

Development and design of a drawing

reference web application

Aarni Ylhäinen

Bachelor’s thesis
May 2021
Information and Communication Technologies
Bachelor’s Degree Programme in Information and Communications Tech-
nology

Description

Author(s)

Ylhäinen, Aarni
Type of publication

Bachelor’s thesis
Date

May 2021

Language of publication:
English

Number of pages

31
Permission for web publi-

cation: x

Title of publication

Development and design of a drawing reference web application

Degree programme

Information and Communications Technology

Supervisor(s)

Manninen Pasi, Niemi Kari

Assigned by

Abstract

The objective was to develop a web application that would solve the following challenges:
displaying Google Street View -locations intuitively and make finding specific locations effi-
cient, as well as designing an application UI that caters to simple needs but is expandable.
The application was a personal project of the author and would've been used by the au-
thor himself. Google Street View had proved to be a great source of art reference material
for the author, who, as a result, had been accumulating hundreds of Google Street View -
links.

The basic idea of the application was to display the Street View -locations on a map. Cate-
gories that showed the contents of the imagery would define the colour of the marker
placed on the map, which would help the user distinguish between different locations that
were geographically close to each other.

The web application utilized a ReactJS frontend, a Firebase Realtime Database working
through a REST API, while using Figma and Inkscape to complete a prototype before devel-
oping the application itself.

The result was a working application complete with authentication, categories, a complete
UI, albeit with some features that couldn't be completed on time. The map solution ended
up working very well when compared to keeping the links in a list. Placing the links on a
map proved to be a good way to display the Street View -links, since the author could al-
ways remember where the views were from.

Keywords/tags (subjects)

ReactJS, Firebase, REST API, User Interface, User Experience SPA

Miscellaneous (Confidential information)

http://finto.fi/en/
https://intra.jamk.fi/opiskelijat/student/thesis/Pages/publicity.aspx

3

Description

Tekijä(t)

Ylhäinen, Aarni
Julkaisun laji

Opinnäytetyö, AMK
Päivämäärä

Toukokuu 2021

Julkaisun kieli:
Englanti

Sivumäärä

31
Verkkojulkaisulupa myön-

netty: x

Työn nimi

Referenssikuvien tallennustyökalun suunnittelu ja kehittäminen

Tutkinto-ohjelma

Tieto- ja viestintätekniikka

Työn ohjaaja(t)

Manninen Pasi, Niemi Kari

Toimeksiantaja(t)

Tiivistelmä

Tavoitteena oli toteuttaa verkkopohjainen sovellus, joka ratkaisisi seuraavat ongelmat:
Google Street View -linkkien intuitiivinen näyttäminen ja niiden tehokas etsiminen, sekä
laajennettavissa oleva käyttöliittymä. Käyttöliittymän tuli kuitenkin olla pelkistetty ja
yksinkertainen. Sovellus oli henkilökohtainen projekti ja tuli kirjoittajan omaan käyttöön.
Google Street View on referenssikuvien etsimiseen hyödyllinen työkalu, mutta sivuston
oma kirjanmerkkijärjestelmä ei sovellu kuvamateriaalin tallentamiseen.

Sovelluksen perusidea oli näyttää linkit kartalla, sillä koordinaatit sai helposti suoraan
Street View -osoitteesta. Linkin sisältöä kuvaavat kategoriat auttoivat eri linkkien toisistaan
erottamisessa, erityisesti silloin kun ne olivat hyvin lähellä toisiaan.

Web-sovellus käytti ReactJS-kirjastolla toimivaa frontend-koodia sekä Firebasen Realtime
Databasea REST APIa hyödyntäen. Figmaa ja Inkscapea käytettiin käyttöliittymäprototyypin
sekä kuvakkeiden luomiseen.

Tuloksena oli toimiva sovellus autentikaatiolla ja kategorioilla, riittävän hyvin suunniteltu
käyttöliittymä, vaikka jotkin suunnitelluista ominaisuuksista jäivät tekemättä ajanpuutteen
takia. Sovellus päätyi toimimaan hyvin, erityisesti verrattuna Google Mapsin omaan
kirjanmerkkityökaluun. Linkkien näyttäminen kartalla oli toimiva ratkaisu, sillä usein Street
View -näkymä on helppo muistaa maantieteellisen sijainnin perusteella.

