

Ville Vainio

Memory optimization techniques in
xStorage Compact

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

Bachelor’s Thesis

31 August 2021

Abstract

Author: Ville Vainio

Title: Memory Optimization techniques in xStorage

Compact

Number of Pages: 31 pages

Date: 31 August 2021

Degree: Bachelor of Engineering

Degree Programme: Information and Communications Technology

Professional Major: Smart Systems

Supervisors: Sami Sainio, Lecturer

 Ville Pirttinokka, xStorage Firmware technical leader

Real-time embedded systems are categorized on hard- and soft real-time
systems based on if they use preemptive or non-preemptive priority scheduling
and if they need to meet their performance objectives all the time or on average.
xStorage Compact energy storage falls into the category of hard real-time
embedded systems due to its need for critical matching of response times in
environments where power supply simply cannot fail, for example in hospitals.
For working with a hard-real-time system, the system needs to ensure that both
the criteria of performance and size of the program match specifications.
This thesis focuses on the xStorage Compact energy storage PCS firmware
side where there is a constant need for memory optimization due to the use of
low memory constraint microcontrollers. The focus will be on the ECM side of
the PCS due to need for memory optimization being the highest in that side of
the firmware.
Due to the hard-real-time requirement of this system, code is rather added to
the source code than refactored because that way it is easier to control the
functionality of the new compiled code. This results into memory running out on
the hardware in question overtime and is the basis why this thesis is created.
The starting point of this thesis is analyzing the C++ classes as objects
implemented in the firmware from a memory consumption perspective, for
example rectifier class consumes most of the memory according to memory
map so it will be analyzed for optimization first. The idea is to look at the
implementation and look for sections which could be refactored for memory
optimization, structures and data members that are not handled and arranged
by data type sizes, minimizing the amount of data structures and abstraction
layers, looking at possible areas to implement dynamic memory allocation and
minimizing memory overhead.
In this thesis the techniques implemented result into 1,5% of improvement in the
memory consumption of RAM usage and 0,5% of the usage in flash memory.
RAM memory is the more expensive one of the two and the results are
reflecting the emphasis on this section of memory.

Abstract

Tekijä: Ville Vainio

Otsikko: Memory Optimization techniques in xStorage

Compact

Sivumäärä: 31 Sivua

Aika: 31.8.2021

Tutkinto: Insinööri (AMK)

Tutkinto ohjelma: Informaatio ja kommunikaatioteknologia

Ammatillinen pääaine: Älykkäät laitteet

Ohjaajat: Sami Sainio, Lehtori

 Ville Pirttinokka, xStorage-laiteohjelmiston tekninen

johtaja

Reaaliaikaiset sulautetut järjestelmät jaotellaan koviin ja pehmeisiin järjestelmiin
riippuen siitä, käyttävätkö ne ennaltaehkäisevää vaiko ei-ennaltaehkäisevää
prioriteettiaikataulua ja tarvitseeko niiden suorituskyvyn olla aina tiettyjen rajojen
sisällä. xStorage Compact -energiavarasto kategorisoidaan kovaksi
reaaliaikaiseksi järjestelmäksi, koska sen pitää ylläpitää kriittisiä reagointiaikoja
ympäristöissä, joissa voiman syöttö ei voi katketa kuten sairaaloissa.
Koska laite on kova reaaliaikainen systeemi, suorituskyvyn ja ohjelmiston
kokojen pitää olla määritelmien mukaiset. Tämä insinöörityö keskittyy xStorage
Compact -energiavaraston PCS puolen laiteohjelmistoon, missä jatkuva tarve
muistin optimoinnille on tarpeellinen, sillä mikrokontrollerissa on vähän muistia.
Painotus työssä on ECM-puolelle, sillä siellä on korkein tarve muistin
optimoinnille.
Koska laitteella on niin kriittiset vaatimukset, koodia mieluummin lisätään
lähdekoodiin kuin kirjoitetaan uudelleen, sillä silloin on helpompi ylläpitää
toimivuutta. Tästä syystä vuosien varrella muisti alkaa käydä vähiin ja lopputyön
aihe tulee tarpeelliseksi.
Aloituskohta tälle työlle on C++-luokkien analysointi muistin kulutuksen
perspektiivistä. Esimerkiksi tasasuuntaajaan käytetty luokka kuluttaa eniten
muistia muistikartan mukaan, joten se on analysoinnin lähtökohta.
Ideana on tutkia implementaatiota ja katsoa koodista kohtia, joita voi kirjoittaa
uudelleen muistin kannalta paremmin, rakenteita ja tietojäseniä, joita ei ole
käsitelty ja lajiteltu tyypin koon mukaan, minimoida datarakenteiden määrää,
katsoa mahdollisia kohtia implementoida dynaamista muistinhallintaa sekä
minimoida muistikuluja.
Tässä työssä käytetyt tekniikat saavat aikaan 1,5 % parannuksen RAM-
muistissa ja 0,5 % parannuksen Flash-muistissa. RAM-muisti on kalliimpaa
käyttää, joten tulokset näyttävät, että siihen on keskitytty enemmän.

