

Bachelor’s thesis

Information and Communications technologies

2021

Jesse Smedberg

CLOUD-BASED IOT ELECTRIC
SCOOTER

– Benefits of micromobility vehicles and cloud
services for individuals

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information and communications technologies

2021 | 42, 7

Jesse Smedberg

CLOUD-BASED IOT ELECTRIC SCOOTER

Benefits of micromobility vehicles and cloud services for individuals

 The popularity of personal light electric vehicles has seen a significant increase in recent years.
In city streetscapes, the popularity increase is most noticeable as electric scooters and electric
cars. This thesis documented a project where an electric scooter comparable to a rentable electric
scooter was built.

The requirements for this thesis project were acquired by researching the features of rentable and
commercial electric scooters. In the thesis project, an electric scooter was implemented according
to the specifications of the acquired motor. Additionally, GPS tracking, always online capabilities,
and remote start-up were implemented on the electric scooter so that, the electric scooter could
be tracked and turned off remotely if stolen.

The back end was built on Amazon Lightsail based on the Flask web framework. The endpoints
were first tested locally with Postman and over the internet after routing was implemented with
NGINX and uWSGI. The electric scooter’s data is sent to the back end from an Arduino MKR1500
using NB-IoT radio technology, where it is processed and saved into MongoDB. The device’s
reliability was tested with an overnight stress test, where the Arduino continuously sent data to
the back end. During testing, the HTTP library used in the project was found getting stuck when
sending or receiving data multiple times, interrupting the running program indefinitely.

The goals of the thesis project were achieved adequately, and a minimum viable product was
built. However, the electric scooter’s web communications are unreliable because of issues found
during testing with ArduinoHttpClient. The scooter’s development will be continued after the
completion of the thesis, with the goal of fixing the issues found during testing such as, changing
the HTTP protocol used to the MQTT protocol meant for IoT applications.

KEYWORDS:

Micromobility, Cloud-server, Amazon Web Services, Arduino, IoT, Electric scooter

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tieto- ja viestintätekniikka

2021 | 42 sivua, 7 liitesivua

Jesse Smedberg

PILVIPOHJAINEN IOT-SÄHKÖPOTKULAUTA

Click here to enter text.

Henkilökohtaisten sähkökulkuvälineiden suosio on viime vuosina lisääntynyt huomattavasti.
Kaupunkien katukuvassa suosio on näkynyt parhaiten sähköpotkulautojen ja sähköautojen
yleistymisenä. Tämän opinnäytetyön tarkoituksena on dokumentodia projekti, jossa rakennetaan
ominaisuuksiltaan vuokrattavaan sähköpotkulautaan verrattavissa oleva sähköpotkulauta.

Opinnäytetyön vaatimukset selvitettiin tutkimalla vuokrattavien sekä myynnissä olevien
sähköpotkulautojen ominaisuuksia. Opinnäytetyössä toteutettiin sähköpotkulauta, joka
rakennettiin hankitun sähkömoottorin mukaan. Lisäksi sähköpotkulautaan tehtiin GPS-seuranta,
onlinevalmius sekä etäkäynnistys ominaisuudet. Näin potkulaudan sijaintia voidaan seurata
mahdollisen varkauden tapahtuessa ja sekä potkulauta voidaan kytkeä pois päältä
kontaktittomasti.

Potkulaudan ominaisuuksia varten rakennettiin Amazon Lightsail alustalle Flask
verkkokehykseen pohjautuva backend, päätepisteet testattiin toimiviksi Postman sovelluksen
avulla ensin paikallisesti ja sen jälkeen verkon ylitse NGINX ja uWSGI reitityksen valmistuttua.
Potkulaudalta data lähetettiin backendiin Arduino MKR1500 NB-IoT:lla, josta se tallennettiin
MongoDB:hen. Laitteiston luotettavuus testattiin yön yli kestävällä stressitestillä, jossa Arduino
lähettää jatkuvasti dataa palvelimelle. Testauksen aikana Arduinossa huomattiin projektissa
käytetyn HTTP- kirjaston pysäyttävän ohjelmansuorituksen.

Projekti saavutti tavoitteet pienimmän toimivan laitteen toteutuksesta. Sähköpotkulaudan
verkkoliikenne on kuitenkin vielä epäluotettavaa ja ohjelmiston kehitystä pyritään jatkamaan
tulevaisuudessa eteenpäin toteutuksen aikana opittujen vajaavaisuuksien pohjalta mm.
vaihtamalla HTTP-verkkoprotokolla IoT-laitteisiin tarkoitettuun MQTT-
kommunikaatioprotokollaan.

ASIASANAT:

micromobility, cloud-server, Amazon Web Services, Arduino, IoT, electric scooter

CONTENTS

LIST OF ABBREVIATIONS 7

1 INTRODUCTION 9

2 TECHNOLOGIES 10

2.1 Battery 10

2.1.1 Lithium battery chemistries 10

2.1.2 Cell form factors 10

2.1.3 Light electric vehicle battery packs 11

2.2 Drivetrain 12

2.2.1 Basics of brushless dc motors 12

2.2.2 Brushless DC motor types 13

2.2.3 Electronic Speed Controllers 15

2.3 Microcontroller 16

2.3.1 What are microcontrollers? 16

2.3.2 Modern applications 16

2.4 AWS and NB-IoT 17

2.4.1 Basic IoT architecture 17

2.4.2 Cloud services 19

2.4.3 NB-IoT 20

3 REQUIREMENTS 21

3.1 Controller 21

3.2 Electronics 22

3.2.1 ESC 22

3.2.2 Battery pack 22

3.2.3 Motor 23

3.2.4 Anti-Spark Switch 23

3.3 Backend 24

3.3.1 Database 24

3.3.2 Server 24

3.4 IP-Rating 25

4 IMPLEMENTATION 26

4.1 Electronics 27

4.1.1 AM2302 27

4.1.2 Adafruit Ultimate GPS Breakout V3 27

4.1.3 FSESC 27

4.1.4 Power electronics 28

4.2 Embedded software 30

4.2.1 Data 31

4.2.2 Power state check 32

4.2.3 Posting the data 32

4.3 Server and client 32

4.3.1 Flask and frontend 33

4.3.2 MongoDB 35

4.3.3 AWS Lightsail 35

4.3.4 Nginx and uWsgi 36

5 TESTING 37

5.1 Electronics 37

5.2 Embedded software 37

5.3 Back and frontend 38

6 CONCLUSIONS 39

REFERENCES 41

APPENDICES

Appendix 1. The required libraries for the project
Appendix 2. Adding serial ports on SAMD21
Appendix 3. Microcontroller main loop
Appendix 4. GET function used to deliver data to the frontend
Appendix 5. The controller data model for the incoming data from the electric scooter
Appendix 6. Configuration of NGINX after the DigitalOcean tutorial

LIST OF FIGURES

Figure 1. A 18650 cell. 11
Figure 2. A bosch battery connector. 12

Figure 3. Brushless outrunner motor diagram. 13
Figure 4. Hub motor (left) and mid-drive (right). 14
Figure 5. A Flipsky inrunner motor. 14
Figure 6. Typical High side switching BLDC commutation. 15
Figure 7. An example of what each of the IoT architecture layers contains. 18
Figure 8. NB-IoT logo. 20
Figure 9. A block diagram depicting the technology stack of the thesis project. 26
Figure 10. The sensor block of Figure 5. 27
Figure 11. A picture of the Mini FSESC4.20 with the connector pinouts visible from
Flipsky’s website. 28
Figure 12. A state diagram of the main loop. 31
Figure 13. Dataflow diagram of the electric scooter. 33
Figure 14. Picture of the website implementation made in the thesis project. 34

LIST OF TABLES

Table 1. Feature set implementation order determined with MoSCoW method. 21

LIST OF ABBREVIATIONS

A Amperes

ADC Analog to digital converter

API Application Programming Interface

ARM Advanced RISC Machines

AVR Advanced Virtual RISC

AWS Amazon Web Services

B Byte

BLDC Brushless direct current

BMS Battery management system

CAN Controller Area Network

CPU Central Processing Unit

DC Direct current

EC2 Elastic Compute Cloud

ESC Electronic speed controller

FaaS Function as a service

FSESC A version of VESC produced by Flipsky

GET HTTP request method used for getting data

GPS Global Positioning System

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

Hz Hertz

IaaS Infrastructure as a service

IDE Integrated Development Environment

IoT Internet of Things

IP Ingress Protection Code

IP Internet Protocol address

I2C Inter-Intergrated Circuit

JSON JavaScript Object Notation

jQuery A JavaScript library for easy HTML DOM manipulation and
event handling

Kbit/s Kilobits per second

LTE Long-Term Evolution

LTE-M Long-Term Evolution for Machines

mAh milliampere-hour

MKR1500 Arduino MKR1500 NB-IoT

MongoDB Mongo database

MoSCoW A method used to prioritize development

MQTT Message Queuing Telemetry Transport

NB-IoT Narrowband Internet of Things

NCA Lithium Nickel Cobalt Aluminum Oxide battery cathode

NGINX An open-source web server software.