Avainsanat (asiasanat)

ReactJS, Firebase, REST API, Käyttöliittymäsuunnittelu, Käytettävyys, SPA

Muut tiedot (Salassa pidettävät liitteet)

4

Contents

1 Introduction ... 7

1.1 Background .. 7

1.2 The Issue .. 12

1.3 The Goal ... 13

1.4 Research methods ... 13

2 User Interface and Design ... 14

2.1 UI vs UX Design .. 14

2.2 The Importance ... 14

2.3 Nielsen’s heuristics .. 15

2.4 Responsiveness ... 15

3 Technologies .. 16

3.1 Prototyping and graphic design .. 16

3.1.1 Figma .. 16

3.1.2 Inkscape .. 16

3.2 React.js .. 16

3.2.1 Basic information .. 16

3.2.2 JSX ... 17

3.2.3 Props and State ... 17

3.2.4 Components ... 17

3.3 Redux ... 18

3.3.1 Basics .. 18

3.3.2 Redux Thunk ... 19

3.4 Axios .. 19

3.5 Firebase ... 19

3.5.1 General Information ... 19

5

3.5.2 Realtime Database .. 19

4 Implementation .. 20

4.1 Premise .. 20

4.2 User Interface and design ... 20

4.2.1 Starting out ... 20

4.2.2 Prototyping in Figma .. 21

4.2.3 From prototype to application UI ... 22

4.2.4 Choosing the colours .. 22

4.2.5 Icons .. 23

4.3 React frontend ... 23

4.3.1 React.js Component Structure ... 23

4.3.2 Leaflet and OpenStreetMap ... 24

4.4 Setting up Firebase .. 25

4.4.1 Requests ... 25

4.4.2 Firebase structure ... 25

4.5 Redux store .. 27

4.5.1 Splitting the store into two ... 27

4.6 Authentication ... 27

4.7 Adding & handling locations ... 27

5 Results and Conclusion ... 28

5.1 Results ... 28

5.2 Conclusion ... 29

References ... 30

6

Figures

Figure 1. Using Google Street View to practice drawing. .. 8

Figure 2. Drawing tablet setup with Google Street View set up as a reference. 9

Figure 3. Demonstration of counteracting the lens distortion. 10

Figure 4. Changing the viewpoint .. 11

Figure 5. Drawing a scene from memory ... 12

Figure 6. Redux cycle .. 18

Figure 7. Figma UI Prototype ... 21

Figure 8. The UI design implemented in the web application 22

Figure 9. component structure, components that are connected to a redux store or

stores are marked with a yellow circle. ... 24

Figure 10. Example of a request to the database (deleting a location) 25

Figure 11. Firebase Realtime Database's structure ... 26

Figure 12. Firebase rules .. 26

Figure 13. Splitting the link for valid coordinates .. 28

7

1 Introduction

1.1 Background

Finding suitable references for drawing and painting can be hard. Especially when it

comes to landscapes and architecture, the things you’ll find within a reasonable dis-

tance are limited. Using photographs is a possibility, but often the photographer

doesn’t take panoramas, they consider the lighting and composition and further edit

the picture to enhance it. For this reason, while using a certain person’s photos as

reference, one is confined to the artistic view of the photographer.

Google Street View -imagery’s purpose is far from artistic; however, it works better

as reference material for this exact reason. Street View doesn’t consider composi-

tion, its only goal is to show locations in an informative manner. This means the artist

controls the composition by moving the camera location and direction, as well as

zooming in and out. Locations are plentiful, as many countries have mapped most of

their cities, and often rural areas too. The potential of street view has been recog-

nized by many people, one of which google has published an article about, namely

Bill Guffrey. He had the following to say about his use of Google Maps:

"One of the whole points was to be able to travel virtually and paint

places that I had not been," he said, adding that he tried to capture

the grit of real life and not just the "pretty, pretty scenes"

(Heussner, Ki Mae, 2009).

Figure 1 is an example of using Google Street view as drawing practice, made by the

author.

8

Figure 1. Using Google Street View to practice drawing.

9

In Figure 2 you can see the setup the author uses for practice, with the reference im-

age on a monitor above the drawing tablet.

