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A polymer has both elastic and plastic region in stress strain curve. Material modelling is 
the process of modelling the stress strain behaviour using finite element method by 
computational software’s. Material models help to define relationship between stress and 
corresponding strain at any particular time period. There  are several material models to 
describe the relation, some of them are Ramberg’s Osgood  model, Uniaxial model, Power 
law, Ludwik’s model. when the applied load surpasses the yield strength then material 
starts to deform. Factors like time, temperature, material properties, load etc, affects the 
deformation. But only the time deformation using prescribed displacement under room 
temperature is analysed using Ramberg’s Osgood and Uniaxial material model of 
COMSOL. Using a Testometric machine, tensile test of a polypropylene as a thermoplastic 
was conducted. A sample piece(dog-bone) according to ASTM D368 type 1 of a 
polypropylene was used as a specimen. A prescribed displacement of 20mm/min was set 
for each test and a test lasted for approximately 21 minutes each. From the obtained data 
the stress strain graph was plotted. From stress strain graph the values of young’s modulus, 
Poisson’s ratio, strain hardening exponent, reference stress and strain were calculated. A 
time dependent model was modelled in COMSOL. From the Nonlinear module Ramberg’s 
Osgood and Uniaxial model was selected. The calculated values from experiment were 
substituted in each model. The obtained result was analysed using graphical observation. 
Deviation and Error analysis was done to find which model could best describe the 
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condition the next material model might give the best result. As expected, the experimental 
work is very much similar to the past research conducted on characterizing the nonlinear 
deformation of polypropylene. 
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Abbreviation 

FEM: Finite Element Method 

FEA: Finite Element Analysis 

MATLABTM: Matrix Laboratory 

HF: Hardening Function 

ASTM: American Society for Testing and Materials. 

ISO: International organization for Standardization. 

Symbols 

σ = Normal Stress 

A = Area 

F =  Resisting Force 

P = Applied Force 

ϵ = Extensional Strain 

L*=Original Length 

L=Increased  Length 

∆L =Change in Length 

E = Young’s Modulus 
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𝜈𝜈 = Poisson’s Ratio 
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1 INTRODUCTION 

1.1 Background  

An elastic body or a material is called linear elastic or  Hookean; if the force needs to 

compress or extend by certain distance is directly proportional to that distance. To 

describe the linear elasticity of a homogenous isotropic material, only two parameters are 

needed i.e., Young’s Modulus and the Poisson ratio. These values can be derived from 

simple uniaxial tension or compression test. For  engineering application all the designs 

are done in this point. However, many applications require understanding of broad strains, 

with deformation that are fundamentally nonlinear and stresses that are dependent  on the 

underlying material properties (Mihai & Goriely, 2017:p.1). 

Knowledge of strength is becoming increasingly important due to increased use, ranging 

from small part to large structure. Mechanics of deformation leads the engineer into better 

understanding the conditions leading to failure. From a structural point of view, a better 

understanding of this permits a better design  (Schröder et al., 2017). 

In all disciplines of science and engineering, the focus is on what will happen when a 

system of interest is subjected to the effect of the environment. Anything that happens 

can be described mathematically, in the sense that we can formulate a set of mathematical 

expressions that describes the process, allowing engineers to determine how the process 

occurs in space and time. Using simulation software’s, these phenomena can be observed 

without performing that operation. (Koutromanos, 2018:p.1) . Testing in laboratory is 

both expensive and time consuming (Hawkins, 2007:pp.179–194). 

 While it is possible to study the elastic indentation of a material by using the analytical 

method , elastic-plastic indentation being sufficiently complex requires a finite element 

technique. The small increment in a certain variable can be accurately calculated from the 

instantaneous time of change using FEM . The Problems are solved by discretization in 

space dimension, implemented by constructing mesh. The solution is achieved in the 

numerical domain which has  finite numbers of point. (Anandarajah, 2011) . 

The tensile test is one of the commonly  used tests for evaluating material. The specimen 

is gripped at the two ends and the load is applied. The applied load gradually leads to 

elongation and eventually fracture of specimen. The applied force and elongation are 
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recorded and plotted to get the material properties. The obtained  material characteristics 

from the test are used for quality control in production, evaluation of newly developed 

materials, and static- strength requirement of designs(Davis, 2004) . 

Polypropylene is one the most extensively used thermoplastics by the automotive 

industry. Typical examples from this field are dashboards and bumpers. It is also one of 

the most versatile polymers  with virtually applied in all end-used products. The limiting 

feature of polypropylene is their inelastic behaviour which changes with loading rate 

effect. This loading rate effect changes the strength and stiffness of material (Szpieg, 

Giannadakis & Varna, 2011:pp.625–652).   

On the other hand, the main tool commonly used  for designing such parts is the finite 

element method. A material model capable of representing the most significant properties 

of the thermoplastic at hand is required  for accurate numerical forecasts of the response 

generated. The prediction of nonlinear behaviour with available finite element codes is a 

challenging task. Obviously, development of suitable model for polypropylene demands 

good knowledge of the mechanical behaviour  with mechanisms at the meso-scale  (Mihai 

& Goriely, 2017:p.1). 

 

1.2 OBJECTIVES 

The major objectives of this thesis are : 

(1) To characterize the stress-strain behaviour of polypropylene using Uniaxial 

material model of COMSOL and compare it with the results obtained in the 

laboratory. 

(2) To characterize the stress-strain behaviour of polypropylene using Ramberg-

Osgood  material model of COMSOL and compare it with the results obtained in 

the laboratory. 
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2 LITERATURE REVIEW 

2.1 Introduction 

Polypropylene is one of the commonly used thermoplastics by human mankind.  The 

extensive use is found in automotive industry. The reason can be attributed for cheap 

production, can be reprocessed several times and low environmental impact (Anon, n.d.). 

All  the physical observable things around us are material and their behaviours are non-

linear in real life (Mihai & Goriely, 2017:p.20170607). 

The applied external load  to a structural component result in internal forces and 

deformation. The objective of this thesis is to determine the induced stress and strains, 

instead of focusing on deformation and internal forces. This is because the effect of load 

in specimen is directly proportional to the cross-sectional area. In addition, Changes in 

angle and length are measured relative to their instantaneous values. Using continuum 

mechanics theories, elastic and plastic behaviour are considered. The general mechanism 

is that when the applied load is removed if the body returns to its initial original shape, 

then it is called as an elastic deformation. The behaviour is called plastic if permanent 

deformation occurs(Kassir, 2017) . The behaviour of either plastic or elastic is studied by 

the three different aspects: 

(1) Equilibrium: 

When the applied external force and internal forces are in equilibrium then the 

body is said to be in state of equilibrium which requires the stresses to satisfy six 

equations of statics in space. This includes three equation of moment equilibrium 

and three equation of force equilibrium(Kassir, 2017) . 

(2) Geometry of deformation: 

When the load is applied, structure deforms which leads in change in shape and 

volume of object. The nature of deformation is considered in determining the 

response of load to external force. In continuum mechanics relation between 

displacement and strain forms the governing equation for deformation(Kassir, 

2017) . 

(3) Mechanical behaviour of the material: 

The third approach is laboratory which involves the relation between strain and 

stress by standard tests. For elastic bodies Hooks law governs up to and including 
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yield point. Beyond the yield stress hardening occurs until ultimate stress and 

material failure. Various mathematical models are found to predict the plastic 

behaviour(Kassir, 2017:pp.1–2) . 

2.2 Stress, Strain and Young’s Modulus 

2.2.1 Normal  Stress(𝝈𝝈) 

When mechanical force is applied on a body, the body gets deformed. Due to deformation, 

there is change in intermolecular force inside the molecule. Developing some opposing 

forces within the body’s volume with respect to the applied deforming forces.  Stress is 

the resisting force per unit area. Mathematically it is written as (Schröder et al., 2017): 

𝜎𝜎 =  lim
∆𝐴𝐴→0

∆𝐹𝐹
∆𝐴𝐴

 (1) 

The above equation suggests that; for different area, the value of stress varies with the 

point. The equation can be re written as: 

𝜎𝜎 =
𝛿𝛿𝐹𝐹
𝛿𝛿𝐴𝐴

 
(2) 

Rearranging the equation(2) we get, 

𝛿𝛿𝐹𝐹 =  𝛿𝛿𝐴𝐴 ∗ 𝜎𝜎 (2.1) 

On integrating on both sides, we get, 

�𝛿𝛿𝐹𝐹 = �𝛿𝛿𝐴𝐴 ∗ 𝜎𝜎 (2.2) 

Since sigma is not constant with respect to cross section. Using concept of average stress  

𝜎𝜎𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝑣𝑣𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆 𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

Now on integrating and rearranging the equation (2.2) we get, 

𝜎𝜎 =
𝐹𝐹
𝐴𝐴

 (2.3) 

From condition of static equilibrium, resisting force(F) equals to the applied force(P).  

