
1

Xuan Phung Ton

AUTOMATION OF THE TUTORIAL

WALKTHROUGH FOR RIGHTWARE

KANZI UI DOCUMENTATION

School of Technology

2021

2

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Xuan Phung Ton
Title Automation of the Tutorial walkthrough for Rightware

Kanzi UI Documentation
Year 2021
Language English
Pages 55
Name of Supervisors Pirjo Prosi and Timo Kankaanpää

The topic of this thesis is the implementation of automated tutorial
walkthrough UI tests for Rightware’s Kanzi Studio using Microsoft UI Auto-
mation, Test Stack White, and Coded UI Frameworks. The UI tests were
created so that the steps indicated in Kanzi Documentations are
walkthrough automatically. The idea of the thesis and licenses were pro-
vided by Rightware Oy, who also owns the project implementation. There-
fore, no source code can be provided in this thesis report.

The professional background needed for this thesis work contains pro-
gramming skills in C#, familiarity with the Jenkins tool, proficiency in using
Visual Studio, and familiarity with the GIT version control system.

The thesis work was implemented to that there will be around ten auto-
mated tutorials walkthrough UI tests in the Kanzi UI automated test tool,
these tests shall pass during the daily UI test runs on the Jenkins tool. Ad-
ditionally, this thesis report discusses the theoretical aspects of the thesis
implementation and necessary software testing background.

Keywords Software testing, automation test process, test automa-
tion framework

3

CONTENTS

1 INTRODUCTION.. 9

2 WPF APPLICATION .. 11

2.1 .NET Framework in General .. 11

2.2 Microsoft Visual Studio .. 11

2.3 WPF Application .. 12

2.3.1 Definition .. 12

2.3.2 Architecture .. 12

2.4 Kanzi UI Application .. 13

3 SOFTWARE TESTING .. 15

3.1 Software Testing Definition and Types of Software Testing 15

3.1.1 Definition of Software Testing ... 15

3.1.2 Different Types of Software Testing 16

3.2 Need of Software Testing .. 16

3.3 Software Testing at Rightware .. 17

4 UI AUTOMATION TESTING .. 18

4.1 Definition of UI ... 18

4.2 UI Automation Testing ... 18

4.3 UI Automated Testing at Rightware ... 18

4.4 UI Automation Testing Tools Used at Rightware 19

4.4.1 Microsoft UI Automation ... 19

4.4.2 Test Stack White .. 20

4.4.3 Microsoft CodedUI .. 20

5 KANZI UI DOCUMENTATION ... 21

5.1 About Kanzi UI Documentation ... 21

5.2 Kanzi UI Tutorial Documentation ... 21

6 TOOLS FOR UI TEST AUTOMATION ... 24

6.1 Kanzi UI Test Framework .. 24

6.2 Continuous Integration .. 24

6.3 Continuous Delivery .. 25

6.4 Jenkins .. 25

4

6.5 Artifactory .. 26

7 IMPLEMENTATION OF AUTOMATED TUTORIAL WALKTHROUGH

UI TEST ... 28

7.1 Benefits of tutorial walkthrough UI test .. 28

7.2 List of tutorials implemented .. 29

7.3 Implementation of the UI Tests.. 42

7.4 A Scenario when Implementing Tutorial Walkthrough UI Test 45

7.5 Testing for Kanzi UI Tests ... 50

8 CONCLUSION ... 53

REFERENCES .. 54

5

LIST OF FIGURES AND TABLES

Figure 1. WPF Architecture (Chauhan, 2018). .. 12

Figure 2. The Software Testing Lifecycle (Peforce, 2018)....................... 15