Figure 2. Drawing tablet setup with Google Street View set up as a reference.

The imagery on google maps is skewed by lens distortion, which means the artist

must use their imagination and 3-dimensional understanding to adapt the 360 -de-

gree image onto paper. In practice, this means your understanding of 3d spaces im-

proves as you work. An example of counteracting distorted imagery can be seen in

Figure 3, on the Toyota Hijet on the left. On Street View it almost seems like a big

truck, while in reality it’s a remarkably small car.

10

Figure 3. Demonstration of counteracting the lens distortion.

On top of all this you have endless amounts of landscapes, cityscapes, buildings, and

vehicles to draw, all from the comfort of your home. Figure 4 is an example of how

11

Street View can be used to practice: drawing the location from a slightly different

view, and freely choosing what to include in the image.

Figure 4. Changing the viewpoint

Different forms of practice can help understanding 3d environments better, as

opposed to just drawing what you see in the reference image. Figure 5 was made

12

based on the street view image, but only from memory.

Figure 5. Drawing a scene from memory

1.2 The Issue

The author started accumulating a large amount of Google Maps -locations and

needed a way to store them. A list containing the links and short descriptions of the

locations sufficed for a time, but the number of links grew over a hundred. It was

clear that it had become an issue, as finding a specific link out of several hundred is

not fast nor fun when they’re presented as a list with simple descriptions of the loca-

tions.

13

1.3 The Goal

The goal of was to create a good-looking and easy to use web application that stores

and shows Street View imagery using a RESTful API. A user could make an account

using their email, or alternatively use their existing Google account. After logging in

the users could store Street View links that are stored in a Firebase database and

shown on a map. Each user would have their personal data. When adding links, the

user could select from a set of different categories. Categories would define the col-

our of the location’s pin, such as landscape, cityscape, or a car. A layer system that

allows hiding certain categories might prove useful as well.

There will be places with plenty of pins condensed within a small area, and they may

be hard to distinguish. Different categories having different pin colours would help

with that. Adding notes to the links would help with links that are close to each

other, and in the same category. These notes would show up in a menu or popup of

some sort. The popup should also contain a link to the view itself, which is the most

important part, as well as a button for deleting the location.

As for comparison with other tools, the result had to work better and faster than

Google Maps’ own bookmarking function. Said function is hidden away in Google

Maps’ menu and is quite limited if you want to save a specific composition. While it

does show the locations on the map, all the functions are hidden in menus, and the

saved location won’t have the zoom and direction you pointed the camera towards.

1.4 Research methods

The aim was to answer the following questions: “how to display Google Street View -

locations intuitively and make finding certain locations efficient”, and “how to design

an application UI that caters to rather simple needs but has potential for additional

features”.

14

Displaying the links intuitively was especially important, as storing text is easy, but

it’s harder to make the information easy to find. This was the main problem that led

to creating the application, as opposed to managing them in something more akin to

Excel sheets. Creating a UI for the initial use was the goal as well, but it also had to be

expandable.

2 User Interface and Design

2.1 UI vs UX Design

The roles of UI and UX designers, while related, are very different. The role of a User

Experience designer is to analyze the needs of the users and trying to ensure the ap-

plication meets those needs (Babich, Nick, 2019). UI designers on the other hand

concentrate on the concrete visuals, rather than the experience. Their purpose is to

use visual design skills in order to turn the UX designers’ prototype into a finished

product. They’re also responsible for making the design responsive. (Babich, Nick,

2019)

According to Babich (2019), UX and UI design are sometimes advertised as a single

role, or the roles may be mixed up. They are indeed related in subject, but the practi-

cal tasks and required skills are quite different. Both are important however: a great

UI designer without a great UX designer may design the interface for a person who

doesn’t exist, with needs and preferences based on fiction. A great UX designer with-

out the support of UI designers may create great prototypes but the technical part of

the presentation may fall short.

2.2 The Importance

A lot of success stories credit their rise largely to User Experience. Companies such as

Facebook, Amazon and Google didn’t create a completely new concept, they instead

15

developed software that grew their userbase with good design (Kucheriavy, Andrew

2015).

