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Abstract 

The goal of the thesis is to strengthen and analyze the strength of latest model of 
Protcorb’ s 26-disc-shaft, including static and fatigue in details. Moreover, the deflec-
tion is determined to avoid collisions during the operation. Subsequently, the structure 
of the shaft is developed in order to decrease the material usage and raise the inside 
cross-area of the inner channel. 

The static analysis is done by two methods, which are handled by MathCad and Finite 
Element Method by SolidWorks Simulation. In the analysis, the Von Mises stress and 
its safety factor are defined by both methods. Moreover, the deflection is determined 
by Simulation. The stress-based method is applied to define the fatigue lifetime and 
safety factor. Thus, The dimensions of the shaft are adjusted without changing the de-
sign to developing the structure . 

The result shown that there was not any failure and collision during the operation. Af-
ter the structure is developed, the volume of the shaft without the channels decreased 
by 46%. The inside area of the updated channel increased by 71%, however, the ma-
terial usage of the channel rose by 89%. Overall, the volume of entire updated shaft is 
428708394.38 cubic millimeters which is an increase of 35%. 
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1 List of abbreviations 

FEM as Finite Element Method  

FBD as Free-Body-Diagram 

kg as kilogram 

kN as kilo Newton 

m as meter 

mm as milimeter 

MPa as mega pascal  

N as Newton  

rpm as round per minute 

W as Watt 

 



 

 

2 Introduction 

2.1 Background 

In the present industrial revolution, new technologies such as cloud computing, machine 

learning, or Artificial Intelligence (AI) are applied in order to enhance the efficiency of pro-

duction. There is a rule of thumb that the effectiveness of manufacturing and production 

process proportionately increases the amount of water consumption. In typical heavy indus-

tries, especially paper and pulp, water is used in every process, which accounts for 25000 

gallons of water per ton of paper (Zero Gravity Filter). However, water is not an unlimited 

resource, hence, waste treatment takes an essential role in the production. There are sev-

eral methods of water treatment, but the disc filter is the most ubiquitous method in the 

paper and pulp industry. In several companies, certain specific technology in the filtrate 

process is available, contributing to formation of critical competitive factor for the practi-

tioner. 

ProtCorb, a start-up in developing the structure and system of water treatment, has de-

signed 3D models of their disc filter. In light of the shortcoming of such technology in prac-

tice, this thesis will put emphasis on the strength analysis and structure development.. 

2.2 Introduction of disc filter  

2.2.1 Description  

The disc filter is the device employed to filter the water in heavy industry such as paper 

milling. The device encompasses two main components, namely the rotating shaft and discs 

(Riker 1969).  



 

 

 

Figure 1. The 3D modelling of disc filter 

The series of filter discs is assembled respectively through the vat. At one end of the vat, 

the drive-end shaft is assembled, and a trunnion valve is installed to control the filtration 

revolution which affects the rotation of the disc mounted on the shaft at the other end (Riker 

1969). 



 

 

Each of the filter discs is formed from several sectors which are staged independently on 

the vat. In turn, the sectors are connected with the control valve and each other by an inner 

channel, which is located inside the vat (Riker 1969). 

 

Figure 2. The sector of the shaft 

The control valve is applied in a vacuum force from the barometric leg into the half of sectors 

which is drowned into unfiltered water during the cake (dust) forming phase. As a result, the 

filtration direction is inside out. (Riker 1969). 

2.2.2 Filtration process 

To begin with, the infiltrated water is pumped into the shaft from the valve side, enabling  

water to flow through 20 inner channels which are connected to the sectors, respectively. 

Because of the gravity and the vacuum force, the water flows through the sectors and is 

filtrated inside out. During the filtration,  dust known as cake is formed on the haft downward 

of sectors as the shaft revolves. The sectors which are clanged by the cake are rotated 

upward, leaving the cake being removed by vacuum or water jet. Finally, removed cake is 



 

 

conveyed from the filter media into the troughs, which are located between the discs or 

inside the vat. 

 

Figure 3. HUBER disc filter process (HUBERE SE 2017). 

2.3 Goal of thesis   

At the beginning of the thesis, the 3D models of the 26-disc-disc filter including the disc and 

shaft are designed. The static analysis by Simulation was done generally. There are 2 main 

tasks of the thesis, which one of those is strengthen analysis the latest model of shaft in-

cluding static and fatigue in details. Moreover, the deflection is determined to avoid colli-

sions during the operation. Subsequently, the structure of the shaft is developed in order to 

decrease the material usage and to raise the inside cross-area of the inner channel. Be-

cause the inner channel is the competitive factor between the companies, the figures of 

inner channel are hided from the reader by inserted in appendices. 

2.4 Delimitation 

There are two main parts in the filter disc, which are the shaft and disc. The thesis only 

studies in the shaft including vat, drive-end shaft, support plates and inner channels. The 

analysis includes static by Von mise stress and fatigue lifetime at the critical points.  For 

decreasing the usage of the material, the dimensions are adjusted without changing the 

design of the shaft. However, in developing the area of the inner channel, the flow 

calculation and effect are neglected. 



 

 

3 Theoretical research   

3.1 Equilibrium  

3.1.1 Equilibrium of the particle 

The equilibrium known as static equilibrium is used for a particle when it is at rest or moving 

with a constant velocity, however, in most cases, the particle is at rest. The first Newton’s 

law of motion is required to satisfy for keeping the equilibrium. The law which is shown in 

formula (1) said that the vector of resultant force applied on the particle is equal to 0 (Hib-

beler 2004, 81). 

∑ 𝐹 = 0 (1) 

In addition, equilibrium also satisfies the second Newton’s law which is written  ∑ 𝐹 = 𝑚 ∗ 𝑎. 

Because the sum of force is equal to 0, m*a equals 0, which leads to acceleration is equal 

to 0. Therefore, it is at rest or moves with constant velocity (Hibbeler 2004, 81). 

3.1.2 Equilibrium of rigid body 

The rigid body is applied by external forces and coupling moments, which are driven by 

gravity, contact forces, electricity and magnetism. Moreover, there are internal forces arising 

from the interaction between the particles and are dependent on Newton’s third law. For 

information, the law illustrates that the internal force is equal but in the opposite direction, 

compared to the external force (Hibbeler 2004, 193). 

On the basis of the upward heading method, the external forces and coupling moment can 

be combined into the resultant external force and coupling moment at any point on or off 

the body. As a consequence, the body is in equilibrium when the resultant external forces 

and coupling are equal to 0. The formulas (2) and (3) describe those (Hibbeler 2004, 194). 

∑ 𝐹 = 0 (2) 

∑ 𝑀 = 0 (3) 

In order to apply the equilibrium equation, it is assumed that the body is rigid. Nevertheless, 

in reality, the body is deflected by the effects of loads. In most cases in engineering appli-

cations, the material of the body is steel or concrete with the deformation being really small. 

Hence, the body is assumed to be rigid and not deflect when the loads are applied. This 



 

 

leads to the the direction of loads and their moment remaining fixed before and after the 

loads applied (Hibbeler 2004, 194). 

3.1.3 Free body diagram (FBD) 

So as to apply the equilibrium equations correctly, it is necessary to describe the known, 

unknown external forces and coupling moment; and internal forces as known as reactions. 

The free body diagram is an effective method to describe those forces. The free body 

diagram draws the shape of the body which becomes confined or ‘’free’’ from other effects. 

It is essential to show the external forces and moments on the FBD when the equilibrium 

equations are applied. The FBD helps to understand the features of the body which is 

important in engineering solving (Hibbeler 2011, 143). 

It is important to consider the support reactions in drawing the free body diagram. There are 

several types of reaction which exist at the points or supports of contact. They can be 

divided into two main types. 

• The support avoids the translation of the body in the known direction by applying an 

internal force in the opposite direction. 

• The support avoids the rotating of the body in the known direction by applying a 

coupling moment in the opposite direction (Hibbeler 2011, 143.). 

3.2 Bending moment and shearing force in beam 

3.2.1 Introduction  

Beam is a long, slight structural member which is applied by loads penderdically to its 

longitudinal axis. These loads cause the deformation of the beam on the plane of these and 

the internal stress is generated to resist the loads (Hibbeler 2011, 503). 

The design of the beam is determined by size, shape and material which are based on the 

bending and shearing stress and the deflection caused by the external loads. 

The classification of the beam depends on the supporting condition. There are six types of 

supporting condition which are simply supported (two supports), continuos supported (two 

or more supports), cantilever (one support is fixed), overhang (two supports which at least 

one is not at the end), propped (two supports which one is fixed) and fixed (two fixed 

supports) (Onouye & Kane 2013, 333).  

The actual connection conditions between beam and support are divided into 3 types which 

are roller, fixed and hinges (Onouye & Kane 2013, 334). In the fixed support, the translations 



 

 

including vertical, horizontal and rotating are restricted. Furthermore, in roller support, the 

horizontal and rotating translations are allowed. In hinges support, there is a certain allow-

able rotation at the connection. 

