[i-1] = getmode(i); 
        channelmode[i-1] = chxmode[i-1]; 
    } 
    PRINT("Channel: 1\t    2\t       3\t  4\n\r"); 
    PRINT("Mode:    %s %s %s %s\n\r", 
          modetxt[chxmode[0]], modetxt[chxmode[1]], modetxt[chxmode[2]], 

modetxt[chxmode[3]]); 
 
} 
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/***************************************************************************/ 
//! \brief Get operating mode of an AOM channel 
//! 
//! @param unsigned short: AOM channel number (1-4) 
//! 
//! @return int: enum current/voltage mode 
// 
/***************************************************************************/ 
int getmode(unsigned short channel) 
{ 
    int millivolt, lastmvolt; 
 
    sel_MUXch(channel); 
    //Asume current mode, enable 20 kOhm resistor 
    en_analogSW(RESISTOR20K); 
    millivolt = readADC(); 
    chThdSleepMilliseconds(200); 
    millivolt = readADC(); 
    lastmvolt = millivolt; 
 
    if (verbose) 
    { 
        PRINT("Channel %d:\n\r", channel); 
        PRINT("Voltage over 20 kOhm: %d\n\r", millivolt); 
    } 
 
    if (checkhigher(millivolt, 10000, TOLERANCE) == TRUE || checklower(milli-
volt, -10000, TOLERANCE) == TRUE) 
    { 
        if (verbose) 
        { 
            PRINT("Current mode detected\n\r"); 
        } 
        return currentmode; 
    } 
    else if (checkequal(millivolt, 20, 2) == TRUE) 
    { 
        if (verbose) 
        { 
          PRINT("No signal\n\r"); 
        } 
        return nosignal; 
    } 
    else //Can either be current or voltage mode 
    { 
        //Enable 10 kOhm resistor 
        en_analogSW(RESISTOR10K); 
        millivolt = readADC(); 
        chThdSleepMilliseconds(200); 
        millivolt = readADC(); 
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        if (verbose) 
        { 
            PRINT("Voltage over 10 kOhm: %d\n\r", millivolt); 
        } 
 
        if(checkequal(millivolt, lastmvolt, THRESHOLD) == TRUE) 
        { 
            if (verbose) 
            { 
                PRINT("Voltage mode detected\n\r"); 
            } 
            return voltagemode; 
        } 
        else 
        { 
            if (verbose) 
            { 
                PRINT("Current mode detected\n\r"); 
            } 
            return currentmode; 
        } 
    } 
} 
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/***************************************************************************/ 
//! \brief Signal reading command 
//! 
//! 
// 
/***************************************************************************/ 
void cmd_read(BaseSequentialStream *chp, int argc, char *argv[]) 
{ 
    (void) argv; 
    (void) argc; 
    uint8_t channel; 
    int millivolt; 
 
    if (argc == 2 || argc == 3) 
    { 
 
        if (strcmp(argv[2], "--result-only") == 0) 
        { 
            result_only = TRUE; 
        } 
        else 
        { 
            result_only = FALSE; 
        } 
 
        if (strcmp(argv[0], "voltage") == 0) 
        { 
            channel = strtol(argv[1], NULL, 10); 
            if (channel >= 1 && channel <= 4) 
            { 
                sel_MUXch(channel); 
                en_analogSW(RESISTOR20K); 
     /* The first read is garbage because of hw */ 
                millivolt = readADC(); 
 
     /* Wait a bit for the voltage to settle */ 
     chThdSleepMilliseconds(100); 
                millivolt = readADC(); 
                millivolt -= CALIB_VOL; 
                voltage = ceil(((double) millivolt) * 12000.0f / 12017.0f); 
                voltage = voltage / 1000.0f; 
 
                if (!result_only) 
                { 
                    PRINT("read: Voltage: %2.3f V\n\r", voltage); 
                } 
                else PRINT("%7.3f V", voltage); 
 
            } 
            else PRINT("Channel must be from 1 to 4\n\r"); 
        } 
        else if (strcmp(argv[0], "current") == 0) 
        { 
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            channel = strtol(argv[1], NULL, 10); 
            if (channel >= 1 && channel <= 4) 
            { 
                sel_MUXch(channel); 
                en_analogSW(RESISTOR390R); 
 
     /* The first read is garbage because of hw */ 
                millivolt = readADC(); 
 
     /* Wait a bit for the voltage to settle */ 

    chThdSleepMilliseconds(100); 
                millivolt = readADC(); 
                current = ((double) millivolt) / 390.0f; 
 
                calibcurrent(channel, &current); 
 
                if (fast_forward[channel-1]) 
                { 
                    last_current_avr[channel-1] = current; 
                    fast_forward[channel-1] = FALSE; 
                } 
                current_avr[channel-1] = ((current – 
                                         last_current_avr[channel-1])/n) + 
                                         last_current_avr[channel-1]; 
 
                last_current_avr[channel-1] = current_avr[channel-1]; 

    if (!result_only) 
                { 
                    PRINT("read: Current: %2.3f mA\n\r", current); 
                } 
                else PRINT("%7.3f mA", current_avr[channel-1]); 
            } 
            else PRINT("Channel must be from 1 to 4\n\r"); 
        } 
        else if (strcmp(argv[0], "pwm") == 0) 
        { 
            channel = strtol(argv[1], NULL, 10); 
            if (channel == 1) 
            { 
                if(highfreqPWM1 == TRUE) 
                { 
                    readPWM(true, 1, &icucfg1); 
                } 
                else 
                { 
                    readPWM(false, 1, &icucfg1_low); 
                } 
            } 
            else if (channel == 2) 
            { 
                if(highfreqPWM2 == TRUE) 
                { 
                    readPWM(true, 2, &icucfg2); 