Then equation (2.3) can be written as: 
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𝜎𝜎 =
𝑃𝑃
𝐴𝐴

 (2.4) 

The standard unit of stress  in international system of units (SI) System is 𝑁𝑁
𝑚𝑚2 . Stress is 

neither vector nor scaler quantity. It is a tensor quantity. In general tensor is a vector 

quantity which does not follow vector addition but follows simple algebraic addition. To 

define stress three components are needed which are Magnitude, Direction, and plane on 

which they are acting. The positive value for 𝜎𝜎 is due to pull force on which it acts 

whereas negative value of stress indicates compressive stress (Schröder et al., 2017). 

2.2.2 Normal Strain(𝝐𝝐) 

Strain is measure of deformation. Strain can be measured and observed physically. 

Mathematically strain is change in dimension over original dimension. Since,  strain is 

the ratio of dimension so, it is dimensioning less term. For uniaxial strain state (Hibbeler, 

2018:pp.92–93)  

 

𝜖𝜖𝑎𝑎𝐴𝐴𝐴𝐴 =
∆𝐿𝐿
𝐿𝐿

=
𝐿𝐿∗ − 𝐿𝐿
𝐿𝐿

 
(2.5) 

 

L∗ = 𝑂𝑂𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼ℎ 

𝐿𝐿 = 𝐼𝐼𝐼𝐼𝑓𝑓𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝐵𝐵  𝐿𝐿𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼ℎ 

∆𝐿𝐿 = 𝐶𝐶ℎ𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆 𝐼𝐼𝐼𝐼 𝐿𝐿𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼ℎ 

 

If the bar elongates (i.e., 𝐿𝐿∗ > 𝐿𝐿), the strain 𝜖𝜖 is positive and is called tensile strain. The 

negative value of strain 𝜖𝜖 is shortening of bar and is referred to as compressive strain. 

During the thesis  extensional strain is consider uniform along the length of member; such 

type of uniform strain is called axial strain. Hence, axial strain is given by (Hibbeler, 

2018:pp.92–93). 

 

𝜖𝜖 = 𝜖𝜖𝑎𝑎𝐴𝐴𝐴𝐴 =
∆𝐿𝐿
𝐿𝐿

=
𝐿𝐿∗ − 𝐿𝐿
𝐿𝐿

 
(2.6) 

 

Figure 1 Elongation of Bar 
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The equation for the axial extension can be derived as: 

Let us consider a prismatic body is subjected to equal forces applied in opposite direction 

along the longitudinal direction and origin of  coordinates is in centre of cross section 

along x-axis. Which in diagram can be represented as: 

 

 

 

 

 

 

 

 

 

 

This nature of loading results body to remain in its position and deformation occurs after 

stretching or shortening of length along x-axis. For Deformation following two conditions 

are assumed: 

(1) The axis of member remains straight.  

(2) Y-Z plane remains parallel to the cross section. 

Mathematically, let us consider two planes separated by distance of ∆x as shown in figure 

1. When the load is applied, these planes are displaced and length ∆x becomes ∆x´. The 

Conventional axial strain can be written as(Kassir, 2017)   

∈𝑥𝑥= 𝐿𝐿𝐼𝐼𝑣𝑣∆x→0
∆x ′− ∆x 

∆x 
 (2.7) 

For any cross section, the axial cross section is constant and may vary with x, but is 

independent of y and z. 

Figure 2 Axially loaded body elongation(Kassir, 2017)  
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Equilibrium: The external forces are equal and opposite, so the overall equilibrium is 

satisfied. For any cross section along the horizontal axis, with internal force of magnitude 

F, the normal stress is given by(Kassir, 2017) : 

𝜎𝜎𝑥𝑥 =  
𝐹𝐹
𝐴𝐴

 (2.8) 

Where A is the  area of cross section. The other remaining stress σy and σz  are assumed 

to vanish throughout the member. Let us consider an element with an area ∆A = (∆y)(∆z), 

then force can  be written as(Kassir, 2017) : 

∆𝐹𝐹 =  𝜎𝜎𝑥𝑥∆𝐴𝐴 (2.9) 

Now integration over the cross-sectional area follows as(Kassir, 2017) : 

𝐹𝐹 =  �𝜎𝜎𝑥𝑥𝐵𝐵𝐴𝐴 =  𝜎𝜎𝑥𝑥𝐴𝐴
𝐴𝐴

 (2.10) 

Rearranging the equation (1.4) gives equation (1.2) 

 

Figure 3 Axially loaded member internal forces(Kassir, 2017)  

The moments of ∆F about y and z axes are respectively ∆My = z∆F and ∆Mz = y∆F. 

Hence, 

𝑀𝑀𝑦𝑦 =  �𝑧𝑧𝜎𝜎𝑥𝑥𝐵𝐵𝐴𝐴 =  𝜎𝜎𝑥𝑥
𝐴𝐴

�𝑧𝑧𝐵𝐵𝐴𝐴
𝐴𝐴

 (2.11) 
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𝑀𝑀𝑧𝑧 =  �𝐵𝐵𝜎𝜎𝑥𝑥𝐵𝐵𝐴𝐴 =  𝜎𝜎𝑥𝑥
𝐴𝐴

�𝐵𝐵𝐵𝐵𝐴𝐴
𝐴𝐴

 (2.12) 

The centroid of cross section is origin of the coordinates, so it follows ∬ 𝑧𝑧𝐵𝐵𝐴𝐴𝐴𝐴  = 

∬ 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 =0. From equation (2.11) and (2.12) we can write My = Mz = 0. The axial force is 

only the internal force acting on the member. 

The elongation or contraction of member is given by(Kassir, 2017)  

𝑆𝑆 = �(𝐵𝐵𝑥𝑥′ − 𝐵𝐵𝑥𝑥) 
𝐿𝐿

0

= �𝜖𝜖𝑥𝑥𝐵𝐵𝑥𝑥
𝐿𝐿

0

 
(2.13) 

Where L is the original length of the member . 

2.2.3 Young’s Modulus(E) 

Young’s modulus is a numerical constant named after 18th century English physicist 

Thomas Young, which describes the elastic properties of solid undergoing in only tension 

or compression. In simple young’s modulus is the measure of ability of material to 

withstand changes in length .This value is only valid for one direction, that is being 

stretched or compressed lengthwise and returns to its original length after the removal of 

applied load. Sometimes it is also referred as modulus of elasticity. Mathematically it is 

equal to the longitudinal stress divided by the strain (Davis, 2004). 

𝑌𝑌𝐵𝐵𝑣𝑣𝐼𝐼𝑆𝑆′𝑆𝑆 𝑣𝑣𝐵𝐵𝐵𝐵𝑣𝑣𝐼𝐼𝑣𝑣′𝑆𝑆 =
𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼

 (2.14) 

 

Taking the values of stress from equation(2.3) and strain from equation (2.5) and 

substituting in equation(2.14). we get. 

𝐸𝐸 =
𝐹𝐹
𝐴𝐴
∆𝐿𝐿
𝐿𝐿

 
(2.15) 

Rearranging equation(2.15) gives. 

𝐸𝐸 =
𝐹𝐹 ∗ 𝐿𝐿
𝐴𝐴 ∗ ∆𝐿𝐿

 (2.16) 
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Tensile test is performed to calculate stiffness of material using young’s modulus. 

Different materials show higher or lowers young’s modulus value. The higher value of 

young’s modulus indicates that the material is excellent for creating strong elements. The 

SI unit of young’s modulus( E, or less commonly used Y) is pascal, but practically most 

used units are megapascal (MPa) or gigapascals (GPa or 𝑘𝑘𝑁𝑁
𝑚𝑚𝑚𝑚2) (Davis, 2004). 

2.3 Uniaxial Tensile Testing 

Tensile testing is performed in selecting the material for engineering application. Mainly 

when new materials are developed tensile test are performed to ensure the quality and 

compare with other material. The result obtained from tensile test are used in prediction 

of mechanical of material (Davis, 2004) .   

The standard tensile test was first published and their continuous are now through ASTM 

and ISO organization. Reliable tensile test data are generated through computer-

controlled machines. For Polymeric material tensile test plays a huge important, since 

they depend strongly on strain rate because of viscoelastic properties. During their 

application, time dependent deformation like relaxation and creep are shown as higher as 

compared to metals. Generally multiple temperatures and strain rates are used to fully 

characterize polymer material(Srinivas, 2017) .  