2.3 Nielsen’s heuristics

Heuristic evaluation is a common concept in UI design. It’s a process where simple

“rules of thumb” are used to examine and measure usability. (Interaction Design

Foundation n.d) One example of a heuristic ruleset is Jakob Nielsen’s “10 Usability

Heuristics for User Interface Design” (Nielsen, Jakob 1994).

- Jakob Nielsen’s (1994) first rule is “visibility of system status”. It’s about keeping the
user informed of the state of the application, using various UI elements.

- The second rule is about the concepts being understandable: “The design should
speak the users' language. Use words, phrases, and concepts familiar to the user, ra-
ther than internal jargon.”

- The third rule involves giving the user a sense of control. Having the ability to easily
undo actions gives users a sense of safety for example.

- According to the fourth rule and somewhat related to the second one, the design
should use familiar elements. Having industry standard icons, such as the burger icon
for side menus on mobile, is important in making the application easy to use.

- Before error handling and -messages, the developer should concentrate on error
prevention.

- Rather than recalling the documentation, UI elements should be recognized without
prior knowledge of the UI.

- The UI should have shortcuts that speed up the application use of an experienced
user, which are hidden from a novice user. These can be customizations, keyboard
shortcuts etc.

- The visual design should focus on the essentials.
- Error messages should be easily identifiable as error messages, tell the users what

went wrong without technical terms, and offer a solution to the problem.
- While the application should need as little explanation as possible, it is sometimes

unavoidable. According to the tenth and last rule, documentation should be availa-
ble.
(Nielsen, Jakob 1994)

2.4 Responsiveness

Responsiveness is very important in creating a web application which is supposed to

be a simple tool. Responses to inputs must be as fast as possible, and the applica-

tion’s UI must make it clear that the user’s inputs have been received. Akamai (2017)

estimated in a study that a company can lose a 7% of their sales on their web store if

the loading times increase by 100 milliseconds. That’s a huge hit for a tiny problem

16

and shows that a swiftly working application is important to people, even if they

don’t necessarily notice the difference.

3 Technologies

3.1 Prototyping and graphic design

3.1.1 Figma

Figma is a collaborative design tool. Developers can work on projects and see each

other’s changes in real time. It can be used for several different uses, UX- and UI and

graphic design being common examples. It’s similar to a lot of other design tools on

the market, but what sets it apart is the collaborative nature of it. (Figma API Docu-

mentation n.d)

3.1.2 Inkscape

Inkscape is a free open-source vector graphics editor. It’s possible to export web-

ready vector files quickly and efficiently, similar to Adobe Illustrator. (Inkscape over-

view 2021) The application was announced to be in development as early as 2003,

and had emphasis on community-oriented development, as well as having a small

core with extension support for additional features (Harrington, Bryce 2003).

3.2 React.js

3.2.1 Basic information

React is an open-source JavaScript library, used for creating the frontend side of sin-

gle-page and mobile applications (React documentation n.d). Work on React was

started in 2011, by Facebook. One of the reasons React exists is to literally react to

changes in the data by only updating the components with the render method, in-

stead of reloading the page. (Hunt, Pete 2013)

17

3.2.2 JSX

When writing React.js applications, you aren’t working with html and JavaScript sep-

arately. Defining UI elements React uses JSX syntax; an extension of JavaScript that

looks a like a combination of html elements and JavaScript. According to the React.js

documentation, everything is JavaScript at its core; instead of separating markup and

code React.js combines them. (React documentation n.d) The use of JSX makes the

file structure very clear, and also makes it easy to implement code in the frontend.

3.2.3 Props and State

State is the way to manage the state of the application. It can store data retrieved

from the backend, the application’s status, or any other relevant information. (React

documentation n.d)

Props and state are regular JavaScript objects. They have one key difference: state is

managed by and within a component, and props get passed to the component. (Re-

act documentation n.d.) Props can also make the child component update as it gets

new props, if for example the props are tied to the higher component’s state.

When thinking about the component structure, developers may decide on a higher

“container” component that is stateful, meaning it contains the application state.

Most components within the stateful ones are stateless components that get props

from their parent component, containing data to display or possibly references to

functions in the container. (React.js stateless vs stateful 2019)

3.2.4 Components

The React.js UI is based on Components. They let the developer slice the application

into smaller pieces that are reusable and can either manage their own state or get it

from a component higher in the order. (React Documentation n.d) Components are

imported into the code the same way as other resources and can be declared the

same way any other JSX element can.

