

Jaakko Ropponen

FEASIBILITY OF USING HIGH-LEVEL SYNTHESIS IN FPGA DESIGN

Evaluating the Capabilities of Intel High-Level Synthesis Compiler

FEASIBILITY OF USING HIGH-LEVEL SYNTHESIS IN FPGA DESIGN

Evaluating the Capabilities of Intel High-Level Synthesis Compiler

Jaakko Ropponen
Bachelor’s thesis
Autumn 2021
Information technology
Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology, Option of Device and Product Design

Author: Jaakko Ropponen
Title of the thesis: Feasibility of Using High-Level Synthesis in FPGA Design – Evaluating the
Capabilities of Intel High-Level Synthesis Compiler
Thesis supervisor: Timo Vainio
Term and year of thesis completion: Autumn 2021 Pages: 59 + 5 appendices

Field Programmable Gate Arrays (FPGA) have become vital in high-performance Digital Signal
Processing (DSP) applications in embedded systems, but the development process of application-
specific hardware is long and requires expertise on FPGA design and Hardware Description
Languages (HDL). In recent years, High-Level Synthesis (HLS) has risen in popularity. It shortens
the development time and simplifies the design work significantly by increasing the amount of
abstraction between written code and the resulting hardware.

The aim of this thesis was to evaluate the feasibility of using HLS as an alternative to traditional,
Register Transfer Level (RTL) FPGA design. Since Intel is one of the world’s largest FPGA
manufacturers along with Xilinx, studying the capabilities of the Intel HLS Compiler was chosen as
the primary subject of the study.

To perform an accurate comparison between RTL and high-level FPGA design, two nearly identical
components for performing a matrix-matrix multiplication were developed. The other component
was developed using the Verilog hardware description language and Intel Quartus FPGA design
tools, while the other component was developed using C++ and Intel HLS Compiler. Then, the
resource consumption and performance of the two different component implementations were
compared. To provide more versatile results, comparison data was collected with different input
data bit widths and different number of parallel multiply-accumulate (MAC) operations.

It was discovered that in most cases, the HLS implementation used a lot more resources than the
RTL implementation. With parameter values that the RTL implementation was optimised for, the
results of the HLS implementation were significantly worse. On the other hand, the HLS
implementation provided more consistent performance results with different parameters and even
came ahead of the RTL implementation in some cases.

It was concluded that while traditional FPGA design can achieve superior results in terms of both
performance and resource consumption, the implementations might only be optimised for a narrow
use case. Optimising an RTL design written with an HDL for different applications can take a
significant amount of time and effort. Therefore, the Intel HLS Compiler may be an appropriate
choice for projects that require a quick development of a medium-performance DSP component.
The Intel HLS Compiler was deemed not suitable for implementing control logic or for very high-
performance applications, such as high-throughput physical layer components.

Keywords: Field-Programmable Gate Array, High-Level Synthesis, Digital Signal Processing

4

TIIVISTELMÄ

Oulun ammattikorkeakoulu
Tieto- ja viestintätekniikka, Laite- ja tuotesuunnittelun suuntautumisvaihtoehto

Tekijä: Jaakko Ropponen
Opinnäytetyön nimi: Feasibility of Using High-Level Synthesis in FPGA Design – Evaluating the
Capabilities of Intel High-Level Synthesis Compiler
Työn ohjaaja: Timo Vainio
Työn valmistumislukukausi ja -vuosi: Syksy 2021 Sivumäärä: 59 + 5 liitettä

Ohjelmoitavat järjestelmäpiirit (FPGA) ovat suosittuja sulautetuissa järjestelmissä, joissa tarvitaan
tehokasta digitaalista signaalinkäsittelyä. Suunnittelutyö on kuitenkin hidasta ja siinä tarvitaan
laajaa tietämystä laitteistonkuvauskielistä (HDL) ja ohjelmoitavista järjestelmäpiireistä. Viime
vuosina suosiotaan kasvattanut korkean tason synteesi (HLS) pyrkii helpottamaan FPGA-
kehitystyötä. Se yksinkertaistaa ja nopeuttaa kehittämistä lisäämällä abstraktiota kirjoitetun koodin
ja sen pohjalta luodun laitteiston välillä.