3.2.2 Shearing force and bending diagram  

When any loads are applied to the beam, the beam must resist and remain the equilibrium. 

In order to remain in equilibrium, the internal force must exist to resist the external loads 

and moments. The stresses and deflection on the beam are dependent on the internal 

forces, load and moment, hence it is handy to ‘’map’’ these into a diagram, indicating the 

detailed view of magnitude and direction of the forces and moment throughout the beam 

length. There are 2 main diagrams which are shearing force (V) and bending diagram. 

Figure 4 shown the load diagram, shearing force, and bending diagram, respectively (On-

ouye & Kane 2013, 337). 

In order to formulate the diagrams, the origin and the positive direction of x need to be 

defined. In most cases, the origin is chosen on the left and the positive direction of x is on 

the right (Hibbeler 2011, 504). 

In the diagrams, the slope of the shearing force and moment will be discontinuous at the 

points where the supports, loads, or moment are located. Therefore, it is important to divide 

the beam into the regions between any 2 discontinuous loads. For example, the x1, x2, and 

x3 are the coordinates of the region AB, BC, and CD, respectively, which is shown in Figure 

5 (Hibbeler 2011, 504). 

It is vital to define the signed agreement of the ‘’positive’’ and ‘’negative’’ value of shearing 

force and moment. Although there are different conventions, the one that is often used in 

engineering practice is shown in Figure 6. The loading is positive when the direction of the 

distributed load is upward, the internal shearing force causes the moment in a clockwise 

direction and the moment causes the compression at the upward face of the beam (Hibbeler 

2011, 504). 



 

 

 

Figure 4. Load diagram, shearing force and bending diagram (Onouye & Kane 2013, 337) 

 

Figure 5. The example (Hibbeler 2011, 504). 

 

 

Figure 6. The positive sign of loading (Hibbeler 2011, 504). 



 

 

3.2.3 The flexure stresses. 

In order to calculate the bending stress, it is important to assume that the material behaves 

in a linear-elastic manner, hence Hooke’s law is applied. The law gives the formula that 

σ=E∈. A linear stain variation is the result of a linear stress variation, which is shown in 

Figure 7. In a normal variation of strain, the stress will fluctuate from 0 at the member’s 

neutral axis to the maximum stress. It is indicated that ‘c’ is the farthest distance from the 

axis. By the feature of the triangle in the bending stress variation or the Hook’s law, it is able 

to write the formula (4) (Hibbeler 2011, 531) . 

𝜎 = − (
𝑦

𝑐
) ∗ 𝜎𝑚𝑎𝑥 (4) 

Equation (4) presents the distribution of stress over the cross-section area. It is critical to 

convent the sign of the formula. The moment which acts in the positive x-direction is posi-

tive, and the stress value is positive when the y value is the opposite sign. The condition in 

which the resultant force caused by the distributed stress over the cross area is zero, needs 

to be satisfied. The bending stress variation of  Figure 7 shows that the force dF which is 

equal σ*dA applies to the arbitrary element. Hence, formula (5) is required and developed 

to formula (7) (Hibbeler 2011, 531-532). 

𝐹𝑅 = ∑ 𝐹𝑥  (5) 

↔ 0 = ∫ 𝑑𝐹

𝐴

= ∫ 𝜎 ∗ 𝑑𝐴

𝐴

= ∫ − (
𝑦

𝑐
) ∗ 𝜎𝑚𝑎𝑥 ∗ 𝑑𝐴

𝐴

= −
𝜎𝑚𝑎𝑥

𝑐
∗ ∫ 𝑦 ∗ 𝑑𝐴

𝐴

 (6) 

↔ 0 = ∫ 𝑦 ∗ 𝑑𝐴
𝐴

 (
𝜎𝑚𝑎𝑥

𝑐
≠ 0) (7) 

Where: 

𝐹𝑅: The resultant force 

𝐹𝑥: The force in x direction which is describe in bending stress variation of Figure 7 

From equation (7). it can be said that the first moment of the cross-section area must be 

zero at the axis. The condition is only satisfied when the neutral axis and the horizontal 

centroid axis are duplicated. When the centroid is defined, the neutral axis of the cross area 

is determined (Hibbeler 2011, 532). 

The requirement that the resultant internal moment and the moment caused by the distrib-

uted stress about the neutral axis are equal can be used to determine the bending stress. 



 

 

In Figure 7, the moment of 𝑑𝐹  which is 𝑑𝑀 about the axis is equal 𝑦 ∗ 𝑑𝐹. Because 𝑑𝐹 =

𝜎 ∗ 𝑑𝐴 and formula (7), the formula (8) for the entire area are formed (Hibbeler 2011, 504).  

(𝑀𝑅)𝑧 = ∑ 𝑀𝑧  (8) 

𝑀 = ∫ 𝑦 ∗ 𝑑𝐹 = ∫ 𝑦 ∗ (𝜎 ∗ 𝑑𝐴) = ∫ 𝑦 ∗ (
𝑦

𝑐
) ∗ 𝜎𝑚𝑎𝑥 ∗ 𝑑𝐴 (9)

𝐴𝐴𝐴

 

↔ 𝑀 =
𝜎𝑚𝑎𝑥

𝑐
∗ ∫ 𝑦2 ∗ 𝑑𝐴

𝐴

 (10) 

The integral in the equation is called the moment of inertia, the cross-section area. The 

moment of inertia of the cross section which is symbolized as I computed about the neutral 

axis. Therefore, the formula to calculate the maximum bending stress is written as formula 

(11) (Hibbeler 2011, 532-533). 

𝜎𝑚𝑎𝑥 =
𝑀 ∗ 𝑐

𝐼
 (11) 

where: 

𝜎𝑚𝑎𝑥: The maximum bending moment which occurs at the farthest point from the axis 

M: The internal ending moment  

𝐼: The moment of inertia of the cross-section area 

c: The farthest distance from the axis 

Because 
𝜎𝑚𝑎𝑥

𝑐⁄ = − 𝜎
𝑦⁄ , the bending moment at the point which the distance from the axis 

is y, is calculated by the formula (12). 

𝜎 = −
𝑀 ∗ 𝑦

𝐼
 (12) 

In case the cross-section of the shaft is a solid circle, the moment of inertia I can be defined 

by the formula (13) (Hibbeler 2011, 533). 



 

 

 

𝐼 = −
𝜋 ∗ 𝑑4

64
 (13) 

Figure 7. (Hibbeler 2018, 531). 

3.3 Three-moment equation 

The three-moment equation can be applied in any 2 spans (regions) of a continuous beam. 

For n number of regions, (n-1) equations can be formulated which satisfy the equilibrium 

condition of a rigid body (eGyanKosh 2017, 27). 

Let AB and BC are 2 spans of continuous beam ABC, which is shown in Figure 8a. The 

length of AB and BC are 𝐿1 𝑎𝑛𝑑 𝐿2, in turn. The moment of inertia of AB and BC are 𝐼1 𝑎𝑛𝑑 𝐼2, 

respectively (eGyanKosh 2017, 27).  

The bending diagram which is caused by the external loads is shown in Figure 8b. Below, 

the diagram is the bending moment of unknown moments at the supports which are 

𝑀𝐴, 𝑀𝐵 𝑎𝑛𝑑 𝑀𝐶. The upper diagram shows the bending moment diagram of the region AB 



 

 

and BC separately, which are the simple support conditions (2 supports). Assuming 

𝐴1 𝑎𝑛𝑑 𝐴2 are the areas of the bending diagram subjected by the external loads of span AB 

and BC, in turn. 𝑥1 𝑎𝑛𝑑 𝑥2 is the distance between 2 ends to the gravity center of the regions. 

The slopes at B in Figure 8c which is the deformation plot of the beam are the same on the 

left and right sides (eGyanKosh 2017, 28). 

𝜃𝐵𝐴 = 𝜃𝐵𝐶  (14) 

Because the angle is small, the slopes approximate the formula (14), which 𝑡𝐵𝐴 𝑎𝑛𝑑 𝑡𝐵𝐶 are 

the vertical deviation with respect to the tangent at B of A and C, respectively (eGyanKosh 

2017, 28). 

𝜃𝐵𝐴 =
𝑡𝐵𝐴

𝐿1
;  𝜃𝐵𝐶 =

𝑡𝐵𝐶

𝐿2
 (15) 

𝑡𝐵𝐴

𝐿1
= −

𝑡𝐵𝐶

𝐿2
 (𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐹𝑖𝑔𝑢𝑟𝑒 8𝑐)(16) 

The deviation of A which can be defined by moment area method, is moment of 
𝑀

𝐸𝐼
 area 

between A and B about A in Figure 8c (eGyanKosh 2017, 28). 