18

3.3 Redux

3.3.1 Basics

Managing application state over different parts and pages of the application can be

challenging. Redux makes this easier, the idea behind it is having a central store for

the application state, which you can access and modify in any react -component you

connect to it (Why Use React Redux n.d).

Redux isn’t part of React, but they are often used together using react-redux. Manag-

ing React state in a growing application can become a complicated process, while Re-

dux store can be modified with the same actions from anywhere within the applica-

tion. Figure 6. shows how this works on a conceptual level.

Figure 6. Redux cycle (Hamedani, Mosh 2020)

19

3.3.2 Redux Thunk

You can only do synchronous updates in a plain Redux store. Thunks let you add

asynchronous logic, which is helpful in running code after making http -requests.

Simply put, “A thunk is a function that wraps an expression to delay its evaluation”.

(Redux-thunk Github n.d.) Redux Thunk is one of the simplest thunks available. It

adds literally only fourteen lines of code, that allow the developer to delay functions

within Redux.

3.4 Axios

A http client handles communicating with the server. Axios is a common choice for

web applications that use Node.js. It’s simple to setup by just installing the node -

package and making a small config file, and automatically transforms response data

into JSON for ease of use (Axios Github n.d.).

3.5 Firebase

3.5.1 General Information

Firebase is a platform for creating databases for the web and mobile, developed and

maintained by Google. Its features include built-in hosting, authentication, different

database types and cloud functions. (Firebase documentation n.d)

3.5.2 Realtime Database

The Realtime Database is one of the database options on Firebase. It allows real-time

synchronization between the client and user, and while there are some things the

developer should know before setting it up, it’s possible to set up a database quickly

and start building the application itself immediately. The Realtime Database uses

JSON, which means it’s easy to parse through the data. It can be used via a REST API,

by using the Realtime Database URL as a REST endpoint. (Firebase documentation

n.d)

20

4 Implementation

4.1 Premise

The application started as a side project, not a thesis. The author made a rough pro-

totype of this tool before and chose to use Firebase and React.js. Firebase is easy to

use, free to use for personal projects and lets a frontend developer concentrate on

the frontend. React.js on the other hand allows updating the view easily, which was

required to make the application work smoothly.

4.2 User Interface and design

4.2.1 Starting out

The first thing to make sure of was a solid User Interface design, before starting to

build the application itself. It made designing the architecture under the hood, for ex-

ample React.js components structure, significantly easier.

There was no need to make the application work on mobile devices. The intended

use of it is on a personal computer or laptop, with a monitor big enough to show the

reference image properly. It would, however, have to scale well regardless for differ-

ent monitor sizes.

The author’s friend had the idea of placing the links as markers on a map. This solved

a major part of the problem, as long as there would be a way to have different colors

of links to identify the link with something more than just its location. The user usu-

ally searches for locations with specific kinds of views in mind and remembers the

general whereabouts of the view.

The next problem was how to differentiate links that are relatively close to each

other. This is solved by having a set of well-defined categories, which represent the

21

type and purpose of the view. The author had been using Google Maps as drawing

reference for a while already, so it was easy to define the required categories.

4.2.2 Prototyping in Figma

Figma was used to make a simple wireframe of the application. Figma can also be

used for creating interactive prototypes, but for the scale of the application it wasn’t

necessary. The author chose the software because he was interested in learning it,

even though collaborative features weren’t needed. Figma proved to be a solid UX

design tool. It also supported importing Inkscape vector images, so there was no

need to create placeholders for the prototype. As seen in Figure 7, it was easy to cre-

ate the whole UI in the application’s web version.

The design required walking the line between clear visuals and overdesigning a sim-

ple application. It had to be decent to look at, but not contain anything extra. This is

the difference between illustration/interfaces and creating personal art projects: the

design must be concise and not get in the way of the usability, while art can look

flashy.

Figure 7. Figma UI Prototype

22

The icons were made in Inkscape and exported as web-ready vector files. They were

imported straight into both Figma and the React.js UI itself.

4.2.3 From prototype to application UI

Translating the design into React.js was not a problem either. The sizes of the ele-

ments came directly from Figma for example. The React.js UI can be seen in use in

Figure 8. Sizes for the elements are the same, and the icons are the exact same ones,

imported as Inkscape vector images.