Figure 3. Types of Software Testing (Guru99 2021c). 16

Figure 4. Screenshot of Kanzi Documentation Tutorials. 21

Figure 5. Screenshot of steps in a tutorial ... 22

Figure 6. Screenshot of a part of Kanzi tutorial 23

Figure 7. Rightware's Studio UI Test Jenkins build job 26

Figure 8. Kanzi UI snapshot from Artifactory ... 27

Figure 9. A snippet of the Materials and textures tutorial 29

Figure 10. Bloom tutorial snippet ... 30

Figure 11. Button tutorial snippet .. 31

Figure 12. Dynamic layout tutorial snippet .. 32

Figure 13. Getting started tutorial snippet ... 33

Figure 14. Indicator tutorial snippet ... 34

Figure 15. Keyframe animations tutorial snippet 35

Figure 16. Rotation tutorial snippet ... 36

Figure 17. State managers tutorial snippet.. 37

Figure 18. Stencil tutorial snippet .. 38

Figure 19. Toggle button tutorial snippet ... 39

Figure 20. List of UI Tests from Visual Studio ... 40

Figure 21. Tutorial walkthrough tests run on Jenkins 40

Figure 22. Internal documentation on tutorial walkthrough UI tests 41

Figure 23. Tutorial Walkthrough tasks planned in Hansoft 42

Figure 24. Task has acceptance criteria as requirement 42

Figure 25. TutorialWalkthroughTests.cs location 43

Figure 26. Some steps from the Toggle button tutorial 44

Figure 27 The first step of the Rotation tutorial 47

Figure 28. The second step of the Rotation tutorial 48

Figure 29. A snippet of Bloom tutorial walkthrough UI test pull request .. 49

Figure 30. Fail screenshot verification in Rotation tutorial 50

6

Figure 31. Highlighted difference screenshot .. 51

Figure 32. Jenkins UI test failure screenshot .. 52

Figure 33. A bug ticket for Rotation tutorial walkthrough UI test from Hansoft

 ... 52

7

LIST OF ABBREVIATIONS AND ACRONYMS

2D Two-dimensional

3D Three-dimensional

API Application Programming Interface

C# C-Sharp programming language

CD Continuous deployment

CI Continuous integration

CLI Command-line interface

CLR Common Language Runtime

CPU Central processing unit

CUIT Coded UI Test

FCL Framework class library

GDI Graphics device interface

GPU Graphics processing unit

GUI Graphical user interface

HMI Human Machine Interface

HUD Head-Up Display

IDE Integrated development environment

KZB Kanzi binary

KZPROJ Kanzi project

8

MIL Machine independent language

PR Pull request

QA Quality Assurance

SWT Standard Widget Toolkit

UAT User Acceptance Testing

UI User Interface

WPF Windows Presentation Foundation

9

1 INTRODUCTION

Nowadays, design software for user interfaces is getting more and more

popular. These productive applications help designers to create profes-

sional 2D and 3D projects efficiently. Therefore, Rightware – a company

behind the Kanzi family of tools and services for the design and develop-

ment of advanced digital user interfaces, always focuses on the quality of

their products and user documentation.

Rightware was founded in 2009. The Kanzi product family includes a visual

studio that inspires designers, a powerful 3D runtime for superior graphics

performance, and an innovative connectivity platform. Rightware is head-

quartered in Finland and has a presence in the United States, United King-

dom, Germany, Italy, China, South Korea, and Japan. Kanzi is the market-

leading UI tool trusted by over 50 automotive brands across the globe.

(Rightware, 2020)

At Rightware, it is important to ensure the quality of the product and compli-

ance or the work that produced it. Therefore, continuous integration and

development are well-applied among the development process, along with

daily automated test runs to ensure each product build is working as ex-

pected. For each release, there always are automated and manual tests

which ensure the quality of the product before delivering to the customers.

Rightware also provides their users with professionally written user docu-

mentation which allow the users to get familiar with Kanzi Studio and feel

comfortable in using the product. Kanzi documentations provide users with

all the guides and fundamentals in using Kanzi Studio, along with an effi-

cient list of tutorial walkthroughs from beginner to advanced level. The doc-

umentation delivers a handful of applied knowledge which helps users to

use Kanzi Studio more proficiently. Therefore, it is also important to always

10

assure the quality of documentation for each release or when new docu-

mentation content is added.

Within the scope of this thesis, a UI automated tests list consisting of 10

tutorial walkthroughs is implemented. The tests will run automatically for

each build. These UI automated tests will help to ensure that the steps de-

scribed in Kanzi documentations are still valid and that Kanzi Studio func-

tionalities are verified to be working. Moreover, in the future, the UI auto-

mated walkthrough tests can also be used to automatically create video-

based tutorials for the Kanzi Documentation team, to provide better instruc-

tions and learning experiences for Kanzi users.

11

2 WPF APPLICATION

2.1 .NET Framework in General

The .NET Framework (articulated as "dot net") is a software framework cre-

ated by Microsoft that runs principally on Microsoft Windows. It incorporates

an enormous class library called Framework Class Library (FCL) and gives

language interoperability across a few programming languages. Programs

are written for .NET Framework execute in a software environment named

the Common Language Runtime (CLR). The CLR is an application virtual

machine that offers servicessuch as security, memory management, and

exception handling.

FCL provides UI, data access, database connectivity, cryptography, web

application development, numeric algorithms, and network communica-

tions. Developers produce programming by consolidating their source code

with .NET Framework and different libraries. The framework is intended to

be utilized by most new applications made for the Windows platform. Mi-

crosoft additionally delivers an integrated development environment (IDE)

for .NET programming called Visual Studio.

2.2 Microsoft Visual Studio

Microsoft Visual Studio is an IDE that is used to develop computer pro-

grams, as well as websites and mobile applications.

Visual Studio incorporates a code editor supporting IntelliSense as well as

code refactoring. The integrated debugger works both as a source-level de-

bugger and a machine-level debugger. Other built-in tools include a code

profiler, designer for building GUI applications, website designer, class de-

signer, and database diagram designer. It allows users to use plugins that

extend the functionality at pretty much every level—including adding sup-

port for source control systems, such as Subversion and Git. It is also easy

12

to add other toolsets for software development lifecycle for example, the

Azure DevOps customer Team Explorer.