𝑡𝐴𝐵 = ∑ [𝐴𝑟𝑒𝑎 𝑜𝑓 
𝑀

𝐸𝐼
 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝐵 ∗ 𝑥1]

=
1

𝐸1 ∗ 𝐼1
∗ (𝐴1 ∗ 𝑥1 +

𝐿1 ∗ 𝑀𝐴

2
∗

𝐿1

3
+

𝐿1 ∗ 𝑀𝐵

2
∗

2𝐿1

3
 (17) 

𝑡𝐵𝐶 =
1

𝐸2 ∗ 𝐼2
∗ (𝐴2 ∗ 𝑥2 +

𝐿2 ∗ 𝑀𝐵

2
∗

𝐿2

3
+

𝐿2 ∗ 𝑀𝐶

2
∗

2𝐿1

3
 (18) 

The combination of formula (15), (16) and (17) develop the three-moment equation 

(eGyanKosh 2017, 28). 

𝑀𝐴 ∗ 𝐿1

𝐸1 ∗ 𝐼1
+ 2 ∗ 𝑀𝐵 ∗ (

𝐿1

𝐸1 ∗ 𝐼1
+

𝐿2

𝐸2 ∗ 𝐼2
) +

𝑀𝐶 ∗ 𝐿2

𝐸2 ∗ 𝐼2
=

−6 ∗ 𝐴1 ∗ 𝑥1

𝐸1 ∗ 𝐼1 ∗ 𝐿1
+

−6 ∗ 𝐴2 ∗ 𝑥2

𝐸2 ∗ 𝐼2 ∗ 𝐿2
 (19) 

Figure 8a. (eGyanKosh 2017, 28) 



 

 

Figure 8b. (eGyanKosh 2017, 28) 

Figure 8c. (eGyanKosh 2017, 28) 

3.4 Torsion  

3.4.1 Torsional defamation of the circular shaft  

Torque is a moment, which twists the member about its longitudinal axis. The torque is a 

critical effect in rotating structures such as drive end, shaft used in machinery or vehicles. 

Therefore, it is crucial to determine the stress and deformation on the shaft when the torque 

load is applying. The physical illustration when the torque is applied to the circular shaft can 

be seen by considering the material of the shaft is rubber, which is highly deformable. When 

the torque is applied, the cross-section area and the longitudinal grid lines which are marked 

on the shaft distort into the pattern. When the shaft is twisting, the circle remains its own 

shape, and the longitudinal grid line becomes a helix which intersects the circle at an equal 

angle. The cross-section face at the end of the shaft remains flat which means that they do 

not warp or bulge in or out. As a result, if the angle of rotation is small, it is assumed that 

the length and the radius of the shaft are unchanged. Figure 9 shows the illustration of the 

shaft before and after the torque applies (Russell  2018, 453) . 



 

 

If the shaft is fixed on one end and there is a torque applied at the other end, the form of 

the shaft is shown in Figure 9. A radial line, which belongs to a cross-section face at a 

distance x from the fixed end will rotate through an angle ᶲ(x). The angle ᶲ(x) is called the 

twist angle (Hibbeler 2018, 454). 

Figure 9. The shaft before and after the torque applies (Hibbeler 2018, 453) . 

 

3.4.2 Torsion formula 

When an external torque is placed into the shaft, an internal torque, which is equal and 

opposite to the external one, is produced inside the shaft. Hook’s law is applied which is 

𝜏 = 𝐺 ∗ 𝛾, in case the material is linear elastic. Therefore, a linear variation of shear stress 

is the result of a linear shear strain variation along any radial line on the cross-section face. 

The torque fluctuates from 0 at the longitudinal axis to the maximum value, in the shear-

strain variation. The Figure shown the variation on a front face of a selected number of the 

element. The variation located at the transitional radial 𝜌 and at the outer radius c. Taking 

advantage of the feature of the triangle or Hook’s law, formula (20) is written (Hibbeler 2018, 

45). 

𝜏 =
𝜌

𝑐
∗ 𝜏𝑚𝑎𝑥 (20) 

The equation represents the shear-stress distribution, in which radial position 𝜌 is the ele-

ment. It determines the distribution of stress over the cross-section area of the shaft. In 



 

 

order to apply the formula, the torque generated by the stress distribution over the endive 

area must be equal to the resultant internal torque at the section. Each element of the area 

𝑑𝐴 which is located at 𝜌 in Figure 10 is controlled by a force of 𝑑𝐹 = 𝜏 ∗ 𝑑𝐴. And the equation 

of the torque caused by this force is 𝑑𝑇 = 𝜌 ∗ (𝜏 ∗ 𝑑𝐴). From that, the equation of the entire 

area is structured as formula (21) (Hibbeler 2018, 457). 

𝑇 = ∫ 𝜌 ∗ (𝜏 ∗ 𝑑𝐴). =
𝐴

∫ 𝜌 ∗
𝜌

𝑐
∗

𝜏𝑚𝑎𝑥

dA
=

𝜏𝑚𝑎𝑥

𝑐
∫ 𝜌2 ∗ 𝑑𝐴

𝐴

 (21)
𝐴

 

The integral in the equation depends only on the geometry of the shaft. It  computes the 

longitudinal axis, which represents the polar moment of inertia of the shaft cross-section 

area. The integral, which is symbolized as J, rewritten in the formula (22) (Hibbeler 2018, 

457) 

𝜏𝑚𝑎𝑥 =
𝑇 ∗ 𝑐

𝐽
 (22) 

where: 

𝜏𝑚𝑎𝑥: The maximum torsion stress in the shaft 

T: The resultant torque moment at the cross-section 

c: The outer radius of the shaft 

J: The polar moment of inertia 

The combination between 2 equations (20) and (22) is able to determine the torque stress 

at the intermediate distance 𝜌. 

𝜏 =
𝑇 ∗ 𝜌

𝐽
 (23) 

Figure 10. Torque stress varies linearly along each radial line of the cross-section (Hibbeler 

2018, 456) . 



 

 

In case the cross-section of the shaft is a solid circle, the polar moment inertia J can be 

defined by a form of a differential ring or annulus which uses an area element and shown 

in Figure 11. Thus, the formula has a thickness 𝑑𝜌 and the circumference 2𝜋𝜌.  

𝑑𝐴 = 2𝜋 ∗ 𝑑𝜌 ∗ 𝜌 (𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑖𝑛𝑔) (24) 

𝐽 = ∫ 𝜌2 ∗ 𝑑𝐴
𝐴

= ∫ 𝜌2 ∗ (2𝜋 ∗ 𝜌 ∗ 𝑑𝜌) =
𝐶

0

2𝜋 ∫ 𝜌3 ∗ 𝑑𝑝
𝑐

0

=
𝜋

2
∗ 𝑐4 (25) 

The polar moment of inertia is positive, and its common unit is 𝑚𝑚4 (Hibbeler 2018, 458) 

 

Figure 11. (Hibbeler 2018, 458)  

3.5 Von Mises stress equation  

Von Mises criterion is commonly used for designing ductile material engineering compo-

nents. It evaluates the design under the limit and works in a safe manner. The Von Mises 

stress is developed from distortion energy to decide if the ductile material is failed under the 

subjected loadings. The member will fail when the Von Mises stress is greater than the 

allowable yielding strength of the material. Most of transmission shafts can be analyzed with 

the form of Von Mise equation in formula (26) 

𝜎𝑣 = √((𝜎𝑏 + 𝜎𝑡))
2

+ 3 ∗ (𝜏 + 𝜎𝑠)2  (26) 

where: 

𝜎𝑏: The bending stress 

𝜎𝑡: The tensile stress 

𝜏: The torque shear stress 

𝜎𝑠The direct shear stress 

The safety factor of the engineering component is calculated by the formula 

𝑛 =
𝑅𝐸

𝜎𝑣
 (27) 

where: 



 

 

𝑅𝐸: The yielding strength of the material  

3.6 Definition and concepts of fatigue  

3.6.1 Introduction  

The components such as the drive shaft in the machinery, vehicle, and structures are ap-

plied frequently by repeated loads and the resultant of the cyclic load, which may cause 

microscopic physical damage to the materials (Dowling 1999, 357).  

Even the maximum resultant stress on the structure is lower than the given material’s ulti-

mate strength, the damage may continuously grow until it turns into the crack or the other 

macroscopic damage which leads to the failure of the structure. The process of failure and 

damage caused by the cyclic loadings is called ‘fatigue’. This term appears in an early in-

vestigator, which the cyclic stresses produce a gradual, not readily detectable, changes in 

the strength of the material (Dowling 1999, 357). 

There are three main approaches to analyze and design against fatigue failure. The tradi-

tional method, which is a stress-based approach, was developed to fundamental its present 

form by 1955. This method revolves around the nominal (average) stresses in the affected 

region of the component are applied, is applicable in most engineering cases. The nominal 

stress amplitude which can be resisted under the cyclic loading, is defined by the mean 

stress and include the raising effects such as groove, holes, keyways, and fillet. The strain-

based method analyses detailly in localized yielding which may occur at stress raiser during 

the cycling loading. The last approach applied the fracture mechanics method to treat spe-

cial growing crack (Dowling 1999, 358). 