Tämän opinnäytetyön tarkoituksena oli arvioida HLS:n käyttämistä FPGA-suunnittelussa
perinteisen rekisterinsiirtotasolla (RTL) tapahtuvan suunnittelun sijaan. Arvioitavaksi HLS-
työkaluksi valittiin Intel HLS Compiler, sillä Intel on Xilinxin rinnalla yksi maailman suurimmista
FPGA-valmistajista.

Jotta RTL- ja HLS-suunnittelua voitiin vertailla todenmukaisesti, molemmilla suunnittelutavoilla
luotiin mahdollisimman samankaltaiset komponentit, joista kumpikin suorittaisi kahden matriisin
välisen kertolaskun. RTL-suunnittelussa käytettiin Verilog-laitteistonkuvauskieltä sekä Intel
Quartus -kehitystyökaluja, kun taas HLS-suunnittelussa käytettiin C++-ohjelmointikieltä ja Intel HLS
Compiler -käännöstyökalua. Kehitystyön päätyttyä komponenttien resurssienkäyttöä sekä
suorituskykyä vertailtiin keskenään. Niille syötettävän datan leveyttä biteissä ja rinnakkaisten
pistetulo-operaatioiden määrää vaihdeltiin, jotta tuloksia saataisiin mahdollisimman monipuolisesti.

Tuloksia tarkastelemalla huomattiin, että HLS-komponentti käytti useimmissa tapauksissa
enemmän resursseja. Tietyillä, RTL-komponentille otollisilla parametreillä HLS-komponentti hävisi
huomattavasti sekä resursseissa että suorituskyvyssä. Toisaalta HLS-komponentin suorituskykyä
kuvaavat tulokset heittelivät huomattavasti vähemmän verrattuna RTL-toteutukseen ja joissain
tapauksissa HLS-toteutus jopa voitti suorituskyvyssä.

Lopulta pääteltiin, että perinteisellä FPGA-suunnittelulla voidaan kehittää huomattavasti
suorituskykyisempiä ja resursseja vähemmän kuluttavia komponentteja, jotka saattavat kuitenkin
olla optimoituja vain tiettyihin käyttötarkoituksiin. Laitteistonkuvauskielellä kirjoitetun komponentin
uudelleenoptimointi ja muokkaus voi olla hyvin haastavaa ja hidasta. Tulosten perusteella
todettiinkin, että Intel HLS Compiler saattaa sopia projekteihin, joissa on tarve kehittää
signaalinkäsittelyyn tarkoitettu komponentti mahdollisimman nopeasti ja joissa suorituskyvyn sekä
resurssien suhteen voidaan tehdä kompromisseja. Todettiin myös, että Intel HLS Compiler ei sovi
ohjauslogiikan toteuttamiseen tai todella suurta suorituskykyä vaativiin sovelluksiin.

Asiasanat: Ohjelmoitava järjestelmäpiiri, korkean tason synteesi, digitaalinen signaalinkäsittely