Appendix 

7 (9) 

 

 

  

                } 
                else 
                { 
                    readPWM(false, 2, &icucfg2_low); 
                } 
            } 
            else PRINT("Channel must be either 1 or 2\n\r"); 
            if(lastfrequency1 >= 160.0) 
            { 
                highfreqPWM1 = TRUE; 
            } 
            if(lastfrequency2 >= 160.0) 
            { 
                highfreqPWM2 = TRUE; 
            } 
        } 
        else 
        { 
            PRINT("Incorrect first argument\n\r"); 
            PRINT("USAGE: read voltage {channel(1-4)}\n\r"); 
            PRINT("       read current {channel(1-4)}\n\r"); 
            PRINT("       read pwm {channel(1|2)}\n\r"); 
        } 
    } 
    else 
    { 
        PRINT("USAGE: read voltage {channel(1-4)}\n\r"); 
        PRINT("       read current {channel(1-4)}\n\r"); 
        PRINT("       read pwm {channel(1|2)}\n\r"); 
    } 

} 
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/***************************************************************************/ 
//! \brief Live signal reading command 
//! 
//! 
// 
/***************************************************************************/ 
void cmd_readlive(BaseSequentialStream *chp, int argc, char *argv[]) 
{ 
    char *cmd_readmode[3] = {"voltage", "current", "pwm"}; 
    char *cmd_readchannel[4] = {"1", "2", "3", "4"}; 
    uint8_t run_modedetection[4] = {TRUE, TRUE, TRUE, TRUE}; 
    /* For passing to cmd_read */ 
    char *argv_read[3] = {"", "", "--result-only"}; 
    /* To quit the command */ 
    uint8_t quit = 'a'; 
 
    if (argc == 1) 
    { 
        if (strcmp(argv[0], "--verbose") == 0) 
        { 
            ver = TRUE; 
        } 
    } 
    /* Hide the cursor for better display */ 
    PRINT("\033[?25l"); 
    /* Clear the screen */ 
    PRINT("\033[2J"); 
    /* Move the cursor to the origin */ 
    PRINT("\033[0;0H"); 
    printtemplate(); 
 
    /* Get AOM channel modes and fill in analog table */ 
    do 
    { 
        /* Detect operating mode for analog table */ 
        for (int i = 0; i < 4; i++) 
        { 
            if (run_modedetection[i] == TRUE) 
            { 
                channelmode[i] = getmode(i+1); 
                if (channelmode[i] != nosignal) 
                { 
                    run_modedetection[i] = FALSE; 
                } 
                movetoslot(1, i+1, 'a'); 
                PRINT("%s", modetxt[channelmode[i]]); 
            } 
        } 
        /* Move the cursor to the origin */ 
        PRINT("\033[0;0H"); 
        /* Loop through analog table */ 
        for (int i = 0; i < 4; i++) 
        { 
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            if (channelmode[i]==voltagemode || channelmode[i]==currentmode) 
            { 
                argv_read[0] = cmd_readmode[channelmode[i]]; 
                argv_read[1] = cmd_readchannel[i]; 
                movetoslot(2, i+1, 'a'); 
 
                cmd_read(consoleStream, 3, argv_read); 
            } 
        } 
        argv_read[0] = cmd_readmode[2];          /* read pwm */ 
        for (int i = 1; i < 3; i++)              /* Loop through pwm table */ 
        { 
            movetoslot(1, i, 'p'); 
            argv_read[1] = cmd_readchannel[i-1]; 
            cmd_read(consoleStream, 3, argv_read); 
        } 
        quit = sdGetTimeout(&SD3, MS2ST(100));   /* 100 ms timeout */ 
    } while (quit != 'q'); 
    PRINT("\033[?25h");                          /* Show the cursor */ 
    PRINT("\033[20;0H");                  /* Move the cursor to the origin */ 
} 
 
/***************************************************************************/ 
//! \brief Print template table 
//! 
//! 
// 
/***************************************************************************/ 
void printtemplate(void) 
{ 
    //For some reason, the cursor moves to (1,1) after PRINT("\033[0;0H") 
    PRINT("Live analog signals:\n\r");                                                   
    PRINT(--------------------------------------------------------!\n\r"); 
    PRINT("| Channel  | 1        | 2        | 3        | 4        |\n\r"); 
    PRINT("|----------|----------|----------|----------|----------|\n\r"); 
    PRINT("| Mode     | Voltage  | Current  | No signal| No signal|\n\r"); 
    PRINT("|----------|----------|----------|----------|----------|\n\r"); 
    PRINT("| Value    | +11.999 V| 12.345 mA| N/A      | N/A      |\n\r"); 
    PRINT("!------------------------------------------------------!\n\r"); 
 
    PRINT("Live PWM signals:\n\r");                                                      
    PRINT("!----------------------------------!\n\r");                               
    PRINT("| Channel    | 1        | 2        |\n\r"); 
    PRINT("|------------|----------|----------|\n\r"); 
    PRINT("| Frequency  | 10000 Hz | 10000 Hz |\n\r"); 
    PRINT("|------------|----------|----------|\n\r"); 
    PRINT("| Period     | 099.1 ms | 099.1 ms |\n\r"); 
    PRINT("|------------|----------|----------|\n\r"); 
    PRINT("| Duty Cycle | 077.7 %c | 066.6 %c |\n\r", '%', '%'); 
    PRINT("!----------------------------------!\n\r"); 
    PRINT("Enter 'q' to quit.\n\r"); 
} 