3.6.2 Cyclic loading    

In the practical application, there is not pure static loading, which is not constant. The 

loading is assumed static when it has a small or extremely low variation. In most engineering 

cases, the maximum and minimum stress levels are constant. It is called constant amplitude 

stressing which is shown in Figure 12 (Dowling 1999, 359). 

The stress range, which is the difference between the maximum and minimum stresses 

value, is defined by Δ𝜎 = 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛. The mean stress which is symbolized by 𝜎𝑚𝑒𝑎𝑛 is 

the average between the maximum and minimum ones. The stress amplitude which is 𝜎𝑎, 

is half of the stress range. The mathematic formulas (28) (29) and (30) suppress the 

definitions (Dowling 1999, 359). 



 

 

𝜎𝑎 =
∆𝜎

2
=

𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
 (28) 

𝜎𝑚 =
𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛

2
 (29) 

𝜎𝑚𝑎𝑥 = 𝜎𝑚 + 𝜎𝑎;  𝜎𝑚𝑎𝑥 = 𝜎𝑚 + 𝜎𝑎  (30) 

The values of range and amplitude stresses are always positive because the maximum is 

bigger than the minimum stress. In quantities, the maximum, minimum, and mean stresses 

can be positive or negative. The ratios which are symbolized as R are A, are the stress ratio 

and amplitude ratio, in turn. The relationship between these variables are shown as 

formulas (Dowling 1999, 360). 

𝑅 =
𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
 ;  𝐴 =

𝜎𝑎

𝜎𝑚
 (31) 

𝜎𝑎 =
∆𝜎

2
=

𝜎𝑚𝑎𝑥

2
∗ (1 − 𝑅) ; 𝜎𝑚 =

𝜎𝑚𝑎𝑥

2
∗ (1 + 𝑅) (32) 

𝑅 =
1 − 𝐴

1 + 𝐴
 ;  𝐴 =

1 − 𝑅

1 + 𝑅
 (33) 

 

The cyclic system is also applied in the other variables such as force, strain, bending 

moment, and normal stress. 

Figure 12. 3 types of cyclic loading (Dowling 1999, 360).  

3.6.3 S-N curved 

In case a test specimen of the material is applied by cyclic stress, a fatigue crack or damage 

will be developed. If the test gives out  a higher stress level, the number of cycles to failure 

which is fatigue life will be smaller. The results of tests which at least 3 specimens, from a 



 

 

number of stress level may be plotted to a stress-life curve as known as S-N curve (Dowling 

1999, 363).  

The amplitude or mean stress is commonly plotted versus the fatigue life to failure  𝑁𝑓 which 

is shown in Figure 13 . (Dowling 1999, 363). 

The number of cycles to failure changes rapidly with stress level, hence, the fatigue life is 

plotted on a logarithmic scale or sometimes double logarithmic scale. Therefore, it is difficult 

to plot the cycle of life on a linear scale, which is shown in Figure 13 .In the figure, the same 

data are plotted on logarithmic and linear scale. On the linear plot which is the right plot, the 

fatigue life cannot be read accurately (Dowling 1999, 363). 

The equations (34), (35) present the mathematical representation of the curved in logarith-

mic and approximately linear scale, respectively (Dowling 1999, 363-364). 

𝜎𝑎 = 𝐶 + 𝐷 ∗ 𝑙𝑜𝑔𝑁𝑓  (34) 

𝜎𝑎 = 𝐴 ∗ 𝑁𝑓
𝑏(35) 

where: 

C: The constant describes intersection to y-axis  

D: The constant describes the slope of curve  

A: The slope of approximately linear equation 

b: The constant 

Figure 13.S-N curve from the test of roating bending and unotched specimen (Dowling 

1999, 363). 

 



 

 

3.7 Stress-base method in fatigue analysing. 

3.7.1 Notch effect 

In mechanical designing, the geometric discontinuities including fillet, groove, keyway, and 

hole, are hard to avoid. Therefore, the stress is locally raised, which is called stress raiser. 

The stress raiser, which is generalized and known as notches, decreases the resistance of 

the component to fatigue failure (Dowling 1999, 420). 

The elastic stress concentration factor, which is symbolized as 𝑘𝑡, is used to define the 

harshness of the notch. Moreover, the factor is the ratio of the local notch stress to the 

nominal stress. Besides elastic stress concentration factor, there are also additional factors 

that need to be considered in fatigue analysis (Dowling 1999, 421). 

The most effective method to analyse the notch factor is the notch sensitivity q and the 

common formulas, which are developed by H. Neuber to calculate the notch sensitivity, and 

the fatigue notch factor, are shown in formulas (36a), (36b) and (37), respectively (Dowling 

1999, 426-429). 

𝑞 =
𝑘𝑓 − 1

𝑘𝑡 − 1
 (36𝑎) 

𝑞 =
1

1 + √
𝛽
𝜌

 (36𝑏) 

𝑘𝑓 = 1 − 𝑞 ∗ (𝑘𝑡 − 1) (37) 

where: 

𝛽: The material Neuber’s constant which is defined by the graph in Figure 13 

𝜌: The notch radius  



 

 

Figure 14. Neuber’s material is constant for steel as a function of ultimate strength. (Dowling 

1999, 427). 

The formula (38) shown that the notch factors are affect to the Von Mises equation 

𝑒𝑣𝑚 = √(𝑘𝑓𝑏 ∗ 𝜎𝑏 + 𝑘𝑓𝑡 ∗ 𝜎𝑡)2 + 3 ∗ (𝜎𝑠
2 + (𝑘𝑓𝜏 ∗ 𝜏)2 (38) 

 

where: 

𝑘𝑓𝑏 , 𝑘𝑓𝑡 , 𝑘𝑓𝜏: The fatigue notch factor of bending, tensile and torsion stress, respectively 

𝜎𝑏 , 𝜎𝑡, 𝜎𝑠, 𝜏: The bending, tensile, direct shearing and torsion stress. 

3.7.2 Modified Goodman equation  

Depending on the normalized amplitude-mean diagram and stress-life curve for axial load-

ing of the particular case, the equation which is shown in formula (39), is developed from 

Goodman’s proposal by Smith in 1942. They are called modified Goodman equation 

(Dowling 1999, 391). 

𝜎𝑒

𝜎𝑒𝑟
+

𝜎𝑚

𝜎𝑢
= 1 (39) 

where:  

𝜎𝑒: The fatigue limit of any mean stress 

𝜎𝑒𝑟: The fatigue limit for zero mean stress 

𝜎𝑚: The mean stress 



 

 

𝜎𝑢: The ultimate strength 

There are different fatigue limits in different material. Therefore, it is convenient to consider 

the ratio of fatigue limit to the ultimate strength, which is symbolized as 𝑚𝑒 (Dowling 1999, 

441). 

𝑚𝑒 =
𝜎𝑒𝑟

𝜎𝑢
 (40) 

For low and intermediate strength steel, regarding the common application, the value of the 

ratio is 0.5. Hence, the combination of formula (39) and (40) give the formula (41) which 

calculate the fatigue limit for the material with a yielding strength less than 1400 MPa.  

𝜎𝑒 =
1

2
∗ (𝜎𝑢 − 𝜎𝑚) (41) 

3.7.3 Factors affecting long-life fatigue strength.  

Besides the notch factor which reduces the fatigue strength, there is a number of factors 

that affect the long-life fatigue strength which is often reduced. 

The larger the size member in bending or torsion is, the more the fatigue strength de-

creases. Because the growth of stress with depth is less sudden in larger cross-section, the 

size factor which is symbolized as 𝑚𝑑, affects significantly to the fatigue strength. The size 

factors are defined in Table 1 which was developed by Dowling or by the formula of Nie-

mann and Winter which is shown in formula (42). (Dowling 1999, 446;  Niemann et al. 2005, 

102). 

Table 1. Size factor by Dowling (Dowling 1999, 446).  

𝑚𝑑 =
1 − 0.7686 ∗ 𝑎𝑑 ∗ log(𝑑

7.5𝑚𝑚⁄ )

1 − 0.7686 ∗ 𝑎𝑑 ∗ log (
𝑑𝑅𝑒𝑓

7.5𝑚𝑚
⁄ )

(42) 



 

 

Depending on the cross section and the material of the member, variables are defined by 

the Table 2 and 3. 

Table 2 (Niemann et al. 2005, 102) 

Table 3. 2 (Niemann et al. 2005, 103) 

In addition, the surface finish factor which is symbolized as 𝑚𝑠 affects meaningfully to the 

fatigue strength. If the finished surface is rougher than the polished one of a typical smooth 

test specimen, the fatigue strength decreases. The fatigue limit reduces by around 10% 

when the surface is ground carefully. There are a number of typical surface conditions and 

the graph in Figure 15 illustrating the relation between those and surface factors. 



 

 

Figure 15. The effect of different surface finish on the fatigue limit of steel (Niemann et al. 

2005, 105). 

There are various factors that affect the fatigue strength such as temperature, microstruc-

ture layer, corrosive environment. The factors can be negative or positive and depend on 

each engineering application, the factors are researched. These other factors are symbol-

ized as 𝑚0 (Dowling 1999, 444). 