Contents

1 Introduction 3

1.1 Eaton 4

1.2 UPS 4

1.3 xStorage Compact energy storage 5

1.3.1 UPS-as-a-reserve 7

1.3.2 Peak shaving 7

1.4 Premise 8

1.5 Scope 8

2 Techniques 9

2.1 Used techniques 9

2.1.1 Dead code elimination 9

2.1.2 Common subexpression elimination 9

2.1.3 Function refactoring 10

2.1.4 Data alignment 13

2.1.5 Bitfields 14

2.2 Unused techniques 15

2.2.1 Global constants & lookup tables 15

2.2.2 Loop unrolling 16

2.2.3 Copy propagation 17

2.2.4 Compiler optimization 18

2.2.5 Assembly 18

3 Dynamic memory allocation 19

3.1 Memory pool utilization 19

3.2 Dynamic features 21

4 Assembler 21

5 Implementation & Results 22

5.1 Tools 22

5.2 Implementation 23

5.3 Results 24

6 Conclusion 27

7 References 29

7.1 Photo references 31

1

List of abbreviations

BIOS: Basic input-output system.

COFF: Common object file format.

DSP: Digital signal processor.

EABI: Embedded application binary interface.

ECM: Energy conversion module, converts alternating current to direct

current and vice versa.

EMEA: Europe, the Middle East and Africa.

HMI: Human machine interface.

HW: Hardware.

IDE: Integrated development environment

MCU: Machine Control Unit.

PCS: Power conversion system, controls the inverter, rectifier and all

features that are a part of UPS.

RAM: Random access memory.

UPS: Uninterruptible Power Supply, is a device that provides emergency

power to a load.

UPSaaR: UPS-as-a-Reserve, or energy aware is a technology that allows

UPS to give energy back to the grid.

2

List of concepts

Application controller: Works as the user interface display in the xStorage

Compact.

Embedded system: Microcontroller based mechanical or electrical device

that has logic on how it operates.

Flash: Non-volatile memory that can keep data without power.

Microcontroller: Compact and small computer chip that runs specific

functionalities for an embedded system.

System controller: Sends the commands between the PCS and

application controller and works as a control and

monitoring solution with web server that runs the web

user interface.

3

1 Introduction

Microcontroller revolution which happened in 1980s brought back the constant

need for memory and performance efficiency in embedded devices [1]. Due to

the nature of how most of the embedded systems are built considering cost, the

memory is restrained when using microcontrollers for logic.

Memory is constrained to match optimized performance, timing, power, and

cost. It is hard to specify memory and performance requirements in contrast to

specifications in a large-scale project. This means that programmers might have

to compromise on some of the requirements or try to find different approaches

to fit the program to specifications required.

When starting a project and instantly trying to optimize on-the-go will be almost

impossible and counterproductive. Finding major performance- and memory

consuming bottlenecks before the program is working completely is not

practical. Steve McConnell in his book “Code complete 2nd edition” states that

programmers tend to ignore significant global optimizations when doing a lot of

micro-optimizations which is easy to happen when addressing issues on a not

finished project. [1]

Large-scale firmware projects become hard to maintain due to changing

environment and different programmers with different perspectives working on

it. This is a big issue when it comes to critical real-time system functionalities

which requires that the system cannot fail at any time.

It is much safer to add code to the project than to start refactoring a whole

section. This way the risk is minimised, and the system is more guaranteed to

work after code changes and easier to scope the areas that need to be

retested. This results into more code that adds more performance and memory

consumption after time.

This thesis aims to provide techniques for a strategy which is effective to follow

when addressing issues regarding memory limitations in large scale projects

4

and manually addressing them. This means a solution to fine-tune the existing

code to save memory usage for new features without constant refactoring and

to provide an existing example of a strategy that has been done in the xStorage

Compact firmware.

1.1 Eaton

Eaton Corporation is a global power management company founded in the

United States by Joseph O. Eaton in 1911. [2] Eaton has two main business

sectors which are electrical sector and industrial sector. Electrical sector is

divided to America and EMEA regions and produces critical power management

solutions. Industrial sector consists of hydraulics, aerospace, and vehicle.

Eaton research and development center located in Le Lieu, Switzerland is the

site where xStorage Compact energy storage solution came into fruition and

has majority of the development of this product conducted together with Eaton

power quality. Eaton power quality is the subsidiary of Eaton Corporation based

in Finland that produces and develops UPS systems.

1.2 UPS

Uninterruptible power supply is a device that provides emergency power to a

load when input power or mains power fails or has conditions that would

normally drop the load. UPS has three main functionality which are to provide

clean power that has been conditioned from incoming dirty power, ride-through

power for temporary outages and to have a smooth shutdown for system when

there is a complete power outage longer than the UPS batteries can support the

system.

Phases of UPS devices come in single-phase or three-phase defining the

number of electrical phases that it receives and transmits. Large power

consumption facilities are often three-phase since it is the most efficient way of

transporting electricity.

5

1.3 xStorage Compact energy storage

Unlike other UPS devices the xStorage Compact, including normal UPS

operation, is also an energy storage which means a system that by definition

stores energy to be used later. xStorage Compact has a lot of advanced

technologies that combine the UPS functionalities to energy storage features

when processing power from the grid.

Figure 1 displays how the xStorage Compact is used as a part of an electric

vehicle charging infrastructure. The system has a lot of unique and eco- and

cost friendly features like its peak shaving that keep the load even and UPS-as-

a-reserve technology which help the system be utilized as an investment by

returning energy to the grid.

