

UI Frameworks in Rails
Finding the right implementation

Artur Veselovski

Bachelor’s thesis
May 2021
Technology, communication and transport
Degree Programme in Information technology
Media technology

Description

Author(s)

Veselovski, Artur
Type of publication

Bachelor’s thesis
Date

December 2020

Language of publication:
English

Number of pages

42
Permission for web publi-

cation: x

Title of publication

Modern UI frameworks in Rails

Degree programme

Information and Communication Technology

Supervisor(s)

Lappalainen-Kajan, Tarja; Salmikangas, Esa

Assigned by

Qvantel Oy

Abstract

The thesis covers user interface implementation within Ruby on Rails framework with MPA
(Multi Page Application) and SPA (Single Page Application) patterns. The aim was to find
out which pattern was best suited for certain use cases.

The goal was to build two identical prototypes using these patterns and explore pros and
cons of each, evaluating in the process, which is more developer friendly, scalable and
maintainable. In addition, determining which offers more convenient ways to implement
advanced UI (User Interface) features.

The theoretical framework explored Ruby on Rails as a technology with its MVC (Model
View Controller) model, and SPA and MPA concepts. React is explained as a library.
Webpack and Webpacker roles in Ruby on Rails UI development are covered as well.

The setup of both prototypes, as well as possible encountered problems and observations
are covered in the implementation.

As the result, it was determined that SPA was more developer friendly, and implementa-
tion of advanced features was easier. It offers good support and maintainability. MPA is
sufficient for prototyping and simple web-applications, where UI is not a priority. Devel-
oper experience and maintainability would suffer with MPA if the application was to grow.
No significant performance differences were observed between prototypes.

Keywords/tags (subjects)

Ruby on Rails, JavaScript, React, UI, MVC, SPA, MPA

Miscellaneous (Confidential information)

Kuvailulehti

Tekijä(t)

Veselovski, Artur
Julkaisun laji

Opinnäytetyö, AMK
Päivämäärä

Toukokuu 2021

Julkaisun kieli
Englanti

Sivumäärä
42

Verkkojulkaisulupa myön-

netty: x

Työn nimi

Modern UI frameworks in Rails

Tutkinto-ohjelma

Tieto- ja viestintätekniikka

Työn ohjaaja(t)

Lappalainen-Kajan, Tarja; Salmikangas, Esa
 Toimeksiantaja(t)

Qvantel Oy

Tiivistelmä

Opinnäytetyössä käsiteltiin MPA (Multi Page Application) ja SPA (Single Page Application)
malleja käyttöliittymän toteutuksessa Ruby on Rails framework:in puitteissa. Tavoitteena
oli selvittää, kumpi malli sopii mahdollisesti parhaiten mihinkin käyttötarkoitukseen.

Tavoitteena oli rakentaa kaksi identtistä prototyyppiä käyttäen SPA ja MPA malleja, tutkia
näiden hyviä ja huonoja puolia, sekä arvioida, kumpi on kehittäjäystävällisempi, skaalau-
tuvampi, ja kummalla on helpommin ylläpidettävä koodi. Sen lisäksi tavoitteena oli arvi-
oida, kummalla on helpommin toteutettavissa vaativat UI (User Interface) ominaisuudet.

Teoreettisessa viitekehyksessä käydään läpi Ruby on Rails teknologiana ja sen MVC (Model
View Controller) mallia, sekä SPA ja MPA käsitteinä. Tämän lisäksi käydään läpi React kir-
jastona, sekä Webpack ja Webpacker teknologioiden roolit Ruby on Rails käyttöliittymän
kehityksessä.

Toteutuksessa käytiin läpi molempien prototyyppien kehityksen perusasetukset, mahdolli-
set ongelmatilanteet ja havainnot.

Lopputuloksena selvisi, että SPA oli kehittäjäystävällisempi ja vaativien ominaisuuksien ra-
kentaminen oli helpompaa. Se tarjoaa hyvää tukea ja ylläpidettävyyttä. MPA sopii hyvin
prototyyppien ja yksinkertaisten sovellusten tekemiseen, missä käyttöliittymä on toissi-
jainen, mutta kehittäjäkokemus ja ylläpidettävyys kärsii, kun sovelluksen skaala kasvaa. Su-
orituskyvyssä ei ole todettu huomattavia eroja.

Avainsanat (asiasanat)

Ruby on Rails, JavaScript, React, UI, MVC, SPA, MPA

Muut tiedot (salassa pidettävät liitteet)