The combination of factors is defined by multiplying all of them which affect the application. 

It modifies the fatigue limit 𝜎𝑒𝑟𝑏 to the lower one 𝜎𝑒𝑟 (Dowling 1999, 444). 

𝑚 = 𝑚𝑑 ∗ 𝑚𝑠 ∗ 𝑚0 (43) 

𝜎𝑒𝑚 = 𝑚 ∗ 𝜎𝑒 (44) 

3.7.4 Fatigue safety factor 

The fatigue safety factor is defined by the formula. 

𝑠 =
𝜎𝑒𝑚

𝜎𝑎
 (45) 

Where: 

𝜎𝑒𝑚: The modified fatigue limit. 

𝜎𝑎: The amplitude stress. 



 

 

3.8 Introduction of Finite Element Method (FEM) 

Finite Element Method, as known as FEM, is a computerized mathematical technique for 

collecting approximate analytical solutions to the abstract equations to forecast the physical 

response of members which is subjected to external loadings (Burnett 1987, 3). 

The FEM can be applied in many fields of engineering and mathematical problem which are 

solid mechanics, heat transfer, fluid mechanics electromagnetism, and acoustic. The 

method is useful in solving complicated models filled with unusual geometry or different 

materials (Burnett 1987, 3-4). 

In Finite Element Analysing (FEA), there are several concepts that the method will analyse, 

including system, domain, governing equation, and loading condition (Burnett 1987, 5). 

The system is a physical object, which is composed of one or more several types of material 

such as solid, gases, plasma, liquid. 

The domain is the region of space, which is obtained by the system. The domain is divided 

into smaller, simple parts which are called finite elements. The elements connect with each 

other without gaps and overlapping. The element is obtained by points which is called node, 

and the collection of the element is called mesh (Burnett 1987, 5). 

The governing equations describe a relation or balance of physical property such as mass, 

energy ore momentum by differential equations. Besides, it can be an integral equation that 

expresses variational principle. The typical material behaviour and physical property are 

described by the constitutive equation (Burnett 1987, 5). 

Loading conditions are the external loads or properties, which affect the system such as 

forces, temperature, current (Burnett 1987, 5).  

First of all, the governing equation of each element, which is called the element equation is 

defined and solved. A linear combination of low-order polynomials which is called shape 

function approximates the solution of the element equation. Second, The element equations 

are made suitable at a common node which 2 or more elements share which are called 

continuity conditions. Then, the global stiffness and mass matrices are developed which 

form a lumped parameter discrete model of the structure. Lastly, a numerical displacement 

solution is collected (Burnett 1987, 8-11). 



 

 

4 Static analyzation of rotating shaft 

4.1 Features in strength analyzation 

4.1.1 Bearing 

The rotating shaft is supported by 2 bearings, which are SKF roller bearing on the drive-end 

side and roller bearing on the valve side and the engineering specifications of the bearing, 

which are described in Table 4. During the rotating, there is a friction torque from the bear-

ing, however, the amplitudes are smaller significantly than the torque of the gearbox. There-

fore, it is neglected in the analysis. 

In the handling method by Mathcad, it is assumed that the supports are located at the center 

of the bearing. 

In SolidWorks Simulation, the bearings are presented by fixtures. The cylinder face fixtures 

are applied on the faces where the bearings are assembled on the shaft. In order to carry 

out the research, it is necessary to assume that the fixture on the valve side is fixed in the 

axial direction and unable to rotate. Because of the properties of the bearing, both fixtures 

are not allowed to expand. Depending on those, the translations of the fixture and the ex-

ample of fixtures in Simulation are shown in Table 5 and Figure 16, respectively. Transla-

tions which include are radial, axial, and circumferential are the maximum ranges that the 

fixture is allowed to deform. If the translation is equal to 0, the fixture will be fixed in that 

direction. 

Bearing Drive-end side Valve side 

Modal code 22218 CCK/W33  

Distance from the end of 

valve side (mm) 

243.5 2324 

Width (mm) 80 40 

Table 4. The specifications of the bearing  

Translations Valve side Drive-end side 

Radial 0 0 

Circumferential  0 None 



 

 

Axial 0 None 

Table  5. The translations of the fixtures  

 

Figure 16. The fixtures in 4-disc-shaft static study 

4.1.2 Disc 

There are a number of discs assembled on the shaft, in which the minimum is 4 and the 

maximum is 26 discs. The 3D model and mass properties of the disc are shown in Figure 

17 and Figure 18, respectively. Because the disc is an asymmetric assembled from the 

sectors and sector holders, the mass center of the disc coincides with the center of the 

cylinder face which is formed by the footplates.  

In the handling method, it is assumed that the discs uses a gravity force which is located at 

the center of these. The gravity force of the disc that applies to the shaft is calculated by 

the formula (46). 

𝐹𝑑 = 𝑚𝑑 ∗ 𝑔 (46) 

where: 

𝑚𝑑 = 363.3 𝑘𝑔: Mass of disc 

𝑔 = 9.81: Gravity coefficient  

In SolidWorks Simulation, the discs are replaced by the ‘remote loads’, which are applied 

on the face of the footplate attached with the vat. Moreover, the centers of the remote loads 

are located on the central axis of the shaft and the moments of the inertia taken at the center 

of the disc are added with the same coordinate system of the disc. The example of remote 

loads which replace the disc in SolidWorks Simulation is shown in Figure 19.  



 

 

 

Figure 17. 3D model of the disc  

 

Figure 18. The mass property of the disc 



 

 

 

Figure 19. The remote loads in 4-disc-shaft static study  

4.1.3 The tubes 

There are 20 tubes which are also called channels that are placed inside the shaft and 

supported by 3 plates that are welded inside the vat (Figure 20 and 21 in Appendix 1). In 

order to simplify the analysis, the weights of the channels are replaced by the forces which 

contributes to support plates, which are equal to the reaction forces of the plates according 

to the third Newton’s law. The free-body diagram of the channel is show in Figure 22 and it 

is assumed that the supports are located at the middle of the plate. Because there are 3 

supports, the 3-moment-equations method is applied to handle the reaction forces. 

It is clear from the FBD of the channels that the distance between the plates and the ends 

of the channels are constant, which are 12.5 and 550 mm. As a result, depending on the 

number of discs, the length of the channel (Lc) is different. The tube is divided into 2 parts, 

which are AB (1) and BC (2) and the bending diagram of each part in 2-support-systems is 

drawn in Figure 23. The 3-moment-equation is written in the form: 

𝑀𝐴 ∗ 𝐿1

𝐸1 ∗ 𝐼1
+ 2 ∗ 𝑀𝐵 ∗ (

𝐿1

𝐸1 ∗ 𝐼1
+

𝐿2

𝐸2 ∗ 𝐼2
) +

𝑀𝐶 ∗ 𝐿2

𝐸2 ∗ 𝐼2
=

−6 ∗ 𝐴1 ∗ 𝑥1

𝐸1 ∗ 𝐼1 ∗ 𝐿1
+

−6 ∗ 𝐴2 ∗ 𝑥2

𝐸2 ∗ 𝐼2 ∗ 𝐿2
 (47) 

 where: 

𝑀𝐴 = 𝑞 ∗ (12.5 𝑚𝑚)2: Bending moment at point A 

𝑀𝐵: Bending moment at point B 

𝑀𝐶 = 0: Bending moment at point C 

𝑞 =
𝑚𝑐∗9.81

𝐿𝑐
 : Distributed load of the channel 

𝑚𝑐: The mass of the channel 

𝐿2 = 550 𝑚𝑚: Distance between the supports B and C 



 

 

𝐿1 = 𝐿𝑐 − 𝐿2: Distance between the supports A and B 

𝐿𝑐: The length of the channel 

𝐸1, 𝐸2: Elastic modulus  

𝐼1,   𝐼2: Moment of inertia 

𝐴1 =
2

3
∗ 𝑤1 ∗

𝐿1

8
∗ 𝐿1 

𝐴2 =
2

3
∗ 𝑤2 ∗

𝐿2

8
∗ 𝐿2 

𝑤1 = 𝑞 ∗ 𝐿1 

𝑤2 = 𝑞 ∗ 𝐿2 

𝑥1 =
𝐿1

2
 

𝑥2 =
𝐿2

2
 

It is assumed that the channel is a pipe without any holes in the body, so the cross-section 

area of the channel is constant. Therefore, the elastic module and moment of inertia of 2 

parts AB and BC are equal. The equation (47) becomes equation (48) 

𝑀𝐴 ∗ 𝐿1 + 2 ∗ 𝑀𝐵 ∗ (𝐿1 + 𝐿2) + 𝑀𝐶 ∗ 𝐿2 =
−6 ∗ 𝐴1 ∗ 𝑥1

𝐿1
+

−6 ∗ 𝐴2 ∗ 𝑥2

𝐿2
 (48) 

↔ 𝑀𝐵 =

−6 ∗ 𝐴1 ∗ 𝑥1

𝐿1
+

−6 ∗ 𝐴2 ∗ 𝑥2

𝐿2
− 𝑀𝐴 ∗ 𝐿1 − 𝑀𝐶 ∗ 𝐿2

2 ∗ (𝐿1 + 𝐿2)
 (49) 

The FBD of each span with the virtual cut is shown in Figure 24 and the moment equilibrium 

equations and point A, B which are on both right and left side, and C are formed to calculate 

the shearing forces at those points. The reaction force at point A, B, and C are calculated 

by the formulas (53), (58), and (55), respectively. 