NoSQL Not only SQL

PaaS Platform as a service

POST HTTP request method used for sending data

RAM Random Access Memory

REST Representational State Transfer

RTOS Real-time Operating System

SaaS Software as a service

SPI Serial Peripheral Interface

SQL Structured Query Language

SSH Secure Shell protocol

UART Universal asynchronous receiver-transmitter

uWSGI Web Server Gateway Interface implementation usually used
with Python web applications

V Voltage

VESC An open-source electronic speed controller created by
Benjamin Vedder.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

1 INTRODUCTION

In recent years, the world has seen significant developments in personal transportation’s

electrification. The change is seen as an increase in electric bicycle availability at more

affordable price points and in the forms of electric vehicles available. Besides electric

bikes, other prevalent forms of electric vehicles are electric scooters and electric cars.

The electric scooter has become such a norm in major city streetscapes that it has

become almost unnoticeable how often rentable scooters are seen despite their eye-

catching colors. The four rentable scooter companies most people living in major cities

are likely to be familiar with are LIME, Bird, TIER, and Voi, which were all founded during

2017 and 2018. As cities are becoming more environmentally conscious, low and no-

emission zones are being established. Micromobility vehicles are a great way to have

access to the facilities around these zones fast. These qualities make the rentable

scooter an appealing choice for short-distance travel around the city. However, the

insignificant payments of a scooter’s rent accumulate rather quickly into a sizeable

amount of money. The savings and personal mobility make owning an electric bike or

scooter an appealing option.

The objective of this thesis project is to build an electric scooter for short-range, low

carbon emissions travel, with the goal of making a minimum viable product.

The thesis is structured as follows. Chapter 2 introduces the technologies on a general

level. Chapter 3 discusses the requirements for the thesis project. Chapter 4 covers the

implementation based on requirements. Chapter 5 analyzes test results, and chapter 6

summarizes what was successful and lacking and what will happen in the future with the

project.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

2 TECHNOLOGIES

This chapter covers the technologies used in the thesis project. This chapter introduces

microcontrollers and their usage in IoT applications, battery technologies, and cloud

services. The chapter’s structure goes from metal to cloud, meaning the introduction

starts with material things. Chapter by chapter, the introduction covers more and more

non-material subjects, with each subchapter introducing a subject with increasing

computing power, emphasizing cloud services.

2.1 Battery

2.1.1 Lithium battery chemistries

The most common battery chemistry is a lithium-based cathode paired with a graphite

anode and either a gel or a solid electrolyte and a porous separator in between. A

Lithium Nickel Cobalt Aluminum Oxide cathode, or NCA for short, providing the best

overall performance compared to the other chemistries. Lithium with Cobalt Oxide,

Manganese Oxide, and Nickel Manganese Cobalt Oxide reach similar voltage levels but

lack capacity. Chemistry gaining traction as an electric vehicle battery in recent years is

Lithium Iron Phosphate, or LFP, because of their long life span, lower cost compared to

NCA, and general safety compared to other chemistries. [1]

NCA is a jack-of-all-trades chemistry, with the only compromise in the safety of the cells.

After the battery starts burning, it is nearly impossible to put out the flames, and it is

preferred to let bigger lithium-Ion fires burn out. LFP batteries are generally less prone

to fires thanks to their higher thermal resistance compared to NCA batteries. LFP

batteries’ safety and cost are the main reasons for the chemistry being eyed by the

electric vehicle industry. [2]

2.1.2 Cell form factors

The 18650 is a form factor first developed in the early 1990s and later standardized in

IEC 62133. The cells have a radius of 18mm and a length of 65mm. This sizing gives

the form factor its name, with the extra zero coming from the exact length. [3]

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

Figure 1. A 18650 cell.

The cells using NCA have an excellent energy density, providing up to 231.5 Wh/kg of

energy, with a peak voltage of 4.2 V and a capacity of 3400 mAh. The typical cell weight

is around 45.5 g. The energy density makes 18650 cells great for applications where the

energy sources weight matters, such as an electric vehicle. [4]

Tesla has developed their version of the 21700 Li-ion cells, which is supposed to be the

successor to the popular 18650 cells. The 21700 has an improved energy density of 300

Wh/kg, compared to the 231.5 Wh/kg a good quality 18650 has, which is an increase of

29,5% to energy density, with a 25% increase in the cell weight on average. The increase

in energy density means fewer cells need to be produced to achieve the same amount

of energy storage. [5]

2.1.3 Light electric vehicle battery packs

Electric bikes and scooters come in a few semi-standard voltages. The most common

nominal voltage ratings are 24, 36, and 48 volts. However, some manufacturers express

their battery packs peak voltage instead of the nominal voltage, which could cause some

confusion to less knowledgeable consumers. A typical 48-volt battery pack is comprised

of thirteen series and six parallel 3.7-volt NMC or NCA cells. A battery pack usually has

a Battery Management System (BMS), which keeps the cell charge on a similar level,

extending the pack’s lifespan.

The e-bike industry has tried to standardize the battery pack connectors but to no avail.

The industry is full of peculiar designs, with almost every manufacturer using a

proprietary connector, like the Bosch’s connector in Figure 2. The Rosenberg Power

Data Connector was pushed as the standard connector in the mid-2010s, but it never

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

gained enough traction to become the go-to connector. However, the connector is still

being used in Specialized e-bike batteries. [6]

Figure 2. A bosch battery connector.

2.2 Drivetrain

A drivetrain is a combination of multiple parts, which work together to get power to the

wheels. These typically include the Electronic Speed Controller (ESC), drive belts, gears,

motor, and batteries. Typically in an electric scooter, an ESC, a motor, and a battery

make up the drivetrain.

2.2.1 Basics of brushless dc motors

Brushless direct current motor works by changing the polarities in the stator wires in a

way that attracts and repels the wires in relation to permanent magnets, as depicted in

Figure 3 [7]. The gray arrows in Figure 3 show the direction in which the wheel is

spinning, and the red and blue arrows show which way the stators are pushing and

pulling the outer part’s permanent magnets. The motors in electric vehicles are usually

three-phased outrunner motors. An outrunner motor has its permanent magnets outside,

a configuration used in hub motors. An outrunner motor is depicted in Figure 3. Switching

the stators to the outside makes the motor an inrunner, which is used in mid-drive motors.

They need an external controller called an Electric Speed Controller, an ESC for short,

which controls the modulated signal to the stators so that the motor spins.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

Figure 3. Brushless outrunner motor diagram.

2.2.2 Brushless DC motor types

BLDC motors come in many form factors, hub, mid-drive and separate inrunner

Brushless DC motor. Mid-drive motors are not applicable in electric scooters, but their

prevalence in electric bikes makes them worth mentioning. Mid-drive motors can provide

a small footprint all-in-one motor package with sensors and actuators.