 

Figure 4 Uniaxial Tensile Test Diagrammatic representation(Davis, 2004)  
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The above diagram shows uniaxial test on a material The X axis describe the strain and 

Y axis depicts the strain. The values for stress and strains are calculated as(Srinivas, 2017) 

:Stress(𝜎𝜎): 

𝜎𝜎 =
𝐿𝐿𝐵𝐵𝐼𝐼𝐵𝐵

𝐴𝐴𝑆𝑆𝑆𝑆𝐼𝐼 𝐵𝐵𝑓𝑓 𝐼𝐼ℎ𝑆𝑆 𝑣𝑣𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝐼𝐼𝑣𝑣𝑝𝑝𝐼𝐼𝑆𝑆
 

(2.17) 

And strain(𝜀𝜀)is calculated as: 

𝜖𝜖 =
𝐶𝐶ℎ𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆 𝐼𝐼𝐼𝐼 𝐼𝐼𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼ℎ
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼ℎ

 
(2.18) 

The slope of initial portion of curve gives the value of Young’s Modulus (E). 

Mathematically  expressed as(Srinivas, 2017) : 

𝐸𝐸 =
𝜎𝜎2 − 𝜎𝜎1
𝜖𝜖2 − 𝜖𝜖1

 (2.19) 

Where: 

𝜎𝜎1 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

𝜎𝜎2 = 𝐹𝐹𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

𝜖𝜖1 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 

𝜖𝜖2 = 𝐹𝐹𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 

2.3.1 Importance of uniaxial test 

 The basic understanding is that uniaxial test is carried out to understand  about the 

ultimate strain and stress of material, information about the factor of safety. The 

information about factor of safety is foremost while selecting the material. It can used for 

more application like: 

(1)  The result obtained from uniaxial tension tests are  used to calculate endurance 

limits in design calculations. 

(2) Fatigue life of engineering materials. 

(3) By using techniques like Arrhenius equation service life can be predicted. 

(4) In the test procedure aging and other environmental factors can be incorporated 

to characterize the material. 
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(5) In rubber manufacturing industry, it is used to maintain consistency of material 

and determine the batch quality. 

2.4 Linear Elasticity; Hooke’s Law  

2.4.1 Hooke’s Law 

Hooke’s law or Law of elasticity was discovered by the English scientist Robert Hooke 

in 1660. For relatively small deformation of an object, the size of deformation or the 

displacement is directly proportional to deforming force or load. This condition is only 

valid if the deforming body  returns to the original force when the applied force or load 

is removed. The deforming force may be applied by compressing, stretching, squeezing, 

bending, or twisting (Anon, n.d.). 

Mathematically, Hooke’s law states that the applied force F equals  a constant (k) time 

the change in length or displacement (x).  

𝐹𝐹 = 𝑘𝑘𝑥𝑥  (2.20) 

The value of k depends not only on  the elastic material under condition but also in the 

shape and dimension (Anon, n.d.). 

For uniaxial stress applied to homogenous isotropic member oriented along x axis. The 

linear relationship between stress and strain is given by below equation and applies for 

0 ≤ 𝜎𝜎 ≤ 𝜎𝜎𝑦𝑦. Therefore  (Hibbeler, 2018:pp.48–50), 

𝜎𝜎𝑥𝑥 = 𝐸𝐸 𝜀𝜀𝑥𝑥 (2.21) 

Where: 

𝜎𝜎𝑥𝑥  = 𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐼𝐼𝐼𝐼𝐵𝐵𝐼𝐼𝑆𝑆 𝑥𝑥 𝐼𝐼𝑥𝑥𝐼𝐼𝑆𝑆 

𝜀𝜀𝑥𝑥 = 𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐵𝐵𝐼𝐼𝑆𝑆 𝑥𝑥 𝐼𝐼𝑥𝑥𝐼𝐼𝑆𝑆 

𝐸𝐸 = 𝑀𝑀𝐵𝐵𝐵𝐵𝑣𝑣𝐼𝐼𝑣𝑣𝑆𝑆 𝐵𝐵𝑓𝑓 𝑆𝑆𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝑓𝑓𝐼𝐼𝐼𝐼𝐵𝐵 𝐵𝐵𝑆𝑆 𝑌𝑌𝐵𝐵𝑣𝑣𝐼𝐼𝑆𝑆′𝑆𝑆 𝑣𝑣𝐵𝐵𝐵𝐵𝑣𝑣𝐼𝐼𝑣𝑣𝑆𝑆  
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2.4.2 Poisson’s Ratio 

When a member elongates in axial tension, there is a transverse contraction. This 

transverse contraction during a tensile test is related to the longitudinal elongation by 

(Hibbeler, 2018:pp.92–93) 

 𝜀𝜀𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  −𝜈𝜈𝜖𝜖𝑙𝑙𝑙𝑙𝑡𝑡𝐴𝐴𝑙𝑙𝑡𝑡 (2.22) 

Where 𝜈𝜈 (Greelk symbol nu) is the poison’s ratio. Poisson’s ratio is dimensionless 

quantity with typical values in the range of 0.25- 0.35 range. For  simple case of uniaxial 

stress, it is given as (Hibbeler, 2018:pp.92–93) 

𝜖𝜖𝑦𝑦 = 𝜖𝜖𝑧𝑧 =  −𝜈𝜈𝜖𝜖𝑥𝑥  (2.23) 

2.5 Stress- strain relations 

 Stress- strain diagram is the plot of stress versus strain which is used to deduce several 

significant mechanical properties of materials. All the students of mechanics of material 

will  encounter them often. However, for the case of ductile materials it is totally different. 

Since they go substantial  geometrical change during testing. This part of thesis provides 

a preliminary discussion of several points needed to understand these curves, and in doing 

so, it will also provide an introductory  overview of several aspects of material mechanical 

properties. Perhaps the most important test in determining the material properties (Anon, 

2021) and done most during the academic year also. 

When a specimen is loaded in tensile machine the change in length with increased loading 

is measured. The data obtained from tensile test, load against extension or stress against 

strain is recorded and graph are drawn.  The typical example of stress strain curve for 

ductile material is shown as below (Srinivas, 2017): 
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Figure 5  Stress Strain Relationship of ductile material 

To analyse the deformation on specimen in elastic plastic  region it is compulsory to 

define stress strain relationship both in elastic and plastic region. A curve obtain from 

stress strain test is the basis of this relationship. Hooke’s Law is the governing equation 

in elastic region and is defined by (Anon, n.d.). 

In the early region of curve, many materials obey Hooke’s law. As strain increased, they 

deviate from linear proportionality(Point A). The point of departure is termed as the 

proportional limit. The nonlinearity is because of stress-induced plastic flow in the 

specimen. From this position material is undergoing a rearrangement of internal 

molecular structure, in which atoms are moving towards the new equilibrium positions. 

Materials lacking this  mobility are usually brittle rather than ductile. The stress-strain 

curve for brittle material is linear over their full range of strain, eventually resulting in 

facture without appreciable plastic flow (Anon, n.d.). 

2.5.1 Elastic Limit or Yield Point 

With the slight increase above the proportional limit will result in breakdown of the 

material and cause it to deform permanently. This behaviour is called yielding. The 

stress(𝜎𝜎𝑦𝑦𝑙𝑙𝑡𝑡𝑙𝑙𝑦𝑦) that causes yielding is called yield stress and the point where it occurs is 

called  yield point (Point B). The deformation that occurs is defined as plastic 

deformation. The upper the yield point, the higher the load carry capacity and vice versa. 

𝜎𝜎𝑥𝑥 = 𝐸𝐸 𝜀𝜀𝑥𝑥 (2.24) 
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Once the material reaches this point it continues to elongate(strain) without any increase 

in load. This is often referred as being perfectly plastic (Dowling, 2012:p.933).  

2.5.2 True strain Vs Engineering Strain 

Engineers mostly works with engineering stress. Engineering stress is defined as force 

divided by the original area of the specimen before loading. once the load is applied then 

area starts to decrease. True stress is the value of stress in the material lying the actual 

area of the specimen. The decrement in the area leads true stress being higher than 

engineering stress (Venkata Deepthi, Sridhar Reddy & Satyadevi, 2018:pp.412–418). 

The below figure(a) is graphical representation of engineering stress vs true stress. From 

figure it is evident that for elastic region the value is same but when the body starts to 

deform i.e., moving from elastic to plastic region then the value of true stress gradually 

increases. However, the value of stress in true stress-strain curve always increases 

because the instantaneous value of area is used when calculating true stress. The reason 

for this is the reduction in specimen area,  outweighs the force reduction. All the design 

is done typically to operate in linear elastic region. It is uncommon to design product that 

is supposed to perform beyond the elastic limit (Venkata Deepthi, Sridhar Reddy & 

Satyadevi, 2018: pp.412–418).  

