

Detecting Anomalies in TLS Traffic

Using Encrypted Traffic Analysis

Pekka Lupari

Master’s thesis
May 2021
Information and Communication Technology
Degree Program in Cyber Security

Description

Author(s)

Lupari, Pekka
Type of publication

Master’s thesis
Date

May 2021

Language of publication:
English

Number of pages

94
Permission for web

publication: x

Title of publication

Detecting Anomalies in TLS Traffic Using Encrypted Traffic Analysis

Degree programme

Information and Communication Technology, Master’s program in Cyber Security

Supervisor(s)

Rantonen Mika, Luostarinen Hannu

Assigned by

Cinia Oy, Majuri Pasi

Abstract

Subject of research was assigned by Cinia Oy. Cinia is a Finish company providing network,
software and cyber security services and solutions. Subject was delineated to detection of
anomalies in Transport Layer Security (TLS). Mitigation, response and forensics activities
were out of scope.

Primary objective was to gain understanding of methods and tools how one can detect
anomalies in TLS encrypted traffic without decrypting it and how opensource products
could be utilized. Another, more practical, objective was to investigate how two different
commercial products, SensorFleet and LogPoint, could be combined and utilized as an
Encrypted Traffic Analysis (ETA) solution. Opensource ETA solution, based on Security
Onion and RITA systems, was used as a reference.

Research was made using qualitative methods and analyzing was ongoing process during
the whole research. First, theoretical data from books, research papers, web articles and
videos were analyzed by researcher and then applied in testing phase. Results from tests
was analyzed and followed by conclusions.

Introduction chapters introduces subject and reasons why subject was chosen. In next
chapter, TLS protocol was described focusing on parts important for methods used ETA. In
chapter 3, threats hidden inside TLS traffic were described and how they can be detected.
Chapter 4 focused on threat detection in general and concepts of Network Detection and
Response (NDR) and threat hunting. Chapter 5 introduced opensource and commercial
tools and systems suitable for ETA. Chapter 6 described implementing and testing phase of
the research. Results was analyzed in chapter 7 and followed by conclusions in chapter 8.
Chapter 9 summarized research with discussion.

Keywords/tags (subjects)

ETA, NDR, RITA, Security Onion, SensorFleet, Suricata, TLS, Zeek

Miscellaneous (Confidential information)

http://finto.fi/en/
https://intra.jamk.fi/opiskelijat/student/thesis/Pages/publicity.aspx

1

Contents

1 Introduction ... 10

1.1 Objectives .. 11

1.2 Research Methods ... 11

2 Transport Layer Security (TLS) ... 12

2.1 Cryptography and Ciphersuites ... 14

2.1.1 Asymmetric Encryption, Keys and Authentication 14

2.1.2 Symmetric Encryption Ciphers ... 16

2.1.3 Message Auhentication Codes (MAC) .. 18

2.1.4 Pseudorandom Function (PRF) ... 18

2.1.5 TLS ciphersuites .. 18

2.2 Certificates and Public Key Infrastructure ... 19

2.3 Handshake Protocol .. 22

3 Threats in TLS ... 27

3.1 Malware Types .. 27

3.1.1 Botnets .. 28

3.1.2 Ransomware ... 28

3.1.3 Remote Access Trojans (RATs).. 28

3.2 Attack Techniques ... 29

3.2.1 Phishing ... 29

3.2.2 Data Exfiltration .. 29

3.2.3 Brute Force ... 30

3.2.4 Distributed Denial of Service (DDoS) .. 30

3.2.5 Scanning .. 31

3.3 Organization Policy Violations ... 31

3.3.1 Tor ... 32

2

3.3.2 Virtual Private Network (VPN) .. 33

3.3.3 DNS over HTTPs (DoH) .. 33

3.3.4 TLS Misconfigurations ... 34

4 Threat Detection .. 34

4.1 Pyramid of Pain ... 34

4.1.1 Hash Values... 35

4.1.2 IP Addresses .. 35

4.1.3 Domain Names ... 36

4.1.4 Network Artifacts .. 36

4.1.5 Tools .. 36

4.1.6 Tactics, Techniques and Procedures (TTPs) .. 37

4.2 Network Detection and Response (NDR) .. 37

4.2.1 Packet Capturing ... 39

4.2.2 Collecting Flow Data ... 39

4.2.3 Ingesting, Filtering, Parsing and Forwarding .. 40

4.2.4 Enrichment and Threat Intel ... 41

4.2.5 Rule-Based Detection ... 41

4.2.6 Behaviour-Based Detection .. 42

4.2.7 Responses and Integrations.. 43

4.3 Threat Hunting .. 43

5 ETA Tools and Solutions .. 43

5.1 ETA Tools ... 44

5.1.1 Suricata ... 44

5.1.2 Zeek ... 45

5.1.3 RITA ... 48

5.1.4 LogPoint .. 48

3

5.2 ETA Solutions ... 49

5.2.1 Security Onion .. 49

5.2.2 SensorFleet ... 51

6 Implementation and Testing ... 53

6.1 Implementing Testing Environment .. 55

6.1.1 Implementing ETA1 .. 55

6.1.2 Implementing ETA2 .. 57

6.1.3 Implementing Data Sources ... 58

6.2 Test Cases .. 58

6.2.1 Detecting Traffic to Phishing Site ... 59

6.2.2 Detecting Metasploit HTTPS Reverse Shell traffic 61

6.2.3 Detecting SNIcat C2 traffic .. 65

6.2.4 Detecting Tor .. 68

6.2.5 Detecting DoH ... 71

6.2.6 Detecting TLS Misconfigurations .. 72

6.3 Administrative and Operational Evaluation .. 74

7 Research Results ... 75

7.1 Test Results .. 75

7.2 Evaluation of Research Objectives .. 80

8 Conclusions .. 80

9 Discussion .. 82

References ... 84

Appendices .. 90

4

Figures

Figure 1. SSL Labs statistics on SSL an TLS versions (SSL Labs 2021) 14

Figure 2. TLS 1.2 full handshake ... 22

Figure 3. TLS 1.2 abbreviated handshake .. 24

Figure 4. TLS 1.3 full handshake ... 26

Figure 5. Tor session establishment ... 32

Figure 6. Pyramid of Pain ... 35

Figure 7. SOC Triad ... 37

Figure 8. Example of NDR system architechture.. 38

Figure 9. Packet capture engine in Security Onion .. 50

Figure 10. Packet capture engine in SensorFleet ... 52

Figure 11. Testing environment ... 53

Figure 12. Components of ETA systems in NDR architecture 54

Figure 13. SensorFleet IDS Policy Manager configuration for external Suricata rules 55

Figure 14. SensorFleet IDS Policy Manager configuration for Zeek JA3 script 56

Figure 15. SensorFleet Sensor interface configuration for Zeek instrument 57

Figure 16. TLS traffic flows to phishing sites and RAT/C2 server 59

Figure 17. SensorFleet IDS Rule Manager Blacklists configuration 60

Figure 18. Blacklisted certificate hash detected in LogPoint 60

Figure 19. Blacklisted domain name detect in LogPoint .. 61

Figure 20. Blacklisted IP address detected in LogPoint.. 61

Figure 21. Security Onion alert for JA3 match for malware... 62

Figure 22. Investigating alert in Security Onion’s Hunt portal 63

Figure 23. Querying JA3 hashes from ja3er.com database.. 63

Figure 24. Log entry for Metasploit HTTPS remote shell in LogPoint 64

Figure 25. TLS connection in LogPoint indicating possible data theft 64

Figure 26. IoCs in RITA for Metasploit HTTPS remote shell ... 65

Figure 27. Security Onion Suricata alert for blaclisted certificate subject 66

Figure 28. Detecting SNIcat C2 traffic in Security Onion.. 67

Figure 29. Detecting SNIcat C2 traffic in LogPoint ... 67

Figure 30. Detecting SNIcat beaconing in RITA .. 68

5

Figure 31. Investigating Tor Circuit and external IP in Tor browser 68

Figure 32. Security Onion alert for known Tor node ... 69

Figure 33. IoCs for Tor traffic seen in Security Onion .. 70

Figure 34. LogPoint Sankey chart for Tor traffic .. 70

Figure 35. Security Onion Suricata alert for DoH to cloudflare.com 71

Figure 36. IoCs for Cloudflare DoH traffic seen on Security Onion 72

Figure 37. Detecting TLS misconfigurations in LogPoint .. 73

Figure 38. Detecting TLS version and ciphersuites in Security Onion 73

Figure 39. Detecting x.509 misconfigurations in Security Onion 74

Tables

Table 1. Examples of algorithms used in TLS 1.2 ciphersuites 19

Table 2. Fields used in X.509 version 3 certificate ... 20

Table 3. ClientHello message in TLS 1.2 handshake ... 23

Table 4. Zeek log files useful in ETA ... 46

Table 5. Resources on VMware platform for SensofFleet ... 55

Table 6. Resources on VMware platform for Security Onion and RITA 57

Table 7. Ease of implementation, administration and operation of ETA solutions 76

Table 8. Detecting IoCs for Phishing Site .. 76

Table 9. Detecting IoCs for Metasploit HTTPS reverse shell and data theft 77

Table 10. Detecting IoCs for SNIcat C2 traffic .. 78

Table 11. Detecting IoCs for Tor traffic ... 78

Table 12. Detecting IoCs for DoH traffic... 79

Table 13. Detecting IoCs for TLS misconfigurations and policy violations 79

6

Terminology

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

AES-GCM Advanced Encryption Standard Galois Counter Mode

AI Artificial Intelligence

ASN.1 Abstract Syntax Notation One

ASCII American Standard Code for Information Interchange

API Application Programming Interface

APT Advanced Persist Threat

Base64 Binary-to-text encoding scheme used in programming

C2 Command and Control

CA Certification Authority

CBC Cipher Block Chaining

ChaCha20 Steam cipher mode

CLI Command Line Interface

CRL Certificate Revocation List

CSR Certificate Signing Request

CSV Comma Separated Values

DER Distinguished Encoding Rules

DDoS Distributed Denial of Service

DH Diffie-Hellman

DHE Ephemeral Diffie-Hellman

DN Distinguished Name

DNS Domain Name System

7

DoH DNS over HTTPS

DSA Digital Signature Algorithm

EC Elliptic Curve

ECH Encrypted Client Hello

ECDH Elliptic Curve Diffie-Hellman

ECDHE Elliptic Curve Diffie-Hellman Ephemeral

ECDSA Elliptic Curve Digital Signature Algorithm

EDR Endpoint Detection and Response

ETA Encrypted Traffic Analysis

ESNI Encrypted Server Name Indication

EVE Extensible Event Format

GUI Graphical User Interface

HMAC Hash-based Message Authentication Code

HKDF HMAC-based Key Derivation Functions

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ID Identifier

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IP Internet Protocol

IPFIX Internet Protocol Flow Information Export

IPSec Internet Protocol Security

IoC Indication of Compromise

IoT Internet of Things

8

IANA Internet Assigned Numbers Authority

IV Initialization Vector

JA3 TLS fingerprinting technique

JSON JavaScript Object Notation

LXC Linux Containers

MAC Message Authentication Code (cryptography)

MAC Media Access Control (ethernet)

ML Machine Learning

MRI Magnetic Resonance Imaging

NGFW Next-Generation Firewalls

NDR Network Detection and Response

NIC Network Interface Card

NIST National Institute of Standards and Technology

OISF Open Information Security Foundation

OSCP Online Certificate Status Protocol

PCAP Packet Capture

PEM Privacy-Enhanced Mail

PFS Perfect Forward Secrecy

PKI Public Key Infrastructure

PoC Proof of Concept

PoS Point of Sales

PRF Pseudorandom Function

RA Registration Authority

RAT Remote Access Trojan

9

RBAC Role Based Access Control

RC4 Rivest Cipher 4

RFC Request For Comments

RSA Rivest Shamir Adleman

SCADA Supervisory Control And Data Acquisition

SIEM Security Information and Event Management

SOC Security Operation Center

SHA2 Secure Hash Algorithm 2

SHA3 Secure Hash Algorithm 3

SNI Server Name Indication

SNMP Simple Network Management Protocol

SSH Secure Shell

SSL Secure Socket Layer

TLS Transport Layer Security

TTPs Tactics, Techniques and Procedures

UEBA User and Entity Behavior Analytics

URI Uniform Resource Identifier

URL Uniform Resource Locator

VLAN Virtual Local Area Network

VM Virtual Machine

VPN Virtual Private Network

XOR Exclusive OR (logical operator)

X.509 Certificate standard

YAML YAML Ain't Markup Language

10

1 Introduction

Nowadays most of the browsing traffic seen on internet is being encrypted using TLS

(Transport Layer Security) protocols. This is a good thing for data privacy of typical

end user but on the other hand it also provides attackers and malware softwares a

legitimate protocol to hide their intentions and left undetected. (ENISA 2019, 7)

One way organizations can detect malicous traffic inside TLS is to decrypt it.

However, this is against the base ideology of TLS since it breaks the end-to-end

confidentiality and integrity of client-server traffic and would be especially

problematic for sensitive data, such as banking traffic (ENISA 2019, 11). Decryption of

TLS traffic requires also investments on powerful hardware and increase costs for

organizations (ENISA 2019, 24). In some countries legislation may not even allow

decryption of TLS traffic (Farrel 2018, 7). Latest version of TLS (version 1.3) supports

PFS (Perfect Forward Secrecy) cipher suites only and makes passive inspection and

decryption of TLS traffic impossible. (F5 2020)

Traditional SOC (Security Operation Center) systems such as SIEM (Security

Information and Event Management) and EDR (Endpoint Detection and Response)

can be used to detect anomalies and misbehaviors of organization’s assets. However,

if these devices gets compromised, data gathered from them becomes unreliable.

NDR (Network Detection and Response) systems are needed to compliment visibility

for compromised and unauthorized devices inside organization’s network. NDR can

detect, for example command and control traffic used by malwares by gathering and

analyzing network traffic data even in case when endpoints are compromized and

EDR and syslog becomes unreliable. (Oakley 2020)

Many organizations have huge number of end points connected to their networks,

which doesn't support installing any additional softwares. These types of devices are

Internet of Things (IoT) devices, such as lightbulbs, SCADA systems, medical devices

(MRI and X-Ray), surveillance cameras, vending machines and point of sales (PoS)

end points, just to namy a few. Lateral movement of these devices would remain

unvisible without NDR solutions. (Kusek 2019)

11

NDR is relatively new term and it is not scientifically specified or standardized.

Gartner defines NDR as a solution that uses primarily machine learning and other

non-signature-based tehcniques to detect suspicious traffic on networks (Gartner

2020). Encrypted Traffic Analysis (ETA) is a another loosely defined term used in the

field of cyber security. It could be seen as a sub domain of NDR focused only handling

the encrypted traffic. While still being heavily relaying on machine learning it also

uses signature based detection to efficiently identify known Indication of

Compromises (IoCs). For example, FlowMon uses JA3 fingerprints to detect known

malicious connection based on the patterns and parameters seen on TLS client-

server handshakes. (Flowmon 2020)

1.1 Objectives

Primary objective of thesis was to gain understanding of methods and tools how one

can detect anomalies in TLS encrypted traffic without decrypting it and how

opensource products could be utilized. Another objective assigned by researcher’s

employer was to investigate how SensorFleet solution combined with LogPoint SIEM

solution could be utilized as an ETA solution.

Thesis was delineated only in TLS protocol since unlike many other data encryption

transfer protocols, such as IPSec and SSH, it is usually not possible to block the entire

protocol in organization’s firewalls because of the many legitimate internet services

that are relying on it. Focus of thesis was primarily on detecting ongoing threats and

secondary on responsive actions. Threat mitigation (before attack) and cyber

forensics (after attack) are related to subject but not in scope of this research.

1.2 Research Methods

Subject of the research was not exactly new topic in cyber security but in the past

ETA was done by mainly governmental and military organizations. Nowadays

technology to perform ETA is available for everyone via opensource communities and

many commercial vendors. By approaching the subject from this perspective,

researcher decided to use qualitative research methods and tries to find answers to

following questions:

12

• What is Encrypted Traffic Analysis by definition?

• What frameworks and methods can be used in ETA?

• What tools and systems are available?

• What are the benefits of opensource solutions compared to commercial solutions,
and vice versa?

• Which solutions are suitable for which type of organizations?

Analyzing was ongoing process during research. First, theoretical data from books,

research papers, web articles and videos were analyzed by researcher and then

applied in testing phase. Results from tests was analyzed and followed by

conclusions.

In chapter 2, TLS protocol is described focusing on parts that are important for

methods used ETA. In chapter 3, threats hidden inside TLS traffic are described and

how they can be detected. Chapter 4 focuses on threat detection in general and

concepts of NDR and threat hunting. Chapter 5 introduces opensource and

commercial tools and systems suitable for ETA. Chapter 6 contains implementing and

testing phase of the research, where different tools and systems are first

implemented into testing environment and then tested against different kinds of

threat cases. Results are analyzed in chapter 7, followed by conclusions in chapter 8.

Chapter 9 summarizes the research with discussion.

Even though research includes implementing and testing of different tools and

systems in practice, it is not a development research since it is not aiming to provide

any production ready solution for certain existing environment. However, tools and

systems introduced in research can be used as a building blocks for ETA solutions for

organization’s real business environments.