The hub motor is most often seen in electric scooters around the cities and makes an

excellent option for a low maintenance system in a commercial setting. Hub motors have

close to zero moving parts, making them less prone to wear, unlike a gear system used

with a separate BLDC or mid-drive motor.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

Figure 4. Hub motor (left) and mid-drive (right).

Separate inrunner BLDC motors are often used in electric skateboards because the

motor’s shaft can be fitted with either a belt drive or a wheel when used as a direct drive

motor.

Figure 5. A Flipsky inrunner motor.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

2.2.3 Electronic Speed Controllers

Electronic Speed Controller’s primary purpose is to produce signal similar to the signals

seen in Figure 3 according to the control signal received. The low side MOSFET, which

is denoted with a minus sign in in Figure 6, is kept on, while the high side is switched to

create the magnetic field through the appropriate stator wires. The control signal can be

either a PWM signal from a microcontroller via cable or Bluetooth or a value from a

potentiometer throttle. Modern ESCs are usually comprised of a microcontroller, a gate

driver integrated circuit, and MOSFETs controlled by the gate driver. ESCs usually come

as black boxes with no way to know what is happening inside, although this is less

common, thanks to Benjamin Vedder. [8]

Figure 6. Typical High side switching BLDC commutation.

Benjamin Vedder started the project in 2011, and the Vedder ESC had its first release in

2014. The VESC is an open-source ESC with a plethora of settings to be tinkered with.

The VESC has been the base for many variations, such as the FSESC used in the thesis

project, with higher voltage and current ratings than the original 60V 50A model. The

VESC has an STM32F4 microcontroller, a DRV8302 gate driver, and IRFS7530

MOSFETs. The VESC project has been a significant success, finding its way to

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

numerous DIY builds worldwide, including this thesis project in the form of an FSESC.

[8]

2.3 Microcontroller

2.3.1 What are microcontrollers?

During 1970 and 1971, Gary Boone invented the first microcontroller called TMS1000.

The microcontroller came with three whole kilobits of program memory. The

microcontroller didn’t see widespread adoption on release, but rather a few years later,

in 1974, it was made available to the general market. The microcontroller then saw far-

reaching usages in various devices, such as microwave ovens and video games. [9]

Microcontrollers can easily be confused with microprocessors. However, the differences

between the two are pretty significant. A microcontroller should be thought of as an all-

in-one package containing everything a simple computer would need. Microcontrollers

have a mix of programmable memory for the program, input-output ports for

communicating with peripherals, and interfaces like SPI and I2C. A microprocessor is

there to process the data according to the instructions in the program memory. [10]

Microcontrollers function based on the data they get from their peripherals. For example,

they can read the value of a thermistor connected to one of the pins, approximate the

temperature based on the data read. Then transmit the data through UART or wirelessly

with Bluetooth, NB-IoT, or Zigbee. Microcontrollers are the preferred option for many

small electronics today, which need some logic because of their low power consumption,

relatively high computing power, and low price.

2.3.2 Modern applications

Nowadays, microcontrollers are a cheap and easy way to get into embedded

programming, with microcontroller board designers like Arduino, SparkFun, and STM32.

The designs are often based around ARM Cortex-M and AVR ATmega series

microcontrollers, like ATSAMD21 and ATmega328p. Arduino’s and Sparkfun’s boards

are compatible with Arduino IDE, a great development tool for beginners with close to no

setup.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

Any device with even a hint of logic most likely has a microcontroller inside. From

toothbrushes to coffee grinders, microcontrollers are truly everywhere. Microcontrollers

internet connectivity is increasing year by year, with continuous development on better

IoT networking protocols like Thread. Microcontrollers have developed to a point where

their processing power is enough to run basic machine learning models.

In larger systems, a single microcontroller usually controls one functionality. For

example, one microcontroller controls the lighting in a car, and another one controls the

windows. In automotive applications, the controllers communicate with the central

controller through CAN bus.

2.4 AWS and NB-IoT

The following subchapters first cover the IoT architecture as a whole, and then in the

later chapters, cloud services and NB-IoT are covered. Cloud services are covered by

the common types of cloud services, and NB-IoT’s capabilities are presented.

2.4.1 Basic IoT architecture

A basic IoT architecture is as depicted in figure 7. On the lowest layer, there are the IoT

devices themselves. They gather data, control devices and communicate with a hub or

an edge device, with an appropriate IoT protocol. After acquisition, the data is sent to the

cloud with an IoT network connection. There can be some data filtering and processing

done in the edge device before the data is sent to a cloud database located in a data

center. [11]

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

Figure 7. An example of what each of the IoT architecture layers contains.

The lowest layer contains all the devices that control and gather the data from the

environment. The device could be anything from a wired security camera to a wireless

door lock. This is the layer where the Arduino MKR1500 used in the thesis project is

located.

Some popular networking layer protocols and networks are HTTP, MQTT, LoRaWAN,

ZigBee, NB-IoT, and Ethernet. These protocols transmit data between devices in an IoT

architecture, be it the hub or straight to the backend server. Ethernet and ZigBee, when

used inside, are used close to their hub devices due to their limited ranges. NB-IoT

enabled devices can skip the hub device altogether and connect straight to the cloud

because the devices are using LTE networks to communicate with the backend server.

HTTP and MQTT are messaging protocols, which determine the format of the data sent.

[11]

The last layer in the IoT stack is the backend, where the data is processed and saved.

The whole backend could be contained inside a single Amazon data center, thanks to all

of the services Amazon provides. The data is then finally being processed and processed

LoRaWAN

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

and cleaned before saving. The data can be used for simple visualization or training

machine learning models and anything in between.

2.4.2 Cloud services

A cloud service, in short, is a service that runs in a data center, and the service is used

through the internet. This lets the company making the service forgo building its own

data infrastructure and implement the service in a data center. The data center can then

focus on improving their servers and creating a cloud platform of their own for service

deployments, like Amazon Web Services and Microsoft Azure. Both Amazon and

Microsoft have built many services for their data center services, including databases,

IoT gateways, and rentable machine learning computing power. They’re both providing

Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) for the end-user.

[12]

Cloud services can be split into four as-a-service categories: software, platform,

infrastructure, and function. Software-as-a-service is probably the most common cloud

service that a consumer uses, and the category includes services like YouTube, Outlook,

and MongoDB. Software services are used through the web without the need for an

installation. Platform-as-a-service is what AWS and Microsoft Azure provides, with their

corresponding platforms. They provide companies with infrastructure and a wide range

of tools for deployment, all on a single platform. PaaS is paid by the services used, which

lets the company pick and choose from the platform’s services, thus possibly cutting

costs. Infrastructure-as-a-service was used in the thesis project with Amazon Lightsail.

IaaS is the most similar to renting a standard computer for use, but with ease of

expandability and lower maintenance costs, thanks to the infrastructure being in the

cloud. IaaS rents out computing power and storage to clients for building their service.

Amazon Lightsail and Elasctic Compute Cloud (EC2) are pretty similar in the product

they provide. Both services have a virtual private server builder tool, with Lightsail having

a more streamlined process for deployment. Both services have premade profiles to suit

the client’s needs. Function-as-a-service forgoes standard server infrastructure

altogether and provides the client an endpoint, which has a single function. The run time

of these functions varies greatly depending on how often they are run, because the

function gets unloaded from the server after a while. [13]

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

2.4.3 NB-IoT

Narrowband IoT is a 3GPP standardized radio technology, which lets IoT devices

communicate through existing mobile carrier networks, either on the same bandwidth as

GSM signals, between the main LTE channels, or standalone [14].

NB-IoT was first introduced in 3GPP release 13, and it is classified as a 5G technology

[15]. However, NB-IoT does not necessarily use fifth-generation mobile networks to

communicate because of its ability to work on older networks. NB-IoT has a peak sending

data rate of 66kbps and a receiving data rate of 26Kbps, dropping as low as a few kilobits

per second in hard-to-reach areas [16].