Figure 1. xStorage Compact system functionality in an infrastructure.

xStorage Compact is not so much made for absolute load protection than it is to

be used as an energy storage. In most cases xStorage Compact does not even

have load and is connected as a parallel system with other UPS devices to not

support the whole grid but rather minimise the consumption on the customers

6

perspective. This means it has different primary functionalities that it must

uphold compared to the normal UPS devices.

Typical use case of the xStorage Compact energy storage functionality is

measuring buildings total power to the grid to observe if due to photovoltaic

installations the power is fed to the grid. In this situation it is better to store this

power to the batteries and use the batteries as a power source when the grid

power is not produced by photovoltaic installations. This procedure is the

principle of photovoltaic self-consumption.

Hardware in the xStorage Compact is based on the 93PS UPS system except

for its HMI. Instead, the xStorage Compact uses application controller and

system controller to handle user commands that are send through user

interface, which allows manual control of the batteries. This eliminates the

possibility of batteries being empty in a certain time of day which happens in the

UPS, depending how timer has been programmed. See figure 2 below.

Figure 2: xStorage Compact energy storage system.

7

1.3.1 UPS-as-a-reserve

UPSaaR or Energy Aware UPS technology allows, for example, data centres to

also support the electricity grid instead of only consuming power and that

results into compensation for the company using Energy Aware UPS devices.

With collaboration with Fortum, Eaton has been able to prove UPSaaR feature

to work as a part of Frequency Containment Reserve [3], which is an active

power reserve to compensate for fluctuations of frequency in the electricity grid.

When there is a need for adjusting grid frequency the UPSaaR technology

allows the UPS to detect it and discharge the battery back to the grid to regulate

the demand.

UPSaaR originates from UPS which was improved and modified for xStorage

Compact by adding more features supporting this feature. It is more flexible in

its manual operation allowing back and forth power feed to the grid in much

larger scale and more often than in the UPS. This is possible due to lithium-ion

batteries that are used xStorage Compact which much more suitable for this

feature than lead-acid batteries which are used in most of the UPS systems.

1.3.2 Peak shaving

Electricity consuming devices tend to have uneven load profile during day which

results to load peaks [4]. By utilizing peak shaving functionalities of the xStorage

Compact it is possible to reduce these peaks which result into reduction of

power fee. This is possible with using the xStorage Compacts batteries to

uphold the demand by discharging during these peak hours and recharging

while there is not as much demand for power. See figure 3 below.

8

Figure 3. How the peak shaving functionality behaves in contrast to power and time.

1.4 Premise

Source code analysed for this thesis is a legacy code made over decades of

programming by different programmers. Due to the nature of this project, it is

much safer and more efficient to add code for different use cases over the

period of the systems life span than to refactor sections of the code to match

the set requirements. This results inevitably to running out of memory because

the logic is written in a microcontroller that has very limited amount of resources

to use.

1.5 Scope

In this thesis the memory issue is analysed, and a solution is presented for safe

refactoring of the source code manually. This model presented as a solution

can be used as a guideline in any phase of the project life cycle when concern

of memory resource limitations come into factor while developing new features

or sustaining existing functionalities.

Techniques are implemented based on their viability of the xStorage Compact

system and presented based on their usability on embedded systems overall.

The techniques in this thesis have their viability and risks assessment

presented in a clear manner and the results shown how they affect positively or

negatively on the overall outcome of the project. The techniques that have not

9

been utilized and are presented in this thesis have their usability analysed and

their possible use cases explained.

2 Techniques

When making an action plan for this thesis there had to be a decision made on

what techniques would be implemented for this project. Most of the optimization

methods found are created for performance enhancement in the sense of speed

which would be beneficial but for this thesis not viable due to scope. This

section does not cover all the techniques available but were chosen based on

possible high benefits compared to complexity and viability for this project.

2.1 Used techniques

Techniques described in this section are implemented in the source code

throughout of this project and have their effect measured based on compiled

code map.

2.1.1 Dead code elimination

Dead code elimination was used in this thesis as a starting point for optimization

of the high memory consuming objects. By going through the code and looking

for situations where the code is never used or is initialized but never accessed

can be cut out which results on reduction of memory usage depending on how

often these variables or functions were called.

2.1.2 Common subexpression elimination

Common subexpression elimination is similar technique as using constants to

save precomputed results. The idea is to combine common variables and

computations in to one which are used multiple times throughout a function or a

whole program. [5]

10

In example [Listing 1] each phase voltage is adjusted with compensation and

offset which are common with each of the computations, therefore it is possible

to create a temporary variable to do this computation beforehand to reduce the

memory overhead caused by each calculation.

Common subexpression elimination can be done by the compiler but in this

thesis when this technique is applied a distinct difference in memory

consumption is noticed after compiling new code. This means that the compiler

is not aware of every possible aspect and situation where the code is

implemented in a way that common subexpression elimination could be utilized.

[6]

void foo(void)

{

 float VoltageA, VoltageB, VoltageC;

 VoltageA = MeasurementA * Compensation * Offset;

 VoltageB = MeasurementB * Compensation * Offset;

 VoltageC = MeasurementC * Compensation * Offset;

}

void foo(void)

{

 float VoltageA, VoltageB, VoltageC;

 //Common subexpression

 float CompOffset = Compensation * Offset;

 VoltageA = MeasurementA * CompOffset;

 VoltageB = MeasurementB * CompOffset;

 VoltageC = MeasurementC * CompOffset;

}
Listing 1: Common subexpression elimination example.