1

Contents

Abbreviations .. 4

1 Introduction ... 5

1.1 Qvantel Oy ... 5

1.2 Problem ... 5

1.3 Goals .. 6

2 Modern web-application development with Rails ... 7

2.1 Ruby on Rails ... 7

2.2 MVC (Model-View-Controller) .. 8

2.3 MPA (Multi Page Application) ... 9

2.4 SPA (Single Page Application) .. 10

2.5 React .. 10

2.6 Webpack and Webpacker ... 13

3 Implementation .. 13

3.1 Demos .. 13

3.2 UI prototype .. 14

3.3 MPA ... 17

3.3.1 Basic JS interactivity.. 19

3.3.2 Advanced features and UI limits... 20

3.4 SPA ... 22

3.4.1 Technologies ... 22

3.4.2 Setup ... 23

4 Results and experience ... 26

4.1 Developer experience ... 26

2

4.2 Productivity ... 28

4.3 Maintainability and support .. 29

4.4 Performance .. 29

5 Conclusions and follow-up .. 35

5.1 Conclusions .. 35

5.2 Follow-up ... 38

References ... 39

Figures

Figure 1 MVC components interaction .. 8

Figure 2. Web-application MVC ... 9

Figure 3. A simple “Hello” component without JSX. .. 12

Figure 4. A simple “Hello” component with JSX. ... 12

Figure 5. Request log -page .. 15

Figure 6. Rule sets -page .. 16

Figure 7. Rule set sub-page .. 16

Figure 8. Tags -page .. 17

Figure 9. Webpack environment.js .. 18

Figure 10. Notifications with ERB ruby syntax ... 19

Figure 11. Notification cleanup JavaScript ... 19

Figure 12. Modal example .. 20

Figure 13. Responding with JavaScript file ... 21

Figure 14. Pre-rendering component with "react-rails" gem. 22

Figure 15. Rails side path redirecting. .. 24

Figure 16. Application React-Redux module .. 25

Figure 17. Basic modal submission process ... 27

Figure 18. MPA (vanilla) bundle visualization with webpack-bundle-analyzer. 31

3

Figure 19. SPA bundles visualization with webpack-bundle-analyzer. 32

Figure 20. MPA with React bundles visualization with webpack-bundle-analyzer. 32

Figure 21. Mini-profiler report on "Request log" page. ... 34

Figure 22. Request log search - React component entry point. 36

Tables

Table 1. JavaScript packages (modules) ... 23

Table 2. Setup commands and code lines .. 24

Table 3. Bundle sizes generated with webpack-bundle-analyzer. 30

Table 4. Global vs. specific imports. ... 33

4

Abbreviations

AJAX Asynchronous JavaScript and XML

CRUD Create Read Update Delete

Db Database

DOM Document Object Model

JS JavaScript

MPA Multi-page Application

MVC Model View Controller

MVP Minimal Viable Product

SPA Single Page Application

UI User interface

URL Uniform Resource Locator

5

1 Introduction

1.1 Qvantel Oy

The topic of this thesis was assigned by Qvantel Oy. Qvantel is one of the fastest-

growing tech companies in Finland. With presence in 23 countries, Qvantel provides

cloud-based BSS (Business Support Systems) solutions for Communication Service

Providers across Europe, Northern Africa, APAC and the Americas. Some of Qvantel’s

clientele includes DNA, Very Mobile and MasMovil, amongst many other names

across the world.

Thesis was done independently, with Qvantel providing its in-house UI library (wea-

sel-styles) and UI prototype. Assignment demos are based on the provided proto-

type.

1.2 Problem

Qvantel has a lot of products in its portfolio, with teams across the globe working

within different organizations. Organization and teams within have certain freedom

of choice when it comes to deciding project’s tech-stack. That leads to many projects

using different approaches when it comes to “how things are built”. This thesis fo-

cuses on one area, Ruby on Rails applications and its UI (User Interface) implementa-

tion.

Rails is widely used in Qvantel’s projects and UI implementation is up to developers

to decide on. This is good, because there is no “one size fits all” -solutions. Depend-

ing on the use-case, building an SPA (Single Page Application) might be the way to go,

while in others it was argued to be “overkill”, creating unnecessary overhead and

complexity for very little benefit, if at all. Perhaps building the same application with

traditional MPA (Multi Page Application) architecture, using less JS (JavaScript) is the

6

way to go. With that in mind, applying the right technique for implementing UI in

Ruby on Rails application, suitable for a given use-case is in question.

Which is more developer friendly, accessible and maintainable? Is SPA the de facto

choice for implementing UI with Ruby on Rails applications or are the tools that Rails

provides, coupled with “lightweight” and possibly “frameworkless” JS enough for an

average Qvantel applications frontend?

1.3 Goals

Main goal was exploring building frontend applications with Ruby on Rails frame-

work, using SPA or MPA approaches, with some hybridization. Finding cons and pros

in terms of developer experience. The groundwork, complexity of architecture and

required third party packages for consistently working MVP and final product. Ease

of advanced UI manipulation implementation and backend-frontend communication,

and finally maintainable and readable codebase.

Rails is a powerful tool for building web applications. Modern applications require

modern “rich” user interfaces with advanced UI manipulation, which cannot be

achieved with just Ruby on Rails and basic out of the box Bootstrap.js provided

scripts.

Rails can be versatile in how UI is actually implemented. For simpler applications,

some jQuery (a JavaScript library) or vanilla JS (clean JavaScript without additional li-

braries or frameworks) can be enough, but for bigger applications building an SPA is

the standard approach in modern web application development. What about MPA,

but with the help of a modern SPA centric JS framework or library?

There are many JS frameworks to choose from. For simplicity and scope of this the-

sis, most popular framework, React JS, was tested for SPA. React technically is a li-

brary and not a framework, but its ecosystem has enough good tools to achieve the

7

same goals, as with a single framework. MPA had vanilla JS and jQuery with Boot-

strap.js provided scripts for simple interactions. React was used in places, where

“frameworkless” approach was deemed too unproductive in a real-world scenario.

2 Modern web-application development with Rails

2.1 Ruby on Rails

Ruby on Rails is a popular open source software, a server-side framework built with

Ruby programming language. It follows MVC (Model-View-Controller) pattern and

has everything that is needed to create database-backed web-applications. (Wel-

come to Rails 2021.)