2 Transport Layer Security (TLS)

In the early nineties, when modern commercial internet started to rise, there was a

need for a security protocol since traditional network protocols which internet was

built upon, didn't provide any security mechanisms for data traffic traveling around

the world. To address this problem, web browser company Netscape started to

develop security protocol called SSL (Secure Socket Layer). It's first version was never

publicly released but the second version, SSL 2 was released in November 1994 and

13

was first implemented on Netscape Navigator 1.1 in March 1995. SSL 2 immediately

turned out to be unsecure and was rapidly being replaced by SSL 3 in late 1995,

which was a completely new design of the protocol. Internet Engineering Task Force

(IETF) founded a TLS working group in 1996 to standardize SSL protocol. Web

browser competitors Microsoft and Netscape argued on the content of the standard,

which slowed the standardization process. In 1999, TLS protocol was standarized in

RFC (Request For Comments) 2246. TLS 1.0 was very much the same as SSL 3 and it

was used for a long time. In 2003 TLS extensions was released to complement TLS 1.0

but it wasn't untill April 2006 when next version TLS 1.1 was released to fix security

issues found on TLS 1.0. In August 2008 TLS 1.2 was released adding authenticated

encryption and removing all hard coded security primitives from the protocol making

it fully flexible. (Ristić 2018, 1-4)

TLS 1.3 was released in August 2018. It's main improvements to TLS 1.2 was to

remove support for legacy cipher suites and forcing connections to use dynamic

encryption keys. TLS 1.3 also provides more efficient handshake, making initialization

of TSL sessions faster. (RFC 8446, 7)

Today, TLS 1.2 and TLS 1.3 are the recommended TLS versions. Versions prior to 1.2

are considered more or less unsecure and support for them has ended or is being

ending on most browsers. Based on Qualys SSL Labs’ SSL Pulse raport for May 2021,

TLS 1.2 is being supported on almost all web sites and support for TLS 1.3 is over

40%. Unsecure TLS versions 1.0 and 1.1 are still widely supported on web servers

seen on internet but support for SSL protocols have almost existed. On the Figure 1,

solid colored bars are statistics from May and faded bars are statistics from April.

(SSL Labs 2021)

14

Figure 1. SSL Labs statistics on SSL an TLS versions (SSL Labs 2021)

Since TLS 1.2 and TLS 1.3 are recommended versions and older versions should be

avoided, this research focuses mainly on these two latest versions but will also

investigate how usage of the legacy versions can be detected.

2.1 Cryptography and Ciphersuites

TLS uses various cryptographic primitives to fullfill condifentiality, authencity and

integrity requirements set for data in transit. Cryptographic primitive is an

independent protocol used for specific process in cryptography, for example

authenticating data. They can be concidered building blocks of cryptographic systems

and solutions. (Ristić 2018, 5)

2.1.1 Asymmetric Encryption, Keys and Authentication

Asymmetric encryption uses a key pair for data encryption and decryption. One key,

called private key, is used to decrypt data and another key, called public key, is used

to encrypt it. The idea is that public key can be easily shared with others who can use

it to encrypt and transfer data to owner of the public key. Only the owner of the

15

public key can decrypt the data using the corresponding private key of the key pair.

This provides confidentiality for transfered data. Asymmetric encryption is slow and

not suitable for the actual data transfer in TLS. It is therefore used for authentication

and negotiation of shared secret keys, which are required for starting symmetric bulk

data encyption between client and server. (Ristić 2018, 12-13)

Key exchange is a process used in TLS handshake that relies on asymmetric

encryption. TLS support many key exchange algorithms and the one that is going to

be used between client and server depends on the support of the algorithm on both

sides. There are four main key exchange algorithms: RSA, DHE_RSA, ECDHE_RSA and

ECDHE_ECDSA. (Ristić 2018, 35-36)

In RSA (Rivest Shamir Adleman) key exchange client generates a 48 byte long

premaster secret which it then encrypts using servers public key and sends it as

ClientKeyExchange message to server. Server then decrypts it with it’s private key

and gains premaster secret. RSA is simple but has a weakness. Encrypted premaster

secret may remain unchanged for years and if some one, who has been recording

encrypted traffic, later on gains access to private key, can then decrypt all the

recorded traffic. (Ristić 2018, 38)

Diffie-Hellman (DH) key exchange is another protocol used for sharing secret keys

between two parties over an insecure connection. Key generation in DH relies on

mathematical algorithm containing six variables generated by both client and server

and then computing a shared secret based on the variables. Security of the algorithm

is based on the assumption that shared key is computationally easy to generate but

very hard to reverse back to it’s primitives. DH is usually used in Ephemeral mode

(DHE), which means that shared secrets are renogitiated for every new session,

unlike in RSA. (Ristić 2018, 38-39)

Elliptic Curve DH (ECDH) uses elliptic curve cryptography as an algorithm for

generating shared secret. Server sends EC curve type and public point parameter for

it to client which then replies with client’s public point parameter. Shared secret is

calculated based on this information. ECDH is mostly used in ephemeral mode

(ECDHE) similarly as in DHE. (Ristić 2018, 40-41)

16

In TLS, authentication of the server is done during key exchange process. In RSA key

exchange, Client generates premaster key signed by server’s public key. Server then

decrypts it with private key and replies accordingly to client. Since only server can

decrypt the message, client has authenticated the server. In DH based key

exchanges, server sends shared secret key parameters to client encrypted by server’s

private key. Since client can decrypt parameters with server’s public key, client has

authenticated the server. (Ristić 2018, 41-42)

TLS uses three key algorithms called Digital Signature Algorithm (DSA), RSA and

Elliptic Curve Digital Signature Algorithm (ECDSA). DSA shouldn't be used since it

supports only 1024-bit long keys which are not considered secure enough anymore.

RSA is widely used but doesn't scale well when key size increases. If 2048-bit long

keys are not considered strong enough, using longer keys might cause performance

issues. ECDSA keys are used in elliptic cryptography are superior to RSA keys. 256-bit

long ECDSA key provides good security and are fast to process. Generally, 2048-bit

long RSA and 256-bit long ECDSA keys are considered secure enough for most use

cases. (Ristić 2018, 269-270)

2.1.2 Symmetric Encryption Ciphers

Symmetric Encryption is cryptographic primitive usually used to encrypt application’s

data in transfer. It uses one key for both encryption and decryption of data. When

this key is combined with specific encryption algorithm, also called cipher, one can

encrypt clear text data into ciphertext, send it to other party, who can then decrypt it

into clear text as long as he or she knows the key and cipher being used. (Ristić 2018,

5-6)

There are two kinds of ciphers, stream and block ciphers. Stream cipher uses

keystream, which is infinite long seemingly randomized data. One byte of this

keystream is combined with one byte of clear text to produce ciphertext using XOR

logic. This process is repeated as long as there is data left to encrypt. Stream cipher

are unsecure if keysteam gets compromised. This can be avoided by using stream

algorithms that derives one-time keys from long-term keys. RC4 (Rivest Cipher 4) is

example of a stream cipher. (Ristić 2018, 7)

17

Block ciphers encypt data based on specific sized blocks of bytes instead of bytes per

bytes as stream ciphers does. Since clear text data is not usually dividable exactly

into specific sized blocks, additional padding is needed. In TLS, last byte of ecryption

block indicates how many bytes is used for padding in the block. AES (Advanced

Encryption Standard) is example of block cipher. (Ristić 2018, 8-9)

Block cipher modes are used to encrypt data using specific block ciphers along with

other functions to enhance confidentiality and integrity of the encryption. Cipher

Block Chaining (CBC) is one of the most commonly used block cipher mode in TLS

prior to version 1.3. It uses random string called Initialization Vector (IV) along with

XOR function to make ciphertext different everytime even if the clear text would be

same. (Ristić 2018, 10-12)

Authenticated Encryption with Associated Data (AEAD) is currently considered to be

the best encryption mode available in TLS. It is simpler than CBC since it doesn't need

padding or IV. It functions resembles stream ciphers, but it uses additional 64-bit

random value, called nonce, along with ciphertext encrypted using sequence

number, header and clear text. (Ristić 2018, 45)

Due to issues found on block ciphers, they are left outside of TLS v1.3 and only AEAD

based ciphers are being supported in the latest version of TLS. Unlike TLS 1.2, which

supports huge number of various stream and block cipher modes, TLS 1.3 support

only five AEAD ciphers: TLS_AES_256_GCM_SHA384,

TLS_CHACHA20_POLY1305_SHA256, TLS_AES_128_GCM_SHA256,

TLS_AES_128_CCM_8_SHA256 and TLS_AES_128_CCM_SHA256. (Nohe 2019a)

AES-GCM (AES Galois Counter Mode) is one of the AEAD ciphers used for AES based

encryption in TLS. It is efficient and secure and is ideal for high-speed data transfers.

It was standardized by IETF in August 2008. (RFC 5288, 1)

ChaCha20 was developed to offer an alternative encryption method to AES incase

AES algorithm would become vulnerable someday. ChaCha20 generally provides

better performance on software-based solutions than AES, which performance relies

on AES optimized hardware. It was standardized by IETF in May 2015. (RFC 7359, 1-2)

18

2.1.3 Message Auhentication Codes (MAC)

Hash functions are used to convert data into small fixed size output. Hashes are used

to represent and compare large amount of data in compact way. When hash function

is realiable, original message can’t be computed from the hash and two different

messages can't produce same hash. SHA2 and SHA3 are examples of secure hash

functions. In TLS, Message Authentication Codes (MACs) are used to authenticate the

sender of packets. MAC is a cryptographic function used together with hashing

fuction to encrypt hashes with specific hashing keys. Hash-based Message

Authentication Codes (HMACs) are encrypted hashes which can be decrypted only by

parties who has the hashing key. (Ristić 2018, 9-10)

TLS 1.3 uses HMAC-based Key Derivation Functions (HKDF), defined in RFC 5689, to

verify authenticity of encrypted messages. It is based on extract and expand

processes. In extract process key material is first input and then randomized using

salting and pseudo random methods to generate pseudo random key. Expanding

process then extends the key to required length with additional random data. (Nohe

2019b)

2.1.4 Pseudorandom Function (PRF)

TLS uses pseudorandom functions (PRFs) to generate pseudorandomized data using

a secret, a seed, and a unique label. This data is used in generating encryption keys.

PRF attribute is mandatory in cipher suites used in TLS versions after 1.2. (Ristić 2018,

48-49)

2.1.5 TLS ciphersuites

In TLS a Ciphersuite specifies collection of algorithms that can be used for

authentication and key exchange and to provide confidentiality and integrity of the

application data. When initiating a TLS session, client sends it's supported

ciphersuites to server. Server then selects one of the ciphersuites and it will be used

in client-server TLS connection. If server doesn't support any of the client's

ciphersuites, connection is aborted. Ciphersuites in TLS 1.0 to 1.2 are specified using

19

naming convention

TLS_KeyExchangeAlg_WITH_EncryptionAlg_MessageAuthenticationAlg. (NIST, 14)

TLS 1.2 cipher suites are combinations of different key exchange, encryption and

authentication algorithms. KeyExhangeAlg consists of two parts, actual key exchange

algorithm, such as ECDHE or DHE, and authentication/digital signature algorithm,

such as ECDSA or RSA. EncryptionAlg specifies algorithm used for symmetric bulk

data encryption. MessageAuthenticationAlg specifies algorithm used for

authenticating the encrypted data using HMACs. There are lots of ciphersuites in TLS

1.2 combining these different algorithms. Table 1 shows examples of algorithms used

in TLS 1.2.

Table 1. Examples of algorithms used in TLS 1.2 ciphersuites

Algortithm Type Algorithm Examples

KeyExchangeAlg ECDHE_ECDSA, ECDHE_RSA, DHE_RSA

EncryptionAlg AES_256_GCM, AES_128_GCM, AES_256_CBC

MessageAuthenticationAlg SHA384, SHA256, SHA

Ciphersuites in TLS 1.3 doesn't specify key exchange algorithm and are presented in

simple form TLS_AEAD_HASH, where AEAD specifies the AEAD algorithm and HASH

specifies HKDF algorithm. There are only five different TLS 1.3 ciphersuites which are

presented in chapter 2.1.2. (Nohe 2019b)

Appendix 1 contains list of recommended ciphersuites for both TLS 1.2 and 1.3

versions recommended by National Institute of Standards and Technology (NIST).

2.2 Certificates and Public Key Infrastructure

Public Key Infrastructure (PKI) was developed to solve the problem how people, who

have never met, can securely communicate with each other over unsecure networks.

In internet PKI this is made possible by using commonly trusted third parties called

Certification Authorities (CAs), which issues Certificates used by servers in internet.

To provide valid TLS connections on internet, server must generate a Certificate

20

Signing Request (CSR) and have it signed by one of the commonly trusted CAs.

Communications between service provider and CA is done by parties called

Subsciber and Registration Authority (RA). After RA have verified that subscriber is

who he/she claims to be, CA will sign the CSR using it's private key and RA will send

the signed certificate back to subsciber. This CA signed certificate can now be

validated be each client (Relying Party) who have preinstalled public keys of all the

commonly trusted CAs in their root trust stores. Relying Parties can be operating

systems, web browsers and other programs. (Ristić 2018, 63-64)

X.509 certificate is a file containing clear text information and public key of the

subscriber and digital signature of the certificate issuer. It is used for sharing and

storing public keys and is a basic building block of the PKI. X.509 relies on

Distinguished Encoding Rules (DER), which is a standard used to encode Abstract

Syntax Notation One (ASN.1) defined complex data structures in binary files. Instead

of using binary DER files, ASCII formatted PEM (Privacy-Enhanced Mail) files are more

popular since the ability to use copy-paste functions with them. PEM is ASCII

encoding of DER using Base64 encoding and they can be converted from one to

another easily using softwares such as OpenSSL. Most used version of X.509 today is

version 3 and it contains certificate fields show on Table 2. (Ristić 2018, 66-70)

Table 2. Fields used in X.509 version 3 certificate

Field Name Description

Version Number Version number of the X.509 certificate.

Serial Number At least 20 bit long randomized number.

Signature Algorithm Algorithm used for singing the certificate.

Issuer Distinguished Name (DN) of the certificate issuer,

containing at least country, name of organization

and organizational unit information.

Validity Time range which the certificate is valid

Subject DN of the subscriber

Public Key Public key algorithm ID, optional parameters and

the public key itself

21

Subject Alternative Name* Replaces the Subject field and allow binding

certificate to multiple instances using of Domain

Name System (DNS) names, Internet Protocol (IP)

addresses or Uniform Resource Identifiers (URIs).

Name Constraint* Field which can be used to restrict domains which

the CA can issue certificates. Used for subordinate

or company owned CAs.

Basic Constraint* Defines if CA can issue sub CA certificates and the

depth of the sub CA path.

Key Usage* Defines usage for the key, for example Certificate

Signer or CRL signer.

Extended Key Usage* More flexible parameters for defining key usage, for

example Server or Client Authentication.

Certificate Policies* Defines one or more policies the certificate is used

for. For example Organizational Identifier.

CRL Distribution Point* Location where Certificate Revocation List (CRL) can

be accessed, for example Uniform Resource Locator

(URL).

Authority Information

Access*

How to access certain additional information, such

as OSCP Responder HTTP URL.

Subject Key Identifier* Unique value that can be used to identify public key

of the subject. Usually hash from the public key

itself.

Authority Key Identifier* Unique value that can be used to identify public

certificates of the signing CAs.

*Extensions specific to X.509 version 3 only

Validity of X.509 certificate can be verified using several methods. Checking values

seen on fields of the certificate is straight forward process and can easily show things

such as is the certificate being self-signed, signed by untrusted CA or if it had become

outdated. There are also mechanisms to verify if once valid certification has become

revoked.

22

A Certificate Revocation List (CRL) is a list of serial numbers of certificates that have

been revoked. These lists are maintained by corresponding CAs and location where

they can be accessed should be stated in the certificate’s “CRL Distribution Point

field.” Online Certificate Status Protocol (OCSP) allows relying parties to query status

of specific certificate from OCSP servers, which also are known as OCSP responders.

Location of OCSP responder for each certificate should be stated in the “Authority

Information Access” field of the certificate. (Ristić 2018, 76)

2.3 Handshake Protocol

TLS uses handshake protocol to establish connection between client and server.

Depending on the use case there are six to ten messages exchanged in TLS version

1.2. When client and server establish a new initial connection, a full handshake is

made with ten messages as seen in Figure 2.

Client Server

ClientHello

ServerHello

1.

2.

Certificate 3.

ServerKeyExchange 4.

ServerHelloDone 5.

ClientKeyExchange6.

[ChangeCipherSpec]7.

Finished8.

[ChangeCipherSpec] 9.

Finished 10.

X.509

parameters

parameters

Application data

Figure 2. TLS 1.2 full handshake

23

First, client begins handshake with ClientHello message (step 1 in Figure 2). This

message contains following fields described in Table 3.

Table 3. ClientHello message in TLS 1.2 handshake

Server then evaluates message received from client and responses with ServerHello

message (step 2 in Figure 2). This message contains same fields as in ClientHello

message but there is only one value inside each field. These are the values which the

server has decided to use and client must accept to proceed with the handshake.

Next, server sends its certificate with Certificate message (step 3 in Figure 2). This

message typically contains server's X.509 certificate chain, where certificates are

provided one after another. The exact format and content of the Certificate message

depends on the ciphersuite which has been chosen. In some case Certificate message

is not needed at all.

Server also sends ServerKeyExchange message (step 4 in Figure 2). This message

contains key exchange parameters based on the key exchange defined in ciphersuite.

If key exchange parameters from server are not needed, then this message is not

sent at all. Finally, server sends ServerHelloDone message to notify client that it has

sent all intended initial handshake messages (step 5 in Figure 2).

Field Name Field Value

Version Highest TLS version client supports

Random 32 bytes of randomized data to make each hello message unique.

Session ID On initial connection, session ID field is empty. In other cases, it

contains 32 bytes of randomly generated data.

Ciphersuites List of all ciphersuites client supports in order of preference.

Compression One or more client supported compression methods. Default

value is null.

Extensions contains additional optional data which may be usefull in

handshake, such as Server Name Indication (SNI), which allows

client to specify the name of the server it wishes to connect to.

24

Client evaluates data it has received from server. If TLS version, ciphersuite and

certificate are acceptable, client responses with ClientKeyExchange message (step 6

in Figure 2). This message contains client’s parameters needed for key exchange

process. Exact content of the message depends on the key exchange algorithm

specified in the ciphersuite. After key exchange process is done and client has

generated shared secret, it sends ChangeCipherSpec message to server indicating it is

ready to start encrypting traffic (step 7 in Figure 2). Finally, client sends Finished

message indicating that handshake is complete (step 8 in Figure 2). Content of this

message is already encrypted using mutually generated shared secret. Encrypted

message contains verify_data field, which is a hash of all handshake messages to

verify the integrity of the entire handshake.