5

ABBREVIATIONS

AC

ALM

ASIC

CE

CLI

DSP

FIFO

FPGA

FSM

HDL

HLS

IC

II

IP

LAB

LUT

MAC

MLAB

MM

MUX

QoR

ROM

RTL

SRAM

ST

Algorithmic C

Adaptive Logic Module

Application Specific Integrated Circuit

Clock Enable

Command Line Interface

Digital Signal Processing

First In First Out

Field Programmable Gate Array

Finite State Machine

Hardware Description Language

High Level Synthesis

Integrated Circuit

Initiation Interval

Intellectual Property

Logic Array Block

Lookup table

Multiply-Accumulate

Memory Logic Array Block

Memory-Mapped

Multiplexer

Quality of Results

Read-Only Memory

Register Transfer Level

Static Random Access Memory

Streaming

6

CONTENTS

1 INTRODUCTION ... 8

1.1 Background .. 8

1.1.1 High Level Synthesis ... 8

1.1.2 Etteplan .. 8

1.2 Scope and Objectives .. 9

1.3 Structure of Thesis ... 9

2 FPGAS .. 10

2.1 Physical Structure .. 10

2.1.1 LUTs .. 11

2.1.2 ALMs and LABs ... 12

2.1.3 DSP Blocks .. 14

2.1.4 Block RAM ... 15

2.2 Designing for FPGAs .. 15

2.2.1 Hardware Description... 15

2.2.2 Synthesis and Design Considerations ... 17

2.2.3 Verification and Simulation ... 18

3 DESIGN TOOLS .. 20

3.1 Intel Quartus Prime .. 20

3.1.1 RTL Viewer and Technology Map Viewer .. 20

3.1.2 Chip Planner .. 20

3.1.3 Timing Analyzer ... 21

3.2 Intel HLS Compiler ... 21

3.2.1 Command-Line Interface.. 22

3.2.2 HTML Report ... 22

3.2.3 Verification and Debugging .. 23

3.3 ModelSim ... 24

4 DESIGN PROCESS .. 25

4.1 Matrix Multiplication .. 25

4.2 Design Specification ... 26

4.3 RTL Implementation ... 27

4.3.1 Design .. 27

7

4.3.2 Verification ... 33

4.4 HLS Implementation ... 37

4.4.1 Design .. 37

4.4.2 Verification ... 45

5 RESULTS AND COMPARISON .. 50

5.1 Performance Comparison ... 51

5.2 Resource Usage Comparison .. 54

5.3 Overall Evaluation .. 56

5.4 Verdict .. 58

6 CONCLUSION ... 59

REFERENCES .. 60

APPENDICES .. 63

8

1 INTRODUCTION

1.1 Background

1.1.1 High Level Synthesis

High Level Synthesis (HLS) is a method of increasing abstraction between written code and the

hardware generated from it. Traditionally, Field Programmable Gate Arrays (FPGAs) have been

programmed using Hardware Description Languages (HDLs). HDLs have a high learning curve

especially from a software developer’s point-of-view, since HDLs are used to describe the actual

physical hardware instead of software instructions. HLS allows the designer to write the component

functionality using a high level language, such as C++, or even a graphical environment, such as

LabVIEW, and the HLS tools will generate the HDL code which can be synthesised into the

hardware required to perform the functionality. The main goal of HLS is to simplify and accelerate

the FPGA design process, while also bringing down the cost of development. (1, p. 1; 5.)

Different HLS tools have been available for several years and some tools were already released in

the early 2010’s (1, p. 2). The leading FPGA manufacturers, Intel and Xilinx, have also developed

their own HLS tools: the Intel HLS Compiler, the Xilinx Vivado HLS and the Xilinx Vitis HLS (2; 3;

4). As the number of different tools increases along with their maturity, a study on the feasibility of

using HLS alongside or in place of traditional FPGA design is in order.

1.1.2 Etteplan

This thesis work was commissioned by Etteplan Embedded Finland. Etteplan is a global

engineering company which provides software, embedded, industrial and plant engineering

solutions to customers. Among embedded solutions development Etteplan also offers FPGA

design. (7.)

The curiosity towards further FPGA design abstraction has increased within Etteplan, too. Reducing

the development time and the number of designers required for FPGA development can be

advantageous, especially if HLS reduces or removes the need for in-depth knowledge of FPGAs.

Some successful trials of using HLS have already been made by Etteplan, but a more

9

comprehensive study and documentation of some of the tools and their capabilities was requested.

(8.)

1.2 Scope and Objectives

This thesis focuses only on the Intel Quartus FPGA design environment and the Intel HLS Compiler

due to the limited time available for the study. Furthermore, the Intel HLS Compiler has not yet

been thoroughly studied by Etteplan, making it a viable subject for this thesis.

The objective is to study and document the possibilities of using the Intel HLS Compiler to develop

FPGA designs by comparing the Quality of Results (QoR) of a component designed with a

traditional FPGA design flow using an HDL and Intel Quartus Prime, and the QoR of a component

designed with a high level design flow using C++ and the Intel HLS Compiler. The results of the

study should not only help designers choose between a traditional FPGA design flow and HLS, but

also to help them decide if the Intel HLS Compiler is the right HLS tool for their use case. Internal

documentation produced by the study will also include instructions and recommended practices of

the Intel HLS Compiler.

1.3 Structure of Thesis

After the introduction, chapter 2 explains the physical structure and operation principle of FPGAs

as well as introduces HDLs and describes how they can be used to program FPGAs. Also, the

FPGA design verification process and its importance is explained. Chapter 3 introduces the design

tools used in this thesis. In chapter 4 the development process of both design flows is presented

and the design decisions are explained. In chapter 5 the results of the study are presented and

evaluated. Finally, in chapter 6, the thesis is concluded with final thoughts of the entire work process

and the usefulness of the results discovered by this study.