Visual Studio supports various programming languages, such as C, C++,

C++/CLI, Visual Basic .NET, C#, F#, JavaScript, TypeScript, etc.

2.3 WPF Application

2.3.1 Definition

Windows Presentation Foundation (WPF) is a free and open-source graph-

ical subsystem created by Microsoft for delivering UIs in Windows-based

applications. WPF, recently known as "Avalon", was at first delivered as a

component of .NET Framework 3.0 in 2006.

2.3.2 Architecture

The major components of WPF architecture are shown in Figure 1.

Figure 1. WPF Architecture (Chauhan, 2018).

13

As seen in Figure 1, the managed layer consists of Presentation Framework

and Presentation Core.

Presentation Framework provides the required functionalities that are

needed to build the WPF applications, such as controls, data bindings, styl-

ing, shapes, media, documents, and annotations.

Presentation Core is the home for WPF Visual System and provides classes

for creating application visual trees. The Visual System creates a visual tree

that contains applications Visual Elements and rendering instructions.

The unmanaged layer layer is also called Milcore or Media Integration Li-

brary Core. MilCore is written in an unmanaged code to enable tight inte-

gration with DirectX (Chauhan, 2018).

DirectX engine is the underlying technology used in WPF to display all

graphics, allowing for efficient hardware and software rendering. MIL has a

Composition System that receives rendering instructions from Visual Sys-

tem and translates them into data that can be understood by DirectX to ren-

der the user interface.

Thie Core API layer has OS core components, such as Kernel, User32, GDI,

Device Drivers, and Graphic cards. These components are used by the ap-

plication to access low-level APIs. User32 manages memory and process

separation. (Chauhan, 2018)

2.4 Kanzi UI Application

Kanzi UI is a cross-platform HMI tool combining high-end 3D graphics with

the features and long-term support expected of an automotive-grade UI

framework for digital instrument clusters, infotainment systems, HUDs, mo-

bile devices, and more. With Kanzi UI, automakers have complete control

14

over the user experience and visual brand identity, from prototype to series

production. Kanzi UI consists of Kanzi Studio, Kanzi Runtime, and Kanzi

Platform packages.

Kanzi Studio is a Windows visual modeling tool used to create UI definitions

processed by Kanzi Runtime. Kanzi Studio is written in C# programming

language applying the WPF framework.

Kanzi Runtime is a graphics UI engine intended to execute the whole UI on

the target device and provide user interactions. Kanzi Runtime is written in

C++ programming language.

Kanzi Runtime for embedded targets is delivered to customers as a Platform

Package, which is a zip archive that contains all the required headers and

pre-built libraries that are needed to build a Kanzi Runtime application for a

specific platform. They also include one example application project (KZB

player) and build scripts.

15

3 SOFTWARE TESTING

3.1 Software Testing Definition and Types of Software Testing

3.1.1 Definition of Software Testing

Software Testing is a strategy to check whether the actual software matches

the requirements and to guarantee that the software product is released

without critical defects. It includes the execution of system parts using man-

ual or automated testing tools to assess at least one or more of the packed

features. The motivation behind software testing is to identify errors, gaps,

or missing requirements in contrast to actual requirements. (Guru99, 2021c)

Software testing can be planned, implemented, and executed using a Soft-

ware Testing lifecycle. Figure 2 provides an example of the activities that

are necessary for testing a software product.

Figure 2. The Software Testing Lifecycle (Peforce, 2018)

16

3.1.2 Different Types of Software Testing

There are three types of Software Testing which can be found in Figure 3.

Figure 3. Types of Software Testing (Guru99 2021c).

Functional Testing includes Unit Testing, Integration Testing, Smoke Test,

Localization, Globalization Testing, and UAT testing.

Non-Functional Testing can be listed as Performance, Endurance, or

Scalability Testing.

Maintenance Testing includes Regression tests and tests that should be

run when some maintenance was made on the software.

3.2 Need of Software Testing

Software Testing brings many benefits to the software development pro-

cess, which are listed below.

• Cost-effectiveness is one of the significant benefits of software test-

ing. Testing any IT project on time helps saving costs for the long

17

term. It is because if the bugs are identified in the prior phase of soft-

ware testing, it costs less to fix.

• Security is the most vulnerable and sensitive advantage of software

testing. Customers are searching for a reliable software product so

testing helps in eliminating security risks and issues prior.

• Product quality is a fundamental necessity of any software product.

Testing guarantees a quality product is delivered to clients.

• Customer satisfaction. The primary goal of any software product is to

offer fulfillment to its clients. Testing guarantees the best user expe-

rience.