After receiving ChangeCipherSpec message from client, server also switches to

encryption mode and informs client with ChangeCipherSpec message from server

(step 9 in Figure 2) and encrypted Finished message similarly as client (step 10 in

Figure 2). (Ristić 2018, 25-32,58)

When client and server want's restart an old TLS session, they can use an abbreviated

handshake consisting only six messages to save clients and servers resources and

speeding up initialization of the connection as seen on Figure 3.

Client Server

ClientHello

ServerHello

1.

2.

[ChangeCipherSpec]5.

Finished6.

[ChangeCipherSpec] 3.

Finished 4.

Session ID

Session ID

Application data

Figure 3. TLS 1.2 abbreviated handshake

25

Abbreviated handshake starts with ClientHello message containing Session ID

number of the old session (step 1 in Figure 3). If server is willing to restart old

session, it returns the same session ID in the ServerHello message, generates new

session keys from old master secret key and switches to encryption and sends its

ChangeCipherSpec and Finished message accordingly (steps 2 to 4 in Figure 3).

After receiving messages from server, client does the same thing by starting

encryption and finishes handshake (steps 5 to 6 in Figure 3).

Alternative mechanism for restarting old session would be to use session tickets,

same way as cookies are used in HTTP connections. Messages are different but

handshake process is same as in abbreviated handshake. (Ristić 2018, 34-35)

TLS 1.3 simplifies and makes initial handshake faster compared to TLS 1.2 as seen on

Figure 4. Client sends ClientHello message containing a random nonce, TLS protocol

version, list of ciphersuites, key materials for generating shared secret for various

algorithms and potentially additional extensions (step 1 in Figure 4). Server process

ClientHello message and determines which ciphersuite to use and then sends

ServerHello message containing ciphersuite and key exchange material according to

chosen ciphersuite (step 2 in Figure 4). After this, server starts to encrypt all

messages using symmetric key generated from shared secret. ServerHello will be

followed by messages containing server’s encrypted certificate with optional

extensions and Finished message to notify client that server is done with handshake

(steps 3 to 4 in Figure 4). Client will decrypt messages using symmetric key generated

from shared secret key and authenticate server using server’s decrypted certificate.

Client then start encrypting messages and sends Finished message to server to

complete the handshake (step 5 in Figure 4). Finished messages contain MAC of the

entire handshake. This provides authenticity and integrity of the handshake to both

participants. (RFC8446, 9-12)

26

Client Server

ClientHello

ServerHello

1.

2.

Application data

Application data

X.509

parameters

parameters

3.

Application data 4.

5.

Application data

Finished

Finished

Figure 4. TLS 1.3 full handshake

In TLS 1.3 additional key exchange messages have been removed to speed up the

handshake process. Therefore client must generate several keys for various key

exchange algorithms and send these inside ClientHello message and hope that one of

them will be supported and accepted by the server. If server doesn’t support any of

the key exchange algorithms sent by client, it will reply with HelloRetryRequest and

handshake starts from the beginning (RFC8446, 13).

TLS 1.3 includes encryption of server certificate but SNI field in ClientHello is still

being send out unencrypted. This allows eavesdropper to know which web site client

is connecting to. Encrypted SNI was developed by Cloudflare in 2018 to address this

issue. Idea behind ESNI is that client encrypts SNI field with server's public key before

sending it to server. This way only server could decrypt it with its private key. To get

server's public key, client must request ESNI key for server during domain name

lookup from DNS server. Since this request is usually done in plain text, the initial

issue remains and is the main reason why ESNI hasn't been adopted widely.

Encrypted Client Hello (ECH) is another approach to hide sensitive information now

visible in ClientHello messages. It aims to encrypt all fields in ClientHello message.

ECH is still under development and not widely used in internet. (Patton 2020)

27

3 Threats in TLS

In cybersecurity terminology, the word “threat” means any potential danger to

organization’s “asset”, which is any physical, virtual or logical item valuable to

organization. Threat types includes cyber attacks which aims to destroy or steal

organization’s valuable data or disrupt organizations services. Threat actor (TA) types

can be categorized to “script kiddies” (nonprofessional people who use existing

scripts for hacking), organized crime groups (cyber criminals motivated to make

money), state sponsors and governments (governmental agencies motivated to steal

intellectual property and perform targeted attacks), hacktivist (hackers motivated by

social or political cause) and terrorist (hackers motivated by religious beliefs). (Santos

2020, 9-13)

Besides being used by legitimate applications, such as HTTPS, TLS protocol is also

widely used by more questionable applications and by threat actors for their

malicious intents. Research made by Sophos Labs indicates that roughly quarter of all

malware traffic seen on internet is using TLS for hiding and blending in with

legitimate internet traffic (Nagy 2020).

There is also an gray area between legitimate and malicious applications.

Applications such as TOR, VPN and DoH (DNS over HTTPS) are not malicious on their

own but these tunneling applications can be used to hide malwares and circumvent

organization’s security policies. Besides applications inside TLS, the way organization

have implemented TLS may pose vulnerabilities due to misconfiguration or use of

outdated software and generate a threat targeted to protocol and infrastructure

itself.

3.1 Malware Types

Threat actors often use malwares to achieve their goals. Malware is a malicious

software designed to cause some sort of harm to target system or victim. It could be

for example programmed to encrypt, delete or steal valuable data stored on the

system (Kaspersky 2021a). Main malware types utilizing TLS are botnets,

ransomwares and RATs.

28

3.1.1 Botnets

Botnet is an network of hijacked devices (called bots) which are controlled by

attacker's server (called bot herder). Bots can be used as a part of another attack,

such as phishing, bruteforce or Distributed Denial of Service attacks. Bots receive

instructions from bot herder via Command and Control (C2) channel. This

communication may be centralized, where there are C2 channels between bot

herder and bots, or decentralized, where bots also communicate with each other

directly. Decentralized model makes it harder to detect the bot herder (and the

attacker itself) and is more commonly used in botnets these days (Kaspersky 2021b).

Many botnets rely on TLS to hide their C2 traffic (Desai 2017).

Invalid x509 certificates, traffic to suspicious domains or IP addresses and deviations

from baseline TLS traffic are indicators C2 traffic and botnet devices in organization’s

network.

3.1.2 Ransomware

Ransomware is a malware used to extort money from the victim. After ransomware

have been delivered and target system has been infected, it generates encryption

keys and start to encrypt target system's hard drive. After finished it sends the

encryption keys to threat actor via C2 channel (usually via TOR network or TLS),

deletes local keys and shows an extortion message to victim. Keys used for

decryption may (or may not) be delivered to victim after ransom has been paid.

(Zimba, Mulenga 2018)

3.1.3 Remote Access Trojans (RATs)

Trojan is a type of malware that is disguised to be harmless program or file but when

executed it does something malicious behind the scenes. Trojans rely on scamming

victims to execute them on target system, for example it could be masqueraded as

excel file and delivered to victims via spoofed email from HR. Remote Access Trojans

(RATs) are types of trojans that established client-server connection from target

system to attacker, allowing attacker remote access to target system. Attacker can

then do number of things on the target system, such as browse file system, steal

29

valuable information (files, password hashes etc.) or simply delete files or destroy

systems. (Santos 2020, 18-20)

Highly customized, publicly unknown, RATs are often used by Advanced Persistent

Threat (APT) groups usually linked to governmental agencies, for example Chinese

governmental APT group has been accused of cyberespionage against corporations,

government agencies and other organizations in U.S.A. (McClurg 2020). If RAT is

developed and implemented properly, it can be very hard to detect even for the

largest organizations. Known RAT application on the other hand are possible to

detect using fingerprinting techniques, such as JA3 for Metasploit’s TLS based

meterpreter session (Althouse 2017).

3.2 Attack Techniques

Threat actors use various techniques to attack their targets. Attacks hidden in TLS

include phishing, data exfiltration, brute forcing, denial of service and scanning.

3.2.1 Phishing

Phishing is an attack where targets are usually approached by email and are being

scammed to handover valuable information to attacker. Targets may also be lured to

download malware into their devices. From TLS perspective, main indicators of

phishing attack attempts are links to suspicious sites, usually disguised to look

legitimate ones. These fake sites can be identified by verifying that URL is valid

against sites such as namecheck.com before entering them. If entering the site,

validity of x.509 certification provided by the server should be investigated. Lack of

TLS and certificates should be a warning sign. (Pagano 2020)

3.2.2 Data Exfiltration

After attacker has taken control over the target system and found valuable data to

steal, he/she would still need to transfer it out of the target system to him/her.

Sometimes this can be done using overt communication channels if attacker has no

need to hide his/her’s activities. For example, attacker may want to get as fast as

possible valuable data from target system and then move on to next victim. Another

30

approach would be to do it discreetly and slowly using covert communication

channels. Some RATs utilize backdoors which can be used as covert communication

channels for data exfiltration and as an additional remote access to target system.

(Santos 2020, 19)

Covert channel usually utilizes legitimate communication channel or protocol in a

way it is not intended to be used. For example, protocol header fields can be used to

fill with data payload bytes (Santos 2020, 24). In 2020, Mnemonic Labs security

researchers discovered a way to exfiltrate data using SNI field of the TLS client_hello

messages to transfer data payload to server using a tool named SNIcat. This

exfiltration mechanism bypassed many well-known web proxies and Next Generation

Firewalls (NGFW) vendors at the time of testing. (Martrander, Malvica 2020)

3.2.3 Brute Force

Brute force is an attack where login attempt to target system is repeated

systematically using trial-and-error method. Brute force attack can be successful if

account has weak password (short and without special characters or easy to guess)

and target system is using weak authentication settings (not rate limiting login

attempts, not using two factor authentication). There are different kinds of brute

force attacks. Dictionary attacks targets specific user account and try to login with it

using list of popular passwords and words. Reverse brute force attack does the

opposite, it goes through list of different accounts against specific password.

Credential stuffing is an attack where attacker knows certain valid account and

password pair for one system and systematically tries to log into list of other systems

with the same credentials. (Kaspersky 2021c)

In TLS, brute force attempts are hard to detect without decrypting and looking into

to HTTP messages. However, constant stream of similar packets from same client to

server can be indication of brute force attempt, especially if source IP address is

suspicious.

3.2.4 Distributed Denial of Service (DDoS)

Distributed Denial of Service is an attack where large number of client devices starts

connecting to target system simultaneously. Goal of the attack is to overwhelm the

31

target system with massive amount of new faked sessions and making it

nonresponsive to legitimate requests as well. DDoS attacks are usually made using

botnets and the scale of the attack depends on the resources of the botnet.

Motivation for DDoS attack can be money (distorting the victim) or to cause outage

and harm to certain online service for various reasons. (Kaspersky 2021d)

DDoS attacks can be detected via network monitoring tools and Intrusion Detection

System (IDS) systems as a sudden increase of traffic from the baseline.

3.2.5 Scanning

Threat actors often scans target environment networks to gain more information

about devices and services before launching the actual attack. Network scan is a kind

of scan that sweeps through network address space and tries to identify active hosts

and their IP addresses on the network. Port scan is usually targeted to specific host’s

TCP or UDP ports to gain more detailed information about services and softwares

running on these ports. This information can reveal vulnerabilities which threat

actors can try to exploit. (Shaw 2020)

Based on researcher experience, scanning attempts coming from internet is very

common and usually can be mitigated on organization’s perimeter firewall. These

scans are many times done by bots and not targeted to any specific organizations

and are usually not very interesting from the monitoring perspective. However,

scanning activity inside organization network should raise alerts. Network and port

scans can be detected via network monitoring tools and IDS system as a sudden

increase of connection attempts to many destination IP addresses and TCP/UDP

ports.

3.3 Organization Policy Violations

Many times, certain applications are legitimate and acceptable for personal use but

when used by organization’s endpoints and inside organization network these same

applications may pose threats. Same goes to hosted TLS services, what is acceptable

in home or testing environments may not be the case in organization network,

especially for services accessible from internet.

32

3.3.1 Tor

Tor network is based on a concept where traffic from client to server is routed

through another, encrypted network layer build on top of internet. Tor client

software first connects Tor directory server to get list of tor nodes which should be

used as a path in tor network to reach the actual target server. Tor client then sets

TLS connections with each of the tor nodes specified for path, starting with the entry

node. Once initial TLS session is setup, client establish second TLS session to relay

node tunneled via initial TLS session. After this, third TLS session is established to exit

node, now tunneled via entry node and relay node. Finally, actual client-server TLS

connection established, tunneled via all tor nodes in the path. This process is

illustrated in Figure 5.

TLS

TLS

TLS

TLS TLS TLS

Tor Session 2 – tor client to relay node

Tor Session 3 – tor client to exit node

Actual client to server TLS application

Intra tor network TLS Intra tor network TLS

TOR
PROXY Tor Session 1

– tor client to
entry node

Figure 5. Tor session establishment

This way, tor entry node, and anyone investigating traffic between, knows the client

(source IP address) but not the target server (destination IP address) and respectively

tor exit node knows only the target but not the client. Unless same party doesn’t

have visibility into both entry and exit nodes, it is very hard to identify the actual

end-to-end client server connection. That is why tor network provides good platform

for anonymous activity on internet. (Skerrit 2020)

Tor has legitimate use cases for many individuals but there aren’t many reasons why

it should be used and allowed in organization’s networks. Australian Cyber Security

Center (ACSC) recommends blocking tor traffic since it can be used by threat actors

33

to perform anonymous reconnaissance and exploitation of systems, hide malware C2

traffic and data exfiltration. (ACSC 2020)

3.3.2 Virtual Private Network (VPN)

Virtual Private Network (VPN) softwares and connections are often used for good

purpose. Many organizations use them to provide secure connection for remote

workers to access organization network over internet. However, VPNs can also be

used to bypass organization firewall rules and traffic monitoring, leaving malware

and malicious user activity being undetected. Especially TLS based VPNs configured

to use TCP port 443 same way as normal web traffic, can be hard to block and detect.

(Delaney 2017)

In researcher’s opinion, only VPN solution provided by organization’s IT should be

used and only allowed to connect to specified destinations.

3.3.3 DNS over HTTPs (DoH)

DNS over HTTPs (DoH) is relatively new technology. It has been standardized by IETF

in RFC8484 in 2018. It aims to address security issues discovered in original DNS

protocol. Instead of performing DNS queries in clear text using UDP protocol, DoH

uses TCP, TLS and HTTP as underlying protocols (RFC8484).

In DoH, the main functionality of DNS is still the same, but the client-server

connection is now being encrypted using TLS. Web browsers, such as Firefox, can

perform DNS queries directly to public DoH servers, bypass endpoint’s traditional

DNS lookup process and therefore hinder organization’s ability to monitor DNS

traffic. Since DoH uses TCP port 443 like many other TLS based web applications, it

blends in with the rest of the web traffic. Threat actors are taking advantage of this

and there are malwares, such as Godlua, which uses DoH as C2 channel.

There are certain indicators of usage of DoH in network. Clients browsing the web

without traditional DNS requests seen is one indicator. Application fingerprinting

tehcniques, such as JA3, can also be used to detect DoH as well as monitoring

connections to well know DoH servers IP addresses. (Hjelm 2019)

34

In researcher’s opinion, DoH should not be used in organization unless there is a

specific business need for it, and even then it should be done in a way that

organization has visibility and control on it.

3.3.4 TLS Misconfigurations

Referring to researcher’s working experience, TLS misconfigurations are not unusual.

They occur due to many reasons. Sometimes old server is forgotten and left

unpatched running legacy TLS version and ciphersuites. Sometimes new server is

running with self-signed certificate, still waiting for CA signed certificate. Sometimes

certificates are forgotten to be renewed and run out of date.

There are several ways to take care of these issues. One way is to monitor TLS server

hello messages seen on organization’s network, since it provides lots of information

from servers, such as TLS versions and ciphersuites negotiated and certifications

fields (only TLS versions prior 1.3). IDS systems, such as Suricata, can be used to

monitor TLS traffic and alert for example if TLS versions prior 1.2 are being

negotiated, or if invalid certificates are seen. (Suricata 2021a)

4 Threat Detection

Threat detection is a large subject consisting different frameworks, technologies and

methods. This chapter explains how framework Pyramid of Pain, Network Detection

and Response technology and threat hunting methods can be utilized in threat

detection.

4.1 Pyramid of Pain

In 2013 information security professional David Bianco invented a concept called

Pyramid of Pain to reflect the different kind of indicators used by APT group called

Common Crew. The main idea is that there are several types of indicators an

adversary might use to attack organization. These layers form a pyramid where

bottom layer is easy for adversary to change and defender to detect. Each layer gets

granularly harder while going from down to up, where the highest layer is the most

35

painful for adversary to change and defender to detect, as seen on Figure 6. (Bianco

2013)

Hash Values

IP Addresses

Domain Names

Network Artifacts

Tools

TTPs

Figure 6. Pyramid of Pain

Pyramid of Pain can be used as a framework for detecting threats in TLS traffic.

4.1.1 Hash Values

Hash values are the easiest ones, since even slightest change done by adversary

changes the hash value and avoids defender’s hash value-based detection. On the

other hand, if defender can detect and match hash value for known bad hash, it is

very likely that indicator is a real threat (Bianco 2013). In TLS prior to version 1.3,

hash values can be hashes of invalid or blacklisted X.509 certificates and could be

detected using CRLs, OCSP and static or dynamic lists from different sources. In TLS

1.3 certificates are encrypted and can’t be used as indicators.

4.1.2 IP Addresses

IP addresses can be used as indicators when adversary is attacking remotely. That’s

why IP addresses are one of the easiest indicators for defenders to detect and block

36

but also easy for adversary to change (Bianco 2013). In TLS, IP addresses are always

present and known bad IP addresses can be detected using static and dynamic IP

address blacklists and geolocational information.

4.1.3 Domain Names

Domain names are slightly harder and slower for adversary to change than IP

addresses (Bianco 2013). For defender, domain names are good indicators if DNS

queries and SNI fields in TLS traffic can be monitored and logged but if protocols like

DoH and ESNI are used, domain names are encrypted and not visible for defender. If

Domain names can be logged, they can be matched against static and dynamic

domain name blacklists.