𝐶𝐶𝑊 ∑ 𝑀𝐴 = 𝑀𝐴 − 𝑀𝐵 − 𝑞 ∗ 𝐿1 ∗
𝐿1

2
− 𝑉𝐵1 ∗ 𝐿1 = 0 (50) 

↔ 𝑉𝐵1 =
𝑀𝐴 − 𝑀𝐵 − 𝑞 ∗ 𝐿1 ∗

𝐿1
2

𝐿1
 (51) 



 

 

𝐶𝐶𝑊 ∑ 𝑀𝐵 = 𝑀𝐴 − 𝑀𝐵 + 𝑞 ∗ 𝐿1 ∗
𝐿1

2
− 𝑉𝐴 ∗ 𝐿1 = 0 (Right side) (52) 

↔ 𝑉𝐴 =
𝑀𝐴 − 𝑀𝐵 + 𝑞 ∗ 𝐿1 ∗

𝐿1
2

𝐿1
 (53) 

𝐶𝑊 ∑ 𝑀𝐵 = 𝑀𝐶 − 𝑀𝐵 + 𝑞 ∗ 𝐿2 ∗
𝐿2

2
+ 𝑉𝐶 ∗ 𝐿2 = 0 (Left side) (54) 

↔ 𝑉𝐶 =
𝑀𝐶 − 𝑀𝐵 + 𝑞 ∗ 𝐿2 ∗

𝐿2
2

𝐿2
 (55) 

𝐶𝑊 ∑ 𝑀𝐶 = 𝑀𝐶 − 𝑀𝐵 − 𝑞 ∗ 𝐿2 ∗
𝐿2

2
+ 𝑉𝐵2 ∗ 𝐿2 = 0 (56) 

↔ 𝑉𝐵2 =
−𝑀𝐶 + 𝑀𝐵 + 𝑞 ∗ 𝐿2 ∗

𝐿2
2

𝐿2
 (57) 

𝑉𝐵 = |𝑉𝐵2 − 𝑉𝐵1| (58) 

𝐹𝐴 = 20 ∗ 𝑉𝐴 (59)  

𝐹𝐵 = 20 ∗ 𝑉𝐵 (60) 

𝐹𝐶 = 20 ∗ 𝑉𝐶  (61) 

 

According to the third Newton’s law, the forces that the channels apply to the support plates 

are equal to the reaction forces in opposite directions.  

In the handling method, it is assumed that the forces of 20 channels which affect each 

support plate are combined into 3 forces which are located at the middle of the plates. The 

amplitudes of those are equal to 20 times the reaction forces at the plates and in the same 

direction which are calculated by formulas (59), (60), and (61). 

In FEM by SolidWorks, the channels are omitted and described by the forces. Those 

forces applied on the faces of the plates where the channels are attached. The example of 

the forces of channels applied to the support plate which is on the valve side is shown in 

Figure 25 of Appendix 1. 

 

 



 

 

 

 

 

Figure 22. Free-body-diagram of the channels  

.

 

Figure 23. The bending diagrams of each part if in simple supports system 

 

Figure 24. Free Body Diagram of each span with virtual cut 

4.1.4 Gearbox 

The shaft is rotated by the gearbox which is the model  M4PHT50. The gearbox is assembled 

with the 149-millimeter-drive end part, therefore, there is a force, which caused by the 

weight of the gearbox, applies at the end of the drive end. Moreover, the gearbox causes a 

continuous torque, which is calculated by the formulas (63), at the drive end. The initial 

information of the gearbox, which is researched from the SEW catalogue, is shown in the 

Table 6. At the beginning of the operation, the maximum power is applied, hence, the shaft 

550 
12.5 

Lc 



 

 

is restricted to the biggest torque which the initial values and the calculation are shown in 

the Figure 26.  

𝜏𝑖 =
𝑃

𝑛
 (62) 

𝜏𝑜 = 𝑖𝑔 ∗ 𝑖𝑏 ∗ 𝜏𝑖  (63) 

where: 

𝜏𝑖: Input torque 

𝑃: Power of the motor 

𝑛: The rotating speed of the shaft 

𝜏𝑜: Output torque  

𝑖𝑔 = 400: Gearbox ratio 

𝑖𝑏 = 2.5: Belt ratio 

 

In handling calculations, assuming that the gravity force that the gearbox applies is located 

at the beginning point of the shaft and it is calculated by the formula (64). 

𝐹𝑔 = 𝑚𝑔 ∗ 𝑔 (64) 

where: 

𝑚𝑔: the weight of the gearbox. 

𝑔 = 9.81: gravity coefficient  

In the FEM, the example of the torque which is caused by the gearbox applied to the shaft 

is shown in Figure 27 and the weight of the gearbox is present as the ‘distribute mass’ on 

the end face of the drive end which is shown in Figure 28. 

Model M4PHT50 

Mass 845 kilogram 

Power 4.5 Watt. 7.5 Watt 

Rotating speed 960 rpm, 1450 rpm 

Gear ratio 400 



 

 

Belt ratio  2.5 

Table 6. The initial information of the gearbox 

Figure 26. The calculation of the gearbox torque. 

 

Figure 27. The torque of the gearbox applies to the 4-disc-shaft. 

 

 

 

 

 

 

Figure 28. The mass of the gearbox in 26-disc-shaft. 

  



 

 

4.1.5 Water 

The shaft is submerged partly into the water during the operation. The distance between 

the water level and the center of the shaft is 750 mm. As a result, there is Amedes force 

from water, which is applied on the shaft in the opposite direction with the gravity. Never-

theless, this force is neglected because it is too small to compare to others and affects 

lightly to the shaft. In addition, when the shaft is rotating, there is a torque restricting the 

motion, caused by water. Most of the restrictions are applied to the discs, so it is assumed 

that the torque is distributed equally on the discs. Moreover, the sum of amplitude of the 

torques on each disc is equal and in the reverse direction to the torque caused by the gear-

box. 

In the handling method, the drive end is the part that takes the largest amplitude of the twist. 

In SolidWorks Simulation, because the disc is submerged partly into the water, it is assumed 

that the toques are added in the bellowing haft of the shaft on the face where the footplates 

of the disc are attached. Moreover, the amplitude is equal in the opposite direction to the 

torque of the gearbox and the ‘Total’ box is ticked. The example of the torque caused by 

the water is shown in Figure 29 in Appendix 1. 

4.2 4-disc-shaft 

4.2.1 Handling method by Mathcad 

The free body diagram of the 4-disc-shaft is shown in Figure 33. It is clear from the FBD 

that there are 2 supports which present 2 bearings. The gravity force of the disc is calculated 

by the formula (46) and described by 𝑃5, 𝑃6, 𝑃7, 𝑃8. The mass of the gearbox is added at the 

end of the shaft and calculated by the formula (64) and demonstrated by 𝑃1. The forces 

applied by the support plates are then calculated by the formulas (59), (60) and (61) and 

signed by 𝑃2, 𝑃3, 𝑃4 in the FBD, in turn.  

The equilibrium equations are applied to solve the reaction forces.  

{
𝐶𝐶𝑊 ∑ 𝑀𝐴 = 0 (65)

↑ ∑ 𝐹𝑦 = 0 (66)
 

↔ {

𝑃2 ∗ 243.5 − 𝑃5 ∗ 601.5 − 𝑃6 ∗ 911.5 − 𝑃3 ∗ 1094 − 𝑃7 ∗ 1221.5 − 𝑃8 ∗ 1531.5
+𝑃4 ∗ 1676.5 + 𝑅𝐵 ∗ 2080.5 − 𝑃1 ∗ 2659.5 = 0 (67)

𝑅𝐴 + 𝑃4 + 𝑅𝐵 − 𝑃2 − 𝑃5 − 𝑃6 − 𝑃3 − 𝑃7 − 𝑃8 − 𝑃1 = 0 (68)
 

 



 

 

↔

{
𝑅𝐵 = (

−𝑃2 ∗ 243.5 + 𝑃5 ∗ 601.5 + 𝑃6 ∗ 911.5 + 𝑃3 ∗ 1094 + 𝑃7 ∗ 1221.5 + 𝑃8 ∗ 1531.5

−𝑃4 ∗ 1676.5 + 𝑃1 ∗ 2659.5
) 2080.5⁄ (69)

𝑅𝐴 = −𝑃4 − 𝑅𝐵 + 𝑃2 + 𝑃5 + 𝑃6 + 𝑃3 + 𝑃7 + 𝑃8 + 𝑃1 (70)
  

 

Firstly, the forces of the inner channels and the forces by the support plates that are applied 

on the shaft are calculated by MathCad in Figure 31. Moreover, the initial values in the 

calculation are shown in Figure 30. Hence, the number of the applied formulas are noted 

after each calculation. 