Rails is shipped with Active Record, Active Model, Action Pack and Action View core

frameworks, which can be used independently without Rails. The package also con-

tains Action Cable for WebSocket live updates; Action Mailer and Action Mailbox for

sending and receiving emails; Action Support, that offers Ruby and the framework

helpful utility classes and extensions; Active Job for queuing backend services; Action

Text for rich text content and Active Storage for cloud and local files handling. (Wel-

come to Rails 2021.)

In short, the model (Active Record) of the MVC is for business logic and database

communication. Controller (Action Controller) handles user input, routes to the

model and renders views (Action View) as HTML templates or JSON (JavaScript Ob-

ject Notation). (Rails has everything you need n.d.)

8

2.2 MVC (Model-View-Controller)

MVC is a pattern of a software application architecture, that separates an application

into 3 components, models, views and controllers. This pattern allows for separation

of concerns (SoC) to be achieved in an application. (Smith 2020.) “Separation of con-

cerns (SoC) is a design principle for separating a computer program into distinct sec-

tions such that each section addresses a separate concern" (Separation of concerns

2021). MVC pattern was traditionally used with desktop graphical user interfaces

(GUIs) and later has become popular among web-application design (Model-view-

controller 2021).

Model is responsible for the application state and everything related to state updat-

ing & persistence. As such, Model is the component communicating with databases.

Controller is what accepts user input, like requests to see or update some data.

Views are handling the presentation of the data. Interactions of these components

are represented in figure 1. Typical web application’s MVC processes and interac-

tions are presented in figure 2.

Figure 1 MVC components interaction

9

Figure 2. Web-application MVC

Separation brings quite a few benefits, some of which are scalability, maintenance

and reusability. Implementation of data persistence and database technology (Db in-

teraction logic on Model side and database software / hardware) can be changed

without affecting other components, bringing scalability. Components have low de-

pendency on each other, hence making changes and fixing bugs in one having no ef-

fect on the other. That increases ease of maintenance, and finally, Model can be

used by several Views, bringing reusability. (Goodrich 2017.)

2.3 MPA (Multi Page Application)

Multi Page Application architecture is the traditional way of building web applica-

tions. Pages are reloaded on user input. Whenever users request new data via

10

navigation, or submit data via forms, a new page is requested from the server. This

works well with dynamic pages, such as blogs, and simple web applications. When

applications are more complex with rich UI, pages may be loading with a lot of data.

Generating those pages on the server and sending to the client to be rendered would

take time, impacting UX (User Experience) negatively. (Tarnovskiy 2015.)

MPA improved with introduction of AJAX technology, which allowed to do requests

in the background, refreshing parts of a page without reloading the whole page. This

improved user experience, but at the cost of added complexity. (Tarnovskiy 2015.)

2.4 SPA (Single Page Application)

Single Page Application differentiates from a traditional MPA by serving one HTML

file with a JS file containing the whole JavaScript application. It is essentially an evolu-

tion of MPA with AJAX. The HTML file served from the server act as a shell, into

which the application is injected on the client-side in the browser when the JS file is

run. (Tarnovskiy 2015.)

Commonly acknowledged advantages of SPA over MPA are faster load times (after

initial load), better user experience and decoupling of frontend and backend devel-

opment. Disadvantages include slower initial load due to big amounts of code being

loaded at once, instead of chunks needed for a given page, as is with traditional

MPA. (Tarnovskiy 2015.)

2.5 React

React is an open-source JavaScript library for creating user interfaces (UI). It was cre-

ated by Facebook and was made open source in 2013. Being a library, rather than a

framework, it does not offer an “all in one” solution for building applications whole.

Instead React focuses on UI aspect with its component-based approach, managing

state and rendering that state to the DOM (Document Object Model). That means

11

requiring additional libraries to handle things that are traditionally handled by de-

fault within MPA, such as application routing. (React (JavaScript library) 2021.)

While React is specifically built for SPA architecture, it can be used within MPA as iso-

lated components on a page, instead of encompassing the whole application. Being a

library without above-mentioned “all in one” solutions can further help in that de-

partment. React then can be used as intended for displaying UI and managing its lo-

cal state, while MPA would handle the rest.

Most notable features of React are virtual DOM and JSX (JavaScript XML) syntax. JSX

allows for easy to read and write HTML-like syntax for components. While not neces-

sary to create React applications, JSX helps with Reacts nested component structure.

Figures 3 and 4 demonstrate what JSX does underneath. Virtual DOM creates a vir-

tual representation of DOM structure, which it uses to compare to actual DOM and

calculate what needs to be updated on a component level, rather than re-render en-

tire pages on every change. Rendering pages being a very expensive operation, this

provides significant performance boosts. (React (JavaScript library) 2021.)

12

Figure 3. A simple “Hello” component without JSX.

Figure 4. A simple “Hello” component with JSX.

13

2.6 Webpack and Webpacker

Webpack is a pre-processor and static module bundler for client-side assets (JS, CSS,

images, fonts). A tool that takes different pieces of JavaScript code, along with their

dependencies, and combines (or bundles) those into one or many files, called “out-

put”. That generated output is what is served with HTML from the server. Bundled

code is what is actually run in the browser. (Gerchev 2020.)

Webpack can have “Loaders” and “Plugins” as additional configurations to achieve

required goals. Loaders are needed to process non-JS code. By default, only JS and

JSON formats are understood by Webpack. These loaders allow the bundle to con-

tain CSS imports, images, etc. Loader, such as “sass-loader” for example, loads

SASS/SCSS files and processes them into CSS, which is understandable for the

browser. Tasks, that Loaders don’t perform, such as bundle minimization, is done by

plugins. (Gerchev 2020.)