4.1.4 Network Artifacts

Network artifacts are generally harder to detect than IP and domain name indicators

since it requires looking inside application data packets and detect abnormal

protocol parameters, such as invalid HTTP user agents or embedded C2 (Command

and Control) traffic (Bianco 2013). This layer is tough for defenders when it comes to

TLS traffic since application data is being encrypted and cannot be analyzed directly.

However, there are certain indicator that can be matched at this layer, such as JA3

fingerprints of TLS handshakes and unnormal traffic behaviors.

4.1.5 Tools

Tools layer includes softwares and applications used by adversary. If these can be

detected and blocked, adversary have to redesign and implement his/her’s tools or

change them completely (Bianco 2013). In TLS, detecting these tools can be very

difficult, since application data is encrypted, but certain traffic patterns and

behavioral anomalies can be detected by using machine learning algorithms. JA3

fingerprints may identify exact tool, if tool is use unique static parameters in TLS

handshake.

37

4.1.6 Tactics, Techniques and Procedures (TTPs)

On very top layer is the complete attack campaign used by adversary. This includes

all the phases adversary uses from reconnaissance of the assets to exfiltration of the

valuable data (Bianco 2013). This is the hardest part for defender to find out and will

most likely need a human factor to come up with the big picture what the adversary

is trying to accomplish based on all the indicators detected on lower layers.

4.2 Network Detection and Response (NDR)

NDR was invented to add additional layer of visibility for SOC teams. SIEM has been

widely used to detect threats targeting servers and EDR has been used to detect

threats on managed end points. NDR is being used to detect threats in network, such

as compromised managed endpoints or unmanaged IoT/OT devices. Using rule based

detection and machine learning algorithms, NDR solutions can detect unnormal

network activity, such as lateral movement and C2 comminucations. (Tolbert 2020,

4-8)

SOC

SIEM

NDR EDR

Figure 7. SOC Triad

NDR is relatively new concept and there is no standardized way how to implement it.

However, based on researcher’s investigations on various NDR solutions there are

many similarities how they are designed at high level. There are always external

devices (data sources) sending networking data into NDR system, usually by

submitting full packet captures or network flow telemetry data. This data is then

received by frontend nodes of the NDR systems, often called collectors and sensors,

38

which are responsible of filtering and preprocessing of data. These nodes then

forward parsed and normalized data to NDR centralized components, often called

analyzers, which are the core nodes of NDR systems responsible for enriching,

analyzing and visualizing data and handling response actions to external systems.

According to Hillstone Networks, NDR solution should include four components:

Collection and Storage, Traffic Analytics, Traffic Visibility and Incident Response.

Collection and Storage should take care of ingesting, filtering and storing raw data

and extracting, parsing and forwarding metadata for Traffic Analytics engine, which

will consist of traditional statistical based and machine learning based behavioral

analysis. Traffic Visibility should provide security analysts point views, which can be

used to drill down in detail to a specific alert, and surface views, which should help to

detect traffic anomalies and correlations between different events. Incident

Response component is responsible for mitigating and alerting of detected security

incidents and enrichment of incidents using external threat intel feeds (Yu 2020).

Figure 8 illustrates an example how NDR system functions at high level.

NETWORK DETECTION AND RESPONSE
SYSTEM

COLLECTION & STORAGE

NETWORK

PCAP

NETFLOW

TRAFFIC ANALYTICS

NORMALIZED
DATA

DATASTORE

Packet
capturing

DATA SOURCES

Flow
listener

Filtering
&

Parsing
ML Based Detection

Rule Based Detection

Data Enrichment

TRAFFIC VISIBILITY

Indexed Data

Monitoring System

INTERNET

Public databases

Internal data relations

INCIDENT RESPONSE

Threath Intell

Mitigations

Alerts

Surface View

Point of View

Threat Feeds,
GEO IP data

Alerts

DATASTORE

Raw data

 Analysts workstationInternal databases

M
o

n
it

o
re

d
 T

ra
ff

ic

Block connection

Figure 8. Example of NDR system architechture

39

4.2.1 Packet Capturing

Packet capturing is a method where full data packets transmitted on the wire are

being listened and recorded. This is especially import technique for forensics since

the authenticity of the captured traffic is undisputed when collected and stored into

dedicated packet capturing system. For example, if threat actor had taken over a

computer, authenticity of all data seen on it can been questioned but network traffic

leading to incident remains unchanged and reliable since it is stored into external

system, unreachable to threat actor. (Messier 2017, 81-82)

Back in the days when hubs were used to connect ethernet devices to each other,

everyone connected to same hub could listen everyone, since hubs broadcasts all

data packets to all ports. Nowadays, switches have replaced hubs, and only traffic

destinated to specific device will be sent to it by switch, based on MAC addresses

table. Hence, additional tools are needed for bulk packet capturing. One could do

physical modifications to copper wires and repeat traffic to capturing device or use

specific tools to detect bits transmitted over optical fibers. Port Spanning is method

where switch is configured to copy certain ethernet frames to one dedicated port

which’s only purpose is to transmit these mirrored frames to the wire connected to

it. Criteria for mirrored traffic can be based on for example switch’s ethernet ports or

virtual local area network (VLAN) identifiers, this varies depending on the model of

the switch. Some switches don’t support port mirroring at all. (Messier 2017, 91-93)

Based on researcher’s working experience, port spanning (also called port mirroring)

is the most used method in enterprise networks to capture traffic to dedicated

packet capturing devices. Port mirroring can usually be applied also in virtual

machine environments. In NDR, collectors are responsible for packet capturing.

4.2.2 Collecting Flow Data

Netflow is network telemetry data gathering protocol designed by Cisco. It was

initially designed to be used for accounting networking data and to help with

bandwidth management. Nowadays it is used also as a network security monitoring

tool since it provides non-reputable telemetry data and can be used to detect

anomalies. Any netflow enabled network device can be configured to collect netflow

40

data and forward it to netflow server. With netflow, network itself is acting as a

sensor and makes it possible to have wide visibility on what is going on inside

network. Netflow creates records of each flows containing at least information of

source and destination IP address and source and destination UDP or TCP port and

name of the protocol (UDP/TCP). This information is referred as five-tuple and is the

basis of all netflow record. Based on the version of netflow protocol and capabilities

of network device collecting flow data, there can be also other information gathered

from ethernet, IP and transport protocol headers of data flow. Flow records also

contain timestamps and traffic counters.

Netflow analyzers can be used to detect threats and traffic anomalies based on

collected netflow data. For example, DoS attack can be detected if highly increased

number of packets and bytes are seen destinated to server and data exfiltration

might be occurring if large amount of data is being transferred using abnormal

protocol to suspicious destination IP address. Netflow doesn't provide as good

insight into traffic as packet capture based solutions does, but it is much more

scalable when it comes to implementing data collecting points. Netflow records are

much smaller than full packet captures and can therefore be stored much longer

which is especially important in forensic analysis. Netflow version 9 is the most used

version currently. Older version 5 is also used but other versions are not supported

any more. (Santos 2020, 225-237)

IPFIX (IP Flow Information eXchange) is IETF standard based on netflow version 9. It

allows network device to be flexibly configured with templates defying which

information is being collected. Unlike netflow, relying only on UDP protocol, IPFIX

can be configured to transport flow records to server also using SCTP and TCP

protocols (Santos 2020, 237-238). Some NDR solutions, such as Cisco Stealthwatch,

utilizes netflow data to gain wide visibility through whole network (Santos 2020,

250).

4.2.3 Ingesting, Filtering, Parsing and Forwarding

Data received from packet capture and flow exporters needs preprocessing before

forwarding to analyzer components. There is usually some kind of capture engine in

collector node, which reads full packets entering Network Interface Card (NIC) and

41

then forwards them to different tools for further processing. Additional log

processing software, such as Logstash or Elasticsearch, can then be used to filter out

irrelevant logs, parse logs into suitable format and forward on to NDR analyzer

component. (Security Onion 2021)

4.2.4 Enrichment and Threat Intel

Enrichment is a process of adding additional context to normalized data. Log data

enrichment is especially useful against IP addresses. It helps security analysts to

make decisions when looking alerts and logs, which of them are more likely false

positives and which might be true positives and should be inspected with higher

priority. For example, log entries of downloaded executables happen constantly.

With additional geo or reputational data linked to IP addresses seen on log, analyst

can make faster decision if it is false positive or possibly true positive.

There are several sources for data enrichment. External public databases include Geo

City (City, state, country IP is registered to) and Geo ASN (organization IP is

associated with) lookups. Public DNS and whois databases can be used for

enrichment as well. Same type of enrichment data can also be gathered from

organization’s internal databases and linked to organization’s IP addresses.

(Henderson, Hubbard 2018)

Cyber threat intelligence is information generated from threats seen on the past and

present. Threat intelligence information is usually presented as feeds, which contain

specific IoCs, such as hashes, IP addresses and domains. Some Threat intelligence

feeds are publicly available, and some are private. Private feeds are typically

obtained from security vendors against payments. Public feeds are typically provided

by opensource communities and governmental organizations. (EC-Council 2021)

4.2.5 Rule-Based Detection

Rule-based detection is usually based on matching specific signature, such as hash, IP

address or domain, seen on data packet. This is referred to as signature-based

detection and it is efficient for detecting known IoCs. Rule-based detection can also

be used to detect known anomalies in traffic, for example a rule can be made to

detect series of SYN packet indicated DDoS attack. Weakness in Rule-based detection

42

is that it can't be used to detect new and unknown threats which doesn’t have any

signatures available. (Rezek 2020)

JA3 and JA3s are an example of methods used for signature-based detection for TLS

traffic. JA3 is a hashing mechanism developed by Salesforce. It uses information

gathered from client hello packet during TLS handshake. This information is then

used to generate hash value, which can be used to identify applications. Values used

for JA3 are picked from fields: TSL Version, Accepted Ciphers, List of Extensions,

Elliptic Curves and Elliptic Curve Formats. These values are then inserted into CSV

(Comma Separated Values) format and JA3 hash is generated from it using MD5

algorithm. This makes it possible to detect certain client applications due to their

unique way to initiate TLS connection. JA3s is similar method used for identifying

application running on top of TLS servers. It utilizes values seen on TLS Version,

Cipher and Extensions fields of server hello packet seen in TLS handshake and

generates JA3s hash using same mechanism as JA3. When used together, JA3 and

JA3s hashes have been used to detected malware connection, such as Metasploit’s

Meterpreter and Cobalt Strike’s Beacon. (Althouse 2019)

4.2.6 Behaviour-Based Detection

Behavior-based detection is method where traffic anomalies are detected using

artificial intelligence (AI) and machine learning (ML). This requires collecting and

analyzing large amount of data first to generate baseline for normal traffic patterns

in environment. Behavior-based detection provides capabilities to detected new

threats without fingerprints and known IoCs. (Rezek 2020)

In supervised machine Learning, to ML component is given previously classified data

which it uses to learn data classification system. This is very efficient approach for

training the system to learn common indicators of certain type known threats, like

ransomware, so it could detect similar threats in the future. In cyber security,

supervised machine learning is used to train system for previously seen behaviors

categorized to be either malicious or benign. New activities are then compared to

trained behaviors and labeled based on matched results.

43

In unsupervised machine learning, there is no pretraining and categorizing of

datasets made by human. Unsupervised ML identifies traffic it sees and generates

patterns and trends from the data to create baseline for normal traffic using its

algorithms. While learning, it constantly detects anomalies from baseline. It can

therefore detect zero-day attacks and even threats that no human hasn’t imagined

yet. (Darktrace 2021)

4.2.7 Responses and Integrations

How NDR system can respond to detected anomalies varies by vendor. Usually, NDR

solutions may be able to block detected threat by commanding external systems

such as firewalls, routers, switches and servers. Sometimes response can be

automatic, sometimes it requires administrative interactions. Some vendors require

additional license for automated responses. Generally, all NDR solutions can

integrate one way or another to external monitoring systems and forward alerts to

them. (Gartner 2020)

4.3 Threat Hunting

Threat hunting offers completely different approach for threat detection compared

to NDR. Where NDR is highly automated way to detect ongoing threats, focus on

threat hunting is to look for threats that have been left undetected by automation.

These kinds of threats might be attacks done by highly skilled APT groups. Threat

hunting starts from hypothesis that something malicious which haven't yet been

detected might have occurred. Threat hunter then starts to systematically look for

evidence to support that theory. Unlike NDR, threat hunting requires human factor

and usually threat hunters are experienced cyber security professionals with

professional tools. (Chrisander 2020)

5 ETA Tools and Solutions

There are many opensource and commercial tools and systems available which can

be used for ETA. This chapter lists few of them. Tools and systems described in this

chapter will be also used in testing phase of the research.

44

5.1 ETA Tools

ETA Tools are softwares designed to do certain specific tasks rather than trying to

provide wide range of functionality to cover all aspects needed in ETA.

5.1.1 Suricata

Suricata is well-known and widely used opensource IDS. It inspects network packets

using its own rule and signature language. Complex threats can be detected using

Lua scripting language. Suricata supports standard YAML (YAML Ain't Markup

Language) and JSON (JavaScript Object Notation) formatting and can be therefore

integrated with many SIEMs. It is owned by the Open Information Security

Foundation (OISF) and is free to use and is widely supported by opensource

communities. Suricata is at its best when detecting signature based known threats,

policy violations and malicious behavior patterns. It also supports importing rulesets

from 3rd party threat intel sources. Suricata is designed to be fast. Single Suricata

instance, using multi-threaded code, can inspect several gigabits of traffic. It can

identify several protocols, such as HTTP, despised on TCP port it is running, and

perform protocol specific inspection rules. Suricata can be used to generate many

protocol specific logs and store specific data, such as certificates seen on TLS traffic.

(Suricata 2021b)

Suricata rule syntax is simple and easy to read. It includes three parts: action, header

and options. The action, determines what happens when the signature matches (for

example, drop or alert). The header, defines protocol, IP addresses, ports and

direction of the rule. Rule options defines the rule specific parameters, such as

message, reference and class type information of the alert.

Suricata is very useful in ETA since it has native support for TLS specific rules. These

rules can be used to match many TLS keywords. Appendix 2 shows TLS keywords

supported in Suricata version 6. With these keywords, one can for example create a

rule which would alert when blacklisted certificate hash is detected using match

pattern "tls.cert_fingerprint; content:"<sha1 hash>";" or when SNI for blacklisted

domain is seen using match pattern "tls.sni; content:"<domain name>""

45

Suricata also has support for JA3 and JA3s fingerprints. Both types can be matched by

hash (ja3.hash; content:"<sha1 hash>";) or by string (ja3.string; content:"19-20-21-

22";). keywords for JA3s are similar (ja3s.hash and ja3s.string).

IP reputation configuration allows Suricata administrator specify IP addresses into

categories using reputation files, such as badhosts.list and knowngood.list. These are

CSV files containing values for "ip","category","reputation score". "ip" is IPv4

formatted single IP address or network in CIDR notation. "category" is index number

defined for reputation category in separate categories file, which is another CSV file

listing configured categories. "reputation score" is value from 1 to 127 describing

confidentiality of the IP belonging to the specified category.

IP reputation can then be used in rules with keyword "iprep" with syntax "iprep:<side

to check>,<category>,<operator>,<reputation score>" where first is defined which

way traffic is matched (any, src, dst or both), then the category name, operator (<, >

or =) and value of the reputation score. For example, this rule would alert if source IP

address belonging to C2 category with reputation greater than 100 is detected: “alert

ip any any -> any any (msg:"IPREP High Value C2"; iprep:src,C2,>,100; sid:1; rev:1;”.

Suricata outputs alert using Extensible Event Format (EVE), which is JSON data.

(Suricata 2021a)

5.1.2 Zeek

Zeek is an opensource network security monitoring tool. Its development started in

1990s under the name “Bro”, but it was renamed to Zeek in 2018. Zeek is a sensor

which unobstructively monitors network traffic and generates compact but

information rich logs which can be analyzed locally or forwarded to external system

such as SIEM. (Zeek 2021b)

Zeek generates wide range of logs based on traffic it sees on the wire. Application

specific log files, such as for HTTP sessions, include telemetry data at application

level, such as requested URIs and key headers. By default, logs are written in JSON

form which can be easily stored into external databases and processed by SIEM

products. Zeek also provides built-in functionality to detect and analyze anomalies,

for example files can be extracted and compared against external registries to detect

46

malwares. More complex and customized detection can be done by using Zeek’s own

scripting language which is similar in nature to Python.

Zeek is designed to handle high-speed network traffics. With proper hardware

resources, clustering and load balancing, Zeek can be used even in 100GE networks.

Zeek’s clustering capabilities provide good scalability as additional Zeek nodes can be

easily added to cluster whenever needed. Unlike IDS systems, such as Suricata, Zeek

is not optimized for signature detection. Zeek is optimized to interpret network

traffic and generate logs with lots of application specific information.

Zeek’s architecture is layered into two main components. Event engine is the core of

Zeek. It ingests packets seen on the network and generates series of higher-level

events based on the packet stream. Events are policy-neutral, simply stating what

has been seen on the network. Second main component, Script Interpreter, then

process these events based on in-built and custom scripts written in zeek scipting

language to detect anomalies, generate logs and raise alerts to external systems.

Even though Zeek can be configured to trigger alerts, it is more suitable for threat

hunting or additional investigations when security analyst receives alert from

traditional alerting system, such as IDS or EDR. When doing analysis for real time

traffic, Zeek ingests network traffic using NICs configured for packet capturing. When

doing analysis for offline packet capture data, packet capture files in pcap-format can

be imported and processed by Zeek. Zeek creates log files to local storage and can

perform log archiving and log forwarding based on configurations. Log files useful in

ETA are listed in Table 4.