3.3 Software Testing at Rightware

The execution of Software Testing will follow the Rightware feature project

guidelines in line with project deliveries which are in sync with the release

cycle. The scrums teams perform the test execution in the following release

phases with QA support:

• Development sprint level: for example unit testing, integration testing.

• Feature branch level: for example integration, regression testing.

• Master /Target branch level: system, security, exploratory, and UAT

testing,

At the same time, based on the risk assessment of the project, the criteria

for each test phase will be measured. These criteria may vary project-wise

and the release cycle will follow the quality gates criteria on every level be-

fore deploying in production.

18

4 UI AUTOMATION TESTING

4.1 Definition of UI

The term "UI" stands for "user interface". The user interface is the graphical

design of an application. It contains the buttons users click on, the content

they read, the pictures, sliders, text fields, and all of the elements the users

interact with. This includes screen layout, transitions, interface animations,

and each micro-interaction.

4.2 UI Automation Testing

When performing UI tests, testers make sure that all the logic, UI feature, or

flow of activities work as expected. They focus on validating the click of a

button, data entry, navigation, calculation of values, and different function-

alities utilized for user interaction. (Perforce, 2021)

UI automation testing is a method where these testing processes are per-

formed using an automation tool. Rather than having testers navigate the

application to check features and activity flows manually, test scripts are

written to continuously verify each version of the software.

4.3 UI Automated Testing at Rightware

UI Automated tests at Rightware are used to verify that the newly added

features meet specified requirements and do not break existing functionali-

ties.

UI Tests are executed on a built version of Kanzi Studio and not on a user-

shippable installer. UI SDK tests are running on installed Kanzi Studio which

is the version that users have on their machines.

19

Features that will be verified in the scope of UI Testing are:

• Kanzi Studio.

• Kanzi Runtime as part of Kanzi Studio preview.

• Kanzi Platform Packages for Windows and Android.

• Completed Tutorials validity on Windows and Android.

• Examples validity on Windows and Android.

• Project backward compatibility against previous Kanzi UI releases.

4.4 UI Automation Testing Tools Used at Rightware

UI Testing at Rightware is done applying UI Automated testing framework

specific for Windows WPF applications.

4.4.1 Microsoft UI Automation

Microsoft UI Automation is an accessibility framework for Windows. It ad-

dresses the necessities of assistive technology products and automated test

frameworks by giving programmatic access to data about the user interface.

Similarly, UI Automation empowers application developers to make their

products accessible.

Microsoft UI Automation allows one to access, identify and manipulate the

user interface of an application. It enables assistive technology products,

such as screen readers, to provide information about the UI to end-users

and to manipulate the UI by means other than standard input. UI Automation

also allows automated test scripts to interact with the UI. (Microsoft Docs

2018)

20

 4.4.2 Test Stack White

White is a framework for automating rich client applications based on

Win32, WinForms, WPF, Silverlight, and SWT (Java) platforms. It is .NET

based and does not require the use of any proprietary scripting languages.

Tests/automation programs using White can be written with whatever .NET

language, IDE, and tools already used. White provides a consistent object-

oriented API, hiding the complexity of Microsoft's UIAutomation library (on

which White is based) and windows messages. (TestStack.White, 2021)

4.4.3 Microsoft CodedUI

Coded UI Test (CUIT) is an automated test that drives applications through

its user interface (UI). Hence, the name Coded UI Test (CUIT). This test

involves functional testing of the UI controls. It checks the functionality of

the whole application, including the user interface. It is also used to auto-

mate an existing manual test. (Guru99, 2021b)

21

5 KANZI UI DOCUMENTATION

5.1 About Kanzi UI Documentation

Kanzi UI Documentation consists of instructions on how to get started with

Kanzi UI, Tutorials ranging from beginner to advanced level, Fundamentals

used in Kanzi UI, and everything that is needed to get started or get ad-

vanced in using Kanzi UI.

5.2 Kanzi UI Tutorial Documentation

Kanzi UI Documentation contains various tutorials that are documented to

help beginners and intermediate users get more familiar with user Kanzi UI.

A screenshot of the Kanzi UI Documentation tutorial page can be seen in

Figure 4.

Figure 4. Screenshot of Kanzi Documentation Tutorials.

22

Each Kanzi UI Tutorial contains a number of steps that vary for different

types of tutorials. Figure 5 shows the steps which are included in the “Get-

ting started with Kanzi Studio” tutorial.

Figure 5. Screenshot of steps in a tutorial

Tutorials are documented along with screenshots to provide a better un-

derstanding of each step. See Figure 6.

23

Figure 6. Screenshot of a part of Kanzi tutorial

A documented tutorial varies from one to five big steps that includes few

small steps within it. Therefore, the length of each tutorial might be different

for different instruction.

24

6 TOOLS FOR UI TEST AUTOMATION

6.1 Kanzi UI Test Framework

Kanzi UI Test Framework is a testing framework that Rightware developed

and used to test Kanzi Studio. It contains KanziToolAutomatedUITests so-

lution and UITestFramework NuGet package.