Figure 8. The UI design implemented in the web application

According to Nielsen (1994) the system status of the application must be clear. A no-

tification was necessary to tell the user if the location was successfully added. This is

handled through a component that shows up for only a moment and shows a mes-

sage. (which is passed into the component by props) When the location is success-

fully added, it reads “location added”.

4.2.4 Choosing the colours

It was important to keep the UI clean and easy on the eyes but appealing at the same

time. A bluish green seemed appropriate: According to Munro (2019), green feels

natural, safe, and fresh to people. A significant portion of the images saved on the

application will be landscapes with a focus on nature or countryside, so green fits the

23

bill. It also forms a decent-looking analogous palette with the green of the default

OpenStreetMap land tiles, as well as the blue of the oceans, while still clearly sepa-

rating the tones of the UI and the map tiles. Shifting the green towards blue makes a

calm impression as well, ideal for a drawing tool.

The chosen green is used sparingly on the UI as an accent colour, somewhat accord-

ing to the 60-30-10 rule. According to Munro (2019) this means that 60% of the de-

sign is in the primary color, 30% the secondary one and 10% of it uses the accent col-

our. The accent colour is mostly used to mark significant actions on the UI, such as

submitting forms and the navigation component.

4.2.5 Icons

Vector images make webpages lighter, and they scale better than rasterized images.

The menu icons, map pins and their shadows were made in Inkscape. The only con-

ventional image in the application is the login page background.

4.3 React frontend

4.3.1 React.js Component Structure

At first there were three stateful components: one handling the authentication and

showing a login and signup form, one for the map view and one for the random

Street View -tool. The form with which the user adds the locations ended up becom-

ing a stateful component as well after implementing Redux.

The author had some ideas for further features to the application: searchable list

view, as well as a feature that finds view based on randomized coordinates. It was

clear that the components used would have to be reused elsewhere. Containers for

the menus were made in a way that they render the children from props, the ele-

ments that are inside the Component element. What the component shows would

then be defined in a bigger, stateful component and updated dynamically.

24

Figure 9. shows the component structure, with some smaller components left out,

more specifically, UI elements that only display some props.

Figure 9. component structure, components that are connected to a redux store or
stores are marked with a yellow circle.

A package called React Router is used to navigate the different parts of the applica-

tion: there had to be a separate URL paths for the login and the application itself.

This is managed by React Router: if the user isn’t logged in (if the token isn’t found in

the Redux store) the application will automatically redirect to the login -path.

4.3.2 Leaflet and OpenStreetMap

Integrating Google Maps could’ve been possible, but the same coordinates work on

different map tiles and systems. For simply placing pins on a map, a free alternative

such as OpenStreetMap is a possibility.

Leaflet makes the use of OpenStreetMap -based maps easier. It’s an open-source Ja-

vaScript -library for adding interactive maps to web applications. The version of

25

Leaflet used is a React.js -package called React-Leaflet. It isn’t exactly the same as

Leaflet, but remakes Leaflet layers into React.js components. (Leaflet introduction

2021)

4.4 Setting up Firebase

4.4.1 Requests

GET and POST -requests are required to login, get location information and modify

the database. These are handled through Redux Thunk, utilizing Axios to make the

requests. Figure 10 shows an example of this, in the delete request of a specific loca-

tion.

Figure 10. Example of a request to the database (deleting a location)

4.4.2 Firebase structure

The structure of the Firebase -database can be seen in Figure 8. All users have their

own section which is named after their Firebase id. Locations are loaded only from

the user’s own section when loading them in the application. Apart from the link it-

self, the type of the location is saved, and so are the coordinates, so that the link

doesn’t have to be parsed from the coordinates after it’s been saved. The structure

can be seen in Figure 11.

26

Figure 11. Firebase Realtime Database's structure

The author thought the application needed to include authentication, so the default

rules had to be changed, as seen in Figure 12. Unauthenticated users should stay on

the login/signup page, and the rules were changed so they could not send any re-

quests until they were authenticated. In any request to the server the authentication

is checked by adding the token to the query url (Firebase documentation n.d).