Table 4. Zeek log files useful in ETA

Log File Description

conn.log TCP/UDP/ICMP connections

dns.log DNS activity

ssl.log SSL/TLS handshake info

x509.log X.509 certificate info

intel.log Intelligence data matches

47

known_certs.log SSL certificates

known_hosts.log Hosts that have completed TCP

handshakes

weird.log Unexpected network-level activity

conn.log constains TCP and UDP flow data, including data captured from packet

headers of OSI layer 3 and 4. conn.log data is similar to data which can be gathered

by netflow. Zeek generates unique connection ID for each entry in conn.log, called

"uid". These "uid" values are shared with related application specific log files to ease

correlation of separated log files. TLS protocol fields, such as version, ciphersuite

negotiated and SNI, can be seen in ssl.log files. JA3 and JA3s fingerprints are not

included natively in Zeek v4.0.1 but can be installed using Zeek’s package manager.

JA3 and JA3s hashes are then seen on ssl.log aswell. If ESNI or ECH is used, certain

fields encrypted by these protocols, such as SNI, are not seen in ssl.log.

Another important Zeek log files in ETA is x509.log. These logs contain information

gathered from field seen on x.509 certificates. Each analyzed certificate is given

specific certificate id called "cert_chain_fuids". Same field is used in ssl.log to ease

mapping between ssl and x509 logs. x509 logs contains useful information for ETA

such as serial number, subject, issuer and validity of the certification. Since TLS 1.3

encrypts x509 certificates, there are no x509.log entries for TLS 1.3 connections.

Zeek has framework called Intel which can be used to feed threat intelligence

information to Zeek, such as IP addresses of known threat actors. When Zeek

matches this information during traffic analysis, it writes an entry into intel.log file.

This log has information where specific intel information was seen and which

information data it was mapped to. Zeek doesn't support dynamic threat intel feeds

directly as data to intel framework must be imported using Zeeks input framework in

tab separated ASCII files. Additional mechanism must be used to preprocess threat

intel data into correct format and into Zeek’s input framework. Zeek supports GeoIP

information to enrich log data if Maxmind's libmaxminddb package is installed on

system. GeoLite2-City database information can also be used to map IP addresses at

City level. (Zeek 2021a)

48

5.1.3 RITA

Real Intelligence Threat Analysis (RITA) is an opensource system designed to detect

C2 activity on network traffic. It is developed by Active Countermeasures. Instead of

trying to detect exact fingerprints of certain IoC, it tries to detect anomalies in traffic

behavior. RITA ingests Zeek logs and uses machine learning algorithm to detect

beaconing and tunneling activies. It also supports matching domains and IP

addresses against blacklists. (RITA 2021)

RITA is written in Golang (Go) programming language. It uses Mongo databases

which allows user to isolate different datasets into individual databases when

needed. This is defined when importing zeek logs into RITA. (Goddard, N 2020)

RITA uses machine learning algorithms for detecting beaconing. Factors used in

beaconing are interval, data size and jitter. Interval defines consistency of heartbeat

signals seen on connection. Data size is another aspect to look for in beaconing, if all

packets are same sized, it is possibly containing fixed sized C2 commands. Jitter

defines how much variation there is seen between intervals. Based on values seen on

these factors, beacons are scored and listed in RITA given security analyst

information for suspicious connections. Other indications for C2 traffic are long

connections, connection to blacklisted IP addresses and domains and detected user

agents. (Strand, J 2020)

5.1.4 LogPoint

LogPoint is a commercial SIEM product and not especially designed for ETA.

However, it can be utilized as a component in ETA solution for its capabilities to

analyze and visualize log data. LogPoint includes User and Entity Behavior Analytics

(UEBA) module, which uses machine learning to detected anomalies and deviations

for user and network activities compared to baseline data seen on environment

(LogPoint 2021). LogPoint is an example of a tool an organization might already have

implemented for another purpose, but which might be used as a component for ETA

solution as well. One research aspect assigned by researcher employer was to

investigate if LogPoint can be utilized as analyzer in ETA system.

49

5.2 ETA Solutions

ETA Solutions are larger systems containing different tools interacting with each

other. ETA Solutions aims to provide good coverage for all aspects needed in ETA.

5.2.1 Security Onion

Security Onion is free opensource linux distribution designed for threat hunting,

security monitoring and log management. It includes wide range of security tools

such as Elasticseach, Logstash, Kibana, Surica, Zeek and Wazuh. Security Onion

started in 2008 and was originally based on Ubuntu but is now container based, not

limited to any specific operation system and called Security Onion 2.

Security Onions core functionalities are full packet capture, network and endpoint

detection and powerful analysis tools. Packet capturing is done via program called

Stenographer, which stores full packet captures to hard drive based on configuration

for storage limitation. It has built-in functionality to purge old data and keep disk

space available for new packet captures. Full packet captures are important when

investigations require exact information what traffic has been seen on network.

Network and endpoint detection functionality gathers log and alert data for detected

events happening on monitored network and endpoints. For network events Suricata

is used to do signature-based detection and Zeek is to gather protocol metadata.

Opensource IDS softwares for endpoints such as Wazuh or osquery can be used for

monitored endpoints.

Security Onion uses Linux kernel’s AF_PACKET software to capture packets and load

balance to them to another processes utilizing packet capture data, such as network

traffic analysis software Zeek as seen on Figure 9. These tools then ingests and

processes packet capture data, generating their own log files. For example, Zeek

generates different kinds of log files based on protocol seen on packet capture data.

50

Sniffing
NIC(s)

AF_PACKET AF_PACKET AF_PACKET

Stenographer Suricata Zeek

/nsm/pcap/ /nsm/suricata/ /nsm/zeek/logs

Figure 9. Packet capture engine in Security Onion

Security Onion has GUI which includes separate portals for different functions.

“Alerts” portal allows user to see active alerts generated by network and host IDS.

“Hunt” portal allows user to perform queries from different logs processed by

Security Onion. “PCAP” portal allows user to investigate full data packets gather via

Stenographer.

Security Onion can be installed in several ways based on environments and user’s

needs. Most simple installation architecture is "Import" where a single node is used

without packet capturing capabilities. In "Import" architecture, user can import

packet capture data in pcap format manually and then analyze it with Suricata and

Zeek and index it by utilizing Elasticsearch. "Evaluation" architecture includes

additional NIC for packet capturing traffic from wire. It is designed to be used for

testing only and is not recommended for production use. "Standalone" architecture

is single node installation which has additional Redis component for queuing logs

between Logstash instances. It is suitable architecture for production usage in small

environments. "Distributed" architecture contains multiple nodes. Different

functionalities are distributed between different types of nodes, for example

51

separate Management node is used for collecting, parsing and storing logs coming

from Forward nodes which perform packet capturing and log generation. Additional

Search nodes are used by security analyst for operative tasks.

Components, such as Suricata and Zeek, are run in Docker containers inside Security

Onion nodes. Security Onion uses Salt orchestration for managing these containers.

Many configurations for containers in Security Onion are done using pillars, which

are a YAML files used by Saltstack. Pillar files can be global or minion. Global pillar

files all used for making assignments for all Security Onion nodes. Minion pillar files

are used for node specific configurations. Services can be stopped or restarted in CLI

using “so-<component>-<verb>” syntax. For example, “sudo so-zeek-restart” would

allow privileged user to restart Zeek service. (Security Onion, 2021)

Security Onion Solutions, LLC, is a company behind creation and development of

Security Onion. It provides support services and training and sales hardware

appliances for its customers. (Security Onion Solutions, 2021)

5.2.2 SensorFleet

SensorFleet is a Cyber security sensor solution developed by Finnish company

SensorFleet Oy. Its architecture consists of instruments, sensors and manager nodes.

Instruments are containerized software components designed to do certain specific

tasks. SensorFleet uses opensource instruments, such as Suricata and Zeek, along

with tools they have developed by themself. SensorFleet also supports 3rd party

instruments, even user's own developed tools as long as they can be deployed as

containers. Instrument are run on sensor nodes, which can be virtual machines or

hardware appliances. SensorFleet manager node is designed to be centralized point

of managing configurations and deploying instruments to sensors. For example,

blacklists, IoCs and rulesets can be configured in manager and pushed from there to

sensor platform. SensorFleet aims to ease the pain of managing wide range of tools

scattered around many nodes across different networks. (SensorFleet, 2021a)

SensorFleet manager communicates to sensors using VPN. Configurations in YAML

format are pushed using ansible playbooks. Sensor and manager nodes have GUI and

SensorFleet’s own CLI which can be accessed from operation system’s CLI using

52

command "fleet". Both GUI and CLI can be used for configuring sensors.

SensorFleet’s centralized architecture consists of Fleet Manager, Sensors and

external SIEM solution. Fleet manager is running IDS Policy Manager and Downloader

instruments used for managing IDS policies and downloading rulesets from internet.

Sensors are running instruments used for detection, such as Capture Engine, Suricata

and Zeek. SIEM is the centralized place for analyzing logs generated and forwarded

by Sensors.

SensorFleet sensor use its own capture engine to do packet capturing and distribute

full packets to different instruments. Capture engine is given dedicated NICs which

are configured to receive data and forward it to component called mirror-bridge,

which will forward data to instruments attached to it as seen on Figure 10.

Suricata Container

Capture Engine Container

Eth 1

capture capture capture

Out interface

Mirror-bridge

Eth 2 Eth n

Zeek Container

Figure 10. Packet capture engine in SensorFleet

53

Instruments are run in LXC containers and NICs allocated to them are not accessible

from OS. LXC configurations are managed by SensorFleet’s own orchestrator

software. (SensorFleet, 2021b)

6 Implementation and Testing

Testing was done using Cinia’s VMware platform for virtual machines (VM). It was

dedicated platform for testing purposes with access to internet to ease installation of

virtual machines. On top of VMware platform, virtualized environment was created

for imaginary company called Lupari Oy containing separate subnets for workstations

and servers segmented by firewall. Additional network was created to simulate

internet and to provide connectivity for threat actors targeting the company. ETA

systems were implemented and configured to detected anomalies in TLS traffic.

Network diagram of the environment is illustrated in Figure 11.

FAKE-INET
203.0.113.0/24

INTERNET

Kali
.31

WORKSTATIONS
10.111.100.0/24

TAP

SensorFleet
Manager

SensorFleet
Sensor

SERVERS
10.111.1.0/24

Intra
.55

ubuntu
.111

.81 MGMT

.82 log forwarder
.80 MGMT
.88 downloder

.1

.1

.1

.89

RITA

Test Environment
Internet gateway

.86

Port mirror

www.fzecure.com
.13

database
.44.83

.1

SecurityOnion

TAP

LogPoint

.168

MANAGEMENT
10.222.0.0/24

Public DoH servers
Tor edge nodes..

Win10
.100

ETA1

ETA1 ETA1

ETA2

ETA2

Figure 11. Testing environment

IP addresses used in testing environment were reserved address spaces assigned by

IANA (Internet Assigned Numbers Authority) and to be used in private and testing

54

purposes (IANA 2019). Address space 203.0.113.0/24 was used to simulate internet

inside testing environment, 10.111.0.0/16 addresses were used for test organizations

internal networks and 10.222.0.0/24 was used for management network for ETA

systems. Management network was also used for accessing real internet when

needed.

ETA solutions used in testing environment included five virtual servers which created

two parallel ETA systems which were compared against each other. ETA1, included

SensorFleet manager and sensor virtual machines and LogPoint SIEM solution. ETA2

consisted of SecurityOnion and RITA virtual machines. How components used in ETA

systems could be seen in NDR architecture is illustrated in Figure 12.

ANALYZER
COLLECTOR

ETA2
SECURITY ONION

ETA2
RITATRAFFIC VISIBILITY

ETA1
SENSORFLEET SENSOR

DATA SOURCES PCAP

ETA1
LOGPOINT

NORMALIZED
DATA

DATASTORE

Packet
capturing

Filtering
&

Parsing

Rule Based Detection

TRAFFIC VISIBILITY

Indexed Data

INTERNET

Surface View

Point of View

DATASTORE

Raw data

ETA1
SENSORFLEET MANAGER

Threath Intell

Public databases

Threat Feeds,
GEO IP data

Sensorfleet channel

DATA SOURCES PCAP

NORMALIZED
DATA

DATASTORE

Packet
capturing

Filtering
&

Parsing

Rule Based Detection

Indexed Data

Surface View

Point of View

DATASTORE

Raw data

Threath Intell

DATASTORE

Zeek logs

SCP copy for zeek logs

ML Based Detection

Reports

Reports

Figure 12. Components of ETA systems in NDR architecture

Responsive part of NDR architecture was out of scope of testing. Both systems have

similar collector systems utilizing Zeek and Suricata.

55

6.1 Implementing Testing Environment

Testing was done on VMware platform which included preinstalled network

10.222.0.0/24 with internet connectivity and LogPoint SIEM. Additional networks and

VMs were implemented to build environment for ETA testing.

6.1.1 Implementing ETA1

For ETA1 system two additional VMs were created, SensorFleet manager and sensor

with resources listed in Table 5.

Table 5. Resources on VMware platform for SensofFleet

Virtual Machine CPU RAM HDD

SF Manager 2 4 GB 20 GB

SF Sensor 8 16 GB 60 GB

SensorFleet VMs were provided by SensorFleet’s representive to be used for testing.
Both VMs were running Ubuntu 18.04. SensorFleet version used in testing was 2.3.1.
SensorFleet Manager was configured with additional interface to be used for
Downloader instrument, which would be used by IDS Policy Manager instrument for
retrieving data from internet. IDS rule manager was configured to use dynamic
Suricata rules provided by Emerging Threats as seen on Figure 13.

Figure 13. SensorFleet IDS Policy Manager configuration for external Suricata rules

56

In IDS Policy Manager’s Zeek Scripts page, JA3 and JA3s scripts were created as seen

on Figure 14.

Figure 14. SensorFleet IDS Policy Manager configuration for Zeek JA3 script

SensorFleet sensor VM was configured with two additional interfaces, one for

capture engine instrument and one for log forwarder instrument. Instruments for

Suricata and Zeek were also added and configured to receive packet capture from

mirror-bridge attached to capture engine. Figure 15 show how this was done for

Zeek instrument. Configuration for Suricata instrument was similar.

57

Figure 15. SensorFleet Sensor interface configuration for Zeek instrument

Logforwarder instrument was configured with IP interface and to parse and forward

Zeek and Suricata logs to LogPoint. LogPoint was configured to ingest syslogs in JSON

format coming from Logforwarder’s IP address.

6.1.2 Implementing ETA2

For ETA2 system, two VMs were created, Security Onion and RITA. Resources

allocated for these virtual machines are listed in Table 6. Security Onion version used

in testing was 2.3.50 and RITA version was 4.2.0 and it was run on top of Centos 7.

Table 6. Resources on VMware platform for Security Onion and RITA

Virtual Machine CPU RAM HDD

Security Onion 8 32 GB 200 GB

RITA 2 16 GB 30 GB

Security Onion was installed using iso file downloaded from Security Onion’s Github

page. Additional interface was added for virtual machine to be used for packet

58

capturing. Installation was very straightforward for standalone single node

implementation. During installation, basic settings for interfaces, management, Zeek

and Suricata were specified by interactive Security Onion Setup program. Overall

Installation of Security Onion used in testing was easy but slow. It took couple of

hours before Security Onion was up and running after given all the parameters

during installation.

Implementing RITA was easy and quick by using installation script from RITA’s Github

page. Additional filtering and blacklists could have been configured for RITA, but this

wasn’t done for testing environment as size of the log data wouldn’t be that big.

6.1.3 Implementing Data Sources

Several VMs were installed to generate TLS traffic for test cases. There were two VMs

placed into “fake internet” and to be used by threat actors. Phishing site was running

NGINX web server on Centos 7 VM and Metasploit and SNIcat servers were run on

Kali 2021.1 VM. Two servers were installed into company’s server network. Both run

NGINX web server on Centos 7 VM but with different TLS configuration. Two

workstations were placed into company’s workstation network, one installed with

Windows 10 and one with Ubuntu 18.04. OpenWRT was used for one VM which act

as a company’s firewall and routed traffic between networks. Additional port

mirroring configuration was made in VMware platform which mirrored traffic from

workstation network to ETA systems. List of VMs used in testing environment can be

seen on Appendix 3.

6.2 Test Cases

Couple of scenarios were tested. First, an attack simulation was played and tested

how ETA system could detect it. Simulation starts from the point where attacker has

successfully scammed victims via phishing mail to download and install software

which are claimed to be antivirus client install packages for their workstations.

Attacker is using his web site www.fzecure.com as a place to distribute his malwares.

Site has valid certificate signed by CA of the testing environment. When victims have

downloaded and run malware packages in their workstations, RAT/C2 client

softwares are launched and starts connecting to attacker’s server using TLS

59

connections. After gaining remote access to victim’s workstations, attacker performs

data theft by uploading large amount of data from workstation to server. All these

activities should provide IoCs to ETA systems. Two kinds of malware software were

tested. Metasploit’s meterpreter over TLS was used for windows workstation and

SNIcat was used for Ubuntu workstation. Figure 16 illustrates TLS traffic flows from

workstations to phishing site and to attacker’s server.

RAT server
.31

WORKSTATIONS
10.111.100.0/24

ubuntu
.111

Win10
.100

HTTPS
Download

www.fzecure.com
.13

Metasploit
RAT SNIcat

RAT

FAKE-INET
203.0.113.0/24

Figure 16. TLS traffic flows to phishing sites and RAT/C2 server

After attack simulations, more common detection cases often seen in real

environments were tested. These tests included detecting Tor and DoH traffic and

TLS misconfigurations in internal servers. Detection of port scanning, brute forcing

and DDoS was left out since these attacks can be quite easily detected with

traditional netflow based network monitoring tools. Detection of VPN traffic was also

left out due to strict time schedule and since as a test case it wouldn’t differ much

from detecting Tor traffic.

6.2.1 Detecting Traffic to Phishing Site

At the very beginning of the attack simulation, workstations connect to phishing site

www.fzecure.com and downloads RAT software. In this test scenario, phishing site is

60

already publicly known and blacklists for certificate hash, IP address and domain

name are configured for ETA systems. Figure 17 displays blacklist configurations used

for test scenario in SensorFleet IDS Rule Manager.