2.1.3 Function refactoring

When refactoring code, there is a list of items to consider before and after doing

changes to functions to assure that what programmer is doing is safe. [7 p.572]

• Changes need to be done systematically.

• Code should work before the refactoring.

11

• Keeping refactoring at small portions and one at a time.

• Listing the steps to take doing refactor.

• Retesting.

• Code review.

• Risk assessment.

• Is the change viable performance vice.

2.1.3.1 Ternary operators

Ternary operators are conditional operators that can be used in contrast to if,

else statements. It takes 3 operands a condition followed by a question mark,

expression to execute if the condition is true and expression if the condition is

false. using ternary operators is shown in [Listing 2].

void ternary(void)

{

 int a;

 int b;

 int c;

 bool cond = true;

 a = (cond) ? b : c;

}

Listing 2: Ternary operator example.

Ternary operators tend to be useful or harmful tool memory vice depending on

how they are utilized. In this thesis ternary operators are described in a helpful

way of function refactoring. When using ternary operators, it is possible to

initialize variable as a constant with two or more possible outcomes. Depending

on the situation, the ternary operator can be utilized as a memory saving utility.

In this thesis presents an example of useful function refactoring situation using

ternary operator, from a badly written conditional [Listing 3], to a disputably well

readable, two compact ternary operator-based conditionals [Listing 4]. Ternary

operators tend to be described as hard to read and the same benefit of reducing

the amount of wasted memory due to additional variables can be obtained

without ternary operators as shown in [Listing 5].

12

void Conditional(void)

{

 float tempInputMax;

 if (state)

 {

 if(NominalValue != 0)

 {

 tempInputMax = NominalValue / 10;

 tempInputMax = Current / tempInputMax;

 }

 else

 {

 tempInputMax = Current / 230;

 }

 }

 else

 {

 float tempNomInput;

 if(NominalValue != 0)

 {

 tempNomInput = NominalValue / 10;

 }

 else

 {

 tempNomInput = 230;

 }

 tempInputMax = CapCurrent / tempNomV;

 }

}

Listing 3: Badly written conditional.

void Conditional(void)

{

 const float tempNomInput = (0 != NominalValue) ?

 (NominalValue / 10.0f) : 230.0f;

 float tempInputMax = (state) ? (Current / tempNomInput)

 : (CapCurrent / tempNomInput);

}

Listing 4: Ternary operator conditional refactoring of previous listing.

13

void Conditional(void)

{

 float tempInputMax;

 float tempNomInput;

 if(NominalValue != 0)

 {

 tempNomInput = NominalValue / 10;

 }

 else

 {

 tempNomInput = 230;

 }

 if(state)

 {

 tempInputMax = Current / tempNomInput;

 }

 else

 {

 tempInputMax = CapCurrent / tempNomV;

 }

}

Listing 5: Previous function refactoring without ternary operators.

2.1.4 Data alignment

Data alignment means a chunk of a data in memory which contrasts with the

memory address. If the memory address of the variable that has been

addressed to it is a multiple of four so that the address ends with first and

second bit being zero, the variable is naturally aligned.

In this thesis a microcontroller with a 32-bit architecture is used which converts

into 4bytes which means that if an unsigned integer of 16 bit is followed by a 32-

bit integer as a data member, that would cause 16 bits of padding between the

2 variables at compile time.

Data members that have been assigned in a non-logical order so that size of

the variables in the order of initialization do not fill up a whole byte results to

padding between these members [Listing 6 & Figure 4].

14

struct a

{

 int a1;

 char a2;

 short a3;

}

Listing 6: struct with a need for padding.

Figure 4: Padded memory structure of listing 6.

2.1.5 Bitfields

The purpose of bitfields is to pack multiple data members inside of a few bytes

depending on hardware which can be used only inside of a structured data type.

Normal boolean operator variable takes one byte of memory and has two

possible options which it stores.

This thesis implemented a refactoring of global bool operations which are used

for true or false comparison. The refactoring done takes this principle and

converts booleans into a bitfield that is stored into a structure of descriptive

name. This method allows us to convert one-byte variables to one-bit variables

that store zero or one in them depending on if they need to be false or true,

respectively. Structured bitfield takes N multiple of one-byte in every 16 bits

assigned where N is a positive integer which means that assigning three

Booleans into a bitfield would already result into memory performance

improvement.

bool a1 = false;

bool a2 = false;

bool a3 = false;

 ...

bool an = false;

Listing 7: Initialized booleans.

15

typedef struct

{

 uint16_t a1:1;

 uint16_t a2:1;

 uint16_t a3:1;

 uint16_t an:1;

}Abool;

Abool A = {false, false, false, ... , false}

Listing 8: Initialized bitfield.

2.2 Unused techniques

In this thesis the unused techniques would have cost too much time, decrease

readability, have too high of a risk of breaking essential features of the ECM

functionalities in contrast to benefits or has already been used throughout the

project.