10

2 FPGAS

An FPGA is a digital integrated circuit (IC) containing programmable logic cells and interconnects

that connect the logic cells to each other. By configuring these cells and interconnects, an FPGA

can form a vast number of different digital circuits, limited by the available resources in the FPGA

and how those resources can be linked together. (9, s. 1–2.)

FPGAs are often presented as an alternative to Application Specific Integrated Circuits (ASICs),

which too are usually designed for a single, manufacturer-specific application. Unlike FPGAs

though, ASICs are physically constructed to provide the desired functionality instead of being

programmed. Compared to an ASIC, an FPGA offers significantly lower cost and time-to-market,

however with the cost of size, possible complexity and performance. The major downside of ASICs

is that they cannot be modified after production, which means that any bugfixes or updates cannot

be performed on existing devices. Most FPGAs on the other hand are reprogrammable and could

even be updated in devices already deployed to customers. FPGAs are therefore optimal for

developing smaller batches of custom digital circuitry where the very highest performance of ASICs

is not necessary. FPGAs can also be used to prototype ASICs, but the low prices and increasing

complexity of FPGAs make them a compelling option even for final products. (9, s. 2–4.)

2.1 Physical Structure

There are several existing technologies for implementing the underlying memory elements of the

configurable portions of FPGAs, but the majority of modern FPGAs are based on Static Random

Access Memory (SRAM). SRAM is reprogrammable but volatile, which means FPGAs based on

SRAM will lose their configuration on power-down. It is therefore necessary to store the

configuration on an external device, such as on-board memory, in order to reprogram the FPGA on

power-up. (9, p. 14–15.)

The FPGA series targeted in this thesis is the Cyclone V from Intel, and the following sections will

show examples of the architecture of this particular device as well as some general examples.

11

2.1.1 LUTs

There are different ways to implement the configurable logic blocks of the FPGA using the

aforementioned memory elements. The two fundamental methods are multiplexer (MUX) and

lookup table (LUT) based logic blocks, of which the LUT based implementation is explained here.

(9, p. 19.)

LUTs can be used to define the truth table of any logic operation possible for a given number of

inputs. For example, a 2-input NAND gate has a truth table shown in TABLE 1, where A and B are

the inputs of the gate.

TABLE 1. The truth table of a 2-input NAND-gate

A B Output

0 0 1

0 1 1

1 0 1

1 1 0

This 2-input NAND gate can be implemented with a LUT, as shown in FIGURE 1. This example

implementation consists of transmission gates controlled by the inputs A and B of the LUT. The

gates with a circle on them are active low, while the gates without a circle are active high. When

the gates are active, they pass the logic values from their inputs to their outputs, otherwise their

outputs are high impedance and do not affect the signal path their outputs are connected to (10; 9,

p. 21). The data controlled by the gates is input from the programmable SRAM cells on the left,

which are configured according to the desired logic function (9, p. 20–21).

12

FIGURE 1. A transmission gate-based LUT with SRAM cells on the left, inputs on the bottom and
output on the right

By examining FIGURE 1 it can be seen that with this configuration of the SRAM cells on the left,

the output is indeed only 0 when A and B are both 1, otherwise the output is 1. This satisfies the

truth table requirements of TABLE 1 and therefore implements a 2-input NAND gate. By changing

the contents of the SRAM cells on the left, a different logic gate could be defined.

2.1.2 ALMs and LABs

The next level of FPGA hierarchy is what Intel refers to as Adaptive Logic Modules (ALMs). ALMs

can contain multiple LUTs, multiplexers, registers, logic gates and even adders. These elements

allow ALMs to be used in various different configurations, hence the word ‘adaptive’ in their name.

The Intel Cyclone V FPGA uses an ALM structure depicted in FIGURE 2, with a total of 6 LUTs, 2

adders and 4 output registers, among other components. The ALMs in Cyclone V devices can be

used in Normal, Extended LUT, Arithmetic or Shared Arithmetic modes by wiring the elements

differently. (11.)