Figure 17. SensorFleet IDS Rule Manager Blacklists configuration

By investigating logs in LogPoint, matches for blacklist entries was seen. Figure 18

shows log entry forwarded by Sensorfleet Sensor indicating blacklisted certificate

hash for phishing site was detected.

Figure 18. Blacklisted certificate hash detected in LogPoint

Figure 19 shows log entry which indicates match on domain blacklist created for

phishing sites.

61

Figure 19. Blacklisted domain name detect in LogPoint

These logs are generated by Zeek at SensorFleet Sensor by analyzing x509.logs

against Zeek’s threat intel framework, which gets its blacklists from SensorFleet

Manager. Both logs shows that connection was made from IP used by windows

workstation (10.111.100.100) to IP assigned for www.fzecure.com (203.0.113.13).

Figure 20 show log entry indicating match for phishing sites IP blacklists. This log is

generated by analyzing Zeek’s conn.logs and matching against IP blacklist in threat

intel framework.

Figure 20. Blacklisted IP address detected in LogPoint

Security Onion wasn’t configured to use any static blacklists. However, by using

Security Onion’s “Hunt” functionality, similar Zeek logs leading to same threat

information was found by using keywords x509.certificate.subject,

x509.certificate.serial and destination.ip.

6.2.2 Detecting Metasploit HTTPS Reverse Shell traffic

After downloading Metasploit RAT client file from phishing site to windows

workstation, the malicious exe file was run to initiate TLS connection from

workstation to Metasploit RAT server running at attacker’s Kali VM in internet.

Metasploit’s reverse HTTPs remote shell functionality was used with its self-singed

certificate. Value of the certificate subject field varies by instances to make static

matching against blacklists hard but by using self-signed certificate for service at

internet would make it stand out from regular HTTPs traffic. In testing scenario,

62

network traffic coming from IP address of the Metasploit server 203.0.113.31 has

been categorized to be suspicious by company’s external threat intel partner and IP

was configured on SensorFleet IP blacklist as seen in Figure 17. Since Metasploit

remote shells are commonly used and seen on network, it is very likely it could be

detected by matching JA3 and JA3s hashes. Suricata detection rules used by both ETA

systems was implemented using dynamic Suricata rules from community supported

free to use website rules.emergingthreats.net. Static rules matching for JA3 and JA3s

hashes wasn’t implemented in this scenario.

After Metasploit remote shell was established, first indication was discovered at

Security Onion’s alert portal. There was alert for JA3 hash possible match for Trickbot

malware as seen on Figure 21.

Figure 21. Security Onion alert for JA3 match for malware

Alert details rule.rule field shows the exact Suricate rule with JA3 hash value, which

generated the alert. As destination IP on the alert matched with suspicious IP

203.0.113.31, further investigating was made in Security Onions Hunt portal using

filter with JA3 hash which was seen on alert (294b2f1dc22c6e6c3231d2fe311d504b).

This resulted information from Zeek logs related to event which triggered the alert as

seen on Figure 22.

63

Figure 22. Investigating alert in Security Onion’s Hunt portal

This log entry stated that self-signed certificate was used and order of attributes in

ssl.certificate.subject field seemed abnormal (emailAddress,CN,OU,O,ST,C). These

can both be considered IoCs. JA3 and JA3s hashes were further investigated using

publicly available API for community supported JA3 hash database site ja3er.com.

JA3 hash resulted match for Trickbot but JA3s hash didn’t have a match as seen on

Figure 23.

Figure 23. Querying JA3 hashes from ja3er.com database

It seemed odd at first why JA3 hash of Metasploit TLS connection would match

famous banking trojan Trickbot but further investigations revealed that Trickbot

actually utilize Metasploit among other frameworks (Dahan, Rochberger, Salem,

Zhao, Yona, Yampel, Hart 2019).

64

Connection to Metasploit server’s IP address was also identified in LogPoint using IP

blacklist in similar fashion as connection to phishing site. By looking log entry details,

same IoCs which was seen in SecurityOnion was seen in LogPoint as well as seen on

Figure 24. Only differ is that log entry in LogPoint doesn’t directly state that self-

signed certificate is being used but it shows that certificate subject and issuer are the

same.

Figure 24. Log entry for Metasploit HTTPS remote shell in LogPoint

After verifying that ETA systems have detected Metasploit HTTPs remote shell

connection, data theft was initiated by using Metasploit meterpreter’s inbuilt

download functionality. Large file was transferred from workstation to Kali VM over

HTTPS remote shell. This should be seen as abnormal traffic behavior since

workstations generally doesn’t generate much upstream traffic to internet. Remote

shell session was terminated after one and half hour to generate a TLS connection

log that could also be detected by longer than average duration. By using search

parameters in LogPoint looking for TLS sessions with upstream more 100MB or

duration more than one hour, connection used for data theft stand out as seen on

Figure 25.

Figure 25. TLS connection in LogPoint indicating possible data theft

65

Similar query was done in Security Onion and similar log entry generated from Zeek’s

conn.logs was identified. Security Onion’s Zeek logs of testing day was copied and

uploaded to database in RITA server for further analysis. RITA detected beaconing

activity from windows workstation to Kali VM with risk score of 0,627 as seen on

Figure 26. It also detected connections from workstation to OpenDNS servers as

high-risk beaconing activity. This is because RITA was not configured to exclude these

known good IP addresses from beaconing analysis. RITA also detected the long

duration of TLS sessions between workstation and Kali in its “Long Connections”

analysis.

Figure 26. IoCs in RITA for Metasploit HTTPS remote shell

TLS connections with large upstream and long durations are not uncommon in

certain environments and specifying threshold values for these types of connections

to be considered as IoCs can be very tricky. Known good IP addressed should be

whitelisted when implementing alerting.

6.2.3 Detecting SNIcat C2 traffic

SNIcat is a python-based Proof of Concept (PoC) tool used to demonstrate how C2

data can be tunneled using TLS SNI field. This is a covert channel which bypassed

many firewall and proxies in the beginning of 2020, when the tool was developed.

SNIcat server utilizes both CA signed wildcard certificates and self-signed certificates

to tunnel traffic from client to server. Kali VM used as SNIcat server was configured

to use wildcard certificate *.fzecure.com signed by testing environments CA and self-

66

signed certificate with subject update.fzecure.com to make it seem like a legit update

server for antivirus client.

SNIcat client software was downloaded to ubuntu workstation from same phishing

site www.fzecure.com. Detection of this traffic in ETA systems was very similar to

one in previous chapter and is therefore not described further. When starting SNIcat

client python program, it is given parameters for server IP, TCP port and certificates.

It will then try repeatedly to communicate with specified server. After server is

started, it can see connected clients and send basic filesystems commands to them.

This time Security Onion was configured with static Suricata rule which would detect

the *.fzecure.com wildcard certificate and it did raise an alert as seen on Figure 27.

Figure 27. Security Onion Suricata alert for blaclisted certificate subject

When logs was investigated using keyword ssl.server_name in Security Onion Hunt

portal, it showed that data in SNI field was in format <cmd>-<data>.fzecure.com,

where cmd is SNIcat command sent to client and data is data bytes tunneled in SNI

field. Figure 28 displays examples of commands and data in SNI fields.

67

Figure 28. Detecting SNIcat C2 traffic in Security Onion

Same kind of information was also available in LogPoint when querying for Kali

virtual machine IP and looking for server_name and subject keywords as seen on

Figure 29.

Figure 29. Detecting SNIcat C2 traffic in LogPoint

JA3 and JA3s hashes was seen and noticed to be identical for every connection in

SNIcat. JA3 hash for was 6f16291393bca9be2dd25cc7ad01f971 and JA3s hash was

c74a5c51106f0419184d0dd08fb05bc. Both hashes were queried using ja3er.com API

but they didn’t provide any relevant information as JA3 hash matched with

“Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.1) Gecko/20061208 Firefox/2.0.0 Opera

68

9.51” and JA3s didn’t have a match. This is probably because SNIcat is only a PoC tool

suitable for testing and not being actively used by threat actors.

Once again, Zeek logs from testing time was copied and uploaded from Security

Onion to database in RITA server and analyzed. RITA identified SNIcat beacons with

top score as seen on Figure 30.

Figure 30. Detecting SNIcat beaconing in RITA

SNIcat connection wasn’t working reliably in testing environment. Therefor only basic

C2 functionality was tested and file transfer over SNIcat was left outside of testing.

6.2.4 Detecting Tor

ETA systems capabilities to detect real Tor traffic was tested by using Tor browser in

ubuntu workstation and doing some browsing via Tor network. First, Tor circuit was

investigated using Tor browser’s Site Information view and browsed to ripe.net to

verify that connection to internet is coming from Tor network instead of test

environments internet connection. In this case, connection to Tor is done using Tor

node in United Kingdom with IP 77.68.88.20 as seen on Figure 31.

Figure 31. Investigating Tor Circuit and external IP in Tor browser

69

Suricata in Security Onion identified connection to known Tor IP address and created

alert seen on Figure 32. Similar Suricata alert was also seen in LogPoint, which wasn’t

surprising since both ETA systems use dynamic ET rules which have up to date

information on IP addresses used by Tor exit nodes.

Figure 32. Security Onion alert for known Tor node

By filtering logs in Security Onion with Tor node IP address, Zeek’s ssl.logs provided

JA3 and SNI IoCs for Tor traffic as seen on Figure 33. JA3 hash for Tor traffic was

711528629b81edc0307f28392d2a96c0, JA3s hash was

15af977ce25de452b96affa2addb1036 and SNI for this connection was

www.uemlnbynvd3qyfmum4nm4b6k.com, which seems random and stands out from

SNIs used by regular web sites.

70

Figure 33. IoCs for Tor traffic seen in Security Onion

Same IoCs were seen on LogPoint. By using Tor browser’s JA3 hash as a filter and

querying and creating Sankey chart for source and destination IPs, SNI and JA3 and

JA3s hashes visualization seen on Figure 34 indicates that while JA3 and JA3s hashes

remains the same for many connections, entry nodes change from time to time and

SNI used by Tor connection seems to change quite often.

Figure 34. LogPoint Sankey chart for Tor traffic

71

Using ja3er.com API for Tor JA3 hash resulted match: {"User-Agent": "Tor Browser

9.0.2", "Count": 1, "Last_seen": "2020-02-02 19:23:10"}. There was no match for JA3s

hash. In RITA, Tor connection to entry node was seen listed in “Long Connections”

portal indicating unnormal TLS activity.

6.2.5 Detecting DoH

DoH detection was tested by configuring ubuntu workstation’s Firefox to use DoH

and Cloudflare as a service provider and doing web browsing to generate traffic.

Suricata in Security Onion alerted for DoH by detecting “cloudflare-dns.com” in SNI

field as seen in Figure 35.

Figure 35. Security Onion Suricata alert for DoH to cloudflare.com

Suricata alert showed that destination IP address was 104.16.249.249. This IP was

used for filtering Zeek’s ssl.logs to get more IoCs such as exact SNI being

mozilla.cloudflare-dns.com as seen on Figure 36. Similar metadata information for

DoH was seen also in LogPoint.

72

Figure 36. IoCs for Cloudflare DoH traffic seen on Security Onion

JA3 hash aa7744226c695c0b2e440419848cf700 queried from ja3er.com resulted

match for Firefox browser. It first seemed that this was generic hash for Firefox

browser which would match also normal browsing traffic but when filtering logs

using this hash it resulted only connection to Cloudflare DoH. Therefore, this hash

can be used as IoC for detecting DoH for this specific client but is not suitable for

detecting DoH for other clients. JA3s didn’t result any match from ja3er.com. In RITA,

DoH connection was seen listed in “Long Connections” portal indicating unnormal

TLS activity.

6.2.6 Detecting TLS Misconfigurations

ETA systems can also be used to detect TLS misconfigurations and policy violations

such as usage of legacy and vulnerable TLS version or ciphersuites and self-signed or

invalid x509 certifications inside organization network. In testing environment

company Lupari Oy had two servers running TLS on network 10.111.1.0/24. One of

the servers was configured to use self-signed certificate and another was configured

to use certificate signed by company’s own internal CA, but it was configured to

support only legacy TLS versions and ciphersuites. First, HTTPS traffic was generated

to servers from company’s workstations and then ETA systems were used to query

and visualize information regarding company’s TLS and certification metadata. Using

query seen on Figure 37, LogPoint presented information indicating that server

73

db.int.lupari.fi supports acceptable TLS version and ciphersuite but has self-signed

certificate as certificate issuer and subject are the same. Server intra.int.lupari.fi on

the other hand was seen to have certificate signed by company’s internal CA but is

not supporting recommended TLS versions and ciphersuites.

Figure 37. Detecting TLS misconfigurations in LogPoint

Similar information was seen with two queries used in Security Onion. First query

seen on Figure 38, presents TLS versions and ciphersuites for servers in lupari.fi

domain.

Figure 38. Detecting TLS version and ciphersuites in Security Onion

Second query, as seen on Figure 39, presents certificate information for same

servers. Security Onion has additional ssl.validation_status keyword which make it

even easier to detect self-signed certificates.

74

Figure 39. Detecting x.509 misconfigurations in Security Onion

6.3 Administrative and Operational Evaluation

Both ETA systems performed reliably and smoothly. Query syntax was similar in

LogPoint and Security Onion. LogPoint is more versatile with visualization but

Security Onion on the other hand has many inbuilt functionalities for parsing Zeek

logs, such as indicating directly self-signed certificates. From security analyst

perspective, both systems were easy to use and finding relevant information using

queries was fast if one already knows what to look for.

From the administrative perspective, ETA system one was heavier to implement than

ETA system two and required quite a lot of work to get it initially running. Installation

and configuration of Sensorfleet components wasn’t straightforward but scaling it

with additional sensors should much easier since most of the settings can be pushed

to new sensors from the manager server. Installing LogPoint SIEM was out of the

scope of this thesis as it was already present in the testing environment.

ETA system two was surprisingly straightforward to setup with default configuration.

Both Security Onion and RITA required minimal administrative effort to get them

running at decent level. There weren’t many additional configurations done for these

systems. Security Onion was configured with few static Suricata rules, but RITA was

run with default configuration all the tests. Security Onion was installed in single

75

node mode but if it would be implemented with distributed architecture it would

probably be much time consuming to implement.

7 Research Results

Research results includes results from testing phase and results to research

objectives. First test results are analyzed and then results to objectives is being

evaluated.

7.1 Test Results

In testing phase, ETA solutions weren’t benchmarked against each other in detail.

They were however compared in high level by evaluating easiness of

implementation, administation and operation and how ETA systems were able to

detect and visualize IoCs in testing scenaarios. Comparison was done using scoring

with scale from one to three. When scoring easiness of implementing ETA

components, value one indicates that implementation required more than average

amount of effort and time before system was up and running with default settings.

Value three indicate that implementation was easier than average. Same logic was

used when scoring easiness of general administrative and operational tasks of the

systems. LogPoint SIEM was only scored from operational perspective since it was

already implemented in Cinia’s testing enviroment. Therefore it wasn’t possible to do

strictly mathematical comparison between ETA solutions but one could summarize

that ETA1 was harder to implement than ETA2 but when comparing administrative

and operational functionalities there wasn’t much difference. Scores for

implemantation, administration and operation of ETA solutions can be seen in Table

7.

76

Table 7. Ease of implementation, administration and operation of ETA solutions

ETA System ETA1 ETA2

Subsystem SensorFleet LogPoint Security Onion RITA

Implementation 1 - 3 3

Administration 2 - 2 3

Operation 3 3 3 3

When comparing capabilities of ETA systems to detect IoCs, simple binary scoring

logic was used, where zero means IoC wasn’t detected and one means it was

detected. Pyramid of pain layers related to IoCs are listed in tables as well.

Both ETA systems were capable to detect TLS connections destinated to known bad

web site using IoCs for certificate hash, destination IP address and domain name

seen on certificate subject field. Scores for detecting IoCs for phishing site used in

tests are seen on Table 8.

Table 8. Detecting IoCs for Phishing Site

IoC Type Pyramid of Pain ETA1 ETA2

Certificate Hash Hash Values 1 1

Destination IP IP address 1 1

Certificate Subject Domain Names 1 1

Score 3 3

Both ETA systems were able to detect usage of self-signed certificate, however there

was minor difference how ETA systems displays it. Security Onion Hunt portal in

ETA2 indicates it directly using keyword ssl.validation_status in LogPoint same result

can be seen by comparing certificate subject to certificate issuer. Similar mechanism

as used in ETA2 could be added to ETA1 with minor effort directly into Sensorfleet

using Zeek’s scripting or with enrichment configuration in LogPoint but it wasn’t

done due to strict schedule used for testing phase of the research. IoCs for

77

destination IP and certification subjects were seen similarly as for phishing site. JA3

and JA3s hashes were seen indicating JA3 match for Trickbot, which wasn’t the actual

malware used in testing but would be enough for any security analyst to start further

investigations. Beaconing was detected by RITA in ETA2. Beaconing detection in ETA1

wasn’t easy during testing but might be possible to do if all zeek log fields would be

normalized and analyzed by LogPoints UEBA module. On the other hand, one

solution would be to use additional RITA server for ETA1 and forward zeek logs also

there for beaconing analysis. Since RITA is opensource product there wouldn’t be

much additional costs. IoCs for exceptional upload traffic and long connection was

detected by both ETA systems. Scores for detecting IoCs for Metasploit HTTPS

reverse shell and data theft done in tests are seen on Table 9.

Table 9. Detecting IoCs for Metasploit HTTPS reverse shell and data theft

IoC Type Pyramid of Pain ETA1 ETA2

Self-signed Certificate Hash Values 1 1

Destination IP IP address 1 1

Certificate Subject Domain Names 1 1

JA3/JA3s Hashes Network Artifacts/Tools 1 1

Beaconing Network Artifacts 0 1

Long Connections Network Artifacts 1 1

Unusual Upstream Traffic Rates Network Artifacts 1 1

Score 6 7

When testing SNIcat C2 traffic, both ETA systems detected IoCs for self-signed

certificate, known blacklisted IP address and SNIs containing C2 data for blacklisted

domain. JA3 and JA3s hashes of SNIcat were also detected but these hashes doesn’t

seem to excist in public JA3/JA3s databases. IoC for beaconing activity was detected

by ETA2 but not ETA1 for reasons discribed earlier. Scores for detecting IoCs for

SNIcat C2 traffic generated in tests are seen on Table 10.