Webpacker integrates Webpack with Rails applications. A wrapper, that provides

standard Webpack configurations with reasonable defaults for Rails applications.

(Webpacker n.d.)

3 Implementation

3.1 Demos

The implementation consisted of 2 simplified identical applications or demos, that

were based on one of Qvantel’s UI prototypes. Prototype uses in-house CSS-

framework, which is based off Bootstrap 4. Data was mocked to accommodate the UI

prototype. The goal of the demos was to compare how SPA fared compared to a tra-

ditional MPA approach, by building working demos with standard UI and interactivity

14

that is expected in Qvantel’s or any other modern web applications. Interactivity,

that is only possible with extensive JavaScript use.

First, a traditional “old school” MPA that relies on Bootstrap.js, jQuery and Popper.js

libraries for basic interactions and custom JS scripts to implement the UI prototype’s

functionalities. This was a reference application, for comparison with SPA. Goal was

to find out how much of the UI could be built with Bootstrap provided-, and simple

custom scripts, before it would become unproductive not to consider SPA or intro-

duce a “hybrid” solution. As such, not all UI functions were implemented fully. Hybrid

solution in this context meant loading React.js components inside a certain container

on a page to handle specific cases, instead of the whole page as would be with SPA.

Second demo was built as SPA, using modern framework React.js from the ground

up. It generates UI on one page served from the server (Rails), interacting with the

server via AJAX calls. Demo utilized widely used JS modules (also called “packages”),

that could be considered industry standards, with quite a few prominent companies

backing and using them. This was the fully realized, 100% functioning application.

Emphasis was on two-way communication (or data flow) between Rails and frontend

(UI), developer experience (happy developer is a productive developer) and main-

tainability of code with both approaches. Since Rails 6, Webpack, through

Webpacker (Rails wrapper for Webpack) is the default way for implementing JavaS-

cript, therefore both apps used Webpacker to setup and run JS and process SCSS (a

pre-processor for CSS). Basic setup, which includes database initialization and seed-

ing, “Devise” gem (ruby module) setup for authentication and other Rails related set-

tings, were identical with both and as such is not covered in detail.

3.2 UI prototype

Besides the login screen, demos have 3 separate independent pages or views, with

independent data. “Request log” (figure 5) has read-only data, simulating data

15

coming from a third-party service, with complex and extensive search and filtering

feature. “Rule sets” (figures 6 and 7) has a basic structure of “A contains many B,

which contain many C”. Here main page lists categories of rule sets, which lists the

rule sets with CRUD (Create Read Update Delete) functionality and simple client-side

JS only filtering. Editing a rule set opens a rule set sub-page, which in turn contains

rules and the rule set editing form. Rules also have CRUD functionality. “Tags” page

represents the most basic tabled data display and management view, with CRUD,

sorting, filtering and search. These types of views are aplenty in Qvantel’s apps, as

well as other “management tool” types of applications (figure 8).

Figure 5. Request log -page

16

Figure 6. Rule sets -page

Figure 7. Rule set sub-page

17

Figure 8. Tags -page

3.3 MPA

After the basic setup, which was covered earlier, jQuery and Popper.js JavaScript li-

braries were installed and made available via aliases (figure 9). MPA demo was rely-

ing on these libraries, which are also used by Bootstrap UI library that is under the

hood of Qvantel’s Weasel Styles. Bootstrap.js is comes included with Weasel Styles.

18

Figure 9. Webpack environment.js

Rails is a powerful tool for getting working applications out quickly. Considering this,

approach here was to first recreate as much as possible of the demo, without JavaS-

cript. After setting up the underlying structure and other “under the hood” configu-

rations of the application, building the UI (by more or less copy-pasting UI prototype

HTML) and populating it with the data via ERB - Ruby templating was very fast. In-

cluding helper methods for UI displaying logic, for a fluent Rails developer this could

have taken only about a day.

There were no JS interactions at this point, only those that could be achieved with

Rails by making requests via links, such as filtering data in tables, and submitting

forms (authentication). A lot of intended functionality, that requires custom JavaS-

cript still missing.

19

3.3.1 Basic JS interactivity

Bootstrap library provides basic interactivity, such as dropdown toggles and opening

and closing of modals. These were very easy to setup with minimal effort. Following

is an example of setting up modals for creating new rule sets:

Modal ERB partial is created (“_new_ruleset.html.erb”) with specific id HTML attrib-

ute. The partial is then included where it is needed, which in this case is in

“rulesets/index.html.erb”. Modal’s id is then used as value for “data-target” attribute

on a button that is to trigger the modal.

Other simple interactions could be done with small JS scripts and with combination

of Ruby and JavaScript. Example of that are notifications (or alerts). Notifications do

not appear in real time, but on page reloads upon user action. In this case Rails con-

troller would serve notifications on requests if needed, which are displayed with ERB

syntax (figure 10) and a piece of code on JS side would clean those up after a while

(figure 11).

Figure 10. Notifications with ERB ruby syntax

Figure 11. Notification cleanup JavaScript

20

3.3.2 Advanced features and UI limits

There are no real “technical” limits. Everything in the prototype is possible to

achieve. Whether it’s feasible was the question.

Limits (or challenges) would start to show with very basic things that are to be ex-

pected from a modern web application. Modal submission is a good example. Since

the page reloads on submissions, as is expected with MPA, modal would lose its “is

open” state. While this would not affect the business logic, the expected smooth

closing animation of a modal upon successful submission would be skipped. Modal

example in figure 12.