“NuGet is an essential tool for any modern development platform is

a mechanism through which developers can create, share, and

consume useful code. Often such code is bundled into "packages"

that contain compiled code (as DLLs) along with other content

needed in the projects that consume these packages.” (Microsoft

Docs, 2021)

UITestFramwork NuGet package is verified and deployed to the Rightware

internal NuGet Server using a Continuous Integration (CI) pipeline in the

scope of pull request gate.

6.2 Continuous Integration

Continuous integration (CI) is the practice of automating the integration of

code changes from multiple contributors into a single software project. It is

a primary DevOps best practice, allowing developers to frequently merge

code changes into a central repository where builds and tests are then run.

(Atlassian, 2021)

At Rightware, CI means building and testing each Github pull request (PR)

made against a set of predefined branches, and blocking merging of PRs

that contain errors. The build steps of CI builds are selected to be repre-

sentative of the most common configurations while providing fast results for

iterative development.

25

6.3 Continuous Delivery

Continuous delivery is a software development practice where code

changes are automatically prepared for a production release. A pillar of

modern application development, continuous delivery expands upon contin-

uous integration by deploying all code changes to a testing environment

and/or a production environment after the build stage. When properly im-

plemented, developers will always have a deployment-ready build artifact

that has passed through a standardized test process. (Freeman, 2019)

At Rightware, CD means building on every merge made to specified

branches and storing the build artifacts in Artifactory. CD builds produce a

complete releasable set of product packages which could be promoted to a

release by Release Management and also run an extended battery of tests

on the products.

6.4 Jenkins

Jenkins is an open-source automation server that runs in servlet containers,

such as Apache Tomcat. It helps to automate the processes of software

development, for example building, testing, and deploying. Jenkins helps to

facilitate Continuous Delivery and Continuous Integration.

26

At Rightware, Jenkins is used widely to automate different kinds of pro-

cesses. There are multiple pipelines used for Kanzi UI like Kanzi UI – Studio

UI Tests, Kanzi UI – CD build, etc. See Figure 7 for Rightware’s Studio UI

Test Jenkins build job.

Figure 7. Rightware's Studio UI Test Jenkins build job

6.5 Artifactory

Artifactory is a product by JFrog that serves as a binary repository manager.

The binary repository is a natural extension to the source code repository,

in that it will store the outcome of the build process, often denoted as arti-

facts. Most of the time one would not use the binary repository directly but

through a package manager that comes with the chosen technology.

27

At Rightware Oy, Artifactory is used to store for example Kanzi-related

builds, UI test builds, and Kanzi Documentations. See Figure 8.

Figure 8. Kanzi UI snapshot from Artifactory

Artifactory is used to store the UI test result for around a good amount of

time before they are being removed to save space for newly builds and test

runs.

28

7 IMPLEMENTATION OF AUTOMATED TUTORIAL

WALKTHROUGH UI TEST

7.1 Benefits of tutorial walkthrough UI test

To provide designers and developers a better look at how Kanzi UI works,

Rightware delivers a dedicated Kanzi Documentation for it. Kanzi Documen-

tation provides users with needed information when using the Kanzi UI

along with well-documented tutorials that vary from beginner to advanced

level. There are in total thirty-three documented tutorials, which is a big

number to test manually every tutorial, therefore, automation comes in.

We wanted to create automated tutorial walkthrough UI tests which run for

every Kanzi build to make sure that the steps provided by Kanzi Documen-

tation are still valid in the latest build, and that Kanzi UI is still working as

expected.

Before the automated walkthrough UI tests were implemented, we usually

performed manual testing to walkthrough some selected tutorials for every

release. Now with the automated walkthrough UI tests running for each CD

build, we reduced the resource in manually testing the tutorial and the cost

of bugs by acknowledging them earlier and come with an earlier fix.

On the other hand, we also want to use these automated tutorial

walkthrough UI tests to automatically create video-based tutorials in the fu-

ture for Kanzi Documentation. Currently, we are using mostly text-based

tutorials. See Figure 9.

29

Figure 9. A snippet of the Materials and textures tutorial

7.2 List of tutorials implemented

In the scope of this thesis, the list of ten automated tutorial walkthrough UI

tests was implemented. The tutorials which are now automatically

walkthrough by UI test are:

Bloom Tutorial instructs users on how to use the Kanzi render pass to ap-

ply a bloom effect on 3D content. See Figure 10.

30

Figure 10. Bloom tutorial snippet

The test for this tutorial verifies that users can create a bloom effect on 3D

content, specifically a car in this case. The test is required to use render

passes as described in the tutorial steps. After following the tutorial steps,

the final application is verified by taking screenshot differences of Kanzi Pre-

view.

Button tutorial instructs users on how to create a Button in Kanzi Studio.