78

Table 10. Detecting IoCs for SNIcat C2 traffic

IoC Type Pyramid of Pain ETA1 ETA2

Self-signed Certificate Hash Values 1 1

Destination IP IP address 1 1

SNI Domain Names 1 1

JA3/JA3s Hashes Network Artifacts/Tools 1 1

Beaconing Network Artifacts 0 1

Score 4 5

Both ETA systems used dynamic Suricata rules from Emerging Threats, which had

comprehensive listings of known Tor edge nodes. Therefor IoC for IP address was

easily detected by both systems. IoCs for SNI containing suspiciously looking strings,

JA3 hash matching Tor browser and long connection between Tor client and entry

node were detected by both ETA systems. Eventhough not used as scoring criteria,

sankey visualization in LogPoint added additional value when putting all the IoCs

together. Scores for detecting IoCs for Tor traffic generated in tests are seen on Table

11.

Table 11. Detecting IoCs for Tor traffic

IoC Type Pyramid of Pain ETA1 ETA2

Destination IP IP address 1 1

SNI Domain Names 1 1

JA3/JA3s Hashes Network Artifacts/Tools 1 1

Long Connections Network Artifacts 1 1

Score 4 4

DoH was detected mainly by IoC for SNI containing domain name for known DoH

service provider. Additional IoCs included destination IP belonging to known DoH

79

service provider and long connection between DoH client and server. Both ETA

systems detected these IoCs. JA3 and JA3s hashes were also detected but these are

weak IoCs since the range of possible hashes for DoH is huge. If DoH is configured to

use uncommon DoH servers, for example DoH servers managed by threat actor,

detection of DoH would become difficult. Scores for detecting IoCs for DoH traffic

generated in tests are seen on Table 12.

Table 12. Detecting IoCs for DoH traffic

IoC Type Pyramid of Pain ETA1 ETA2

Destination IP IP address 1 1

SNI Domain Names 1 1

Long Connections Network Artifacts 1 1

Score 3 3

Detecting and visualiazing TLS misconfiguration and policy violation was easily done

in both ETA systems. Scores for detecting TLS misconfigurations and policy violations

in testing environment are seen on Table 13.

Table 13. Detecting IoCs for TLS misconfigurations and policy violations

IoC Type Pyramid of Pain ETA1 ETA2

Self-signed certificate Hash Values 1 1

TLS version Network Artifacts 1 1

Ciphersuites Network Artifacts 1 1

Score 3 3

Overall, both ETA systems performed well and there wasn’t many significant

differencies between core functionalities.

80

7.2 Evaluation of Research Objectives

Primary objective in reseach was to gain understanding of methods and tools how

one can detect anomalies in TLS encrypted traffic without decrypting it and how

opensource products could be utilized. Subject was relatively new to researcher

before starting thesis. During thesis process, understanding what ETA means and

what frameworks, methods and tools are available to address the subject, become

clear. It also become clear that these methods, tools and systems are constantly

changing. One ETA system, Apache Metron, which researcher investigated and

initially planned to test in practice was retired by 2021 and was therefore left out of

the thesis. Hovewer, some of the tools, such as Suricata and Zeek, are long lasting

and have been used widely for many years. Frameworks, such as Pyramid of Pain, are

also long lasting and can be used as guidelines when designing and implementing

ETA solutions. In researcher’s opinnion, basic methods, frameworks and tools used

for ETA was explained and understanding was gained. It also became clear that there

are many opensource products available to be utilized for ETA. Most of them are

good for certain specific task but there aren’t many products that would provide full-

scale ETA solution on their own. Security Onion comes close to that but it lacks ML

algorithms for behavior-based detection which most commercial ETA solutions offer.

Second objective was to investigate ETA capabilites of combination of SensorFleet

and LogPoint. Investigations at this point reveals that they can be utilized together to

perform ETA roughly at the same level as one could do with combination of Security

Onion and RITA. Utilizing LogPoint’s advanced feature’s such as UEBA for ETA

however hasn’t been tested yet and this testing will probably continue afterwards in

Cinia.

8 Conclusions

Based on test results, opensource product can be used for ETA, but one should

consider use cases and environments where they are suitable. For example,

gathering and storing metadata of TLS traffic can be easily done with opensource

tools, such as Zeek, and that can be enough for many organizations. This would allow

organization to investigate TLS traffic on metadata level when needed, and this is

81

better than nothing. If one is considering implementing full-scale ETA solution using

opensource components it would require quite amount of time and effort.

Organization planning to do this should evaluate if they have enough competence

and resources in responsible administrative team. What one can save in license costs

using opensource product might be lost in administrative and operational costs.

Single node Security Onion installation would probably be suitable for many small

organizations. It can be setup with minimal cost and effort and later on start to build

more advanced detection capabilities by fine tuning it. Larger organizations might

consider implementing Security Onion using distributed architecture, allowing it to

scale for larger environments and possibly buy support contracts and dedicated

hardware from Security Onion Solutions.

SensorFleet might be good solution for service provider or large organization which is

considering implementing many sensors in many separate locations. SensorFleet

however need SIEM or similar centralized component for doing analysis based on

logs generated by SensorFleet.

When comparing opensource product to commercial ones, there are certain benefits

in both. Opensource is obviously cheaper when comparing strictly costs for

implementing system. However, administrative and operational costs in opensource

products may sometimes become higher than licensing costs in commercial

products. Commercial solution utilizing ML-based detection would require

significantly less operational time from security analyst than opensource solution

relying on rule-based detection.

One aspect to evaluate is the business criticality of the system. If organization is a

service provider offering ETA services for their customers, the business criticality of

the system is much higher than it would be for organization that performs basic ETA

just for their own purpose. If organization is tied to high service level agreements,

then reliability of the system and support contracts to vendors become more

important. On the other hand, using opensource product allows system

administrations to have visibility for everything what is going on in the system and

makes it possible to customize and integrate the system with external systems

without limitations that commercial systems might have. In the end, it comes to the

82

type of organization is and what is their business. If organization has SecDevOps

functionality and ETA is business critical for them, opensource ETA might be better

than commercial solutions. For small organizations where ETA is not business critical,

simple opensource ETA solution might be suitable as well. For service providers and

large organizations with decent budgets for ETA, commercial solution might be

better fit than opensource products.

9 Discussion

Even though delineating subject of the thesis to ETA for TLS, it was still huge topic go

through and some aspects of it couldn’t be investigated as thoroughly as other.

Overall, all aspects related to subjects were investigated, researcher learned a lot

from the topic during thesis and research objectives were reached. During writing of

the thesis, it came clear that many others in the field of science have been studying

the same subject before, but since tehnology is constantly evolving and systems are

being replaced by anothers, researcher thinks this reseach might give some

additional value to science community.

During testing phase, it was clear that rule based detection has its place for detecting

known IoCs. But role of that is dimishning in ETA as TLS 1.3 along with eSNI, ECH and

DoH gains more popularity. When SNI and certificates cannot been seen in clear text

anymore, signature based detection relying on them become useless. JA3/JA3s

hashes can be used in the future as well, but with little customization for their tools,

threat actors can quite easily avoid JA3/JA3s based detections. Behavior-based

detection will become more import in the future. At the moment, there doesn’t

seem to be opensource solutions utilizing machine learning algorithms for behavior-

based detection, which could challenge the commercial ones. This would be good

subject for further researchs.

When it comes to automation, there is definitely a need for that as number of

different NDR solutions out there indicates. But researcher still beliefs there is a

place for threat hunting with human factor in it. After all, threat actors are humans

and it takes another human to analyze how another human thinks what motives him.

83

Machines can detect IoCs and behavioural anomalies but tracking TTPs used by APTs

cannot be automated.

84

References

Althouse, J 2019. TLS Fingerprinting with JA3 and JA3S. Article by John Althouse, Jan

15, 2019. Accessed on 21 May 2021. Retrieved from

https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-

247362855967

ACSC. 2020. Austalian Cyber Security Centre: Defending Against the Malicious Use of

the Tor Network. Accessed on 15 March 2021. Retrieved from

https://www.cyber.gov.au/acsc/view-all-content/publications/defending-against-

malicious-use-tor-network

Bianco, D. 2013. “Pyramid of Pain” blog post. Posted originally 1st March 2013 by

David J. Bianco. Accessed 23 January 2021. Retrieved from http://detect-

respond.blogspot.com/2013/03/the-pyramid-of-pain.html

Chrisander, M 2020. A simple guide to Threat Hunting. Blog By Martha Chrisander,

posted October 1st, 2020. Accessed on 18 May 2021. Retrieved from

https://www.logpoint.com/en/blog/threat-hunting

Dahan, A., Rochberger, L., Salem, E., Zhao, M., Yona, N., Yampel, O., Hart, M. 2019.

Dropping Anchor: From a TrickBot Infection to the Discovery of the Anchor

Malware”. Accessed 14 May 2021. Retrieved from

https://www.cybereason.com/blog/dropping-anchor-from-a-trickbot-infection-to-

the-discovery-of-the-anchor-malware

Darktrace, 2021. Darktrace AI: Combining Unsupervised and Supervised Machine

Learning. Darktrace AI whitepaper. Accessed on 18 May 2021. Retrieved from

https://www.darktrace.com/resources/wp-machine-learning.pdf

Delaney, D. 2017. How to Passively Detect VPN Clients on Your Network. NetFort

Blog By: Darragh Delaney 5 December 2017. Accessed on 15 March 2021. Retrieved

from https://www.netfort.com/blog/detect-vpn-clients-network

Desai, D. 2017. Sophisticated Malware Strains Using SSL to Encrypt Activity. Blog post

by Deepen Desai, 2 August 2017. Accessed on 11 March 2021. Retrieved from

https://www.zscaler.com/blogs/security-research/ssltls-based-malware-attacks

https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://www.cyber.gov.au/acsc/view-all-content/publications/defending-against-malicious-use-tor-network
https://www.cyber.gov.au/acsc/view-all-content/publications/defending-against-malicious-use-tor-network
http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
https://www.logpoint.com/en/blog/threat-hunting
https://www.cybereason.com/blog/dropping-anchor-from-a-trickbot-infection-to-the-discovery-of-the-anchor-malware
https://www.cybereason.com/blog/dropping-anchor-from-a-trickbot-infection-to-the-discovery-of-the-anchor-malware
https://www.darktrace.com/resources/wp-machine-learning.pdf
https://www.netfort.com/blog/detect-vpn-clients-network
https://www.zscaler.com/blogs/security-research/ssltls-based-malware-attacks

85

EC-Council, 2021. 2 Popular Cyber Threat Intelligence Feeds and Sources. EC-Council

Blog post from 6 Sep 2020. Access on 18 May 2021. Retrieved from

https://blog.eccouncil.org/2-popular-cyber-threat-intelligence-feeds-and-sources

ENISA. 2019. Encrypted Traffic Analysis: Use Cases and Security Challenges. Accessed

on 16 October 2020. Retrieved from

https://www.enisa.europa.eu/publications/encrypted-traffic-analysis

F5. 2020. Decrypt SSL and TLS 1.3 for Inspection and Protection. Accessed on 26

October 2020. Retrieved from

https://www.f5.com/resources/library/encrypted-threats/ssl-visibility/is-tls-1-3-the-

solution#spa-2

Farrel, C. 2018. Looking Under the Rock: Deployment Strategies for TLS Decryption.

Accessed on 26 October 2020. Retrieved from

https://www.sans.org/reading-room/whitepapers/dlp/rock-deployment-strategies-

tls-decryption-38240

Flowmon, 2020. Encrypted Traffic Analysis: The data privacy-preserving way to regain

visibility into encrypted communication. Accessed on 27 November 2020. Retrieved

from https://www.flowmon.com/en/resources/encrypted-traffic-analysis

Gartner, 2020. Market Guide for Network Detection and Response. Published 11

June 2020. Retrieved from https://www.gartner.com/en/documents/3986225

Goddard, N. 2020. Getting Started on Contributing to RITA. Article by Naomi Goddard

published November 11, 2020. Accessed on 17 May 2021. Retrieved from

https://www.activecountermeasures.com/getting-started-on-contributing-to-rita

Hjelm, D. 2019. A New Needle and Haystack: Detecting DNS over HTTPS Usage.

Research paper by Drew Hjelm September 10, 2019. Accessed on 15 March 2021.

Retrieved from https://www.sans.org/reading-room/whitepapers/dns/paper/39160

Henderson, J., Hubbard, J. 2018. SANS Webcast: Prioritizing Log Enrichment.

Recorded November 06, 2018. Accessed on 17 April 2021. Retrieved from

https://www.sans.org/webcasts/prioritizing-log-enrichment-109275

https://blog.eccouncil.org/2-popular-cyber-threat-intelligence-feeds-and-sources
https://www.enisa.europa.eu/publications/encrypted-traffic-analysis
https://www.f5.com/resources/library/encrypted-threats/ssl-visibility/is-tls-1-3-the-solution#spa-2
https://www.f5.com/resources/library/encrypted-threats/ssl-visibility/is-tls-1-3-the-solution#spa-2
https://www.sans.org/reading-room/whitepapers/dlp/rock-deployment-strategies-tls-decryption-38240
https://www.sans.org/reading-room/whitepapers/dlp/rock-deployment-strategies-tls-decryption-38240
https://www.flowmon.com/en/resources/encrypted-traffic-analysis
https://www.gartner.com/en/documents/3986225
https://www.activecountermeasures.com/getting-started-on-contributing-to-rita
https://www.sans.org/reading-room/whitepapers/dns/paper/39160
https://www.sans.org/webcasts/prioritizing-log-enrichment-109275

86

IANA, 2019. IANA IPv4 Special-Purpose Address Registry. Accessed on 13 May 2021.

Retrieved from https://www.iana.org/assignments/iana-ipv4-special-registry/iana-

ipv4-special-registry.xhtml

Kaspersky, 2021a. How to get rid of malware? Article on Kaspersky's web site.

Accessed on 11 March 2021. Retrieved from https://www.kaspersky.com/resource-

center/threats/malware-protection

Kaspersky, 2021b. What is a Botnet? Article on Kaspersky's web site. Accessed on 11

March 2021. Retrieved from https://www.kaspersky.com/resource-

center/threats/botnet-attacks

Kaspersky, 2021c. Brute Force Attack: Definition and Examples. Article on Kaspersky's

web site. Accessed on 12 March 2021. Retrieved from

https://www.kaspersky.com/resource-center/definitions/brute-force-attack

LogPoint, 2021. User and Entity Behavior Analytics (UEBA): Accelerated detection

and response. Article on LogPoint web site. Accessed on 18 May 2021. Retrieved

from https://www.logpoint.com/en/product/ueba-solution

Messier, R. 2017. Network Forensics. 10475 Crosspoint Boulevard, Indianapolis, IN

46256: John Wiley & Sons, Inc.

Nagy, L. 2020. Sophos News: Nearly a quarter of malware now communicates using

TLS. Published 18 February 2020. Accessed on 11 March 2021. Retrieved from

https://news.sophos.com/en-us/2020/02/18/nearly-a-quarter-of-malware-now-

communicates-using-tls/

NIST, 2019. NIST Special Publication 800-52 Revision 2: Guidelines for the Selection,

Configuration, and Use of Transport Layer Security (TLS) Implementations. Accessed

on 18 December 2020. Retrieved from https://doi.org/10.6028/NIST.SP.800-52r2

Nohe, P. 2019a. TLS 1.3: Everything you need to know. Blog post on

www.thesslstore.com July 16, 2019. Accessed 4 December 2020. Retrieved from

https://www.thesslstore.com/blog/tls-1-3-everything-possibly-needed-know

Nohe, P. 2019b. Cipher Suites: Ciphers, Algorithms and Negotiating Security Settings.

Blog post on www.thesslstore.com. Accessed on 5 January 2021. Retrieved from

https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://www.kaspersky.com/resource-center/threats/malware-protection
https://www.kaspersky.com/resource-center/threats/malware-protection
https://www.kaspersky.com/resource-center/threats/botnet-attacks
https://www.kaspersky.com/resource-center/threats/botnet-attacks
https://www.kaspersky.com/resource-center/definitions/brute-force-attack
https://www.logpoint.com/en/product/ueba-solution
https://news.sophos.com/en-us/2020/02/18/nearly-a-quarter-of-malware-now-communicates-using-tls/
https://news.sophos.com/en-us/2020/02/18/nearly-a-quarter-of-malware-now-communicates-using-tls/
https://doi.org/10.6028/NIST.SP.800-52r
https://www.thesslstore.com/blog/tls-1-3-everything-possibly-needed-know

87

https://www.thesslstore.com/blog/cipher-suites-algorithms-security-settings

Kusek, C. 2019. "Darktrace - What is it?" video on Youtube presented by Xiologix CTO

Christopher Kusek. Accessed on 27 November 2020. Retrieved from

https://www.youtube.com/watch?v=5387TV6rLdY

Marstrander, M., Malvica, M. 2020. SNIcat: Circumventing the guardians. Mnemonic

Labs blog post 8 Deceber 2020. Accessed 12 March 2021. Retrieved from

https://www.mnemonic.no/blog/introducing-snicat

McClurg, J 2020. Decade of the RATs: Novel Cross-Platform APT Attacks Targeting

Linux Windows and Android. Article by John McClurg, May 1 2020. Accessed 12

March 2021. Retrieved from https://www.securitymagazine.com/articles/92253-

decade-of-the-rats-novel-cross-platform-apt-attacks-targeting-linux-windows-and-

android

Oakley, C. 2020. Nettitude Blog: The SOC Visibility Triad – SIEM, EDR & NDR.