Figure 12. Modal example

Considering the intended flow of opening the modal with animation, closing it with

animation upon submission and displaying the updated data, it is impossible to im-

plement without resorting to AJAX submissions or responding in controller with a JS

script that closes the modal. This means serving separate JavaScript files as a

21

response to form submissions, instead of redirecting (figure 13). Even then, the new

data would not be updated on the screen (because page reload wouldn’t happen), so

it would require more effort anyway to make such a relatively straightforward UI in-

teraction work as intended.

Figure 13. Responding with JavaScript file

One solution would be to hijack form submission with JavaScript to be handled with

AJAX and then handle response, close the modal and then fetch data to be injected

into DOM. At this point, introducing React.js and exploring the hybrid approach

seemed reasonable.

Another issue relating to modal submissions would arise with editing a resource (a

tag again in this example). In a typical Rails MPA “edit resource” -scenario, page

would redirect to a path with resource id as a parameter. Controller then would initi-

ate the resource model and a form could be rendered. With editing happening via

modal, rather than a page redirect, this creates some additional challenges.

Again, the most reasonable & clean solution would seem to be to handle submissions

and responses with JavaScript. This, along with other JS heavy DOM manipulations,

as with “Requests” page advanced search feature and “Rule-sets” page multi-cate-

gory client-side filtering start to add up and push towards hybrid solutions. At this

point React was introduced, along with “react-rails” gem, which provides helpers,

22

generators and hooks, that could be helpful. This gem allows controllers to render

React components directly, avoiding ERB files entirely, in case the whole page was

React. Most notably, it also provides a way to conveniently insert data into-, and pre-

render the components. Example in figure 14.

Figure 14. Pre-rendering component with "react-rails" gem.

3.4 SPA

3.4.1 Technologies

The demo was built with popular JS modules (or “packages”) in React.js ecosystem.

Setup with these packages more or less accurately replicates how a full “real” React

application would be built. Most noteworthy packages in the demo, which can be ex-

pected to be found in many modern applications that are built with React, are listed

in table 1.

23

Table 1. JavaScript packages (modules)

Module Description

react, react-dom JS framework / library used in this project

react-router-dom Tool for managing in-app navigation

redux, react-redux State management tool and React wrapper

redux-thunk Middleware for performing side-effects (API /

AJAX) calls

final-form, react-final-form Tools for managing application forms

Axios (axios) Tool for making AJAX calls.

3.4.2 Setup

Rails doesn’t have the friendliest documentation, when it comes to adding JS frame-

works and so some of the “gotcha’s” are hard to find, but other than that setting up

React in Rails 6 with Webpacker is relatively simple. jQuery and Popper.js were not

installed, because all interactivity would be handled with React. Webpacker provides

a command to install, and initiate React, which was run after the basic setup (table 2,

Initialize). After creating the root component, it is mounted to a page via helper

method (table 2, JavaScript tag).

24

Table 2. Setup commands and code lines

After the frontend application is mounted on the page, the control is given to React,

including URL navigation. This is done by redirecting all non-authentication routing to

“home” routes “index” method (figure 12), which just serves html, containing the

mounting node.

Figure 15. Rails side path redirecting.

With SPA React development approach was component and module based. UI was

built one module at a time. That is “Requests” page would be fully functioning, be-

fore the other pages would have anything but a placeholder. React utilizes compo-

nent-based approach. In this context 4 pages, requests, rule sets, rule set and tags

Name Command / code

Initialize bundle exec rails webpacker:install:react

JavaScript tag <%= javascript_pack_tag 'hello_react' %>

25

would be main components or as they are called in React world, “containers”. To-

gether with Redux (framework agnostic state management tool) provided state store

and “dumb” components (also called presentational), these would make up modules.

Notifications would form an independent module. Module visualization in figure 16.

Figure 16. Application React-Redux module

Setting up this additional architecture and each module takes time. Because of that

initial productivity in terms of read-only views outputted on the screen (with real

data), was slower compared with MPA, where only a view (.html.erb) file needed to

be populated. This changes once the foundation was in place and in terms of output-

ting fully functional views, SPA was faster. Familiarity with React however played a

significant part here. With JavaScript in full control, and powerful UI building tools

(React) development went smoothly with no issues. UI related Rails helper methods

were moved client-side. Models remained identical on Rails side with both MPA and

26

SPA. Only difference in controllers was in responses, serving JSON instead of render-

ing HTML.

4 Results and experience

4.1 Developer experience

Client-side interaction with Rails-backend does bring additional layers of overhead

with SPA. One is performing and handling AJAX calls with JS for all CRUD operations,

rather than doing server-side navigation and form submissions. Other is properly

managing client-side state of fetched and local data. In this case, these additional lay-

ers were not really a serious issue. Having state management on client-side, React or

not, would be needed to some extend to build and manage applications UI properly.

If not inside SPA, then on individual pages where needed.

AJAX calls and their management are also still needed with MPA solutions as well to

properly implement desired UI functionality. Advanced search feature on “Request

log” page was an example of that. Local filtering on “Rule sets” page is another. Both

of these features would have needed AJAX calls and managing state locally to fully

implement as intended. Some UI features rely on reactions from backend to function

as intended, without reloading a page. Modals are a good example, illustrated in fig-

ure 17. In the end these additional layers gave the control, needed to make it possi-

ble to work on advanced UIs in a convenient way.