See Figure 11.

31

Figure 11. Button tutorial snippet

The test for this tutorial verifies that users can create a button using the state

manager in Kanzi Studio. After following the tutorial steps, the final applica-

tion is verified by taking screenshot differences of Kanzi Preview.

Dynamic layout tutorial instructs on how to create a user interface that

responds to the changes of the device screen resolution. See Figure 12.

32

Figure 12. Dynamic layout tutorial snippet

The test for this tutorial verifies that users can create an application that is

responsive to different screen sizes using Kanzi Studio. After following the

tutorial steps, the final application is verified by taking screenshot differ-

ences of Kanzi Preview.

Getting started tutorial instructs users on how to create a simple Kanzi

application. See Figure 13.

33

Figure 13. Getting started tutorial snippet

The test for this tutorial verifies that users can create a Kanzi application

consisting of different pages with buttons to switch between the pages. Each

important step is verified using screenshot verification. After following the

tutorial steps, the final application is verified by taking screenshot differ-

ences of Kanzi Preview.

34

Indicator tutorial instructs users on how to create a turn indicator and con-

trol with a property using Kanzi state managers. This tutorial has video-

based instructions. See Figure 14.

Figure 14. Indicator tutorial snippet

The test for this tutorial verifies that users can control the state of an image

with a property using Kanzi state manager. After following the tutorial steps,

the final application is verified by taking screenshot differences of Kanzi Pre-

view.

Keyframe animations tutorial shows users how to create keyframe ani-

mations using Kanzi Studio. See Figure 15.

35

Figure 15. Keyframe animations tutorial snippet

The test for this tutorial verifies that users can create keyframe animations

in Kanzi Studio. After following the steps from the tutorial, the test verifies

that the preview of the final application is animating.

Rotation tutorial shows how to create a swiping gesture rotation for a 3D

model in Kanzi Studio. See Figure 16.

36

Figure 16. Rotation tutorial snippet

The test for this tutorial verifies that users can create a scroll view motion

when swiping a 3D model in the Kanzi application. After following the tutorial

steps, the final application is verified by taking screenshot differences of

Kanzi Preview.

State managers tutorial shows users how to control the state of an appli-

cation using Kanzi state managers. See Figure 17.

37

Figure 17. State managers tutorial snippet

The test for this tutorial verifies that users can use Javascript scripts to con-

trol the state of a Kanzi application. After following the tutorial steps, the final

application is verified by taking screenshot differences of Kanzi Preview.

38

Stencil tutorial shows how to use tags, filters, and render passes to apply

a stencil to 3D content and render only the area defined by the stencil. See

Figure 18.

Figure 18. Stencil tutorial snippet

The test for this tutorial verifies that users can apply a stencil to 3D content

and render only the defined area by the stencil. After following the tutorial

steps, the final application is verified by taking screenshot differences of

Kanzi Preview.

Toggle button tutorial shows how to create a toggle button in Kanzi Studio

using Kanzi state managers. See Figure 19.

39

Figure 19. Toggle button tutorial snippet

The test for this tutorial verifies that users can create a toggle button using

the Kanzi state manager. After following the tutorial steps, the final applica-

tion is verified by taking screenshot differences of Kanzi Preview. There are

two screenshots of the On and Off state.

Moreover, the list of UI Tests can also be seen in Visual Studio when using

the KanziStudioAutomatedUITests solution. See Figure 20.

40

Figure 20. List of UI Tests from Visual Studio

These tests run daily on our Jenkins Studio UI Test pipeline and every week-

end on the Jenkins SDK Test pipeline. See Figure 21.

Figure 21. Tutorial walkthrough tests run on Jenkins

This thesis implementation also includes the work on documenting a com-

pany internal Confluence wiki page which describes these UI tests and the

test list. See Figure 22.

41

Figure 22. Internal documentation on tutorial walkthrough UI tests

42

7.3 Implementation of the UI Tests

Tests are planned using Hansoft project managing tool. The Tutorial

Walkthrough backlog item includes all the tasks that are planned for imple-

menting UI tests. See Figure 23.

Figure 23. Tutorial Walkthrough tasks planned in Hansoft

Test requirements can be found within Hansoft by looking at the description.

Rightware uses Acceptance criteria to specify the required criterias for the

UI tests. See Figure 24.

Figure 24. Task has acceptance criteria as requirement

Next step would be the implementation of UI tests. We first will need to clone

Kanzi UI Git repository or fetch new changes if it is already existed, and

create a local branch. To create these automated walkthrough UI tests, a

TutorialWalkthroughTests class was created under the recommended path

in our Kanzi UI Git repository: ui\Tool\KanziToolAuto-

matedUITests\Tests\UITests. See Figure 25.