 

 

Figure 6 Engineering Strain Vs True Strain 
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2.6 Elastic Deformation and Plastic Deformation 

If the stress is a linear function of strain, then deformation is called Elastic deformation. 

When the applied force is removed body recovers to original shape and follow Hooke’s 

Law. Plastic deformation is an inelastic deformation that does not disappear  when the 

load is removed. Permanent damaged is caused to material, it occurs when specimen 

exceed its yield strength and cause it to compress, elongate, bend, buckle, or twist (Pelleg, 

2012:vol.190). 

Physical reason for the cause of elastic behaviour varies with  material and depends on 

the microscopic structure  of the material. For example, the elasticity of rubber and 

polymer is caused by stretching of polymeric chains under the influence of applied force. 

Whereas in the case of metal it is caused due reshaping and resizing the crystalline cells 

of lattices under the direction of mechanically applied load (Venkata Deepthi, Sridhar 

Reddy & Satyadevi, 2018:pp.412–418; Pelleg, 2012:vol.190).  

While determining the elasticity of a material two parameter are studied which are elastic 

modulus and elastic limit. The high value of elastic modulus suggest that the material  is 

hard to deform. In other words, to achieve a significant  strength high load must be 

applied. The low value of elastic modulus suggest that material easily deforms under the 

application of load, for example rubber band. The elastic limit is the point on the graph 

above which the material does not behaves elastically but deforms permanently  (Anon, 

n.d.). 

 After the writing of Hooke(1676) discussion on elastic phenomena was started. Using 

continuum approach the  real first attempt in constructing theory of elasticity was done . 

During this only macroscopic phenomenon were described in terms field variables. All 

the molecular change in structure of body was avoided. After that tremendous amount of 

effort has been made to define the mathematical theory of elasticity and its physics, 

engineering applications. It is quite impossible to cover the entire topic only brief 

introduction to the  topic are presented here (Pelleg, 2012:vol.190; Kassir, 2017).  

The distance between the atoms (x) is directly proportional to the force they exert on each 

other. For large distance repulsive force is greater than attractive force and vice versa. 

The certain distance (xe) where repulsive and attractive force are zero is denoted as 

equilibrium atomic spacing. Potential energy at this point is minimum. Strain is ratio of 

change in x to the xe. 
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The interest of elastic deformation in engineering application is usually of small 

perturbation about the equilibrium spacing which is typically less than 1% of strain. The 

slope of this small  region is approximately constant. If the force is expressed on a unit 

area on the basis of  stress as, 𝜎𝜎= F/A, where F is the applied force and A is cross section 

of material per atom (Pelleg, 2012:vol.190) .   

𝜀𝜀 =
x − xe
𝑥𝑥𝑡𝑡

 (2.25) 

𝜎𝜎 =
𝐹𝐹
𝐴𝐴

 (2.26) 

Elastic modulus ( E)  is the slope of  stress-strain relation. We can express it as: 

E =
𝐵𝐵𝜎𝜎
𝐵𝐵𝜀𝜀

|𝑥𝑥=𝑥𝑥𝑒𝑒 =
𝑥𝑥𝑡𝑡
𝐴𝐴

 
𝐵𝐵𝐹𝐹
𝐵𝐵𝑥𝑥

|𝑥𝑥=𝑥𝑥𝑒𝑒 
(2.27) 

2.7 Plasticity Theory 

 The study of plasticity is still on learning. The completed understanding of plasticity is 

yet not done. It is still active field of learning. The study of plasticity helps engineers to 

understand mechanism of failures. Hence to design better failure resistant material and 

structure understanding of plasticity is needed.  Sliding of atomic planes over one another 

, at the molecular level, causes plastic deformation at the continuum scale. When the 

material is loaded beyond the yield stress plastic deformation occurs (Veerappan, 2017).  

There are two regimes with respect to with respect to the yield, the first one is elastic 

regime. It is well known that the loading and unloading curve follows the same path. The 

second one is the elastoplastic regime. In real materials beyond initial yield. There will 

be both elastic and plastic deformation. In elastic-plastic regime the loading and 

unloading path are different. The unloading path is elastic and will be parallel to the 

elastic line. Let’s extend this argument to the strains. Let us say we loaded a material to 

point A in the elastoplastic regime. Strain at A will be the sum of both elastic and plastic 

strain (Veerappan, 2017).  Mathematically it is expressed as: 

∈𝑇𝑇𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙  = ∈𝑡𝑡+∈𝑝𝑝 (2.28) 
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The elastic strain can be expressed as stress divided by young’s modulus. For plastic strain 

there is other functional relation given by 𝐹𝐹(𝜎𝜎). Now the total strain can be expresses as 

∈𝑇𝑇𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙=
𝜎𝜎
𝐸𝐸

+ 𝐹𝐹(𝜎𝜎) (2.29) 

Many materials model has been developed to define the functional relation between the 

stress and strain in plastic region. One of them is Ramberg’s Osgood material model. 

Which defines the functional relation as (Jr, n.d.): 

∈𝑝𝑝= 𝐹𝐹(𝜎𝜎) = �
𝜎𝜎
𝑘𝑘
�
1
𝑡𝑡  

(2.30) 

Where:  

𝑘𝑘 = 𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼ℎ 𝐶𝐶𝐵𝐵𝑆𝑆𝑓𝑓𝑓𝑓𝐼𝐼𝑓𝑓𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼 

𝐼𝐼 = 𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 ℎ𝐼𝐼𝑆𝑆𝐵𝐵𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 𝑆𝑆𝑥𝑥𝑝𝑝𝐵𝐵𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼 

On substituting the value of plastic strain in the above equation. The above equation can 

be rewritten as: 

∈𝑇𝑇𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙=
𝜎𝜎
𝐸𝐸

+ �
𝜎𝜎
𝑘𝑘
�
1
𝑡𝑡  

(2.31) 

The above-mentioned equation is called as Additive decomposition of strain and 

applicable for only small deformation. With regards to stress there is only one stress, and 

nothing called a “plastic stress”. Let’s consider points A B and C along the unloading 

path. If the strain is decomposed, it is found that all the points have same plastic strains 

and different stresses. This concludes that stresses aren’t directly related to plastic strains 

(Veerappan, 2017). 

 

Figure 7 Plasticity modelling(Veerappan,2017)  
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There are three elements of plasticity modelling. They are: 

(1) Yield Condition 
(2) Flow Rule 
(3) Hardening rule 

2.8  Finite Element Method(FEM) 

Finite element method of analysis is a very powerful modern of computational tool used 

almost universally during past 20 years to solve complex structural engineering problems. 

The first use was particularly in aircraft industry but now it is used in thermal analysis , 

fluid mechanics, electromagnetics (Logan, 2011). 

The process involved is : 

(1) Discretize and select the element types. 

The first step is to discretize the body into equivalent system of finite element. The 

associated nodes are selected and appropriate element types to model closely the actual 

physical behaviour. The total number of elements varies with the shape and size of the 

body. Selecting the number and size of elements are primarily engineering concern. While 

selecting the element size it is always good idea to take small element to get useable result 

yet large enough to reduce the computational effort. In computational software this is 

done with mesh generation programs (Logan, 2011). 

(2) Select a displacement function. 

The second step is to select the displacement function within each element. The function 

is defined using the nodal values of element within the element. Linear, quadratic, and 

cubic polynomials are frequently used function. Since they are simple to work with finite 

element method. However trigonometric series can also be used for a two-dimensional 

problem (Logan, 2011). 

(3) Define the Strain/Displacement and Stress/Strain relationships 

Strain/displacement and stress/strain relationship are basics for deriving the equation for 

each element. 

(4) Derive  the Element Stiffness matrix and Equations. 