27

Figure 17. Basic modal submission process

With MPA, finding solutions to problems, that are clean and “obvious” was signifi-

cantly harder. As could be expected, having more experience dealing with SPA and

React in particular, obviously impacted the experience. Had this been reversed, the

experience could’ve been different. Despite that however, massive support and com-

munity behind React and by extension SPA approached development, had a big im-

pact on efficiency.

The appeal of choosing MPA approach comes in simple architecture. With the men-

tioned challenges in mind however, instead of staying “simple”, implementing

28

seemingly elementary features was challenging, with rather intertwined ruby

(backend-side helpers), ERB-templating and JavaScript code, which seemed harder to

keep organized if application was to grow. While architecture remained simple, the

readability and maintainability would suffer with tightly coupled backend and

frontend code. It would take a very experienced highly skilled developer in Ruby,

Ruby on Rails, and JavaScript (full stack developer) to keep the codebase clean, scala-

ble and maintainable, while implementing advanced UI features with ease.

As a frontend developer, SPA approach thus offered the best developer experience

of the two. SPA development with React offers massive support of community and

resources that are easily available. When using most common node packages and fol-

lowing their defined coding practices, there are but a few possible problems and cor-

ner cases that a developer might encounter, which wouldn’t be hard to solve with a

little of Google and reading of documentation. All used major packages have exten-

sive documentations behind them with lots of tutorials, articles and free courses.

Cost of additional architecture pays off when these are taken into account.

4.2 Productivity

Setting up and producing views was noticeably a little slower with SPA than with

MPA at first glance. However, with fully functional views and intended advanced UI

features implemented, SPA was more productive, while at the same time MPA would

slightly stagnate. In maintainability department, there seemed to be lack of clear

structure with MPA, with different techniques used in JavaScript code (Vanilla JS,

jQuery, React) and scripts being scattered, some on client-side, some served on con-

troller response. Once SPA was setup up, with clear structure and powerful UI build-

ing tools (React), building features was trivial. That does not mean that it is impossi-

ble to have a clear structure and productive flow with MPA, but it would require

more experienced full-stack developers to maintain.

29

4.3 Maintainability and support

With SPA React, answers to all encountered issues were easily found in documenta-

tions, libraries GitHub pages or the infamous Stack Overflow. This shows, that as al-

ready mentioned before, React, as well as other modern popular UI frameworks and

libraries have a lot of support available. This makes for debugging and maintaining

the applications easy. Important note is that when it comes to Rails with React devel-

opment, questions and answers regarding issues are for the most part SPA specific.

It’s noticeably harder to find answers or questions when trying to use React withing

MPA on individual component scale. With that in mind, most support can be found

for SPA development, when it comes to Rails with React.

JavaScript can be a messy language. There are hardly any limits to how things are

done. When it comes to SPA approach with React, established coding standards and

patterns with these tools help with keeping the application clean and maintainable,

as long as developers keep true to said standards and patterns. It is not unreasonable

to assume that new frontend developers will more easily make sense of a project,

that is built with widely used modern tools with a lot of support available.

4.4 Performance

The usual argument against using a framework is additional cost by increasing the

bundle size, which is a valid concern and especially well presented in Tim Kadlec’s

“The Cost of JavaScript Frameworks” (2020) article on JS framework performance.

“What is clear: right now, if you’re using a framework to build your site, you’re mak-

ing a trade-off in terms of initial performance—even in the best of scenarios.”

(Kadlec 2020). Performance of JS frameworks in general, was not the subject of this

thesis, as this would’ve been big enough of a subject for a thesis on its own. As such,

use of a framework (or libraries) to some extent in comparisons is assumed with both

MPA and SPA.

30

Table 3 demonstrates bundle sizes generated with webpack-bundle-analyzer. Static

is the uncompressed and non-minified code. Parsed is minified code that is run in the

browser. Gzipped is the compressed file, which is sent to the browser.

Table 3. Bundle sizes generated with webpack-bundle-analyzer.

Applications Static Parsed Gzipped

SPA

(w-app.js)

(application.js)

1.17 MB

(804.25 KB)

(391.61 KB)

408.6 KB

(338.56 KB)

(70.03 KB)

117.65 KB

(99.55 KB)

(18.1 KB)

MPA (without React) 919.77 KB 239.57 KB 69.95 KB

MPA with React

(application.js)

(server_rendering.js) *

1.68 MB

(1.14 MB)

(555.31 KB)

645.6 KB

(397.81 KB)

(247.79 KB)

201.56 KB

(120.4 KB)

(81.16 KB)

Unsurprisingly MPA bundle without frameworks has the smallest bundle sizes, since

it has the least amount of code. Figure 18 visualizes the composition of that bundle.

In case of MPA with React (figure 20), “react-rails” gem creates additional bundle

(server_rendering.js) with repeating packages, inflating total bundle size. Without

“react-rails” gem, the bundle would be similar in size to SPA (visualized in figure 19)

when comparing SPA total with that of MPA React application.js bundle.

31

Despite similar sizes compared to SPA, MPA with React bundle does not contain the

rest of React ecosystem tools and packages (table 1), only React itself. That should be

enough for MPA implementation in basic cases. This is where React being a UI li-

brary, rather than a full framework comes into play. While this can change, with both

SPA and MPA bundles growing with additional packages and tools introduced down

the line, the bottom line remains. If using React, bundle sizes will not matter in SPA

or MPA debate.

Figure 18. MPA (vanilla) bundle visualization with webpack-bundle-analyzer.

32

Figure 19. SPA bundles visualization with webpack-bundle-analyzer.

Figure 20. MPA with React bundles visualization with webpack-bundle-analyzer.