13

FIGURE 2. The ALM structure in Intel Cyclone V devices (11)

ALMs in turn are confined in Logic Array Blocks (LABs), which have dedicated logic to control the

signal flow to the numerous ALMs inside those blocks (11). In Cyclone V devices, one LAB contains

10 ALMs but one LAB can drive the ALMs in adjacent LABs as well, allowing one LAB to control

30 ALMs. (11.)

FPGAs usually allow some of the configurable logic to be used as relatively small memory,

commonly referred to as distributed RAM (9, p. 23). In the Cyclone V, a quarter of its LABs can be

configured as Memory LABs (MLABs) so that the ALMs within that LAB are used as LUT based

memory instead of performing logic operations (11).

It should be noted that different manufacturers use different terms of these levels of hierarchy. Xilinx

for example, uses the term Configurable Logic Block (CLB) of their equivalent of LABs, even though

there are differences in their structure (9, p. 25). ALMs on the other hand could be compared to

Xilinx’s Slices, however it can be argued that it is futile, or at least very difficult, to compare these

14

elements by name, since their definition and resource allocation varies even between device

families of the same manufacturer (12; 13; 14; 15, p. 1–4).

2.1.3 DSP Blocks

In addition to the generic logic blocks such as ALMs, many FPGAs contain special digital signal

processing (DSP) oriented sections, called DSP blocks by Intel and DSP Slices by Xilinx (9, p. 27;

16; 17). DSP blocks may contain hardwired multipliers and adders which can be used to perform

commonly used arithmetic operations quicker and with less resources than would be possible using

generic logic blocks (9). Similar to its ALMs, the DSP blocks in Cyclone V devices can be configured

differently depending on the desired operation (11).

FIGURE 3. The Cyclone V DSP block with MAC operation data path highlighted. Registers and
other parts not highlighted are ignored (11.)

One common operation used in DSP is multiply-accumulate (MAC). In a MAC operation, inputs are

multiplied together and added to a register which keeps accumulating the result until it is reset. In

15

Cyclone V devices, there is a dedicated structure in the DSP blocks, highlighted in FIGURE 3, to

allow a MAC operation to be performed by a single DSP block, instead of having to route a feedback

loop through an ALM and back to the input of the multiplier (11). The MAC operation is important

for this thesis, as will be discussed later.

2.1.4 Block RAM

Even though standard logic blocks can be used as memory elements, they are not optimised for

area usage and using them as memory is only practical for small, local needs (5). For bigger

memories FPGAs include dedicated RAM blocks which can be used to store larger amounts of

data efficiently (5; 9, p. 27).

Depending on the device, there can be different ways to configure a RAM block for different

applications. In Cyclone V devices RAM blocks can be configured as single-port RAM, simple dual-

port RAM, true dual-port RAM, shift registers, read-only memory (ROM) or first in first out data

buffers (FIFOs). For this thesis, the most important ones to understand are the single and dual-port

RAM modes. In single-port mode, only one read or write operation can be performed at a time and

only to one memory address. In true dual-port mode, you can perform any combination of reads

and writes to two different addresses at a time. (11.)

2.2 Designing for FPGAs

2.2.1 Hardware Description

HDLs are the traditional method of configuring FPGAs. They were developed to ease the process

of designing hardware, as circuitry became increasingly complex and the schematic design flow

was no longer viable. Some HDLs have evolved to include parts of nearly all levels of abstraction

described below, the most relevant languages of today being Verilog and VHDL. (9, p. 89–100.)

The abstraction of HDLs can be split into 3 different levels as shown in FIGURE 4: the structural,

functional and behavioural levels. (9, p. 89.)

16

FIGURE 4. Abstraction levels of hardware description

The structural level describes the hardware rather directly and can be split into switch and gate

levels. The switch level is the lowest level, which describes how individual electronic components

,such as transistors, are connected. The gate level hides these constructs and depicts the circuits

as a collection of primitive logic gates. (9, p. 90.)

The functional level is the next level up, and it includes register transfer level (RTL) representations.

To describe a register on the RTL, you only have to specify a condition for a clock signal, inputs

and outputs; there is no need to construct the register out of primitive components. The functional

level also allows the use of Boolean equations to describe combinational logic, such as

multiplexers. (9, p. 90.)

An even further abstraction is the behavioural level, which describes the high level behaviour a

design should exhibit. No considerations to wiring, components needed or anything internal to the

design are done in a purely behavioural bit of code (19, p. 151–166). A behavioural abstraction

could be as simple as using an arithmetic operator to resemble an adder, since on a functional or

gate level, a full adder would require several logic gates to be described in order to provide the

same functionality (9, p. 91; 18, p. 367 – 370).