After that, the values of the forces including gravity forces of gearbox and disc, are imported 

into the MathCad which is shown in Figure 32. Base on the formulas (69) and (70) the 

reactions at the bearings A and B are calculated in Figure 37, the shearing force and bend-

ing diagram of the shaft is drawn in Figure 34 and 35. 

In the stress calculation, the torque takes the significant value, therefore, the drive-end is 

the part that takes the maximum Von Mises stress. The most critical point on the shaft is 

the connection between the 149 mm and 180 mm diameter parts which is shown in Figure 

36. The Von Mise stress of this point is determined. As a result, depending on the shearing 

force diagram and bending diagram, the bending moment is calculated by the formula (71), 

and the shearing force at the point is determined.  

𝑀𝑏 = 𝑉 ∗ 𝑑 (71) 

 where: 

𝑀𝑏: The bending moment at the critical point 

𝑉 = 8289 𝑁: Shearing force at the point 

𝑑 = 400 𝑚𝑚: The distance between the point and the end of drive end 

The initial values of the moment, force, and torque are imported into the MathCad which is 

shown in Figure 38. The bending stress, torque stress and are calculated by the formulas 

(72) and (73) in turn which are determined in Figure 38. The direct shearing stress in the 

upper and lower point of the shaft is equal to 0. The Von mise stress and the safety factor 

with the tensile strength of 400 MPa are calculated by the formula (74) and (75).  

𝜎𝑏 =
𝑀𝑏

𝑑3

32 ∗ 𝜋
 (72) 

𝜏 =
𝑇

𝑑3

32 ∗ 𝜋
 (73) 



 

 

𝜎𝑣 = √((𝜎𝑏 + 𝜎𝑡))2 + 3 ∗ (𝜏 + 𝜎𝑠)2(74) 

𝑛 =
𝑅𝑒

𝜎𝑣
 (75) 

 

 

Figure 30. The inertial values of inner channel calculation 



 

 

 

Figure 31. The inner channel calculation 

 

Figure 32. The intial values of shaft calculation  
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Figure 33. The Free body diagram of the 4-disc-shaft 

 

 

 

 

 

Figure 34. The shearing force diagram of 4-disc-shaft in Newton 

 

 

Figure 35. The bending diagram of the 4-disc-shaft. 
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Figure 36. The most critical point on the shaft.  

 

Figure 37. The reations calculation pf the 4-disc-shaft. 

 

Figure 38. The stesses and safety factor calculation.  

4.2.2  FEM by SolidWorks Simulation  

The features are added to the study including fixtures, masses of the disc, the mass of the 

gearbox, torques by the gearbox, and water. The values are shown in heading 2.1. There 

are 2 studies in which the difference is the presence of the inner channels. In the first study, 

the channels are replaced by forces that are applied on the support plate (Figure 40 in 

Appendix 1) which is described in heading 2.1.3, and the values are shown in Figure 31. By 



 

 

contrast, in the other study, the channels are replaced by the remoted loads which are ap-

plied on the attached faces between them and the shaft (Figure 41 in Appendix 1). The 

mass property of the channel, including the central mass and the moment of inertia, is 

shown in Figure 39. The stress results of the first and second studies are shown in Figure 

42 and 43, respectively. The results between the 2 studies are slightly different, which are 

caused by the number tolerance. It can be concluded that replacing the mass of the inner 

channel with force is correct. 

Figure 39. The mass property of the 4-disc-inner channel. 

 

 

 

 

 

 

 



 

 

Figure 42. The Von mise stress plot of first study of 4-disc shaft. 

Figure 43. The Von mise stress plot of second study of 4-disc shaft. 

4.2.3 Conclusion  

It can be seen that there is a mild difference in the results of the 2 methods, which is gen-

erated by the notch factors that are only accounted in FEM by Simulation. The 4-disc-cal-

culation is used to explain the static analysis, the 26-disc-shaft is the critical model. Moreo-

ver, it shown that the FEM by Simulation gives the correct results compared to the traditional 

method. Hence, only the FEM method and 26-disc-shaft are applied in the developing 

phase to save time for the thesis. 

4.3 26-disc-shaft  

4.3.1 Handling method  

The method that is applied to calculate the reaction forces of the inner channels of the plate, 

the reaction force at the bearing is the same as the 4-disc-shaft. The calculation of the 

forces that the inner channels apply on the support plate is shown in Figure 44. Because 

there are 26 discs that cause difficulty in the calculation, the combined force is replaced. 



 

 

The magnitude of the combined force is 26 times the mass of one disc and located at the 

central of 26 discs. Thus, this method will lead to the error in shearing force and bending 

diagram of the shaft, but the main purpose is finding the peak of the diagram which remains 

correct. The initial values, FBD, and reaction calculation of 26-disc-shaft are shown in Fig-

ure 46, 45 and 47, respectively. Depending on the shearing force and bending diagrams 

(described in the Figure 47), that the stresses at the critical point is located on the drive end 

is calculated in Figure 30.  

 



 

 

Figure 44. The calculation of the force that the inner channels apply on the support plate 



 

 

 

 

 

 

 

 

 

Figure 45. The FBD of the 26-disc-shaft. 

Figure 46. The reaction forces at the bearing of 26-disc-shaft. 

 

 

Figure 47. The shearing force and bending moment diagrams of 26-disc-shaft. 
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Figure 48. The stresses calculation of 26-disc-shaft. 

4.3.2 FEM by SolidWorks Simulation  

The study in which the channels are described as the forces applied on the plate is run and 

shown in Figure 50. The mass property of the inner channel in 26-disc-shaft is described in  

Figure 49.  

Figure 49. The mass property of inner channel in 26-disc-shaft. 



 

 

Fatigue 50. The Von mise stress plot of 26-disc-shaft 

4.4 Conclusion  

It can be seen from the calculation that the static safety factor of the 26-disc-shaft is about 

2. The structure is strong enough to carry the loads and able to be developed by decreasing 

the dimension.  



 

 

5 Deflection   

5.1 Introduction  

The rotating shaft, including the disc, is installed in a hood which is shown in Figure 51 of 

Appendix 1. Therefore, the deflection of the shaft needs to be tested to ensure that there is 

not any collision between them during the operation. In X and Z directions of the model, the 

clearance between the disc and the hood is equal to 80 mm which is shown in Figure 52 of 

Appendix 1. Each disc is located between 2 chutes where the cake formed during the op-

eration. Hence in Y direction, the distance between the disc and the chute is 32.5 mm. 

Because the most critical model is 26-disc-shaft, the deflection plot of it is defined by Solid-

Works Simulation. 

5.2 Deflection of the 26-disc-shaft 

The deflection plots of 26-disc-shaft in several directions are shown. In Figure 53, the de-

flection of the shaft in X and Z direction are shown, with the maximum magnitude of deflec-

tion being 2.198 mm. The maximum deflection of the shaft in the Y direction is 0.26mm. The 

deflection is smaller significantly than the allowable clearance, therefore it is ensured that 

there is any collision between the shaft and other components during the operation. 

 



 

 

Figure 53. The deflection plot of 26-disc-shaft in X direction  

Figure 54. The deflection of 26-disc-sahft in Y direction  

Figure 55. The deflection plot of 26-disc-shaft in Z direction 



 

 

6 Fatigue calculation 

6.1 Introduction 

Fatigue is the important calculation in this model which is a rotating design. There are 2 

critical points on the 26-disc-shaft where the fatigue strengths are defined which is shown 

in Figure 56. The stress-based infinite lifetime method is applied to define the stresses and 

it is assumed that there is any welding in that points. 

Figure 56. 2 critical point where fatigue stresses are defined on 26-disc-shaft. 

6.2 Fatigue calculation 

6.2.1 Mean stress.  

The location on the drive end where the maximum stress is applied is called 1. The edge 

where the drive ends are attached to the vat at the support plate is called 2. The Von mise 

mean stress at those locations are defined by Simulation SolidWorks which is shown in the 

Figure 57. 

 

 

 

 

 

 



 

 

 

Figure 57. The mean stress of 2 critical points in 26-disc-shaft. 

6.2.2 Amplitude stress 

The torque, which is generated by the gear motor, is constant in theory. However, there is 

vibration or noise occurring by the motor during the operation, especially, when the motor 

is old and corrosive. In this calculation, the amplitude of torque is neglected because it 

affects trivially, compared to the one caused by the gearmotor. Because the shaft is rotating, 

the bending stress caused by the masses of the discs, inner channels, and gearmotor is 



 

 

equal to the amplitude stress. The values of bending stresses which are the amplitude 

stress are shown in the Figure 58. 