33

Optimizing can help with bundle sizes. Rails Webpacker already does some optimiza-

tions with excluding “prop-types” (when using React library) from production builds.

There are a few ways to further optimize if needed, one major and potentially most

impactful being avoiding global imports of libraries (Galanciak 2018). Example of that

in table 4. There were no such cases available in the demo, that could have had a big

impact, but moment.js or lodash.js are good examples of such libraries, both fre-

quently used libraries that can bloat the bundle if not being careful. It is also not im-

plausible to assume that MPA with React and “react-rails” could be optimized to

eliminate duplicate packages with some research.

Table 4. Global vs. specific imports.

Type Import code

Global import Import _ from “lodash”;

// _.concat(array, [values])

Specific function only Import concat from “lodash/concat”;

// concat(array, [values])

Code splitting could be explored as an option with especially big projects. Overall size

of bundles will be slightly bigger, but it will reduce the size of initially loaded bundle

(Bernardeau 2020). The recommended way is split to a chunk per route, which is es-

sentially an MPA per page JS file - equivalent. React library in particular provides

tools for this “out of the box” with “React.lazy” and “Suspense”.

Rails 6 has a “mini-profiler” plugin, which conveniently shows time spent on each ac-

tion from request to render. MPA “Request-log” page report example in figure 21.

34

Simple testing was done with the plugin by running both applications through a cer-

tain user flow process manually 5 times, writing down results. The flow contained

logging in and navigating to “Request log” page, filtering requests a few times. Navi-

gating to “Rule sets” and singular set pages. Navigating to “Tags” page, creating and

deleting a tag. These actions (fetching and rendering views), deletion, and creation

took on average between 10ms and 15ms in SPA. Same actions did not have as con-

sistent results in MPA, with “Request-log” logging on average 140ms, while “Tags”

page anywhere between 20ms and 90ms.

These results are in line with what could be expected. With more complex rich UI,

generating those pages on the server and sending to the client to be rendered would

take time (Tarnovskiy 2015).

Figure 21. Mini-profiler report on "Request log" page.

Qvantel applications are B2B (Business-to-business), not B2C (Business-to-customer).

The applications themselves are internal tools for use by Telco companies. This

means that neither SEO (Search Engine Optimization), nor load speeds and bundle

size on the frontend would matter as much as it would with customer facing applica-

tions, where every bit of optimization matters. Quickly loading “snappy” applications

with good rich UI are easier to sell, but the differences between MPA page reloading,

and SPA initial and background loading in this case were small enough not to be a

factor. MPA “Request log” page 140ms versus SPA 15ms may seem like a big

35

difference, but those numbers are still unnoticeable to the naked eye. In case of bun-

dle sizes and initial load times, Telco companies will not typically have network speed

concerns for this to become an issue.

5 Conclusions and follow-up

5.1 Conclusions

It is very hard to deduct which solutions would be clearly better overall. There is no

definitive data backed answer, when it comes to “developer experience”, “accessibil-

ity of code” or “maintainability”. For the most part these depend on the developer

and their experience. A simplified conclusion to make would be that SPA is the way

to go with bigger applications with a lot of rich UI elements and a lot happening on

the screen, due to its readiness to handle such scenarios. It was designed specifically

to deal with these kinds of applications. MPA, due to its speed and convenience,

when it comes to quickly setting up, would be a better solution for simpler web ap-

plications with simple views and “proof of concept” type of applications, where UI is

not of big importance, as Rails MPA is good for focusing on business problems, not

technical ones.

Going with default Rails application (MPA), without a modern JS framework, works

with very “simple” applications with no advanced UI features planned. “Simple” in

this case specifically means UI interactions and functionalities. The underlying appli-

cation (or backend) can be big and complex, but as long as UI of the application is

meant to be simple and crude, and its users don’t care about having as good of UX as

possible, MPA without a framework will work very well. CRUD views like “Tags” page

(figure 8), could be an example of that. Going SPA might even be counterproductive

in such a case, as the cost of setting it up may not pay out when applications UI re-

mains simple. It will still have the benefits mentioned, just unnecessary.

36

MPA does not equal “no framework” however, there is no reason not to use a

frontend JS framework or a library, whether it is MPA architecture or not, if it solves

a problem in the best possible way. It was much more convenient and productive

(which equals better developer experience) to implement rich UI features (modal

flow illustrated in figure 17) with React. In Rails this can be done very easily by creat-

ing a React entry file in “/packs” folder, which automatically makes it available as a

tag to be inserted where needed (Figure 22). This is the “default” way, only using

Webpacker setup. Alternatively, and how it was done in MPA demo, with the help of

“react-rails” gem, render components directly (Figure 14). Good news is that this

“framework” can be added at any point later in development, it does not have to be

decided right away. Being essentially a “plug-and-play” solution with Rails

Webpacker, it can be introduced when needed.

Figure 22. Request log search - React component entry point.

SPA works very well with Rails, at least as of version 6. Rails in itself did not present

any serious obstacles or challenges for implementing SPA architecture, nor create ad-

ditional complexity compared to a typical SPA with external backend - setup. With

that in mind, SPA route would seem to be the best option for most Qvantel applica-

tions, as most will need some levels of advanced UI features and will have complex

views with a lot going on, not just simple CRUD views. It is especially good for pro-

jects with dedicated frontend and backend developers. SPA architecture has clearly

37

decoupled frontend and backend, which is an asset for such teams. Backend devel-

opers can concentrate on backend, while frontend developers build frontend.