The development of element stiffness matrices and element equation was based on the 

concept of stiffness influence coefficients. This presupposes a background in structural 

analysis using finite element method. Nowadays we have alternative methods which do 

not require special background (Logan, 2011). 
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 (4,1) Direct Equilibrium Method 

 (4,2) Work or Energy Method 

 (4,3) Methods of weighted Residuals 

  

Using any of the above outlined method will produce a set of governing equation 

describing the behaviour of element. These equations can be conveniently written in 

matrix form as (Logan, 2011) 

⎩
⎪
⎨

⎪
⎧
𝑓𝑓1
𝑓𝑓2
𝑓𝑓3
:
:
𝑓𝑓𝑡𝑡⎭
⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑘𝑘11 𝑘𝑘12 𝑘𝑘13 . . 𝑘𝑘1𝑡𝑡
𝑘𝑘21 𝑘𝑘22 𝑘𝑘23 . . 𝑘𝑘2𝑡𝑡
𝑘𝑘31 𝑘𝑘32 𝑘𝑘33 . . 𝑘𝑘3𝑡𝑡

: : : . . :
⋮ : : . . :
𝑘𝑘𝑡𝑡1 ⋯ … . . 𝑘𝑘𝑡𝑡𝑚𝑚⎦

⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝐵𝐵1
𝐵𝐵2
𝐵𝐵3
𝐵𝐵4
𝐵𝐵5
𝐵𝐵6⎭
⎪
⎬

⎪
⎫

 

(2.32) 

Or in compact form as: 

{𝑓𝑓} = [𝑘𝑘]{𝐵𝐵} (2.33) 

Where 

{𝑓𝑓} =   𝐼𝐼ℎ𝑆𝑆 𝑣𝑣𝑆𝑆𝑓𝑓𝐼𝐼𝐵𝐵𝑆𝑆 𝐵𝐵𝑓𝑓 𝑆𝑆𝐼𝐼𝑆𝑆𝑣𝑣𝑆𝑆𝐼𝐼𝐼𝐼 𝐼𝐼𝐵𝐵𝐵𝐵𝐼𝐼𝐼𝐼 𝑓𝑓𝐵𝐵𝑆𝑆𝑓𝑓𝑆𝑆 

[𝑘𝑘] = 𝐼𝐼ℎ𝑆𝑆 𝑆𝑆𝐼𝐼𝑆𝑆𝑣𝑣𝑆𝑆𝐼𝐼𝐼𝐼 𝑆𝑆𝐼𝐼𝐼𝐼𝑓𝑓𝑓𝑓𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 𝑣𝑣𝐼𝐼𝐼𝐼𝑥𝑥𝐼𝐼𝑆𝑆 

{𝐵𝐵} = 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧𝑆𝑆𝐵𝐵 𝐵𝐵𝐼𝐼𝑆𝑆𝑝𝑝𝐼𝐼𝐼𝐼𝑓𝑓𝑆𝑆𝑣𝑣𝑆𝑆𝐼𝐼𝐼𝐼 

 

(5) Assemble the element equation to obtain the global or total equations and 

introduce boundary conditions. 

In this step the individual element nodal equilibrium is assembled into the global nodal 

equilibrium equations. The final global equation can be conveniently written in matrix 

form as (Logan, 2011) 

{𝐹𝐹} = [𝐾𝐾]{𝐵𝐵} (2.34) 

Where 

{𝐹𝐹} =   𝐼𝐼ℎ𝑆𝑆 𝑣𝑣𝑆𝑆𝑓𝑓𝐼𝐼𝐵𝐵𝑆𝑆 𝐵𝐵𝑓𝑓 𝑆𝑆𝐼𝐼𝐵𝐵𝑔𝑔𝐼𝐼𝐼𝐼 𝐼𝐼𝐵𝐵𝐵𝐵𝐼𝐼𝐼𝐼 𝑓𝑓𝐵𝐵𝑆𝑆𝑓𝑓𝑆𝑆 

[𝐾𝐾] = 𝐼𝐼ℎ𝑆𝑆 𝐼𝐼𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝐼𝐼𝐼𝐼𝑓𝑓𝑓𝑓𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 𝑣𝑣𝐼𝐼𝐼𝐼𝑥𝑥𝐼𝐼𝑆𝑆              

{𝐵𝐵} = 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧𝑆𝑆𝐵𝐵 𝐵𝐵𝐼𝐼𝑆𝑆𝑝𝑝𝐼𝐼𝐼𝐼𝑓𝑓𝑆𝑆𝑣𝑣𝑆𝑆𝐼𝐼𝐼𝐼              

 

(6) Solve for unknown degrees of freedom.  

(7) Solve for element strains and stress. 
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(8) Interpret the results. 

2.8.1 Linear vs Nonlinear  

The generic equation is same for both cases (Logan, 2011).  

{𝐹𝐹} = [𝐾𝐾]{𝐵𝐵} (2.35) 

But for linear the stiffness matrix [𝐾𝐾] is constant whereas varying for nonlinear materials. 

The graphical representative of the linear and nonlinear graph is as follow: 

 

Figure 8  Linear and Nonlinear graph 

2.9 COMSOL  

COMSOL is a finite element- based modelling software. The tools are well-developed 

with GUI and several other modules for modelling complex and common types of physics 

involved in applied science practices and engineering world. In the beginning this 

software was name as FEMLAB and was written using MATLABTM. The newer version 

is more user interface with stronger, smarter solver and stands alone package. The latest 

version is COMSOL 5 series with name 5.5. The addition of Application Builder was 

Revolutionary. This tool allows users to build application based on model. Meshing is 
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almost seamless and automatic with a lot of option for structured and unstructured 

Geometry. The most important feature of COMSOL is that it has an ability to solve any 

PDE/ODE which may not fit in classical governing equation. The latest Livelink feature 

allows user to incorporate the software with many available CAD software’s(Danielsson, 

n.d.:pp.3–5) . 

In COMSOL setting up and solving the simulation follows one simple standard process. 

The process is same and common for any simulation. The process involved in modelling 

in the software is as follows(Danielsson, n.d.) : 

(1) Start by selecting the space dimension. 

(2) Now, add one or more physics interfaces. 

(3) Select the study type that represents the solver or sets of solvers that will be used 

for computation. 

(4)  Provide the necessary variables and condition for the problem. 

(5) Select the material type. 

(6) Select the Mesh Size. 

(7) Run the simulation. 

(8) Calculate the result and plot, export if needed. 

2.10 Non-Linear Elasticity Model 

The material model that can also describes the phenomena after the yield point are called 

non-linear elasticity model. In COMSOL the user has ability to select from the inbuilt 

model.   For nonlinear elasticity, the available models are (Gonzalez, 2015) 

(1) Ramberg-Osgood 

(2) Power Law 

(3) Uniaxial Data 

(4) Shear Data 

(5) Bilinear Elastic 

(6) Hyperbolic Law 

(7) Hardin-Dmevich 

(8) Duncan-Chang 

(9) Duncan-Selig 
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Along with these models the user has an ability to define his own model under used 

defined option. For this thesis Ramberg-Osgood and Uniaxial is taken. 

2.10.1  Advantages 

(1) The foremost advantage is the model is close representative of real life. 

(2) For analysing  hyperplastic nonlinear analysis is only way of calculation. 

(3) Dynamic / High speed analysis. 

2.10.2  Disadvantages 

(1) Computation time is longer as compared to the linear method. 

(2) The addition increases the complexity to the problem. 

(3) Less stable since almost everything things runs using linear model. 

2.10.3  When to use material non-linearity 

(1) When yielding is likely to occur 

(2) For large deformation / Displacement 

(3) Thins parts which may undergo large extension 

(4) High speed loading 

(5) Hyper-elastic / Plastic material (Gonzalez, 2015) 

3 REVIEW OF  METHODS   

The schematic flow process of the methods used is summarized in the below diagram. 

The process starts with formulating the engineering problem then developing governing 

mathematical model. Finite element method and analytical method is used to solve 

numerically. The results obtained from these two methods are verified from the 

experimental method(Tensile test). All the graphs are plotted, and then conclusion is 

made from the results. 

The first step discussion will be in the values of yield stress since we adopted uniaxial 

tensile, that is, we are conducting the research with already known values and these 
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known values will serve as reference for the further steps of this research. Afterwards, the 

computational values of uniaxial test and experimental are compared. 

 

 

The algorithms of process in a nutshell are described in below figure: 

 

Figure 9 Algorithm of process 

3.1 Analytical Methods 

For analytical method Hooke’s law is used, which  in  linear region from the basic relation 

between tension and deformation. The result obtained are plotted and graph is drawn. The 

linear region serves as the basis for elastic region analysis. 

The relation between stress and strain can be described by the Equation : 

𝜎𝜎𝑥𝑥 = 𝐸𝐸 𝜀𝜀𝑥𝑥 (3) 

The Equation (2.5) can describe the specific deformation: 

𝜖𝜖 = 𝜖𝜖𝑎𝑎𝐴𝐴𝐴𝐴 =
∆𝐿𝐿
𝐿𝐿

=
𝐿𝐿∗ − 𝐿𝐿
𝐿𝐿

 
(3.1) 

 

We also know that the tension can be described as shown by equation(2.3): 
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𝜎𝜎𝑥𝑥 =  
𝐹𝐹
𝐴𝐴

 (3.2) 

Correlating all above equation, we can describe the total deformation as: 

𝐸𝐸 =
𝐹𝐹 ∗ 𝐿𝐿
𝐴𝐴 ∗ ∆𝐿𝐿

 (3.3) 

The (3.3) can be re-writen as: 

 

∆𝐿𝐿 =
𝐹𝐹 ∗ 𝐿𝐿
𝐴𝐴 ∗ 𝐸𝐸

 (3.4) 

In numerical method, despite analysing the section we assume that section is infinite, and 

the values obtained are absolute consequently committing the mistake disregarding the 

behaviour of model in other sections.  