2.2.1 Global constants & lookup tables

Constants are beneficial to utilize predetermined values that do not need be

modified after initialization these can be defined with #define directive which is a

pre-processing macro or by const keyword. Globally defining constants in C++

can decrease or increase complexity depending on the use case and help track

the memory usage at compile time. Constant variables and definitions that have

not been used are ignored by the compiler which results into no memory

consumption in their part, for example defining different calculated timer values

do not have to be defined based only on use case and do not cause memory

overhead if forgotten to be removed.

Using constant variable arrays as tables is an effective way of decreasing

complexity and best use of memory in contrast to complex algorithms. Using

conditionals to initialize variables instead of constant tables causes more

memory overhead and decreases codes readability. Other best use case of is

precomputing results and assigning them to constant variables to be accessed

16

by different functionalities. This decreases memory overhead caused by

computations done by the controller and steps taken for acquiring results from

different computations. [7. Chapter 26.4, p.667]

In this thesis table lookups and precomputing results have not been used for

refactoring the code more memory efficient due to source code already utilizing

these methods effectively.

2.2.2 Loop unrolling

Loop unrolling is a technique that is used to transform loop to more efficient

format [Listing 9] which can be acquired manually or by compiler optimization.

This technique does trade-off between speed and space which is why it was not

used in this thesis but rather checked in the source code if this technique has

been used previously. Overhead of a loop requires a lot of resources which

makes opening the loop or running the loop in larger sections much more

efficient. [8]

void foo(void)

{

 for(int i = 0; i < 20; i++)

 {

 function(i);

 }

}

// Normal Loop

void foo(void)

{

 for(int i = 0; i < 20; i += 5)

 {

 function(i);

 function(i+1);

 function(i+2);

 function(i+3);

 function(i+4);

 }

}

// Unrolled loop
Listing 9: Loop vs unrolled loop comparison.

17

2.2.3 Copy propagation

Copy propagation means optimizing code by skipping saving predetermined

data to a new variable which would result into predetermined values turning into

dead code or adding runtime stack usage by the size of a new variable

unnecessarily [Listing 10].

int CopyPropagation()

{

 // x assignment can be optimized into returning the value straight

 //int x;

 //x = 1;

 //return x;

 return 1;

}

Listing 10: Example of simple copy propagation optimization.

Possible problems occurring from copy propagation exceed the benefit of the

using this technique on a legacy code which is why copy propagation was

ignored in this thesis implementation. Mostly this method was not used due to it

affecting readability of the code because the variables data is assigned to have

a describing name to tell the programmers what that specific data is for and

because compiler handles this effectively. [9]

The biggest issue with this technique occurs if global data is not assigned in a

critical section to a temporary variable as shown in [listing 11]. In this case

global variable can be accessed by a different task after it has been checked by

a conditional, which could result into undesired results and in worst case

scenario dividing by zero which would corrupt the entire program.

void CriticalSection()

{

 //Assign global variable to temporary variable

 int tempGlobalVariable = GlobalVariable;

 if(tempGlobalVariable != 0)

 {

 // GlobalVariable might be changed by another task.

 float y = 10 / tempGlobalVariable

 }

}
Listing 11: Critical section with a mandatory propagation.

18

2.2.4 Compiler optimization

The compiler used for xStorage Compact uses TMS320F28335 microcontroller

technology which utilizes C2000 real-time MCU control which allows

optimization only to a certain extent which can be read from TMS320F28335

optimizing C/C++ compiler user’s guide. [10] Due to the lack for consideration of

limited code space in embedded system compiler optimization, manual source

code size reduction becomes more viable option. Of course, there is a

possibility of using a different and more effective compiler but in this situation is

not possible due to the scope and type of the project in question because the

effort it would take in contrast to benefits.

Optimization of compilers is not enough in most cases due to the difficulty of

analysing the amount of code space needed for a fully functional program.

Compilers also usually as a last effort provide means of optimizing for size

instead of performance but that will require testing of all performance

constrained features again if they still match the criteria set and is not a valid

option for that reason. [11]

2.2.5 Assembly

Assembly code is a machine code that is the only one that is below C++ code.

Converting C++ code to a lower-level code would improve performance

significantly and would be a viable option in a small project that does not require

constant maintenance.

The xStorage Compact project requires portability between microcontrollers

because the project itself is based on 93PS code and the program is required to

run on 5 separate UPS systems which some of them have different

microcontrollers in their PCS. Utilizing C/C++ code supports portability and

Assembly might result into portability problems due to the instruction sets made

for one microcontroller having to be modified for each microcontroller separately

which is not as efficient as modifying C/C++ code. [12]

19

3 Dynamic memory allocation

Source code in a large-scale project has in many cases need for compatibility

for a lot of similar devices for sustainability reasons. There is a great place to

utilize dynamic memory allocation to reserve into memory only the needed HW

specific features, variables and constants used for the specific device which it is

intended. [6]

3.1 Memory pool utilization

In my innovation project “Dynamic memory allocation in embedded systems

2021” [13] I describe a memory pool as a collection of containers that have a

variating fixed size chunks of bits or bytes in them. The memory that has been

reserved by the pool can be freely allocated and deallocated to recycle memory

at runtime.