The HDL used in this thesis, Verilog HDL, features behavioural, functional and structural levels of

abstraction (9, p. 97). In other words, it is possible to instantiate (place into design) individual logic

gates in one part of a Verilog design, while on another part, an arithmetic operator can be used to

infer a large multiplier structure.

17

In this thesis, the term RTL is used to refer to the HDL implementation of a component to avoid

confusion, even though it may include different levels of abstraction.

2.2.2 Synthesis and Design Considerations

The concept of logic synthesis for FPGAs today essentially means constructing a LUT/CLB

(LUT/LAB) level netlist from the HDL code. This netlist can then be further passed into the place-

and-route tools of specific FPGA vendors, which will optimise the physical placement of the

elements described in the netlist. (9, p. 166–167).

Since the HDL code is synthesised into actual hardware, some consideration needs to be done

when writing code to optimise the hardware that is generated. Making false assumptions of the

architecture of the FPGA used can lead to a worse performance and more consumed hardware

resources. A good example of this is the reset signal. A reset can only be asynchronous on some

devices, while others also include synchronous resets. Some FPGA constructs on the other hand

might not have any dedicated reset logic at all. Implementing a reset in a way that is not built-in to

the register constructs would cause extra reset logic to be generated and could even lead to timing

issues. (20, p. 262.)

Another important aspect to consider in FPGA design is timing. Since synchronous logic depends

on having valid data in the input of registers at the rising or falling clock edge, it is crucial that data

signals arrive on time to the inputs of registers.

To ensure a predictable behaviour, there are two main constraints to meet in synchronous logic;

setup and hold time, as depicted in FIGURE 5. Setup time tsu is the minimum time the data signal

has to be stable before the clock edge in the input of a register. Hold time th is the minimum time

the data signal has to be stable after the clock edge in the input of a register. If either of these is

violated, the output of the register cannot be guaranteed to have the value of the input. (27, p. 3–

4; 35).

18

FIGURE 5. Setup and hold times

The process of evaluating the delays in the physical paths of the design is called a timing analysis.

In a timing analysis, all the gate and track delays of a path are summed together to determine the

total delay of a path between nodes, for example from a register output to the next register’s input.

Any hold or setup time violations will cause an error in timing analyser tools to ensure the correct

behaviour of registers and latches. The largest delay value found during a timing analysis defines

the maximum clock frequency at which the design can be guaranteed to work as expected. This

frequency is called the fMAX. (9, p. 169–170.)

A design can also have multiple clock domains which allow some of the logic to operate at a greater

frequency than the input clock. These different clock domains can be established by deriving a new

clock signal from the input clock signal fed through a clock pin on the FPGA, or by having multiple

clock signals fed into different clock pins. Although the fMAX is used to represent the maximum

frequency of the top-level input clock, it can also be affected by delays in other clock domains

derived from that clock. (29.)

2.2.3 Verification and Simulation

Verification is the process of ensuring that the designed component behaves according to its

specification. Logic simulation is a part of the verification process and it is often performed on the

HDL files of an FPGA design. In simulation, the outputs of the component in response to different

stimuli can be observed and debugged. Simulation results can be observed visually as a graph, as

a list of results or as only the final fail or pass results, depending on the complexity of the design

and the needs of the designer or verification engineer. (21, p. 83–84.)

19

There are three levels of simulation; RTL, functional and gate level simulations. An RTL simulation

only uses the HDL files and does not consider timing as a part of the simulation. A functional level

simulation is performed on the netlist generated by the synthesis tool and ensures that the

functionality remains the same after synthesis. A gate level simulation is the most accurate and is

performed on the gate level netlist files. It takes timing into account by knowing the actual delays

between design nodes and therefore allows the detection of possible timing issues. (21, p. 86–87.)

Some HDLs, such as VHDL and Verilog, can be used to create simulation test benches. This is

beneficial due to HDL test benches being highly compatible with different simulation programs (21,

p. 92). The designer needs to be careful with these languages however, since both of them include

elements that can be executed by simulation tools but will not be synthesised into hardware by

synthesis tools (20, p. 43; 21, p. 92).