3.2 Finite Element Method using Numerical approach 

Before calculating the required information are  

(1) Material data 

(2) Geometrical data 

(3) External force information 

(4) Boundary condition 

Without this above-mentioned information it is impossible to solve the problem. So 

always before solving the problem these values should be clear. The objective of solving 

should be known clearly. Generally, calculation is made to find 

(1) Stress 

(2) Strain 

(3) Reaction Force 

Let us consider one  dimensional  element as shown in below figure with material 

properties 

Youngs modulus(E) = E 

Length (L) =  L 

Area (A) = A and fixed at the one end . The horizontal force is applied in the other end. 
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Figure 10 One dimensional bar 

For solving the above problem the steps follwed are as follows 

(1) Discritization. 

 

Figure 11 Finite discretization of one-dimensional bar 

The bar is divided into three equal parts. While discretizing the body the external 

boundary condition and external force should go inside with a  particular node. There 

are two types of numbering.  The first one with circle and the next without. The number 

in circle represents element number whereas the normal numbering represents nodal 

number. The nodal number should always be consecutive. 

(2) Formation of Element-stiffness matrix. 

The stiffness matrix K for bar element in 1 D is given by 

𝐾𝐾 =
𝐸𝐸𝐴𝐴
𝐿𝐿
� 1 −1
−1 1 � (3.5) 
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For element 1 we must derive [𝑘𝑘1]and similarly for  [𝑘𝑘2] and  [𝑘𝑘3] 

(3) Formulation of Global Stiffness matrix. 

Once we have found the  local stiffness matrix. Then we must assemble them in global 

stiffness matrix 

�𝐾𝐾𝐴𝐴� = [𝑘𝑘1] + [𝑘𝑘2] + [𝑘𝑘3] (3.6) 

The size of global matrix is always equal to the number of elements multiplied by 

degree of freedom. For the above-mentioned case, the number of elements is 3 and the 

body is assumed to be in 1 D so the size of global stiffness matrix will be 3*3 

represented as: 

�𝐾𝐾𝐴𝐴� = �
𝑘𝑘11 𝑘𝑘12 𝑘𝑘13
𝑘𝑘21 𝑘𝑘22 𝑘𝑘23
𝑘𝑘31 𝑘𝑘32 𝑘𝑘33

� 
(3.7) 

(4) Formation of Global Load Vector. 

Similarly, as above we need to find the local force vector and assemble them in global 

load vector  

�𝐹𝐹𝐴𝐴� = {𝑓𝑓1} + {𝑓𝑓2} + {𝑓𝑓3} (3.8) 

{𝐹𝐹𝐴𝐴} = �
𝑓𝑓1
𝑓𝑓2
𝑓𝑓3
� 

(3.9) 

(5) Formation of Global Nodal Displacement. 

Similarly, as above we need to find the local displacement vector and assemble them in 

global nodal displacement. 

�𝑈𝑈𝐴𝐴� = {𝑣𝑣1} + {𝑣𝑣2} + {𝑣𝑣3} (3.10) 

{𝑈𝑈𝐴𝐴} = �
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
� 

(3.11) 

(6) Assemble of Global Nodal Displacement equation. 

The global equation is  

[𝑘𝑘]{𝑈𝑈} = {𝐹𝐹} (3.12) 
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�
𝑘𝑘11 𝑘𝑘12 𝑘𝑘13
𝑘𝑘21 𝑘𝑘22 𝑘𝑘23
𝑘𝑘31 𝑘𝑘32 𝑘𝑘33

� ∗ �
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
� = �

𝑓𝑓1
𝑓𝑓2
𝑓𝑓3
� 

(3.13) 

(7) Incorporation of specified Boundary condition. 

The implication of boundary condition always results the matrix to smaller form. In 

the above condition one end is fixed i.e., 𝑣𝑣1 = 0 . The global matrix changes to 

�𝑓𝑓2𝑓𝑓3
� = �𝑘𝑘21 𝑘𝑘22

𝑘𝑘31 𝑘𝑘32
� ∗ �

𝑣𝑣2
𝑣𝑣3� 

(3.14) 

(8) Solution of Simultaneous Algebraic equation. 

The linear solution for above problem is as follows: 

𝑓𝑓2 = 𝑘𝑘21 ∗ 𝑣𝑣2 + 𝑘𝑘22 ∗ 𝑣𝑣3 (3.15) 

𝑓𝑓3 = 𝑘𝑘31 ∗ 𝑣𝑣3 + 𝑘𝑘32 ∗ 𝑣𝑣3 (3.16) 

(9) Computational of Elemental Stress Strain. 

In the above equation known values are substituted and unknown values are calculated. 

3.3 Finite Element Methods using Software’s 

 From the name it already defines the analysing the model in finite form, all the sections 

are available for the analysed model. There is an analogy to the analytical data that 

analogy will result in significant divergence from the simulated over calculated ones. 

While analysing the simulation the first consideration should always be  the variables and 

boundary conditions we want to act on the analysed bodies. This is done not only to 

simulate but accept the values obtained. The test specimen is considered as a global 

analysis for the analysis of both stresses and total displacement. This is done to obtain 

erroneous reading of results when compared to experimental and analytical result. The 

finite element test is performed with the location and magnitude of strain guided by a 

COMSOL (Finite element model) (Palladino et al., n.d.). 

3.3.1 Modelling Geometry through Finite Element method. 

For modelling the material test sample requires three governing equations. 

(1) An equilibrium balances. 
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(2) A constitutive relation relating strain and stress. 

(3) A kinematic relation relating stress and strain. 

The tensor form of Newton’s second law serves as the equilibrium equation. Which is 

represented as: 

∇.𝜎𝜎 + 𝐹𝐹𝜐𝜐 = 𝜌𝜌�̈�𝑣 (3.17) 

Where 

𝜎𝜎 =  𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆          

𝐹𝐹𝜐𝜐 =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑓𝑓𝐵𝐵𝑆𝑆𝑓𝑓𝑆𝑆 𝑝𝑝𝑆𝑆𝑆𝑆 𝑣𝑣𝐵𝐵𝐼𝐼𝑣𝑣𝑣𝑣𝑆𝑆         

𝜌𝜌 = 𝐷𝐷𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐵𝐵 

�̈�𝑣 = 𝐴𝐴𝑓𝑓𝑓𝑓𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐵𝐵𝐼𝐼 

For static analysis, the right side of equation goes to zero. 

The generalized Hooke’s Law governs the constitutive relating the stress tensor (𝜎𝜎) to 

strain(𝜖𝜖) . which is represented as: 

𝜎𝜎 = 𝐶𝐶 ∶  𝜖𝜖 (3.18) 

Where 

𝜎𝜎 =  𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆          

 𝜖𝜖 =  𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼    

𝐶𝐶 =   𝐹𝐹𝐵𝐵𝑣𝑣𝑆𝑆𝐼𝐼ℎ − 𝐵𝐵𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆 𝐼𝐼𝑆𝑆𝐼𝐼𝑆𝑆𝐵𝐵𝑆𝑆  

: =  𝐷𝐷𝑆𝑆𝐼𝐼𝐵𝐵𝐼𝐼𝑆𝑆𝑆𝑆 𝐼𝐼ℎ𝑆𝑆 𝐼𝐼𝑆𝑆𝐼𝐼𝑆𝑆𝐵𝐵𝑆𝑆 𝑝𝑝𝑆𝑆𝐵𝐵𝐵𝐵𝑣𝑣𝑓𝑓𝐼𝐼        

In COMSOL the relation is expanded to  

𝜎𝜎 − 𝜎𝜎0 = 𝐶𝐶 ∶ ( 𝜖𝜖 − 𝜖𝜖0 − 𝜖𝜖𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑎𝑎𝑡𝑡𝑡𝑡𝑙𝑙𝑖𝑖) (3.19) 

For this application, the values of initial strain(𝜖𝜖0) , initial stress(𝜎𝜎0) and inelastic 

strain(𝜖𝜖𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑎𝑎𝑡𝑡𝑡𝑡𝑙𝑙𝑖𝑖) are all  zero. From our assumption the material is isotropic, the elasticity 

tensor reduces to the 6 x 6 elasticity matrix: 