In this thesis I propose a way to utilize these memory pools in initialization

phase of the code. There are a lot of filter coefficients that are needed to

calculate the current and voltage variables and they are utilized as shown in

[listing 12] as a constant structure array of float variables. These hold arrays 7*5

bytes of constant float variables which results to taking 70 bytes of memory in

the binary code per array. If the coefficients are initialized in a memory pool

[listing 13] memory usage can be calculated by a formula (1) where N is actual

bytes of the objects and N / 16 is rounded up. [13]

 𝑅𝐴𝑀 = N+ ([
N

16
] + 7)𝐵𝑦𝑡𝑒𝑠 (1)

In this scenario the memory usage turns out to be 45 bytes of memory that is

used by the dynamic memory pool in contrast to 70 bytes. If implemented

throughout the code this could accumulate up to 2kB – 4kB of memory that could

be saved.

20

const Filter Coefficients [] =
{
 { 0.x, 0.x, 0.x, 0.x, 0.x, 0.x, 0.x },
//A Module
 { 0.x, 0.x, 0.x, 0.x, 0.x, 0.x, 0.x },
//B Module
 { 0.x, 0.x, 0.x, 0.x, 0.x, 0.x, 0.x },
//C Module
 { 0.x, 0.x, 0.x, 0.x, 0.x, 0.x, 0.x },
//D Module
 { 0.x, 0.x, 0.x, 0.x, 0.x, 0.x, 0.x },
//E Module
};

Listing 12. A C++ example of a structure array holding coefficient values used for

different hardware.

Filter *Coefficients = NULL;

void Initialize(void)
{
 DynamicPool< Filter, SIZE> Pool;

 Coefficients = Pool.Allocate();

 switch (MyHardwareNumber)
 {
 case A_MODULE:
 *Coefficients = { A COEFFICIENTS };
 break;

 ...

 default:
 *Coefficients = { Default COEFFICIENTS };
 break;

 }

Listing 13. A C++ example of initializing coefficient values for different hardware utilizing

memory pool.

Issue with this implementation would be the trade-off between flash and RAM

memory which is not necessarily optimal because there is less RAM memory

available. Because memory pools are statically allocated at compile time there

is no issue with finding the microcontroller running out of memory as normally

could happen when using dynamic allocation. Memory pools are a working

option also because using them is deterministic and does not cause memory

leaks.

21

3.2 Dynamic features

There are lot of features that are included in the source code due to

compatibility with other devices that are not used with the xStorage Compact

firmware. This means that there are a lot of variables created for settings,

measurements and conditions that are meant for these features and go unused

while consuming memory throughout the program.

Using dynamic operations on initializing these variables in the constructor

depending on the module can reduce RAM memory on each separate hardware

significantly with a trade-off to flash memory. Theoretically using a memory pool

which size and type is initialized based on the hardware and using those

memory locations for feature variables would work. The principle basically

works as a memory saving feature due to the program only initializing the

memory pool at the compile time and then at run time only saving the variables

to the pool that are needed for the system in question.

Risk in this implementation would be overlooking variables that are accessed in

wrong hardware which would result into undefined behaviour. Also, in a project

that has not planned a memory pool implementation would not be able to freely

reserve memory from the planned scope to adjust to the requirements placed

by the memory pool or at least it would require major refactoring.

4 Assembler

TMS320C28x C/C++ compiler accepts ANSI standard C/C++ source code and

produces assembly language source code for the TMS320C28x based devices.

[14] Data is divided in a variety of memory segments as seen in figure 5.

Segment .data usually contains the initialized data, this is in EABI, which is what

is used in the target system of this thesis. COFF has its initialized data section

called .cinit. Uninitialized data is saved in .bss and .ebss section for EABI and

COFF respectively. [14]

22

Figure 5: Memory segmentation in C/C++.

5 Implementation & Results

This section of thesis goes through the plan of action that was used throughout

the project and the results that were recorded each build cycle after

implemented change to source code.

5.1 Tools

Source code for ECM is compiled in code composer studio version 5.1 which is

eclipse-based compiler and uses C2000 real-time 32-bit microcontroller. Real-

time functionality is achieved by Texas instruments DSP/BIOS real-time

operating system. Testing of the compiled code was done in a xStorage

Compact 40-kilowatt unit at test laboratory of Eaton company building. Version

control and code changes were done step by step by committing to bitbucket to

track the progress and for easy maintaining of the source code.

For checking preliminary viability of different techniques and comparing

methods on a real environment easily without building large project a

23

LPCXpresso 1549 was used. Texas instruments LPCXpresso projects were

compiled with MCUXpresso IDE v10.2.1 which is also an eclipse-based IDE.

The testing project used LPCOpen middleware library and freeRTOS operating

system.

5.2 Implementation

Plan of action for this thesis was to research for beneficial and simple to utilize

coding techniques used for C++ to reduce overall memory consumption of the

ECM source code. Starting point was to test the potential effects of the

techniques in the source code and testing project created on the LPCXpresso

1549 microcontroller. This was done so that the irrelevant techniques could be

excluded in the next phase of implementation so that only the beneficial

methods were utilized.

Pareto principle which states that roughly 80 percent of issues come from 20

percent of the causes is accurate description that shows in source code. Order

of refactoring the code in each optimized class was done based on this

principle. By looking at the few of the most memory consuming objects that

could be observed from memory map created by compiler. These most

consuming objects would be handled one at a time based on observations. See

figure 6 below.