43

Figure 25. TutorialWalkthroughTests.cs location

Each tutorial walkthrough UI test will be added to this class as a method

using attributes [TestMethod] and [TestCategory(TestCatego-

ries.WALKTHROUGH)]. [DeploymentItem()] attribute is also used to copy

the tutorial project directory to the test execution directory to not overwrite

the original implementation.

44

For each UI test, steps which were documented in the Kanzi tutorial were

followed. For example, looking at the Toggle button tutorial from Figure 26.

Figure 26. Some steps from the Toggle button tutorial

The first step is:

1. In Kanzi Studio open the project stored in the <KanziWorkspace>/Tu-

torials/Toggle button/Start directory.

45

Most basic execution, such as opening a project or creating a node was

already implemented in the Kanzi Automated UI Test tool which can be

called by using for example Studio.OpenProject().

For each step of the tutorial, assertion was used to make sure that the step

is executed without any issue. With assertion, we make sure that the test

will stop and fail if the executed test has an error. On the other hand, the

test will proceed until the end and pass if the step satisfies the assertion.

Therefore, for the first step in this Toggle button tutorial, something like As-

sert.IsTrue(Studio.OpenProject(ToggleButtonProject) would be used, “Can-

not open project”) – which the first parameter is the condition, here indicates

that opening project must return true. The second parameter is the message

which will be thrown if the condition is not met.

Using this method, assertion was added for each step of the tutorial into the

UI test which will then automatically run and execute the step added.

During the implementation, some operations described from the Kanzi UI

Documentation steps might not be already implemented in the existing UI

test framework, in that case, a Boolean method to perform the described

step should be implemented and added to the UI test framework, then an

assertion inside the test method would be called.

We finalize the UI test with a screenshot verification to verify that the test

works correctly, along with Kanzi Studio and Kanzi UI Documentation.

7.4 A Scenario when Implementing Tutorial Walkthrough UI Test

There are a total of ten tutorials so it would be repetitive to describe each

scenario when creating each UI test, therefore, the Rotation tutorial

walkthrough test was chosen to describe in detail, due to the appropriate

46

length of this tutorial and because this is the first tutorial implemented while

learning about UI automated testing.

Before implementing the UI test, the requirement of the test scenario was

specified by having a user story, in this case, “As a Kanzi developer, I want

to create an application that has rotating motion when swiping a 3D model”.

The next step was the test planning. By using Kanzi UI Documentation, the

stepsof the test were planned, as well as the length of the implementation,

and the test verification.

After planning, the implementation of the the UI test case ws started for

this Rotation tutorial.

Firstly, in the test class, TutorialsWalkthroughTests, the test method was

specified which contains required attributes such as [TestMethod] and

[TestCategory(TestCategories.WALKTHROUGH)]. The method was de-

finedwith public void RotationTutorialWalkthroughTest().the [Deployment-

Item] attribute was used to specify the files needed for the test. The test

system will create a new directory where the tests are run from. With this

attribute, the test system copies specific files to that new directory.

The first step of the tutorial, “In Kanzi Studio, open the project stored in

<KanziWorkspace>/Tutorials/Rotation/Start”, can be seen in Figure 27.

47

Figure 27 The first step of the Rotation tutorial

After declaring the method for this test, the implementation of the state-

ments for each step in the Rotation tutorial started.

Due to confidential reasons, no source code can be shared externally, an

example for the first statement of this test method can be: As-

sert.IsTrue(Studio.OpenProject(RotationProject), “Failed to open Rotation

project”)

The second step can be seen in Figure 28.

48

Figure 28. The second step of the Rotation tutorial

For this step, another statement was added which is something like As-

sert.IsTrue(Studio.AddNodeByRightClick(Scroll View 2D), “Failed to add

Scroll View 2D”)

The work continued by adding each statement for each step from the tuto-

rial. If there is no already implemented method, for example, AddNode-

ByRightClick(),it was implemented within the Kanzi UI test framework.

After finishing the tutorial, a screenshot verification statement was added to

ensure that the test and Kanzi Studio work as expected. For example, As-

sert.IsTrue(Studio.ScreenshotVerification(ScreenshotPath), “Screenshot is

not expected”)

The UI test was created within a local branch of the Kanzi UI Git repository.

After finishing with the implementation, I push the branch with the latest

49

changes was pushed and a pull request was created to merge it to the mas-

ter development branch.

Before being able to merge to the master development branch, at least one

approval was required from another software engineer. To make sure that

the test works correctly on Jenkins, UI test staging was run only for the cre-

ated branch. See Figure 29.

Figure 29. A snippet of Bloom tutorial walkthrough UI test pull request

After being merged to the master branch, the UI test is ready to be run every

day in the evening for the latest master build. The test report can be found

on Jenkins for each build.

50

7.5 Testing for Kanzi UI Tests

We have unit tests for the UITestFramework solution which can clarify that

the methods implementation meets the acceptance criteria. However, for

automated UI tests, we use Screenshot verification which was mentioned

before, for these tests to verify that tests are working normally along with

Kanzi Studio and Kanzi documentation.