⎣
⎢
⎢
⎢
⎢
⎡
2𝜇𝜇 + 𝜆𝜆 𝜆𝜆 𝜆𝜆 0 0  0
𝜆𝜆 2𝜇𝜇 + 𝜆𝜆 𝜆𝜆 0 0 0
𝜆𝜆 𝜆𝜆 2𝜇𝜇 + 𝜆𝜆 0 0 0
0 0 0 𝜇𝜇 0 0
0 0 0 0 𝜇𝜇 0
0 0 0 0 0 𝜇𝜇⎦

⎥
⎥
⎥
⎥
⎤

 

(3.20) 

Where 

𝜆𝜆 𝐼𝐼𝐼𝐼𝐵𝐵 𝜇𝜇  =  𝐿𝐿𝐼𝐼𝑣𝑣𝑆𝑆′𝑓𝑓𝐵𝐵𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆        
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Mathematically Lame’s constant is expresses as: 

𝜆𝜆 =
2𝐺𝐺𝜈𝜈

1 − 2𝑉𝑉
=
𝐺𝐺(𝐸𝐸 − 2𝐺𝐺)

3𝐺𝐺 − 𝐸𝐸
=

𝐸𝐸𝜈𝜈
(1 + 2𝜈𝜈)(2 − 𝜈𝜈)

 
(3.21) 

𝐺𝐺 = 𝑆𝑆ℎ𝑆𝑆𝐼𝐼𝑆𝑆 𝑀𝑀𝐵𝐵𝐵𝐵𝑣𝑣𝐼𝐼𝑣𝑣𝑆𝑆 

𝐸𝐸 = 𝑌𝑌𝐵𝐵𝑣𝑣𝐼𝐼𝑆𝑆′𝑆𝑆 𝑀𝑀𝐵𝐵𝐵𝐵𝑣𝑣𝐼𝐼𝑣𝑣𝑆𝑆 

𝜈𝜈 = 𝑃𝑃𝐵𝐵𝐼𝐼𝑆𝑆𝑆𝑆𝐵𝐵𝐼𝐼′𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐵𝐵 

The kinematic relation between displacement and strains is the final required equation. 

Which in tensor from is: 

𝜖𝜖 =  
1
2

[∇𝑣𝑣 + (∇𝑣𝑣)𝑇𝑇] (3.22) 

Where T denotes the tensor transpose. For rectangular cartesian coordinates, the indicial 

notation of the strain tensor may be written as  

𝜖𝜖𝑙𝑙𝑖𝑖 =
1
2

[ 
𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑙𝑙

+
𝜕𝜕𝑣𝑣𝑙𝑙
𝜕𝜕𝑥𝑥𝑖𝑖

−
𝜕𝜕𝑣𝑣𝛼𝛼
𝜕𝜕𝑥𝑥𝑙𝑙

 
𝜕𝜕𝑣𝑣𝛼𝛼
𝜕𝜕𝑥𝑥𝑖𝑖

 
(3.23) 

Where 𝛼𝛼 = 1,2,3…... For small deformation, the higher order terms are negligible and 𝜖𝜖𝑙𝑙𝑖𝑖 

reduces Cauchy’s infinitesimal strain tensor. The above equation can be expressed as: 

𝜖𝜖𝑙𝑙𝑖𝑖 =
1
2

[ 
𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑙𝑙

+
𝜕𝜕𝑣𝑣𝑙𝑙
𝜕𝜕𝑥𝑥𝑖𝑖

 
(3.24) 

3.4 Calculating the parameters required for modelling 

3.4.1 Linear Modelling 

Linear Modelling is quite simple the only values needed is Young’s Modulus. Although 

while solving in COMSOL it asks for the Poisson’s ratio and Density. The solver can 

compile the result without these values also.      

For calculating the value of young’s modulus. In universal testing machine at steady 

process Tensile test is performed. The obtained are True stress and True Strain. Using 

these values engineering stress and strain can be calculated. The linear region of graph of 

engineering strain and stress gives the value of   Young’s Modulus. Generally, 0,2 % 

offset method is commonly used.      
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3.4.2 Non- Linear Modelling with Uniaxial Material Model 

The values needed for uniaxial material is stress strain graph which can be easily obtained 

from tensile test. 

3.4.3 Non- Linear Modelling with Ramberg-Osgood Material Model 

The generic form of Ramberg- Osgood material model is  

∈ = ∈𝑡𝑡+∈𝑝𝑝 (3.25) 

∈ =  
𝜎𝜎
𝐸𝐸

+ 𝑘𝑘 �
𝜎𝜎
𝜎𝜎0
�
1/𝑡𝑡

 
(3.26) 

Where the strain is sum of elastic and plastic part. The parameters k and n are describing 

the hardening behaviours of material. The equation used in COMSOL is   

∈𝑎𝑎=
𝜎𝜎𝑎𝑎
𝐸𝐸

+∈𝑡𝑡𝑡𝑡𝑟𝑟 �
𝜎𝜎𝑎𝑎
𝜎𝜎𝑡𝑡𝑡𝑡𝑟𝑟

�
𝑡𝑡

 
(3.27) 

The steps that followed to get the parameters are as follows: 

(1) The stress strain obtained from tensile test are plotted in Excel 

(2) The graph is drawn 

(3) The linear region of graph gives the value of Young’s Modulus. 

(4) From graph using 0,2% offset method Yield stress is calculated.  

(5) Using method of nonlinear regression, the value of n is calculated.  

4 EXPERIMENT 

Testometric tensile testing machine was used for testing the mechanical properties of 

polypropylene. The machine is connected to win-test analysis software.  The material 

used for testing was SABIC PP 505P. The sample polymer was moulded in injection 

moulding machine according to ASTMD368 Type 1 Specimen. The dimension of the 

specimen are as follows: 
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Figure 12  ASTMD368 Type 1 parameters 

The software itself is easy to use. The steps that were followed are as follows. The 

machine was setup to have a prescribed displacement of 20mm/min. Absolute position 

was fixed at 480,2mm with  maximum elongation of 900mm. The length of specimen was 

setup 165mm and the calculated gauge length was 78mm. The maximum force the 

machine can exert is 2 ksi. 

 

 

Figure 13 Setup for tensile test(ARCADA B225) 

Four different samples were selected. Each sample young’s modulus was calculated using 

in built feature and the output file was .txt with the information on Time, Elongation, 

Reference value and Force. 
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Figure 14 Tensile specimen before and after test 

 

The obtained data was processed using EXCEL to calculate the value of Stress vs Strain. 

The obtained results are as follows: 

 

Figure 15 Tensile test (Stress vs Strain) graph 

4.1 Poisson’s ratio calculation 

The calculated value of Poisson’s ratio was 0,0253. For the calculation of Poisson’s ratio, 

the ratio of length should be less than one but, in this thesis, it is more so standard value 

of 0,43 was taken for further calculations.  
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Figure 16 Calculation of Poisson’s ratio 

5 COMSOL MODELLING 

First the geometry was drawn in Solidworks 2020 and imported to COMSOL. While 

saving the file VRML (*.wrl) format was selected since; in the student version of 

COMSOL the geometry cannot be directly imported using LiveLink feature. 

 

Figure 17   Modelling of Tensile Specimen in Solidworks2020 

Under Model Wizard 3D space dimension was selected. Solid Mechanics under 

structural mechanics module was selected. Since the deformation changes with time so 

time dependent studies were selected. The used parameters were as follows. 

 

Abs position 480,2 mm
Final Disp 900 mm
Total length 115 mm
Elongated length 419,8 mm
Diameter 13 mm
Average 0,02530368

Test Specimen Sample A Sample B Sample C Sample D
Length 87 93 88 80
original length 28 22 27 35
specimen diameter 8,5 8,35 8,34 8,4
Elongated diameter 4,5 4,65 4,66 4,6
Ratio of length 13,99285714 14,20714286 14,02857143 13,74285714
Ratio of diameter 0,346153846 0,357692308 0,358461538 0,353846154
possions ratio 0,024737896 0,025176935 0,025552248 0,025747641
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Figure 18 Parameters for defining the values in COMSOL 

As to uniaxial test one side is fixed. This is done by applying fixed constraint on 

boundary 1. The other pulling is done by using prescribed displacement on boundary 8. 

To match the displacement as to test. The displacement is applied as function of time 

given by Disp*t . The total time of test was 1260 sec with a prescribed displacement of 

20 [mm/min]. Mathematically( 20(𝑚𝑚𝑚𝑚)
60(𝑡𝑡)

∗ 1260(𝑆𝑆)), At the end, the total displacement is 

420[mm] which is the same displacement measured during the experiment.  