Going this route also gives full control to JS and frontend developers from the begin-

ning and in a more general sense ensures scalability in terms of easier integration of

another frontend to the same backend. Mobile application for example. Great sup-

port and resources, and established patterns and tools greatly help maintaining the

project and offer good developer experience.

The benefits outweigh the argued additional cost of setup. Typical argument against

SPA is its cost. “Single-page apps are much more expensive to build than multi-page

apps” (Navis 2018). This however largely depends on team composition and their

tech-stack knowledge. For someone well versed in React and SPA architecture, build-

ing SPA within Rails was much easier and faster than MPA, despite initial setup being

at a glance faster with MPA. In the end the tools and patterns SPA frameworks offer

to keep the codebase accessible and maintainable will only be as good as the devel-

oper using them. Same applies to MPA. “Technology is a tool, not a philosophy”, a

cliché sounding line that is often seen in developer job postings, applies here well.

Having a good comprehensive application design and UI prototype beforehand and

having a clear vision of features that will be introduced later can help identify

whether MPA or SPA is the right choice, but in reality, this kind of perfect scenario

simply does not exist. Even with a ready-made well-crafted UI prototype (such as the

prototype on which the demos were based off), new features, random changes and

scope creep will happen.

Starting with MPA, then gradually adopting SPA, one page at a time can be a great

solution for cases where UI is initially supposed to be simple but changes in the fu-

ture, which happens more often than the first scenario. Fortunately, option of going

“hybrid”, and eventually SPA if necessary, is very much viable with Ruby on Rails, as

Rails application (backend) does not need to be converted to “API only” application.

38

Same controllers can be used to serve both HTML for server-side pages and JSON for

JS API route fetched React pages (or other JS frameworks). Pages that don’t need to

be part of SPA, can remain separated. Login page is a demonstration of that, render-

ing “Devise” login page when user is not authenticated and loading SPA view once

logged in.

5.2 Follow-up

Other frameworks could be explored with Rails. Hybrid approaches especially could

be explored more in depth with different frameworks, other than React and its eco-

system. Vue.js and Angular.js are two very popular frameworks that could offer dif-

ferent perspective on how SPA, MPA or hybrid could be implemented with Rails.

There are also JS libraries, such as Stimulus.js, which are designed to work with Rails.

These could have offered a better perspective on MPA with advanced UI features.

Spending more time getting comfortable with Rail development and MPA ap-

proaches of implementing UIs in big applications in general could provide new out-

look on SPA versus MPA debate. Many obstacles encountered with MPA implemen-

tation possibly could’ve been avoided with more experience.

39

References

Galanciak, J. 2018. Analyzing, visualizing and optimizing JS bundle size in
Rails/Webpacker apps. Referenced 19.04.2021.
https://razorjack.net/visualizing-optimizing-javascript-bundle-size-rails-webpacker/

Gerchev, I. 2020. A Beginner’s Guide to Webpack. Sitepoint.com website. Referenced
19.04.2021.
https://www.sitepoint.com/webpack-beginner-guide/

Goodrich, G. 2017. Understanding the Model-View-Controller (MVC) Architecture in
Rails. Referenced 20.10.2020.
https://www.sitepoint.com/model-view-controller-mvc-architecture-rails/

Model-view-controller. Wikipedia.org website. Referenced 21.10.2020.
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Navis, G. 2018. The Architecture No One Needs. Referenced 19.04.2021.
https://www.gregnavis.com/articles/the-architecture-no-one-needs.html

Rails has everything you need. Rubyonrails.org website. Referenced 20.10.2020.
https://rubyonrails.org/everything-you-need/

React (JavaScript library). Wikipedia.org website. Referenced 19.04.2021.
https://en.wikipedia.org/wiki/React_(JavaScript_library)

Separation of concerns. Wikipedia.org website. Referenced 21.10.2020.
https://en.wikipedia.org/wiki/Separation_of_concerns

Smith, S. 2020. Overview of ASP.NET Core MVC. Referenced 21.10.2020.
https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-3.1

Tarnovskiy, S. 2015. Mixing MPA and SPA: worst of both worlds. Referenced
19.04.2021. https://blogs.perficient.com/2015/01/26/mixing-mpa-and-spa-worst-of-
both-worlds/

Webpacker. Rails guides website. Referenced 19.04.2021.
https://edgeguides.rubyonrails.org/webpacker.html

Welcome to Rails readme. Referenced 20.10.2020.
https://github.com/rails/rails

	1 Introduction 5
	2 Modern web-application development with Rails 7
	3 Implementation 13
	4 Results and experience 26
	5 Conclusions and follow-up 35
	References 39
	Abbreviations

	1 Introduction
	1.1 Qvantel Oy
	1.2 Problem
	1.3 Goals

	2 Modern web-application development with Rails
	2.1 Ruby on Rails
	2.2 MVC (Model-View-Controller)
	2.3 MPA (Multi Page Application)
	2.4 SPA (Single Page Application)
	2.5 React
	2.6 Webpack and Webpacker

	3 Implementation
	3.1 Demos
	3.2 UI prototype
	3.3 MPA
	3.3.1 Basic JS interactivity
	3.3.2 Advanced features and UI limits

	3.4 SPA
	3.4.1 Technologies
	3.4.2 Setup

	4 Results and experience
	4.1 Developer experience
	4.2 Productivity
	4.3 Maintainability and support
	4.4 Performance

	5 Conclusions and follow-up
	5.1 Conclusions
	5.2 Follow-up

	References