For example, this is a scenario where RotationTutorialWalkthroughTest fails

because of screenshot verification, we will be able to check the difference

in Figures 30 and 31.

Figure 30. Fail screenshot verification in Rotation tutorial

51

Figure 31. Highlighted difference screenshot

UI test is run for each master and release build so whenever there is a failure

in test execution, we can check the test report and error message from Jen-

kins, including the screenshot verification differences if there is a issue in

screenshot verification. See Figure 32.

52

Figure 32. Jenkins UI test failure screenshot

When a test fails, the issue is tracked using Hansoft tool, with different sta-

tus that can be followed if the bug is assigned, in progress or in review. See

Figure 33.

Figure 33. A bug ticket for Rotation tutorial walkthrough UI test from

Hansoft

53

8 CONCLUSION

In software development, testing is always a crucial process to ensure that

the software product is acceptable for release. As software gets more and

more complicated, automated tests are getting more and more popular.

Therefore at Rightware Oy, we also focus on automated testing, such as UI

tests and unit tests, along with CI/CD to produce reliable Kanzi UI versions

for delivery.

As Kanzi UI Documentation needs to be updated when features are intro-

duced, there must be a solution to make sure the documented steps from

tutorials are still valid. Moreover, manual testing is needed for every release

which requires resources in walking through some selected tutorials. With

these in mind, the QA team at Rightware decided that it would be beneficial

to have automated tutorial walkthrough UI tests created in the existing au-

tomated UI test framework. Therefore, this thesis implemented ten auto-

mated tutorial walkthrough tests which are around one-third of the existing

number of tutorials in Kanzi UI Documentation. These UI tests can also be

used in the future to create video-based tutorials if there is a need for that.

This thesis implementation only includes the creation of ten automated tu-

torial walkthrough UI tests but the work which is out-of-scope of this is the

maintenance and update of the UI tests when there are required changes.

Moreover, there is a plan in creating more automated walkthrough UI tests

which can cover more tutorials in the Kanzi UI Documentation.

In the scope of this thesis, I and my supervisors believe the list of ten auto-

mated tutorial walkthrough UI tests is sufficient. However, the work on these

UI tests continues along with my employment at Rightware Oy after gradu-

ation.

54

REFERENCES

Atlassian. 2021. What is Continuous Integration. Accessed 22 July 2021.

https://www.atlassian.com/continuous-delivery/continuous-integration

Chauhan, S. 2018. Understanding WPF Architecture. Accessed 20 July

2021. https://www.dotnettricks.com/learn/wpf/understanding-wpf-architec-

ture

Freeman, E. 2019. What is Continuous Delivery?. Accessed 19 July 2021.
https://aws.amazon.com/devops/continuous-delivery/.

GeeksforGeeks. 2021. What is WPF? . Accessed 22 July 2021.

https://www.geeksforgeeks.org/what-is-wpf

Guru99. 2021a. What is Jenkins? Why Use Continuous Integration (CI)

Tool?. Accessed 6 September 2021. https://www.guru99.com/jenkin-contin-

uous-integration.html

Guru99. 2021b. Coded UI Test Automation Framework Tutorial. Accessed

22 July 2021. https://www.guru99.com/coded-ui-test-cuit.html

Guru99. 2021c. What is Software Testing? Definition, Basics & Types in

Software Engineering. Accessed 22 July 2021.

https://www.guru99.com/software-testing-introduction-importance.html

Krüger, N., 2021. Why Is Software Testing Important?. Accessed 16 Sep-

tember 2021. https://www.perforce.com/blog/alm/what-software-testing

Microsoft Docs. 2020. Overview of .NET Framework. Accessed 20 July

2021. https://docs.microsoft.com/en-us/dotnet/framework/get-started/over-

view

55

Microsoft Docs. 2019. An Introduction to NuGet. Accessed 18 July

2021. https://docs.microsoft.com/en-us/nuget/what-is-nuget

Medium. 2021. What is UI vs. UX design? What’s the difference?. Accessed

22 July 2021. https://uxplanet.org/what-is-ui-vs-ux-design-and-the-differ-

ence-d9113f6612de

Perfecto by Perforce. 2021. Switching to UI Automation: Everything You

Need to Know. Accessed 18 July 2021. https://www.perfecto.io/blog/switch-

ing-ui-automation-everything-you-need-know

Rightware, 2020. About us. Accessed 18 July 2021. https://www.right-

ware.com/company

Singh, S. 2015. Overview Of WPF Architecture. Accessed 18 July 2021.

https://www.c-sharpcorner.com/UploadFile/819f33/overview-of-windows-

presentation-foundation-wpf-architectu/

Teststackwhite Docs. 2021. TestStack.White. Accessed 22 July 2021.

https://teststackwhite.readthedocs.io/en/latest