Figure 58. The amplitude stress at 2 critcal stress in 26-disc-shaft. 

6.2.3 Notch factor  

The notch factor is included in the result by SolidWorks Simulation. Therefore, it is unnec-

essary to define the elastic notch factor in the calculation.  

6.2.4 Reduction factor  

• Size reduction factor  

There are 2 sizes of the shaft which are 149 and 200 mm. According to Dowling, the 

reducing size factor of the first point which is 149 mm is equal to 0.7, which is shown 

in the Table 1 However, the size factor of other point is calculated by the formula of 

Niemann and Winter which is formula (42)  

Depend on the material type, 𝑑𝑅𝑒𝑓 and 𝑎𝑑 are defined. The material of the shaft is 

stainless steel EN 1.4404, but it is assumed that the material of the shaft is the 

calculation is non-alloyed construction steel in order to define the coefficients. 

Therefore, the values of 𝑑𝑅𝑒𝑓 and 𝑎𝑑  are 40 mm and 0.15. respectively. 

• Surface finish effects  

The surface finish effect is defined by Brinell Hardness graph which is shown in the 

Figure 59. The ultimate strength of the material is 600 MPa which equals approxi-

mately 87 ksi. Moreover, the shaft is machined, hence, the surface finish effect is 

around 0.77 depending on the graph. 



 

 

Figure 59. The Brinell Hardness graph.  

• Other reduction  

 It is necessary to include two factors, which are corrosion and temperature effect in 

the calculation. It is assumed the material of the shaft is non-alloy construction steel 

during the calculation which corrodes during the operation. However, stainless steel 

is applied in practice which can be neglected the corrosive affection. During the op-

eration, the operating temperature is in the range of 40 to 50 degrees Celsius, and 

the Thermo pulp is about 90 degrees. Hence, the factor is almost 1. In assumption, 

the other factor is equal to 1. 



 

 

6.2.5 Fatigue calculation  

The initial values of the 2 critical points and the material and factor properties are shown in  

Figure 60. The calculation of reducing factors is shown in Figure 61. The stresses and fa-

tigue safety factor calculation is shown in Figure 62.  

Figure 60. The initial value in fatigue calculation 

 Figure 61. The reducing factors in fatigue calculation. 



 

 

Figure 62. The calculation of stress and safety factor 

6.3 Conclusion  

It can be seen from the result that the safety factors of both critical points are favorable, 

which are 10.3 and 19.9, respectively. It is ensured that there is not any failure during the 

operation. 



 

 

7 Developing the structure of the shaft  

7.1  Introduction  

After the strength analysis including static and fatigue, the structure development is made. 

There are 2 main goals of the development which are optimizing the material usage and 

increasing the inside cross-area of the inner channel. Several solutions are generated and 

tested; however, the milestone and final solutions are reported. The strength analyses of 

the updated structure are run by SolidWorks Simulation. In optimizing the material of the 

shaft, there are 2 solutions that are decreasing the thickness of the shaft and the length of 

the drive end. Besides increasing the cross-section of the inner channel, the cost and man-

ufacturing process are considered. 

7.2 Optimizing the usage of material.   

7.2.1 Decreasing the length of the drive end 

It is clear from the previous analyses that the torque is the most significant load effects on 

the drive end. The location of the support plate does not affect the drive end meaningfully. 

Hence, the distance between 2 support plates at the beginning of the shaft is decreased 

from 550 to 300 mm, which leads to the reduction in the length of the shaft. The part that 

connects the 2 support plates of the drive end is reduced by 250 mm which is shown in 

Figure 63. The stress plot of the shortened drive end model is shown in the Figure 64 by 

Simulation and the model is strong enough to carry the loads and the maximum Von mise 

stress is located on the beginning support plate which is 211.55 MPa. 

Figure 63. The shortened drive end. 



 

 

Figure 64. The stress plot of shorten drive end 26-disc-shaft. 

7.2.2 Decreasing the thickness off the vat  

In the latest model, the thickness of the vat is 12.5 mm. In the beginning, the thickness is 

decreased to 10 mm and the stress plot of the model is shown in Figure 65. It can be seen 

from the plot that, the structure is able to take the loads, especially the support plates. After 

that, the thickness is reduced to the minimum allowable thickness which is 6 mm. The thick-

ness can not be smaller than 6 mm to ensure the fastening. The stress plot of 6 mm thick-

ness 26-dics-shaft is shown in Figure 66, the support plate is still able to carry the load.  

 

Figure 65. The stress plot of 10 mm thickness 26-díc-shaft. 

 

Figure 66. The stress plot of 6 mm thickness 26-disc-shaft. 

7.3 Increasing the cross area of the inner channel  

7.3.1 Introduction  

In the latest model, the cross area of the channel is circle and the much of space inside the 

vat is wasted. Increasing the area of the channels leads to the improvement of the water 

flow. The less the thickness is, the more space inside the vat is, which the channels are 



 

 

expanded. Hence, the channel is designed for 6 mm thickness 26-disc-shaft. Moreover, the 

support plate is updated, and the strength analysis of the updated shaft is run by Solid-

Works. 

7.3.2 Support plate  

In the Figure 67 of Appendix 2, the latest model of the support plate, in which the cross area 

of the channel is circle, is shown. The area of the channels is increased as much as possi-

ble, therefore, they attached directly to the vat and the drive end. The updated profile of the 

support plate, which attached to the drive end, and the one at the end of the shaft are shown 

in the Figure 68 and 69 of Appendix 2, respectively. For the one attached to the drive end, 

it is assembled by 20 L-bar which is shown in the Figure 70 of Appendix 2 since the ease 

of manufacturing. 

7.4 Inner channel 

Depend on the area on the support plate, the profile of the channel is shown in the Figure 

71 of Appendix 2. The thickness of the channel is minimized to increase the cross area 

which is 1 mm. The stress plot of the inner channels is simulated by SolidWorks and showed 

in the Figure 73. The channel carries the pressure inside by the vacuum which the magni-

tude is 0.4 bar. The fixtures are the face that the channel attached to the support plates, the 

vat, and the drive end which are showed in the Figure 72 of Appendix 2. The area of the 

updated channel is 21027.657 square millimetres.  

Figure 73. The stress plot of inner channel. 

Figure 74. Displacement plot of inner channel. 

7.4.1 Strength analyzation of the updated shaft 

The strength analysis of the updated shafted including the updated inner channels and sup-

port plates is run by SolidWorks. The fixtures and external force are remained except the 



 

 

forces by the channels on the support plates. The mass of the channels is replaced by the 

remoted load which the property is showed in the Figure 75, in order to give the accurate 

result for the final model. The stress and displacement result of the updated model are 

showed in the Figure 77 and 78. It is can be seen from the plots that there are not any failure 

or collision during the operation. 

Figure 75. The mass property of the inner channel. 

Figure 77. The stress plot of updated 26-disc-shaft 

Figure 78. The displacement plot of updated 26-disc-shaft  



 

 

7.5 Conclusion  

The volume of the material in the updated shaft, which do not include the inner channels, is 

169999424.18 cubic millimetre which decreased by approximately 46%. Moreover, the in-

side area of the updated inner channel is 21027.657 square millimetre which increased by 

roundly 71%. However, the more inside area of the channel is, the more material is used. 

The updates channel volume is 12935448.51 cubic millimetre which increased by about 

89%. Overall, the volume of entire updated shaft is 428708394.38 cubic millimetre which 

grew by 35%.  



 

 

8 Conclusion 

After the analysis, it can be concluded that there is not any failure in structure and collision 

between the components during the operation of the latest Protcorb’ s disc filter model. The 

static and the minimum fatigue safety factors of 26-disc-shaft are 2.7 and 10.2, respectively. 

After the structure developing, the volume of the shaft without the channels decreased by 

46%. The inside area of the updated channel increased by 71%, however, the material 

usage of the channel raised by 89%. Overall, the entire volume of updated shaft is 

428708394.38 cubic millimeter which increased 35%. 

In my opinion, the result of the thesis, which increases the filtration efficiency by 71%, is 

satisfactory. However, it leads to the increasing of the material and the manufacturing cost, 

which is caused by the welding process, of the plates. In the future, depend on the required 

fitration efficiency of the customer, the area of the inner channels is sizable. In case the 

needed area of the channels is smaller than the biggest one which is the result of the the-

sis, the manufacturing of the current plate (Figure 67) is applied. The cutting process is 

applied on a round plate which reduces the manufacturing cost. In addition, the area of 

inertia is increased, then the thickness of the plate can be cut down. 

The thesis took a significant effort to complete. The combination of the approaches including 

3D modelling, static and fatigue analyzing, is applied. Moreover, the new technics, which 

are the theorem of three moments and features in SolidWorks Simulation, and the deeply 

theoretical background of the applied methods are researched. After the thesis, I gain more 

experience and knowledge in strength analysis. 
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Appendix 1: The latest inner channel figures.  

Appendix 2: The updated inner channel figures. 

 