Figure 8. NB-IoT logo.

Compared to other low-power wide-area networks, NB-IoT has a clear disadvantage with

its power consumption. According to Semtech, NB-IoT uses more power when sending

and receiving than LoRaWAN. [17] Even when counting at the higher data transfer

speeds, the power consumption of NB-IoT devices in a longer time scale significantly

reduces the time between battery maintenances. Consuming 110mA on average per

transmission is up to five times more power used per transmission than LoRaWAN. [17]

NB-IoT makes up for the power consumption by working independently without an

external hub. Devices using NB-IoT need a bigger battery to compensate for the

increased power usage if the device is planned to be used without maintenance for

years.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

3 REQUIREMENTS

This chapter covers the requirements set for the thesis using the MoSCoW method [18]

and studying the rentable scooters found in Turku. This thesis aims to create an electric

scooter with a similar feature set comparable to Vois Voiager 3X. [19] The scooter to

base the project is chosen on its similarity with TIERs and LIMEs scooters which look

almost identical. Regarding that, Voi likely has not removed features from newer models

of their scooters.

According to the Voi scooters website, the Voiager 3X has front and brake lights, breaks,

fast charging, 4G connectivity, swappable battery, display with the current zone

information, and availability status, which includes battery status. Having the scooter

inform if parking is available or if the area you are currently in is a slow zone implies the

scooter has GPS capabilities, which can be added to the list of features from the website.

MoSCoW method is used to determine the necessary features and nice-to-have

features. [19]

Table 1. Feature set implementation order determined with MoSCoW method.

1 The scooter must have GPS capabilities. Must

2 A controller for motor. Must

3 The scooter needs a place to save the data. Must

4 The scooter is always online. Must

5 The scooter needs a server with high uptime. Must

6 The scooter can be remotely turned on. Should

7 The scooter should have extra fault detection. Should

8 Location and data should be visualized. Should

9 An aesthetically pleasing website. Could

10 Accelerometer to track the scooter without GPS Could

3.1 Controller

As determined in table 1, the controller board must have internet connectivity, GPS

capabilities, and enough interfaces to work with the peripherals if they’re not on the

board. GPS and internet connectivity should be on the controller board chosen for

convenience. Arduinos MKR line of products, aside from the MKR 4000, all have internet

connectivity in some form. However, only the MKR 1500 has both internet connectivity

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

and GPS built-in. The MKR 1500 has internet through LTE-M and NB-IoT. The data

transfer rates of both protocols are adequate for the thesis project, LTE-M sending and

receiving data at a rate of 375 kbit/s and 300 kbit/s and NB-IoT sending and receiving

data rate of 62.5 kbit/s and 27.2 kbit/s, according to the datasheet of the onboard u-Blox

SARA-R410M-02B. [20]

3.2 Electronics

3.2.1 ESC

Benjamin Vedders open-source electronic speed controller has easy access to

customizing the ESC to the needs of the project using the GUI made for it. It is rated for

up to 60 volts and 50 amps continuous current. The ESC should be the centerpiece on

which the rest of the vehicle is based around. Choosing the right ESC at the beginning

makes the rest of the project more manageable. Because the VESC is open-source,

plenty can be configured in the VESC tool’s settings to the project’s needs.

Thanks to the VESC being open-source, it has multiple alternatives with variance in price

and power delivery capabilities. In the thesis project, an FSESC4.20 by Flipsky was

used. The FSESC is based on VESC4.12 and has the components made to fit a smaller

overall size otherwise, it is identical in functionality

3.2.2 Battery pack

The battery cell used for the electric scooter battery pack is the NCR18650B. The cell

has a rated capacity of 3400 mAh, and an average tested maximum voltage of 4.180 V.

The cell was chosen based on the manufacturer’s reputability and the cell’s capacity.

Since VESC is rated for up to 60 V, the battery pack has to have a maximum voltage

below 60 V. A battery pack with 14 cells in series is just below the rated voltage, but a

13s battery is recommended because the motor driver on the VESC is rated at 60 V,

including voltage spikes.

It is highly recommended to add a battery management system to the battery pack.

Otherwise, the battery pack has no balancing for the cells or regulation for the output

amperage. The BMS used in the thesis project is a generic Chinese 13s BMS rated at a

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

nominal voltage of 48 V and 40 A. The BMS limits the amount of current in and out of

the battery to some extent.

Parallel cells should be added to the battery pack according to the motor’s amperage

rating. NCR18650B has a C rating of 2, making the maximum recommended current

output 6.8 A per cell. The maximum current output from a li-ion cell is a lot higher than

the recommended value. To not use the batteries at their limit, six cells are put in parallel

to make the maximum current output 40.8 A, which is just over the maximum current

output of the BMS.

3.2.3 Motor

The scooter’s and driver’s weight must be taken into consideration when choosing a

proper motor. The scooter weighs approximately 40 kg, and the usual driver weighs

between 60-70 kg. A 36 V motor should be enough to reach the legal speed limits

comfortably with good acceleration as long as enough current is allowed to the motor at

low speeds.

Considering the motor controller on the VESC, a three-phase motor must be used in

conjunction with it. The motor chosen for the project was a 1000 W 48 V brushless dc

motor for bicycles. It is rated as 470 RPM and with the motor being fitted to a 12-inch

wheel that gives the scooter a maximum speed of 30 kilometers per hour. It needs to

have its maximum RPM reduced in the VESC to match the legal speed limit of 20

kilometers per hour.

3.2.4 Anti-Spark Switch

In the thesis project, an anti-spark power switch was used to enable the remote power

switching features. The anti-spark switch’s button must be replaced with a relay for it to

be controlled by the Arduino. In the thesis project, a Flipsky Anti-Spark Switch Smart

Enhanced is used. It is rated for 13s li-ion battery configuration and 200 A continuous

current. It is a MOSFET anti-spark switch. Anti-spark switches mostly come in two forms.

A connector with a cable loop, which completes the circuit and MOSFET-based anti-

spark switches where the MOSFETs are opened with, for example, a relay like in the

thesis project.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

3.3 Backend

Backend requirements in this thesis project are minimal. The server needs only to serve

the electric scooter and presumably a couple of users on the website at once. The

database is accessed seldom, and the queries are not complex.

Databases can be categorized into two groups, SQL and NoSQL. SQL stores data in

tables with relational data marked with a primary-secondary key system, while NoSQL

can be a document, key-value, graph, or wide-column stores, as stated in Mark

Smallcombe’s article [21]. The database of the thesis project does not have any special

requirements and was chosen on its familiarity and ease of implementation. In the future,

a time-series database should be used because of its applicability to IoT projects.

Usually, IoT devices are used for tracking, logging, and controlling. IoT projects can

make use of edge devices, which offload storage and computing from the IoT device. In

the thesis project, an edge device was not used, and the server does data storage and

data display.

3.3.1 Database

For the thesis project, MongoDB was chosen because of its ease of implementation,

flexibility, and familiarity. A time-series database, like InfluxDB or AWS Timestream,

should be used in the future. The goal of the thesis was to build a minimum viable product

version of the electric scooter, so quick and straightforward implementation was

prioritized. MongoDB, Inc. provides a free tier of their database with 512 MB of storage

which is more than enough for the thesis project.

3.3.2 Server

The server’s minimum requirements are minimal. It must run Ubuntu 18.4, which

minimum system requirements are 1 GHz CPU frequency, and 1 GB of RAM.

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

In the thesis project, Amazon Lightsail was used to deploy the server and host it. Lightsail

has multiple premade configurations to pick from, but Ubuntu configuration was used

with 1 GB of RAM in the thesis project.

The web server was implemented following a guide by DigitalOcean. The guide goes

through implementing the web server and reverse proxy with NGINX and uWSGI. NGINX

serves as a reverse proxy for the uWSGI server, routing HTTP traffic to the right uWSGI

processes, while uWSGI serves the requests to and from the flask application. [22]

The server application is based on Flask, a python web application microframework. It

provides the bare minimum to start the project, with an extensive library of extensions to

be tailored to the developer’s needs. The Flask application serves the single-page web

application and RESTful API.