 
 

Figure 19 Describing the Displacement 
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The size of mesh affects the end result. The more finer the mesh the chances of accurate 

result so extra fine was selected. The configration of mesh with final meshed geometry 

is as shown below. 

 
 

 

Figure 21 Final Meshed Geometry(COMSOL) 

The study was setup as range(0,0.1,tFinal). The time dependent solver will start from 

zero with an increment of 0,1 and ends at 1260th (tFinal) second. 

 

Figure 22 Defining the time boundary 

Figure 20 Selection of Mesh 
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Since behiour of polypropylene is highly non linear. There were few changes on the 

default solver. The Relative tolerance was changed from Physics controlled to user 

controlled with an relative tolerance of 0,001. The time stepping was selected to be 

fixed and the selected method was BDF. Direct solver was enabled. Under Fully 

coupled ; Method and temination; Nonlinear method was selceted as Automatic 

(Newton). 

 

Figure 23 Changing from physics controlled to user controlled relative tolerance 

The below first figure demonstrate the enabling of direct solver and second demonstrates 

selection of Automatic (Newton) method. 

 

Figure 24 Enabling the Direct Solver 
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Figure 25 Selecting Automatic(Newton) solver 

To obtain the stress strain graph  1D plot was selected. Under one 1D plot point graph 

was selected. The equation for stress was defined as stress tensor local coordinate 

system(Solid.el11) and for strain; strain  tensor local coordinate system(Solid.el11) was 

selected from the dropdown menu of replace extension. 

 

 

Figure 26 Calculating the Stress Strain values 
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5.1 UNIAXIAL MATERIAL MODEL 

Under solid mechanics module, Nonlinear elastic material model was selected. From the 

dropdown menu under material model. Uniaxial material model was selected. The stress 

strain graph was imported as interpolation function.  

The  first approach in modelling was done by directly importing the stress-strain result 

from the tensile test. The obtained result couldn’t meet the real test. So, the next approach 

in modelling was done by fitting data. The obtained result and process are shown in the 

below figure. 

 

Figure 27 Parameters for uniaxial model 
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Figure 28 Interpolation curve with real stress strain data 

The main problem that aroused using this method, was for any value of displacement the 

strain developed could not exceed the strain of 0,003. That might because of COMSOL 

being highly sensitive to data noise.  The below graph represents the stress-strain graph 

obtained using this approach. 

 

Figure 29 Obtained stress strain graph using real data 

So, the second approach was done by reducing the noise from the data. This was done by 

data fitting with taking the points that could best describe the graph. The graphical 

representation of fitted data with real data is as shown below. 
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Figure 30 Data fitting for uniaxial model 

Again, with the new method the stress strain graph was defined. The test was done 

again. The below graph shows the interpolation function with fitted data. 

 

Figure 31 Interpolation curve using fitted data 

With the fitted data the obtained stress strain graph is shown in the below figure. 
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Figure 32 Obtained stress strain graph using fitted data 

 

5.2 RAMBERG OSGOOD MODEL 

The first approach before modelling in COMSOL is to find the values of parameter. From 

the tensile data. The following calculation were made to find the values. The value of 

Poisson’s was calculated above, and same value is used. 

5.2.1 Young’s modulus calculation 

From stress strain graph linear region was  taken for the calculation. The calculated value 

was 14[MPa]. 

 

Figure 33 Youngs modulus calculation graph 
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5.2.2 Reference stress strain calculation 

At an offset of 0,2% the reference stress was calculated. The calculated value for stress 

was 0,302844[MPa] and strain was 0,002. 

 

Figure 34 Reference stress strain calculation graph 

5.2.3 Stress exponent(n) 

The first approach in calculating the stress exponent was done by using nonlinear 

regression analysis on EXCEL. The nonlinear method in EXCEL failed to find the 

solution so using hit and trail method the value of n was calculated. The calculated value 

of n was 190. 

 

Figure 35 Stress exponent calculation graph 

Under solid mechanics module, Nonlinear elastic material model was selected. From the 

dropdown menu under material model. Ramberg Osgood material model was selected. 

The input values were as follows. 
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Figure 36 Defining Ramberg’s Osgood parameters 

Using Ramberg’s Osgood material  Model, the obtain stress strain was as follow. 

 

Figure 37 Stress strain graph obtained from Ramberg's Osgood model 

The problem that aroused using this method was the strain value of 2,5 which is not 

true. The conformation was done using stress vs displacement graph.  
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Figure 38 Stress Displacement graph obtained from Ramberg's Osgood model 

6 RESULT  

6.1 Ramberg’s Osgood material model 

The obtained result from material model was imported to Excel. The results were plotted 

along the laboratory results. For Ramberg’s Osgood model the displacement value was 

divided by the gauge length to get the required strain value. 

The below figure represents the results obtained from COMSOL and tensile results in a 

graphical form. 

 

Figure 39 Comparison of Ramberg's Osgood model with tensile result 
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The obtained stress distribution plot using Ramberg’s Osgood model was as follows. 

 

Figure 40 COMSOL stress distribution for Ramberg’s Osgood  model 

6.2 Uniaxial material model 

The below figure represents the obtained result from uniaxial material model and tensile 

result. 

 

Figure 41 Comparison of COMSOL uniaxial model with tensile result 
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The obtained stress distribution plot using uniaxial material model is shown below. 

 

Figure 42 COMSOL stress distribution for uniaxial model 

Deviation analysis and error analysis was done to analysed which model could best 

characterize the nonlinear behaviour. The obtained results were as follow: 

 

Figure 43 Deviation and Error analysis 

7  DISCUSSION 

As stated,  modelling of exact behaviour with the available finite element code is 

challenging task. The experiment was performed using uniaxial material and Ramberg 

Uniaxail Material Model Rambergs- Osgood Material Model
Standard Deviation Stress Strain Stress Strain

Tensile Test 0,032987066 1,58561145 0,032987066 1,58561145
COMSOL 0,023416181 1,681656164 0,116150336 1,554589618
Mean Values Stress Strain Stress Strain

Tensile Test 0,308505667 2,705260289 0,308504417 2,705157431
Comsol Test 0,312257167 2,763892245 0,532648308 2,692094017
Error Analysis Stress Strain Stress Strain

Absolute Error 0,0037515 0,058631956 0,224143891 0,013063414
Fractional Error 0,012160232 0,021673314 0,726550021 0,004829077
Percentage error(%) 1,216023193 2,16733142 72,65500207 0,48290772
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Osgood material model of COMSOL. According to theory and the properties of 

polypropylene at low strain rate deformation was expected to rise with time and nonlinear 

curve was expected to have a linear increment. However, some of the  past research and 

experiment also  had a similar result of not having an exact model for modelling the 

behaviour (Mihai & Goriely, 2017:p.1).  So, despite of not having an exact behaviour in 

nonlinear curve, it is acknowledged as satisfactory to have such result. Still, it is 

anticipated that the modelling with exact measurement of gauge length to be the possible 

reason for not having a better result.  

The data accumulated from the tensile test was very reliable. The raw or original curve 

appeared as expected to the  nonlinear behaviour of polypropylene. The calculated stress-

strain curve deviates from the real data. So, both models couldn’t give the exact 

simulation of phenomena occurred. But  on the basis of analysis made from the deviation 

and error analysis it is assumed that for this experiment uniaxial material model has given 

the best result. This can be indeed observed from the graph also. It should be noted that 

for other strain rate Ramberg’s Osgood model could as give best result. Since the 

behaviour of polypropylene changes with the strain rate and the calculation of parameters 

was limited to EXCEL only. Advance mathematical software’s could give best fitted 

parameters that could change the end results. 

8 CONCLUSION 

The experiment, calculation and results conducted with polypropylene has resulted a 

following conclusions: 

• The deformation of polypropylene increases with time and nonlinear curve has a 

linear increment. 

• Uniaxial material model being easy in  sense, less calculation needed to be done 

but also give accurate result as compared to Ramberg’s Osgood Material model.  

• The Nonlinear regression analysis was limited only to EXCEL. Using advance 

software’s like MATLAB to control fitting parameters could give better results. 

• The feature of polypropylene is their inelastic behaviour which changes with 

loading rate effect. For other strain rate another material could serve the best 

result. 
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• While simulating in COMSOL temperature was not incorporated. Generally 

multiple temperatures and strain rates are used to fully characterize polymer 

material. 

• During the thesis extensometer was not used and calculation were done by manual 

measurement. Using it could get more close result. 
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