Figure 12. Firebase rules

Users are authenticated through a POST -request with an object containing the user’s

login or register -information. Firebase returns an object containing the user’s infor-

mation, which the application has to save. The most important thing Firebase gives is

the security token. Essentially, it’s added to any request made to the backend, and

has a set expiration time, which is exactly one hour by default.

If the developer wants users to be able to stay logged in, they must add a function

that requests a new token before the old one is about to expire. For that, again, you

27

make a POST -request with the user’s information, this time with the refreshToken

from the first time the user logged in.

4.5 Redux store

4.5.1 Splitting the store into two

The Redux store was split into 2 separate stores: one for the map view and one for

the authentication. The token, refreshtoken, displayName and other information

from the Firebase user account would be stored in the Authentication -store, and lo-

cation-related information in the other one.

4.6 Authentication

The user is authenticated through a POST request to the correct endpoint, with the

application’s API key. The response to a successful POST request on Firebase is an ob-

ject containing the relevant information: for instance, when using the login -endpoint

the response contains the user’s information; including the token, refreshToken, dis-

playName and so on. These pieces of user information can then be stored in the Re-

dux store and used within the other REST API requests within the application, such as

getting the locations.

Searching for suitable spots on Maps takes time, and the default expiration time of

an idToken on Firebase is only one hour. A separate function to refresh the idToken

with a refreshToken had to be created to keep the user logged in.

4.7 Adding & handling locations

When the user changes the contents of the input fields of the post form, functions

save the inputted contents (hopefully valid links and notes) to the PostForm -func-

tion’s state.

28

When trying to add a location, a function named submitClickedHandler tries to ex-

tract the coordinates from the link, as seen in Figure 13.

Figure 13. Splitting the link for valid coordinates

The function doesn’t check the validity of the rest of the link, what matters here is

that it contains coordinates with valid latitude & longitude values.

Categories are defined in a separate file and a list of them is exported. At launch the

application goes through them to add them to the category selection in the PostForm

-component. This makes it easy for the author to add categories if more are needed.

5 Results and Conclusion

5.1 Results

The scope of the application grew slightly larger than the rather simple needs of the

user. Instead of being a tool with a simple interface, it turned into a functional web

application with authentication, better scalability as well as a possibility to add more

features on different pages. The author has started using this tool as intended: to

stash Google Maps -views in order to draw them.

29

The categories were diverse and clear enough, that it was easy for the user to find

which image they were looking for.

As for comparison to Google Maps’ bookmark function, this works a lot faster, and

again, saves the whole link, including the composition. The initial goal for the thesis

was met.

5.2 Conclusion

Some features would have been great additions, but there wasn’t enough time to

complete them. Firstly, a marker layer system, in which you would’ve had a separate

menu with checkboxes that define which categories’ links are shown.

A larger feature that the author planned was to use the Google Maps API to get ran-

dom street view links. Similar websites exist already, but there would be a menu

from which the location could be saved to the database, without going back to the

map view.

In the future the author intends to create a browser extension for saving links

straight into the database, without having to use the form within the application.

The component structure ended up being unnecessarily convoluted. Making

PostForm into a component that gets all its functions through props from the higher

MapView component would’ve been a better option; the Redux store ended up also

being connected to both MapView and PostForm -components, instead of only the

higher component and passing relevant information or functions as props.

30

References

Akamai Online Retail Performance Report: Milliseconds Are Critical. 2017. Study re-
port published by Akamai. Accessed on 13.11.2020. Retrieved from https://www.ak-
amai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-
of-online-retail-performance-report.jsp

Axios Github. N.d. Github -page containing basic information on Axios. Accessed on
21.10.2020. Retrieved from https://github.com/axios/axios

Babich, N. 2019. What are the Similarities & Differences Between UI Design & UX De-
sign? Article on Adobe’s website. Accessed on 17.3.2021. Retrieved from
https://xd.adobe.com/ideas/process/ui-design/ui-vs-ux-design-understanding-simi-
larities-and-differences/

Firebase documentation. N.d. Documentation on Firebase’s website. Accessed on
30.9.2020. Retrieved from https://firebase.google.com/docs

Hamedani, M. 2020. Redux in 2020. Article on Mosh Hamedani’s website. Accessed
on 16.10.2020. Retrieved from https://programmingwithmosh.com/redux/redux-in-
2020/