3.4 IP-Rating

The chassis of the electric scooter’s deck contains all of the vehicle’s electronics. It must

not let any water inside while driving in the rain or driving through a puddle. Also, the

deck should not let an amount of dust inside that would harm the electronics. Consulting

the IEC 60509:1989 standard, the rating required is at least IP56, at which point the deck

would be protected from most of the dust particles and high-pressure water coming from

any direction [23]. However, IP57 rating should be considered for extra protection.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

4 IMPLEMENTATION

This chapter describes the implementation based on the requirements set in chapter 3.

The chapter starts with implementing the physical components, such as the motor,

battery, and sensors. After which, the code inside the Arduino MKR1500 is covered.

Finally, ending with the implementation of the cloud server and frontend.

Figure 9. A block diagram depicting the technology stack of the thesis project.

The sensor block with the Arduino MKR1500 is further opened up in Figure 6, presenting

the connections more clearly.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

Figure 10. The sensor block diagram..

4.1 Electronics

4.1.1 AM2302

AM2302 module monitoring battery temperature is connected to Arduino pin 6, and

module monitoring out temperature is connected to pin 7. The modules Vcc and ground

pins are connected to the power rails of the breadboard. In Picture 1, these are located

in the top left.

4.1.2 Adafruit Ultimate GPS Breakout V3

The module has its rx pin connected to the MKR1500s tx pin, and the module’s tx pin is

connected to the MKR1500s rx pin. The module can then be communicated with using

the hardware serial of the MKR1500. In Picture 1, this is located at the middle bottom.

4.1.3 FSESC

The FSESCs RX is connected to pin 1 on the MKR1500, and TX is connected to pin 0.

The throttle is connected to the ADC, ground, and 3.3 Vpins on the VESC. Using an

analog throttle with the FSESC, instead of a PWM signal from the MKR1500, separates

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

the two devices, enabling the scooter to be still driven in case of a software failure on the

MKR1500.

Figure 11. A picture of the Mini FSESC4.20 with the connector pinouts visible from
Flipsky’s website.

4.1.4 Power electronics

In the thesis project, a battery pack with a 13s6p configuration is used. It was built in a

26 by 3 cells configuration spanning most of the scooter’s deck. The cells used have a

maximum capacity of 3400 mAh according to the specifications and a voltage range of

2.5-4.2 V. There is a voltage cutoff set in the VESC to cut off power to the motor at

around 38 V, which is at a cell voltage of around 2.9 V.

Battery output is connected with an XT60 connector to the 12-60 V to 5 V 3 A converter

and the anti-spark switch through a 20 A fuse. The anti-spark switch’s power switch is

connected to a relay controlled by the MKR1500. The anti-spark switch is further

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

connected to the FSESC. The converter is connected to the breadboard’s power rail and

ground, where it serves power to the electronics requiring 5 V.

The anti-spark switch’s button cable has been modifier to go through a relay which

enables the MKR1500 to control the power going to the FSESC. The cable was cut, and

a connector was added in between the two ends, after which the cable was put together.

The connector takes the 5 V cable from the three cables and splits it to the relay and the

original button. This way, the button can still be used to switch the scooter on and off if

the Arduino has a software or hardware failure.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

4.2 Embedded software

Libraries

In an Arduino MKRNB project, Arduino.h should be omitted from the beginning, and

MKRNB.h be used in its place. MKRNB.h adds the MKR1500’s core functionality and is

necessary when using the controller. DHT.h is from github.com/adafruit/DHT-sensor-

library. The required libraries for the project are presented in Appendix 1.

Setup

The serial setup code seen in Appendix 2 is based on Sparkfun’s guide, Adding More

SERCOM Ports for SAMD Boards, with tweaks on which pins and which pads were used.

The serial port has to be activated with pinPeripheral() before it can be used, after which

it functions as a standard hardware serial port on the MKR1500 on pins 0 and 1. The

created VUART serial port is then passed to SerialVESC.setSerialPort() as a pointer.

[24]

Main loop

In the code seen in Appendix 3, the program checks if enough time has passed since

the last reading. NOW is a macro that casts millis() to uint32_t type, and gps_endtime is

the end time of the GPS block. These are used to check when to rerun the block. The

controller’s code should be migrated into a real-time operating system in the future. The

type of programming blocks used in the current code is similar to an RTOS task. The

change would improve the code’s readability and make it easier to add functionality later.

The main loop is presented as a whole in Figure 12.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

Figure 12. A state diagram of the main loop.

4.2.1 Data

Data is stored ArduinoJson library provided JSON format. The library’s JsonDocument

class variants work much like a JSON document typically would, except it has a defined

size.

All the serial and 1-wire communications have to be initialized. DHT22 sensor is read

with the objects readTemperature() function. The value returned is checked for validity

with isnan(). If isnan() returns true, there has been a failure reading the temperature, and

-1 is saved to the doc, and on false, the value read is saved to the doc. GPS data is

acquired from SerialGPS when the Adafruit Ultimate GPS Breakout sends data to the

serial port. The SerialGPS port is checked for available data periodically, according to

the number of milliseconds determined by GPS_DELAY macro. The available data is

then read and checked for updated data. If a new location has been acquired, and the

GPS has a fix on satellites, the data is saved to a JsonObject location in the data JSON

doc. Reading data from the FSESC is done through the added UART port. If the

SerialVESC.getVescValues() function fails, -1 is saved to the doc’s FSESC data fields.

If data reading is successful, the read values are saved to the doc.

 iewer does not support full S 1.1

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

4.2.2 Power state check

The controller is periodically pinging the server to query if the scooter should be turned

on or off. This is done by using the ArduinoHttpClient library get() function in the

powerStateRequest() function. It sends a get request to jesse.plus/ipa/power_state,

which responds with a 1 or a 0 corresponding with the power states. 1 being on, and 0

being off. The response is read with powerStateResponse(), verifying that the server

return code was 200, and errors out if no 200 is returned or if the response takes over

five seconds. These two functions should be combined to be a universal GET function.

The returned value is then passed to switchRelayState(), where it is checked for change.

If change has happened, the relay is then turned on for either 700 milliseconds or 2000

milliseconds. A shorter relay on time closes the antispark switch circuit turning on the

FSESC, and a longer on-time opens the circuit shutting down the FSESC.

4.2.3 Posting the data

Posting data to jesse.plus/ipa/controller is done with postData() function, using

ArduinoJSON provided JSON format and ArduinoHttpClient client.post() function. The

document is saved as a string so ArduinoHttpClient can work with the data. ContentType

has to be specified as application/json as is required in HTTP. If the response code is

not 200, the function reports the response code on serial, flushed and stops the client,

and returns early. On a successful request, the response is logged onto serial, and the

function returns 1.

4.3 Server and client

This chapter explains how the data moves in the electric scooter’s IoT system, with the

help of Figure 13, which presents the dataflow pattern of the system.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

Figure 13. Dataflow diagram of the electric scooter.

4.3.1 Flask and frontend

Frontend

/ is the home page that displays the electric scooter’s information and allows the electric

scooter to be turned on and off remotely. The home page has javascript that keeps

polling the Flask backend every five seconds to get the latest data sent from the electric

scooter to the flask server. The home page communicates with the flask server with

jQuery ajax calls, which are sent on button presses or at five-second intervals depending

on if the scooter’s data is being updated or if the scooters’ power is being switched. The

raw data is displayed in a table on the home page and location data is also displayed in

a leafmap.js provided OpenStreetMap map element. The home page also contains a log

of events that have happened during that client’s open session. The data formatting and

logging are done with jQuery.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

Figure 14. Picture of the website implementation made in the thesis project.

Flask

The main flask entry file is escooter_api.py. The backend is initialized in multiple parts.