Techniques in the work phase of this thesis was not done in any order apart

from executing dead code elimination for each of the objects first so that

refactoring later would not accidentally be done for unused code. Parts of

testing the techniques that were done on LPCXpresso microcontroller showed

which of the techniques had most potential of working for this project combined

with code analysis.

If the refactoring done had bugs or did not decrease the memory usage it was

either fixed or reverted to the original implementation. Results of this thesis

24

does not consider reverted changes due to them not affecting the outcome of

the work phase.

Figure 6: Work flowchart.

5.3 Results

Results show that the dead code elimination was the most effective way of

optimizing the program and highest memory consuming objects were prone to

be optimized the most which was hypothetically accurate at the start based on

pareto principle. Flash memory consumption was reduced more than RAM

memory which was expected due to flash being larger and used more.

Memory consumption for RAM in the beginning of the implementation was

94,577% of the overall available RAM memory and the flash consumption at the

start was 61,242% of the overall available flash memory. At the end of the

technical solution RAM and Flash memory consumptions were 94,5769% and

60,759% which results into approximately 1,5% and 0,5% improvements

respectively. The result itself is decent and the memory that has been saved

can be used to implement a few relatively small features which can be deducted

25

from experience. If techniques are utilized throughout the entire program the

result could be approximately twice as large.

Techniques implemented were focused mostly on the highest consuming

classes in the source code due to scheduling limitations which is why only few

objects are listed in the result diagrams [Figure 7-10]. Target classes were

picked based on the amount of RAM memory they consume due to RAM

memory being more expensive than flash. Flash diagram of class-based

memory reduction in figure 7 shows how the most consuming three objects

regarding inverter, rectifier and battery state have the most impact on the

overall result. Figure 8 shows how the much flash memory was saved in bytes

based on technique used and figures 9 and 10 show RAM memory reduction in

the outcome based on class object and technique respectively.

Figure 7: Flash memory reduction in bytes based on object.

0

100

200

300

400

500

600

700

Rectifier
Control

Inverter
Control

Rectifier
state control

Battery state
control

Fan Abm

Flash based on class

26

Figure 8: Flash memory reduction in bytes based on technique.

Figure 9: RAM memory reduction in bytes based on object.

0

100

200

300

400

500

600

700

800

900

Bitmapping Dead code
elimination

Function
refactoring

Common
subexpression

elimination

Data alignment

Flash Based on technique

0

20

40

60

80

100

120

140

Rectifier Control Inverter Control Rectifier state
control

Fan

RAM based on class

27

Figure 10: RAM memory reduction in bytes based on technique.

6 Conclusion

This thesis provides a working model for refactoring source code in a large-

scale project that can be utilized based on the results as a programmer sees fit.

These techniques have the potential to be used effectively when the preliminary

research and testing has been conducted based on this thesis which provides a

faster way of memory-based optimization in the target code compared to self-

analysis.

In xStorage Compact which is in the sustaining phase of the project it is not

practical to start adding external memory to the project or changing the

microcontroller for more memory. If this were done it would mean that all the

customer devices require to have their hardware changed on the field which

would require to shutdown the systems for the duration of maintenance or

rebuild and then replace the field systems which is much less optimal than

doing refactoring to make room for a new sustaining firmware that is just

updated in the field.

This improvement presented in this thesis could uphold two decent sized

firmware feature updates and when considering the time, implementing the

0

50

100

150

200

250

Bitmapping Dead code
elimination

Function
refactoring

Common
subexpression

elimination

Data alignment

RAM based on technique

28

following techniques described in this project it would approximately take 2 days

of work to implement. From experience it can be stated as an example that a

recent decent size firmware update that implements parallel system load share

calibration took only half of the amount of memory that has been saved in the

practical portion of this thesis.

Techniques presented in this thesis can be expanded into the other systems

and projects that are made and still sustained at Eaton. That covers most of the

most profitable systems that are currently on the field and sold to customers

and which have their firmware modified constantly.

For improvement dynamic memory allocation possibilities should be examined

more throughout due to the vast possibilities it has. It is very time consuming

with high-risk high-reward results and cannot be utilized in immediate use which

is why this procedure was not investigated more in this thesis.

Prioritising refactoring of functions that are moved to the ramfuncs section in the

code would have been a beneficial addition in the workflow of the

implementation. When refactoring and improving these functions, the source

code is guaranteed to have higher impact on the RAM consumption.

Bitfield usage has high potential to be utilized in the source code and could

have been used more throughout the project which might have resulted in better

overall improvement. However, it was not done during the work phase of this

thesis due to the disadvantage of bitfields not supporting pointer assignment

which would require more throughout analysis of the overall requirements of

each refactored variable.

29

7 References

[1]. A. R. Mahajan & M. S. Ali. Optimization of memory system in Real-Time

Embedded Systems. July 28th, 2007. Online paper. WSEAS.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.6803&rep=rep1&t

ype=pdf. Read April 21st, 2021.

[2]. Eaton corporation home page, web material. Eaton.

https://www.eaton.com/gb/en-gb/company. Read June 12th, 2021.

[3]. Eaton corporation website. EnergyAware UPS – Green Money in Grey

Spaces. Web material. Eaton.

https://powerquality.eaton.com/EMEA/UPSaaR/default.asp. Read May 8th,

2021.