Harrington, B. 6.11.2003. Announcing new project. Sodipodi mailing list message. Ac-
cessed on 14.5.2021. Retrieved from https://sourceforge.net/p/sodipodi/mail-
man/message/10064135/

Heuristic Evaluation. Article on Interaction Design Foundation’s website. Accessed on
21.3.2021. Retrieved from https://www.interaction-design.org/literature/topics/heu-
ristic-evaluation

Heussner, K.M. 2009. Google Puts the World at the Tip of Painter's Brush. Article on
Abc News’ website. Accessed on 13.3.2021. Retrieved from
https://abcnews.go.com/Technology/story?id=8295043&page=1

Hunt, P. 2013. Why did we build React? ReactJS blog. Accessed on 14.5.2021. Re-
trieved from https://reactjs.org/blog/2013/06/05/why-react.html

Introduction to React Leaflet. N.d. Documentation on React Leaflet’s website. Ac-
cessed on 29.11.2020. Retrieved from https://react-leaflet.js.org/docs/start-intro-
duction

Introduction to the Figma developer API. N.d. Documentation on Figma’s website.
Accessed on 24.3.2021. Retrieved from https://www.figma.com/developers/api

Kucheriavy, A. 2015. Good UX is good business: how to reap its benefits. An article on
forbes.com. Accessed on 23.3.2021. Retrieved from
https://www.forbes.com/sites/forbestechcouncil/2015/11/19/good-ux-is-good-busi-
ness-how-to-reap-its-benefits/?sh=1b378aa74e51

https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://github.com/axios/axios
https://xd.adobe.com/ideas/process/ui-design/ui-vs-ux-design-understanding-similarities-and-differences/
https://xd.adobe.com/ideas/process/ui-design/ui-vs-ux-design-understanding-similarities-and-differences/
https://firebase.google.com/docs
https://programmingwithmosh.com/redux/redux-in-2020/
https://programmingwithmosh.com/redux/redux-in-2020/
https://sourceforge.net/p/sodipodi/mailman/message/10064135/
https://sourceforge.net/p/sodipodi/mailman/message/10064135/
https://www.interaction-design.org/literature/topics/heuristic-evaluation
https://www.interaction-design.org/literature/topics/heuristic-evaluation
https://abcnews.go.com/Technology/story?id=8295043&page=1
https://reactjs.org/blog/2013/06/05/why-react.html
https://react-leaflet.js.org/docs/start-introduction
https://react-leaflet.js.org/docs/start-introduction
https://www.figma.com/developers/api
https://www.forbes.com/sites/forbestechcouncil/2015/11/19/good-ux-is-good-business-how-to-reap-its-benefits/?sh=1b378aa74e51
https://www.forbes.com/sites/forbestechcouncil/2015/11/19/good-ux-is-good-business-how-to-reap-its-benefits/?sh=1b378aa74e51

31

Munro, L. 2019. The Role of Color in Product Design: UX of Color Palettes. Article on
the Adobe Xd Ideas -website. Accessed on 1.3.2021. Retrieved from
https://xd.adobe.com/ideas/principles/web-design/ux-of-color-palettes/

Nielsen, Jakob. 1994. 10 Usability Heuristics for User Interface Design. Article on Niel-
sen Norman Group’s website. Accessed on 12.4.2021. Retrieved from
https://www.nngroup.com/articles/ten-usability-heuristics/

React Documentation. N.d. Documentation on ReactJS’ website. Accessed on
30.9.2020. Retrieved from https://reactjs.org/docs

React Redux introduction. N.d. Article on React Redux’ official website. Accessed on
3.3.2021. Retrieved from https://react-redux.js.org/introduction/why-use-react-re-
dux

Thunks in Redux. 2017. Article on medium.com. Accessed on 5.4.2021. Retrieved
from
https://medium.com/fullstack-academy/thunks-in-redux-the-basics-85e538a3fe60

https://xd.adobe.com/ideas/principles/web-design/ux-of-color-palettes/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://reactjs.org/docs
https://react-redux.js.org/introduction/why-use-react-redux
https://react-redux.js.org/introduction/why-use-react-redux
https://medium.com/fullstack-academy/thunks-in-redux-the-basics-85e538a3fe60