The main initialization function is called create_app and all of the resources and

extensions are initialized inside their helper functions.

The routing on the backend is a restful API with implemented flask-restful extension.

Flask-restful provides the Resource class, which is the main building of all the endpoints.

The endpoints consist of classes that inherit the Resource class provided by flask-restful.

The Resource class provides HTTP the usual methods used in REST APIs, which are

GET, POST, PUT, and DELETE, however only GET and POST are needed.

The /ipa/controller has two HTTP methods associated with it, which are GET and POST.

ControllerResource inherits the Resource class from flask_restful, which grants access

to the needed HTTP methods.

The GET function seen in Appendix 4 returns the latest data from the database. It uses

It pops the document id before returning, as it is not relevant information. The POST

function does the opposite of the GET function and receives data from the electric

scooter. The data is validated and the sender is confirmed with a long string identifier.

Mongoengine is an Object-Relational Mapper for MongoDB. It provides connectivity

between the server and the database, and a base document class that is used to create

the Controller model for data validation.

The Document class from the mongoengine extension seen in Appendix 5 gives access

to the data types used inside MongoDB documents, which enables easy validation of the

incoming data. If the data received can’t be saved into the appropriate field, it won’t be

saved into the database. No error handling for the wrong form of data is implemented in

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

the version used in the thesis. The identifier, however, is checked to be valid and returns

an internal server error.

The ControllerPowerResource is responsible for controlling the power state of the

electric scooter in conjunction with the website. The state is stored in a variable inside

the class, and it is retrieved with a GET method sent from the electric scooter. The state

of the variable is changed by sending the desired state to /ipa/power_state with a POST

method from the website along with a password.

4.3.2 MongoDB

In the thesis project, a free instance of MongoDB is used. It has 512 MB of storage, which

is plenty for the application. After logging in to the MongoDB website, a new database

can be made by going to the organization page and opening the project page. There a

“New Project” button can be seen, and by pressing it, the user is taken to a page where

the project is named. After the name is chosen, the user can add other users to the

project. After creating the project, the user is taken to the Clusters page and should press

the Build a cluster button and choose the free tier. In the configuration, the cloud provider

should be AWS, cluster location should be eu-central-1 and its name can be changed if

needed, but since the thesis project is only using one cluster to hold all the data, there is

no need to change the name.

To connect to the database, the user must click the connect button, click the “Add Your

Current IP address” on the pop-up window, add a username and password for the

connection, and then choose to connect the application. Python is chosen as the

application driver, and the connection string is seen in the box below. The connection

string must then be copied over to the flask application so that mongoengine can connect

to the database.

4.3.3 AWS Lightsail

The backend server is set up on Amazon Lightsail, which provides easy deployment of

virtual private servers. In this thesis project, an “operating system only” instance is made

with 1 GB of RAM. SSH keys must be created and downloaded so that the VPS can be

connected to later. Automatic snapshots are not needed for the thesis project, but a

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

snapshot of the server should be taken after the server is configured. The server should

be assigned a static IP address to ease the development, which is done in the networking

tab of the server.

After the server has initialized, it can be connected to using an SSH client. In the thesis

project, Visual Studio Code Insiders is used because of its ability to act as an SSH client

and a code editor on the host simultaneously. To connect to the server using Visual

Studio Code, an extension called Remote – SSH (Nightly) has to be installed. After

installing a new tab appears on the sidebar with an option to add SSH targets. When

clicking add a new connection, the prompt then asks for an SSH connection string and

the downloaded ssh key file. The server can then be interacted with using the SCodes’

built in terminal.

4.3.4 Nginx and uWsgi

After getting access to the VPS, the backend is configured by following a tutorial by Justin

Ellingwood and Kathleen Juell from DigitalOcean [22]. The tutorial is followed until the

end of step six, after which some more configuration must be done.

The projects escooter_api.ini file seen in Appendix 6 has its permissions modified from

660 to 666 so that NGINX and uWSGI can access the escooter_api.socket created when

the service starts. The change done lets all the users read and write to the file. The

permissions are changed because the current implementation of users on the back end

is not finished.

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

5 TESTING

5.1 Electronics

During the first test with the finished drivetrain and electronics, a voltage spike caused

by the battery being plugged damaged the microcontroller board. A Zener diode and a

capacitor were added to the 60 V-to-5 V converter’s output to prevent further damage to

the circuitry. The Zener diode rated at 5.1 V is just over the other component’s voltage

ratings. The capacitor was added for redundancy, smoothing current spikes. The

additional components succeeded in preventing further damage to the replaced parts.

The FSESC and AntiSpark Switch sustained the first few voltage spikes, but eventually,

the AntiSpark Switch stopped working, as did the FSESC. When researching the cause

for this failure, it became apparent that the AntiSpark Switches button was not supposed

to be removed. The issue was fixed by getting a new AntiSpark Switch, where the button

cable was modified to have a splitter. This way, the button functioned as it would out of

the box, and it could be controlled with the relay.

5.2 Embedded software

Issues with the ArduinoHttpClient library arose during testing, which causes the software

to hang while sending and receiving data. The hanging happens seemingly at random,

with no apparent cause. At a minimum, it takes only a few minutes for the program to

stop, with a maximum run time of a couple of days. The only way to restart the program

was to reset the Arduino physically.

The problem persists and could be fixed in the future by migrating the scooter and back

end to use MQTT instead of HTTP, which would likely increase the system’s stability in

the long run. The MQTT broker could run in the cloud with either a dedicated server, like

AWS EC2, or an IoT messaging service, like AWS IoT Core.

Quite a bit of time was wasted on trying to get GPS working at all. The original GPS used

for the project was the MKRGPS shield. The MKRGPS had issues finding a fix to the

GPS satellites inside, but it worked fine outside. After a while, the MKRGPS stopped

getting a fix altogether, at which point a new GPS breakout board was bought. The

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

Adafruit Ultimate GPS Breakout V3 with an external antenna also has trouble finding a

fix inside, but it eventually succeeds, unlike the MKRGPS shield.

5.3 Back and frontend

While working on the server, I noticed a significant amount of disconnects on my SSH

connection to the server when using a configuration with under 1 GB of RAM. The

disconnects were fixed by switching to a server configuration with 1 GB of RAM. The

server was running within Ubuntu’s minimum specifications

The first implementation of the website was using WebSockets to communicate with the

back end. There were some configuration errors on either NGINX or uWSGI, which

caused the responses from the server to take an unbearably long time. However, the

time between request and response was consistent at around twenty to thirty seconds.

After being unable to pinpoint the issue, WebSockets were cut from the implementation

in favor of a RESTful API. This fixed all the problems with server-client communication.

The current implementation of the map element does not use the data it gets from the

server to draw the current location of the scooter. For unknown reasons, the map draws

a marker in Greenland instead of Turku. The log has problems on smaller screens, where

it goes behind the map element. The issue should be fixed by making the elements

dependent on the user’s screen size.

When setting up users and trying to prevent root access, the roles having ssh access

got blocked out of the system. During development, this occurred multiple times before

locking the root account behind a password and leaving it at that.

UWSGI had issues with permissions, which caused the escooter_api.socket file to be

inaccessible at runtime. The problem was fixed by changing the permissions of

escooter_api.socket in the escooter_api.init from 660 to 666

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

6 CONCLUSIONS

The objective of this thesis was to build an electric scooter with a similar feature set

compared to a typical rentable electric scooter. The goals were met adequately. The

controller and server work in unison, sending information both ways. The scooter’s

current status and location can be checked from its website. The scooter can be turned

on remotely from the website using a password. Most of the must-be-implemented

features from Table 1 were implemented successfully. Always-online functionality was

not implemented in time because of issues found during testing of the vehicle.

The ArduinoHttpClient library raised several obstacles during development. Sometimes

when sending a request to the server, the ArduinoHttpClient hangs and does not return

anything, causing the controller Arduino to need a reset.