[4]. Karmiris Georgios & Tenger Tomas. Peak shaving control method for

energy storage. ABB AB, Corporate research center. Online paper.

https://www.sandia.gov/ess-

ssl/EESAT/2013_papers/Peak_Shaving_Control_Method_for_Energy_Storage.

pdf. Read May 8th, 2021.

[5]. Platzer André. Lecture notes on basic optimizations. Online lecture notes.

Chapter 4.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.470.1843&rep=rep1

&type=pdf. Read August 7th, 2021.

[6]. Hosangadi Anup, Fallah Farzan, Kastner Ryan. Factoring and eliminating

common subexpressions in polynomial expressions. 2004. Online paper.

Chapter 1. http://cseweb.ucsd.edu/~kastner/papers/iccad04-

subexpr_polynomials.pdf. Read August 7th, 2021.

[7]. McConnell C. Steven. Code complete second edition. 2004. Book. Microsoft

corporation. Read April 20th, 2021.

https://www.sandia.gov/ess-ssl/EESAT/2013_papers/Peak_Shaving_Control_Method_for_Energy_Storage.pdf
https://www.sandia.gov/ess-ssl/EESAT/2013_papers/Peak_Shaving_Control_Method_for_Energy_Storage.pdf
https://www.sandia.gov/ess-ssl/EESAT/2013_papers/Peak_Shaving_Control_Method_for_Energy_Storage.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.470.1843&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.470.1843&rep=rep1&type=pdf
http://cseweb.ucsd.edu/~kastner/papers/iccad04-subexpr_polynomials.pdf
http://cseweb.ucsd.edu/~kastner/papers/iccad04-subexpr_polynomials.pdf

30

[8]. Ekström Viktor. Manual micro-optimizations in C++. Malmö University. 2019.

Bachelor thesis. Chapter 1.1.2, p.10. https://www.diva-

portal.org/smash/get/diva2:1480520/FULLTEXT01.pdf. Read August 7th, 2021.

[9]. Fog Agner. Optimizing software in C++. Technical university of Denmark.

2021. Online paper. P.68. https://www.agner.org/optimize/optimizing_cpp.pdf.

Read August 7th, 2021.

[10]. TMS320C28x Optimizing C/C++ Compiler v21.6.0.LTS. Texas

instruments. 2021. User’s guide. Chapter 3.2, p.55.

https://www.ti.com/lit/ug/spru514w/spru514w.pdf?ts=1628318958477. Read

August 7th, 2021.

[11]. Abdulla Fadle Mohammed. An efficient manual optimization for C codes.

ICSRS Publication. Online paper. 2010.

http://emis.impa.br/EMIS/journals/IJOPCM/Vol/10/IJOPCM(vol.3.2.10.J.10).pdf.

Read August 7th, 2021.

[12]. First steps with embedded systems. Byte craft limited. Online book. 2000.

Chapter 1.1.

https://www.phaedsys.com/principals/bytecraft/bytecraftdata/bcfirststeps.pdf.

Read August 7th, 2021.

[13]. Vainio Ville, Dynamic memory allocation in embedded systems. 2021.

Innovation project. Eaton. Read April 27th, 2021.

[14]. TMS320C28x Assembly Language Tools v18.12.0.LTS. 2001, revised

2019. User’s guide. Texas instrumentals. p.19.

https://www.ti.com/lit/ug/spru513r/spru513r.pdf?ts=1599377715393. Read May

29th, 2021.

https://www.diva-portal.org/smash/get/diva2:1480520/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1480520/FULLTEXT01.pdf
https://www.agner.org/optimize/optimizing_cpp.pdf
https://www.ti.com/lit/ug/spru514w/spru514w.pdf?ts=1628318958477
http://emis.impa.br/EMIS/journals/IJOPCM/Vol/10/IJOPCM(vol.3.2.10.J.10).pdf
https://www.phaedsys.com/principals/bytecraft/bytecraftdata/bcfirststeps.pdf

31

7.1 Photo references

Figure 1&2: Eaton corporation website. xStorage Compact Single rack energy

storage system. 2020. Web leaflet. Eaton.

https://www.eaton.com/content/dam/eaton/products/energy-storage/xstorage-

compact/en-us/eaton-xstorage-compact-leaflet.pdf. Read May 8th, 2021.

Figure 3: Karmiris Georgios & Tenger Tomas. Peak shaving control method for

energy storage. ABB AB, Corporate research center. Online paper.

https://www.sandia.gov/ess-

ssl/EESAT/2013_papers/Peak_Shaving_Control_Method_for_Energy_Storage.

pdf. Read May 8th, 2021.

https://www.eaton.com/content/dam/eaton/products/energy-storage/xstorage-compact/en-us/eaton-xstorage-compact-leaflet.pdf
https://www.eaton.com/content/dam/eaton/products/energy-storage/xstorage-compact/en-us/eaton-xstorage-compact-leaflet.pdf
https://www.sandia.gov/ess-ssl/EESAT/2013_papers/Peak_Shaving_Control_Method_for_Energy_Storage.pdf
https://www.sandia.gov/ess-ssl/EESAT/2013_papers/Peak_Shaving_Control_Method_for_Energy_Storage.pdf
https://www.sandia.gov/ess-ssl/EESAT/2013_papers/Peak_Shaving_Control_Method_for_Energy_Storage.pdf