Accessed 26 October 2020. Retrieved from

https://blog.nettitude.com/the-soc-visibility-triad

Pagano, E. 2020. "Protect Yourself From Phishing" blog posted March 25, 2020 by

Elizabeth Pagano. Accessed 11 March 2021. Retrieved from

https://www.ssl.com/guide/protect-yourself-from-phishing

Patton, C. 2020. “Good-bye ESNI, hello ECH!” Cloudfare Blog posted 08/12/2020 by

Christopher Patton. Accessed on 23 January 2021. Retrieved from

https://blog.cloudflare.com/encrypted-client-hello

RFC 5288. 2008. AES Galois Counter Mode (GCM) Cipher Suites for TLS. Accessed on

11 December 2020. Retrieved from https://tools.ietf.org/html/rfc5288

RFC 7539. 2015. ChaCha20 and Poly1305 for IETF Protocols. Accessed on 11

December 2020. Retrieved from https://tools.ietf.org/html/rfc7539

RFC 8446. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. Accessed

on 13 November 2020. Retrieved from https://tools.ietf.org/html/rfc8446#section-

1.2

https://www.thesslstore.com/blog/cipher-suites-algorithms-security-settings
https://www.youtube.com/watch?v=5387TV6rLdY
https://www.mnemonic.no/blog/introducing-snicat
https://www.securitymagazine.com/articles/92253-decade-of-the-rats-novel-cross-platform-apt-attacks-targeting-linux-windows-and-android
https://www.securitymagazine.com/articles/92253-decade-of-the-rats-novel-cross-platform-apt-attacks-targeting-linux-windows-and-android
https://www.securitymagazine.com/articles/92253-decade-of-the-rats-novel-cross-platform-apt-attacks-targeting-linux-windows-and-android
https://blog.nettitude.com/the-soc-visibility-triad
https://www.ssl.com/guide/protect-yourself-from-phishing
https://blog.cloudflare.com/encrypted-client-hello
https://tools.ietf.org/html/rfc5288
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc8446#section-1.2
https://tools.ietf.org/html/rfc8446#section-1.2

88

RFC 8484. 2018. DNS Queries over HTTPS (DoH). Accessed on 15 March 2021.

Retrieved from https://tools.ietf.org/html/rfc8484

RITA, 2021. RITA: Real Intelligence Threat Analytics. Accessed on 17 May 2021.

Retrieved from https://www.activecountermeasures.com/free-tools/rita

Rezek, M. 2020. What is the difference between signature-based and behavior-based

intrusion detection systems? Article by Michael Rezek from December 9, 2020.

Accessed on 18 May 2021. Retrieved from https://accedian.com/blog/what-is-the-

difference-between-signature-based-and-behavior-based-ids

Ristić, I. 2018. Bulletproof SSL and TLS: Understanding and Deploying SSL/TLS and PKI

to Secure Servers and Web Applications. London: Feisty Duck

Santos, O. 2020. CCNP and CCIE Security Core SCOR 350-701 Official Cert Guide.

Hoboken, New Jersey: Cisco Press.

Security Onion, 2021. Security Onion 2.3 Documentation. Accessed on 16 April 2021.

Retrieved from https://docs.securityonion.net/en/2.3

Security Onion Solutions, 2021. Security Onion Solutions web page. Accessed on 17

May 2021. Retrieved from https://securityonionsolutions.com

SensorFleet, 2021a. SensorFleet web page. Accessed on 17 May 2021. Retrieved

from https://sensorfleet.com

SensorFleet, 2021b. SensorFleet version 2.3.0 User Manual.

Shaw, C. 2020. How to Identify Malicious Network and Port Scanning. Blog post by

Christine Shaw on December 19, 2020. Accessed on 15 March 2021. Retrieved from

https://www.extrahop.com/company/blog/2016/how-to-recognize-malicious-

network-scanning-port-scanning

Skerrit, B. 2020. How Does Tor Really Work? The Definitive Visual Guide. Blog post by

Brandon Skerritt September 19, 2020. Accessed on 15 March 2021. Retrieved from

https://skerritt.blog/how-does-tor-really-work

SSL Labs, 2021. SSL Labs website: SSL Pulse Monthly Scan. Accessed on 21 May 2021.

Retrieved from https://www.ssllabs.com/ssl-pulse/

https://tools.ietf.org/html/rfc8484
https://www.activecountermeasures.com/free-tools/rita
https://accedian.com/blog/what-is-the-difference-between-signature-based-and-behavior-based-ids
https://accedian.com/blog/what-is-the-difference-between-signature-based-and-behavior-based-ids
https://docs.securityonion.net/en/2.3
https://securityonionsolutions.com/
https://sensorfleet.com/
https://www.extrahop.com/company/blog/2016/how-to-recognize-malicious-network-scanning-port-scanning
https://www.extrahop.com/company/blog/2016/how-to-recognize-malicious-network-scanning-port-scanning
https://skerritt.blog/how-does-tor-really-work
https://www.ssllabs.com/ssl-pulse/

89

Strand, J. 2020. Detecting Malware Beacons With Zeek and RITA. Black Hills

Information Security blog by John Strand, 3 Mar 2020. Accessed on 17 May 2021.

Retrieved from https://www.blackhillsinfosec.com/detecting-malware-beacons-with-

zeek-and-rita

Sullivan, N. 2018. A Detailed Look at RFC 8446 (a.k.a. TLS 1.3). Blog post on coudflare.

Accessed on 5 January 2021. Retrieved from https://blog.cloudflare.com/rfc-8446-

aka-tls-1-3

Suricata, 2021a. Suricata documentation: latest version. Accessed on 15 March 2021.

Retrieved from https://suricata.readthedocs.io/en/latest/

Suricata, 2021b. Suricata: Open Source IDS / IPS / NSM engine. Accessed on 6 May

2021. Retrieved from https://suricata-ids.org/

Tolbert, J 2020. Leadership Compass: Network Detection and Response.

KuppingerCole report by John Tolbert June 10, 2020. Accessed 2 April 2021.

Retrieved from https://plus.kuppingercole.com/article/lc80126/network-detection-

and-response

Yu, D 2020. Network Detection and Response: The Building Blocks. Blog post by

David Yu July 7, 2020. Accessed on 16 April 2021. Retrieved from

https://www.hillstonenet.com/blog/network-detection-and-response-the-building-

blocks

Zeek, 2021a. Zeek Documentation for LTS version (v4.0.1). Accessed on 16 April

2021. Retrieved from https://docs.zeek.org/en/lts

Zeek, 2021b. Zeek: An Open Source Network Security Monitoring Tool. Accessed on 6

May 2021. Retrieved from https://zeek.org

Zimba, A., Mulenga, M. 2018. A Dive into the Deep: Demystifying WannaCry Crypto

Ransomware Network Attacks Via Digital Forensics. Accessed on 3 March 2021.

Retrieved from

https://www.researchgate.net/publication/325678210_A_Dive_into_the_Deep_Dem

ystifying_WannaCry_Crypto_Ransomware_Network_Attacks_Via_Digital_Forensics

https://www.blackhillsinfosec.com/detecting-malware-beacons-with-zeek-and-rita
https://www.blackhillsinfosec.com/detecting-malware-beacons-with-zeek-and-rita
https://blog.cloudflare.com/rfc-8446-aka-tls-1-3
https://blog.cloudflare.com/rfc-8446-aka-tls-1-3
https://suricata.readthedocs.io/en/latest/
https://suricata-ids.org/
https://plus.kuppingercole.com/article/lc80126/network-detection-and-response
https://plus.kuppingercole.com/article/lc80126/network-detection-and-response
https://www.hillstonenet.com/blog/network-detection-and-response-the-building-blocks
https://www.hillstonenet.com/blog/network-detection-and-response-the-building-blocks
https://docs.zeek.org/en/lts
https://zeek.org/
https://www.researchgate.net/publication/325678210_A_Dive_into_the_Deep_Demystifying_WannaCry_Crypto_Ransomware_Network_Attacks_Via_Digital_Forensics
https://www.researchgate.net/publication/325678210_A_Dive_into_the_Deep_Demystifying_WannaCry_Crypto_Ransomware_Network_Attacks_Via_Digital_Forensics

90

Appendices

Appendix 1. NIST recommended ciphersuites

TLS
Version

Certificate
Type Ciphersuite

1.2 ECDSA TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x2B)

1.2 ECDSA TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x2C)

1.2 ECDSA TLS_ECDHE_ECDSA_WITH_AES_128_CCM (0xC0, 0xAC)

1.2 ECDSA TLS_ECDHE_ECDSA_WITH_AES_256_CCM (0xC0, 0xAD)

1.2 ECDSA TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 (0xC0, 0xAE)

1.2 ECDSA TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8 (0xC0, 0xAF)

1.2 ECDSA TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 (0xC0, 0x23)

1.2 ECDSA TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 (0xC0, 0x24)

1.2 ECDSA TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA21 (0xC0, 0x09)

1.2 ECDSA TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA (0xC0, 0x0A)

1.2 RSA TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x2F)

1.2 RSA TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x30)

1.2 RSA TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 (0x00, 0x9E)

1.2 RSA TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 (0x00, 0x9F)

1.2 RSA TLS_DHE_RSA_WITH_AES_128_CCM (0xC0, 0x9E)

1.2 RSA TLS_DHE_RSA_WITH_AES_256_CCM (0xC0, 0x9F)

1.2 RSA TLS_DHE_RSA_WITH_AES_128_CCM_8 (0xC0, 0xA2)

1.2 RSA TLS_DHE_RSA_WITH_AES_256_CCM_8 (0xC0, 0xA3)

1.2 RSA TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (0xC0, 0x27)

1.2 RSA TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xC0, 0x28)

1.2 RSA TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 (0x00, 0x67)

1.2 RSA TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 (0x00, 0x6B)

1.2 RSA TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xC0, 0x13)

1.2 RSA TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xC0, 0x14)

1.2 RSA TLS_DHE_RSA_WITH_AES_128_CBC_SHA (0x00, 0x33)

1.2 RSA TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x00, 0x39)

1.2 DSA TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 (0x00, 0xA2)

1.2 DSA TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 (0x00, 0xA3)

1.2 DSA TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 (0x00, 0x40)

1.2 DSA TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 (0x00, 0x6A)

1.2 DSA TLS_DHE_DSS_WITH_AES_128_CBC_SHA (0x00, 0x32)

1.2 DSA TLS_DHE_DSS_WITH_AES_256_CBC_SHA (0x00, 0x38)

1.2 DH TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (0x00, 0xA4)

1.2 DH TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (0x00, 0xA5)

1.2 DH TLS_DH_DSS_WITH_AES_128_CBC_SHA256 (0x00, 0x3E)

1.2 DH TLS_DH_DSS_WITH_AES_256_CBC_SHA256 (0x00, 0x68)

1.2 DH TLS_DH_DSS_WITH_AES_128_CBC_SHA (0x00, 0x30)

1.2 DH TLS_DH_DSS_WITH_AES_256_CBC_SHA (0x00, 0x36)

1.2 DH TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (0x00, 0xA0)

1.2 DH TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (0x00, 0xA1)

1.2 DH TLS_DH_RSA_WITH_AES_128_CBC_SHA256 (0x00, 0x3F)

1.2 DH TLS_DH_RSA_WITH_AES_256_CBC_SHA256 (0x00, 0x69)

1.2 DH TLS_DH_RSA_WITH_AES_128_CBC_SHA (0x00, 0x31)

1.2 DH TLS_DH_RSA_WITH_AES_256_CBC_SHA (0x00, 0x37)

91

1.2 ECDH TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x2D)

1.2 ECDH TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x2E)

1.2 ECDH TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 (0xC0, 0x25)

1.2 ECDH TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 (0xC0, 0x26)

1.2 ECDH TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA (0xC0, 0x04)

1.2 ECDH TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA (0xC0, 0x05)

1.2 ECDH TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x31)

1.2 ECDH TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x32)

1.2 ECDH TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 (0xC0, 0x29)

1.2 ECDH TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 (0xC0, 0x2A)

1.2 ECDH TLS_ECDH_RSA_WITH_AES_128_CBC_SHA (0xC0, 0x0E)

1.2 ECDH TLS_ECDH_RSA_WITH_AES_256_CBC_SHA (0xC0, 0x0F)

1.3
RSA or
ECDSA TLS_AES_128_GCM_SHA256 (0x13, 0x01)

1.3
RSA or
ECDSA TLS_AES_256_GCM_SHA384 (0x13, 0x02)

1.3
RSA or
ECDSA TLS_AES_128_CCM_SHA256 (0x13, 0x04)

1.3
RSA or
ECDSA TLS_AES_128_CCM_8_SHA256 (0x13, 0x05)

92

Appendix 2. TLS keywords used in Suricata version 6

Suricata Keywod Desciption

tls.cert_subject Match TLS/SSL certificate Subject field.

tls.cert_issuer Match TLS/SSL certificate Issuer field.

tls.cert_serial Match on the serial number in a certificate.

tls.cert_fingerprint Match on the SHA-1 fingerprint of the certificate.

tls.sni Match TLS/SSL Server Name Indication field.

tls_cert_notbefore Match on the NotBefore field in a certificate.

tls_cert_notafter Match on the NotAfter field in a certificate.

tls_cert_expired Match returns true if certificate is expired.

tls_cert_valid Match returns true if certificate is not expired.

tls.certs Do a “raw” match on each of the certificates in the

TLS certificate chain

tls.version Match on negotiated TLS/SSL version.

ssl_version Match version of SSL/TLS record.

tls.subject Match TLS/SSL certificate Subject field.

tls.issuerdn match TLS/SSL certificate IssuerDN field

tls.fingerprint match TLS/SSL certificate SHA1 fingerprint

tls.store store TLS/SSL certificate on disk

ssl_state The ssl_state keyword matches the state of the SSL

connection. The possible states are client_hello,

server_hello, client_keyx, server_keyx and unknown

93

Appendix 3. Virtual machines used in testing environment

Hostname IP address Operating

System

Softwares Role

kali 203.0.113.31 Kali 2021.1 Kali tools Threat Actor

www.fzecure.com 203.0.113.13 Centos 7 NGINX 1.16.1 Phishing Site

firewall 10.111.1.1

10.111.100.1

10.222.0.89

203.0.113.1

OpenWRT 15.05 Firewall and

router

db.int.lupari.fi

10.111.1.44 Centos 7 NGINX 1.16.1 Internal Server

intra.int.lupari.fi 10.111.1.55 Centos 7 NGINX 1.16.1 Internal Server

windows10 10.111.100.100 Windows 10 Workstation

ubuntu18 10.111.100.111 Ubuntu 18.04 Workstation

SensorFleet Manager 10.222.0.80

10.222.0.88

Ubuntu 18.04 IDS Policy

Manager,

Downloader

ETA1

SensorFleet

Manager

SensorFleet Sensor 10.222.0.81

10.222.0.88

Ubuntu 18.04 Capture Engine,

Zeek, Suricata,

Logforwarder

ETA1

SensorFleet

Sensor

Security Onion 10.222.0.83 Security Onion ETA2

Collector and

analyzer

RITA 10.222.0.86 Ubuntu 18.04 RITA ETA2

C2 analyzer

LogPoint 10.222.0.186 LogPoint ETA1

SIEM/analyzer

	1 Introduction 10
	2 Transport Layer Security (TLS) 12
	3 Threats in TLS 27
	4 Threat Detection 34
	5 ETA Tools and Solutions 43
	6 Implementation and Testing 53
	7 Research Results 75
	8 Conclusions 80
	9 Discussion 82
	References 84
	Appendices 90
	1 Introduction
	1.1 Objectives
	1.2 Research Methods

	2 Transport Layer Security (TLS)
	2.1 Cryptography and Ciphersuites
	2.1.1 Asymmetric Encryption, Keys and Authentication
	2.1.2 Symmetric Encryption Ciphers
	2.1.3 Message Auhentication Codes (MAC)
	2.1.4 Pseudorandom Function (PRF)
	2.1.5 TLS ciphersuites

	2.2 Certificates and Public Key Infrastructure
	2.3 Handshake Protocol

	3 Threats in TLS
	3.1 Malware Types
	3.1.1 Botnets
	3.1.2 Ransomware
	3.1.3 Remote Access Trojans (RATs)

	3.2 Attack Techniques
	3.2.1 Phishing
	3.2.2 Data Exfiltration
	3.2.3 Brute Force
	3.2.4 Distributed Denial of Service (DDoS)
	3.2.5 Scanning

	3.3 Organization Policy Violations
	3.3.1 Tor
	3.3.2 Virtual Private Network (VPN)
	3.3.3 DNS over HTTPs (DoH)
	3.3.4 TLS Misconfigurations

	4 Threat Detection
	4.1 Pyramid of Pain
	4.1.1 Hash Values
	4.1.2 IP Addresses
	4.1.3 Domain Names
	4.1.4 Network Artifacts
	4.1.5 Tools
	4.1.6 Tactics, Techniques and Procedures (TTPs)

	4.2 Network Detection and Response (NDR)
	4.2.1 Packet Capturing
	4.2.2 Collecting Flow Data
	4.2.3 Ingesting, Filtering, Parsing and Forwarding
	4.2.4 Enrichment and Threat Intel
	4.2.5 Rule-Based Detection
	4.2.6 Behaviour-Based Detection
	4.2.7 Responses and Integrations

	4.3 Threat Hunting

	5 ETA Tools and Solutions
	5.1 ETA Tools
	5.1.1 Suricata
	5.1.2 Zeek
	5.1.3 RITA
	5.1.4 LogPoint

	5.2 ETA Solutions
	5.2.1 Security Onion
	5.2.2 SensorFleet

	6 Implementation and Testing
	6.1 Implementing Testing Environment
	6.1.1 Implementing ETA1
	6.1.2 Implementing ETA2
	6.1.3 Implementing Data Sources

	6.2 Test Cases
	6.2.1 Detecting Traffic to Phishing Site
	6.2.2 Detecting Metasploit HTTPS Reverse Shell traffic
	6.2.3 Detecting SNIcat C2 traffic
	6.2.4 Detecting Tor
	6.2.5 Detecting DoH
	6.2.6 Detecting TLS Misconfigurations

	6.3 Administrative and Operational Evaluation

	7 Research Results
	7.1 Test Results
	7.2 Evaluation of Research Objectives

	8 Conclusions
	9 Discussion
	References
	Appendices