Website and server were first made using WebSockets, but those were deemed

unusable. There likely were configuration errors on NGINX and uWSGI, which caused

unbearable latencies when communicating using the website. Using a RESTful API on

the server fixed all the issues with server-client communication.

Reflecting on the work implemented on the electric scooter opens many opportunities for

future improvement. The codebase became quite difficult to read on the controller, and

it is proving a great challenge to add features. NGINX and uWSGI were left to bare

minimum configuration to get the other parts of the electric scooter to work. This meant

leaving out HTTPS, leaving the website quite vulnerable until support is added. The

FSESC is operating on its 60-volt limits with a fully charged battery, which is quite frankly

bad design. Having voltage so close to the rated voltage of FSESC could easily cause

hardware failure since the inductor kickback coming from the motor can reach incredibly

high voltage.

Future work

To make future development easier, the program should be split up, and a real-time

operating system should be implemented. The program is already operating like an

RTOS, making switching systems a logical step.

The MKR1500 has an in-built GPS module in the SARA-R410 module. It should be used

in tandem with the Adafruit GPS module to provide more accurate location tracking

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

ArduinoHttpClient must be changed in a later version so that MQTT could be the

communication protocol. This change should provide more reliability than the

ArduinoHttpClient, but it greatly depends on the implementation. The change also adds

the need for an MQTT broker, which should be done with AWS IoT Core. MKR1500 has

to have encryption enabled in the SARA-R410M module for AWS IoT Core to allow traffic

from the microcontroller.

The server’s security should be increased by adding authentication in Flask and adding

HTTPS support in uWSGI and NGINX. At its current state, the website provides users

the minimal features needed. In the future, users should see the trips that have been

driven instead of just the current location. Website graphics should also be updated to

provide the user increased clarity of what is happening in the electric scooter. The

website should have pages added to provide more information about the project.

The electric scooter’s acceleration is slow. The settings in the FSESC should be tweaked

for better performance at lower speeds. Adding a HALL sensor could help at the

beginning of the acceleration by helping the FSESC know the current electrical rotation

of the motor and thus increase current on the correct phase at the right time.

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

REFERENCES

[1] Types of Lithium-ion Batteries – Battery University [Internet]. Batteryuniversity.com. 2021
[cited 16 May 2021]. Available from:
https://batteryuniversity.com/learn/article/types_of_lithium_ion

[2] Colthorpe A. Choice of lithium iron phosphate not a ‘silver bullet solution’ for safety [Internet].
Energy Storage News. 2020 [cited 16 May 2021]. Available from: https://www.energy-
storage.news/news/lfp-vs-nmc-not-a-silver-bullet-solution-for-safety

[3] A look at Old and New Battery Packaging – Battery University [Internet]. Batteryuniversity.com.
2020 [cited 24 April 2021]. Available from:
https://batteryuniversity.com/learn/article/battery_packaging_a_look_at_old_and_new_systems

[4] Quinn J, Waldmann T, Richter K, Kasper M, Wohlfahrt-Mehrens M. Energy Density of
Cylindrical Li-Ion Cells: A Comparison of Commercial 18650 to the 21700 Cells. Journal of The
Electrochemical Society [Internet]. 2018 [cited 23 May 2021];165(14):A3284-A3286. Available
from: https://iopscience.iop.org/article/10.1149/2.0281814jes

[5] All Things You Need to Know about Tesla 21700 / 20700 Battery [Internet]. DNK Power. 2019
[cited 24 April 2021]. Available from: https://www.dnkpower.com/teslas-mass-production-21700-
battery/

[6] Connectors - Learn [Internet]. Ebikes.ca. [cited 23 May 2021]. Available from:
https://ebikes.ca/learn/connectors.html

[7] Joner E. How Brushless Motors Work and How to Test Them [Internet]. RCbenchmark. 2020
[cited 28 April 2021]. Available from: https://www.rcbenchmark.com/blogs/articles/how-brushless-
motors-work

[8] Vedder B. VESC Project [Internet]. Vesc-project.com. 2021 [cited 23 May 2021]. Available
from: https://vesc-project.com/

[9] Ahmad T. Tracing the Origins of Arduino: Part 1: The AVR Microcontroller [Internet].
Element14.com. 2018 [cited 5 May 2021]. Available from:
https://www.element14.com/community/docs/DOC-88981/l/tracing-the-origins-of-arduino-part-1-
the-avr-microcontroller

[10] Difference between Microprocessor and Microcontroller [Internet]. Electronics For You. 2016
[cited 28 April 2021]. Available from: https://www.electronicsforu.com/technology-trends/learn-
electronics/difference-between-microprocessor-and-microcontroller

[11] IoT technologies and protocols [Internet]. Azure.microsoft.com. [cited 5 May 2021]. Available
from: https://azure.microsoft.com/en-us/overview/internet-of-things-iot/iot-technology-protocols

[12] What are cloud services? [Internet]. Redhat.com. [cited 6 May 2021]. Available from:
https://www.redhat.com/en/topics/cloud-computing/what-are-cloud-services

[13] What is the cloud? | Cloud definition [Internet]. cloudflare.com. 2021 [cited 10 May 2021].
Available from: https://www.cloudflare.com/en-gb/learning/cloud/what-is-the-cloud

[14] IDG TECHtalk. What is NB-IoT? [Internet]. 2018 [cited 13 May 2021]. Available from:
https://www.youtube.com/watch?v=pf7wcl1IZYc

[15] Narrowband IoT (NB-IoT) [Internet]. Thales Group. [cited 13 May 2021]. Available from:
https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/resources/innovation-
technology/nb-iot

https://www.energy-storage.news/news/lfp-vs-nmc-not-a-silver-bullet-solution-for-safety
https://www.energy-storage.news/news/lfp-vs-nmc-not-a-silver-bullet-solution-for-safety
https://batteryuniversity.com/learn/article/battery_packaging_a_look_at_old_and_new_systems
https://iopscience.iop.org/article/10.1149/2.0281814jes
https://www.dnkpower.com/teslas-mass-production-21700-battery/
https://www.dnkpower.com/teslas-mass-production-21700-battery/
https://ebikes.ca/learn/connectors.html
https://www.rcbenchmark.com/blogs/articles/how-brushless-motors-work
https://www.rcbenchmark.com/blogs/articles/how-brushless-motors-work
https://vesc-project.com/
https://www.element14.com/community/docs/DOC-88981/l/tracing-the-origins-of-arduino-part-1-the-avr-microcontroller
https://www.element14.com/community/docs/DOC-88981/l/tracing-the-origins-of-arduino-part-1-the-avr-microcontroller
https://www.electronicsforu.com/technology-trends/learn-electronics/difference-between-microprocessor-and-microcontroller
https://www.electronicsforu.com/technology-trends/learn-electronics/difference-between-microprocessor-and-microcontroller
https://azure.microsoft.com/en-us/overview/internet-of-things-iot/iot-technology-protocols
https://www.redhat.com/en/topics/cloud-computing/what-are-cloud-services
https://www.cloudflare.com/en-gb/learning/cloud/what-is-the-cloud
https://www.youtube.com/watch?v=pf7wcl1IZYc
https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/resources/innovation-technology/nb-iot
https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/resources/innovation-technology/nb-iot

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

[16] Le Bras R. What is the Difference in Data Throughput between LTE-M/NB-IoT and 3G or
4G? | Internet of Things [Internet]. Internet of Things. 2019 [cited 13 May 2021]. Available from:
https://www.gsma.com/iot/resources/what-is-the-difference-in-data-throughput-between-lte-m-
nb-iot-and-3g-or-4g

[17] Mohan V. 10 Things About LoRaWAN & NB-IoT [Internet]. Inside Out Semtech’s Corporate
Blog. 2018 [cited 12 May 2021]. Available from: https://blog.semtech.com/title-10-things-about-
lorawan-nb-iot

[18] MoSCoW method - Wikipedia [Internet]. En.wikipedia.org. [cited 17 June 2021]. Available
from: https://en.wikipedia.org/wiki/MoSCoW_method

[19] Voi Vehicles - Our Voi scooters and bikes [Internet]. Voi. [cited 13 May 2021]. Available from:
https://www.voiscooters.com/voi-vehicles

[20] Product summary | SARA-R4 (x2B) series | Multi-band LTE-M / NB-IoT and EGPRS modules
[Internet]. u-Blox; 2019 [cited 17 June 2021]. Available from: https://www.u-
blox.com/sites/default/files/SARA-R4-x2B_ProductSummary_%28UBX-16019228%29.pdf

[21] Smallcombe M. SQL vs NoSQL: 5 Critical Differences [Internet]. Xplenty. 2020 [cited 14 May
2021]. Available from: https://www.xplenty.com/blog/the-sql-vs-nosql-difference

[22] Ellingwood J, Juell K. How To Install Nginx on Ubuntu 18.04 | DigitalOcean [Internet].
DigitalOcean. 2018 [cited 14 May 2021]. Available from:
https://www.digitalocean.com/community/tutorials/how-to-install-nginx-on-ubuntu-18-04

[23] Rogers B. IP Rating Chart [Internet]. Setra.com. 2016 [cited 14 May 2021]. Available from:
https://www.setra.com/blog/ip-rating-chart

[24] Adding More SERCOM Ports for SAMD Boards - learn.sparkfun.com [Internet].
Learn.sparkfun.com. [cited 14 May 2021]. Available from:
https://learn.sparkfun.com/tutorials/adding-more-sercom-ports-for-samd-boards/all

https://www.gsma.com/iot/resources/what-is-the-difference-in-data-throughput-between-lte-m-nb-iot-and-3g-or-4g
https://www.gsma.com/iot/resources/what-is-the-difference-in-data-throughput-between-lte-m-nb-iot-and-3g-or-4g
https://blog.semtech.com/title-10-things-about-lorawan-nb-iot
https://blog.semtech.com/title-10-things-about-lorawan-nb-iot
https://en.wikipedia.org/wiki/MoSCoW_method
https://www.voiscooters.com/voi-vehicles
https://www.u-blox.com/sites/default/files/SARA-R4-x2B_ProductSummary_%28UBX-16019228%29.pdf
https://www.u-blox.com/sites/default/files/SARA-R4-x2B_ProductSummary_%28UBX-16019228%29.pdf
https://www.xplenty.com/blog/the-sql-vs-nosql-difference
https://www.digitalocean.com/community/tutorials/how-to-install-nginx-on-ubuntu-18-04
https://www.setra.com/blog/ip-rating-chart
https://learn.sparkfun.com/tutorials/adding-more-sercom-ports-for-samd-boards/all

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

The required libraries for the project

#include <MKRNB.h>

#include <ArduinoHttpClient.h>

#include <ArduinoJson.h>

#include <DHT.h>

#include <TinyGPS++.h>

#include "SSRelay.h"

#include <Adafruit_GPS.h>

//VescUart libraries

#include <VescUart.h>

#include <datatypes.h>

#include <crc.h>

#include <buffer.h>

#include "wiring_private.h"

Appendix 2

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

Adding serial ports on SAMD21

//VescUART setup

VescUart SerialVESC;

//Initializes additional serial communications on pins 0 and 1.

Uart VUART(&sercom3, 1, 0, SERCOM_RX_PAD_1, UART_TX_PAD_0);

void SERCOM3_Handler() {

 VUART.IrqHandler();

)

//In setup()

//Assing RX function to pin 1

pinPeripheral(1, PIO_SERCOM);

//Assign TX function to pin 0

pinPeripheral(0, PIO_SERCOM);

SerialVESC.setSerialPort(&VUART);

Appendix 3 (1)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

Microcontroller main loop

//Main loop

void loop() {

 if (NOW - powerCheck_endtime > POWERCHECK_DELAY) {

 int pSReq = powerStateRequest();

 if (pSReq == 1) {

 Serial.println("power request sent");

 } else {

 powerCheck_endtime = NOW;

 return;

 }

 powerState = powerStateResponse();

 int sRSCode = switchRelayState(powerState);

 Serial.print("Relay code: ");

 Serial.println(sRSCode);

 powerCheck_endtime = NOW;

 return;

 }

 if (NOW - gps_endtime > GPS_DELAY) {

 getGPSData();

 gps_endtime = NOW;

 return;

 }

Appendix 3 (2)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

 digitalWrite(LED_BUILTIN, LOW);

 if (NOW - vesc_endtime > VESC_DELAY) {

 getVESCData();

 vesc_endtime = NOW;

 return;

 }

 if (NOW - temp_endtime > TEMPERATURE_DELAY) {

 getTempData();

 temp_endtime = NOW;

 return;

 }

 if (NOW - post_endtime > POST_DELAY) {

 doc["epoch"] = nb.getLocalTime();

 if (postData(doc, datapath)) {

 Serial.println("data POST");

 } else {

 Serial.println("data not posted...");

 }

 post_endtime = NOW;

 return;

 }

 digitalWrite(LED_BUILTIN, HIGH);

}

Appendix 4

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

GET function used to deliver data to the frontend

def get(self):

scooter_data = Controller.get_latest_data()

scooter_data = scooter_data.to_json()

scooter_json = json.loads(scooter_data)

scooter_json.pop("_id")

return make_response(scooter_json, 200)

Appendix 5

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

The controller data model for the incoming data from
the electric scooter

class Controller(Document):

location = GeoPointField(required=True)

temps = EmbeddedDocumentField(Temperatures, default=Temperatures)

avg_motorcurrent = DecimalField()

avg_inputcurrent = DecimalField()

input_voltage = DecimalField()

rpm = DecimalField()

tachometer = DecimalField()

scooter_time = DateTimeField()

created_at = DateTimeField()

updated_at = DateTimeField()

Appendix 6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jesse Smedberg

Configuration of NGINX after the DigitalOcean tutorial

cd /etc/nginx

cd sites-available

//Remove everything in this folder

cd ./sites-enabled

//Remove everything in this folder

cd ..

sudo nano nginx.conf

http {

 upstream flask {

 server unix:///tmp/escooter_api.sock;

 }

 server {

 listen 80;

 server_name *.jesse.plus www.jesse.plus;

 location / {

 include uwsgi_params;

 uwsgi_pass unix:///tmp/escooter_api.sock;

 uwsgi_ignore_client_abort_on;

 }

 }

}

	List of Abbreviations
	1 Introduction
	2 Technologies
	2.1 Battery
	2.1.1 Lithium battery chemistries
	2.1.2 Cell form factors
	2.1.3 Light electric vehicle battery packs

	2.2 Drivetrain
	2.2.1 Basics of brushless dc motors
	2.2.2 Brushless DC motor types
	2.2.3 Electronic Speed Controllers

	2.3 Microcontroller
	2.3.1 What are microcontrollers?
	2.3.2 Modern applications

	2.4 AWS and NB-IoT
	2.4.1 Basic IoT architecture
	2.4.2 Cloud services
	2.4.3 NB-IoT

	3 requirements
	3.1 Controller
	3.2 Electronics
	3.2.1 ESC
	3.2.2 Battery pack
	3.2.3 Motor
	3.2.4 Anti-Spark Switch

	3.3 Backend
	3.3.1 Database
	3.3.2 Server

	3.4 IP-Rating

	4 Implementation
	4.1 Electronics
	4.1.1 AM2302
	4.1.2 Adafruit Ultimate GPS Breakout V3
	4.1.3 FSESC
	4.1.4 Power electronics

	4.2 Embedded software
	4.2.1 Data
	4.2.2 Power state check
	4.2.3 Posting the data

	4.3 Server and client
	4.3.1 Flask and frontend
	4.3.2 MongoDB
	4.3.3 AWS Lightsail
	4.3.4 Nginx and uWsgi

	5 Testing
	5.1 Electronics
	5.2 Embedded software
	5.3 Back and frontend

	6 conclusions
	references