20

3 DESIGN TOOLS

Several different tools were used in the design process. The most important ones for both design

flows are explained in this chapter.

3.1 Intel Quartus Prime

Intel Quartus Prime is the main design software for Intel FPGAs. It is a full development

environment which contains nearly all tools necessary to develop for Intel FPGAs, from writing the

RTL code to actually programming the device.

Intel Quartus includes several graphical tools to aid the design and verification process. The ones

utilised in this thesis are described here.

3.1.1 RTL Viewer and Technology Map Viewer

The RTL Viewer offers a graphical representation of the netlist generated after the Analysis &

Elaboration phase, but before synthesis and fitting optimisations. In other words the graphical

representation provided by the RTL Viewer is a very close model of the original code written in an

HDL, but not the actual hardware implementation. It is a very helpful tool to help visualise the

design, especially in case of any issues noticed during the RTL simulation. (22.)

The Technology Map Viewer looks very similar to the RTL Viewer, and it offers a graphical

representation of the netlist generated after fitting or Analysis and Synthesis. It includes the fitting

optimisations and can be used to review the design schematic as it will be implemented on the

FPGA. It does not provide any data on the physical locations of the elements however, which is

what the Chip Planner is designed for. (22; 23.)

3.1.2 Chip Planner

The Chip Planner offers a graphical representation of the physical placement of the logic elements

on the FPGA. It can be used to display extensive information, e.g. routing details, timing issues and

21

resource usage. Thus it provides insight on possible routing and placement related issues of a

design. It is also useful for examining the actual implementation of a design portion inside ALMs

and DSP blocks for any undesired or non-optimal constructs. For example, a synchronous reset

could be implemented with separate logic elements instead of an ALM-integrated reset construct,

or a DSP block could be placed into a non-optimal configuration. These issues can be identified in

Chip Planner and corrected in HDL if necessary. (23.)

3.1.3 Timing Analyzer

Intel provides the Timing Analyzer tool to perform timing analysis and to help debug possible timing

issues (27, p. 3). An easy way of finding and improving the worst-case path (path with most delay)

of a design is to use the Report Top Failing Paths command and then report the worst-case path.

It can be used to go through the worst-case path node-by-node, so that the largest delays in that

path can be detected and mitigated.

Another practical feature of the Timing Analyzer is its integration with other Quartus tools such as

the Chip Planner. If a path seems properly constructed in HDL code but has a large delay value,

Chip Planner can be called from Timing Analyzer to display the physical placement of that path.

This way timing issues related to long distances between nodes can be easily detected and solved.

(27, p. 31–32.)

Timing Analyzer can also be used to set timing constraints in a Synopsys Design Constraints (SDC)

format using a graphical interface. Timing constraints describe how an FPGA design should behave

timing-wise and they include things such as target clock frequency, clock uncertainty and external

device timing specifications. It is also possible to set false paths to ignore timing analysis for paths

that are known not to affect the performance of the final design. (27; 30.)

3.2 Intel HLS Compiler

The Intel HLS Compiler is a High-Level Synthesis tool that generates Intel FPGA optimised RTL

code from untimed, algorithmic level C++. It can also be used for creating a test bench in C++ for

verification of both the C++ implementation and the RTL implementation of the component.

Currently, the HLS Compiler conforms to C++17 and does not support files conforming to newer

C++ standards. The Intel HLS Compiler version used in this thesis is 21.2. (2; 33, p. 3, 4.)

22

3.2.1 Command-Line Interface

The Intel HLS Compiler is mainly operated from a Command Line Interface (CLI) with the i++

command. The Intel HLS Compiler is command line compatible with the GNU C++ compiler, g++.

C++ code written for HLS Compiler can thus be compiled with g++ by defining the paths to HLS

Compiler header files for g++. (31, p. 11–13.)

As an example of the CLI, here is the command to compile a design file called ‘example.cpp’ for a

Cyclone V FPGA:

i++ -march=”CycloneV” -o “output_name” “example.cpp”

After a successful execution of the above command, the compiler will have created an executable

file containing the test bench, a debug symbol file for the executable, and a project folder containing

reports, RTL files, simulation files and Quartus project files.

The HLS Compiler has several command line options to alter the tool behaviour. The -ghdl option

for example enables the creation of a waveform file from the RTL simulation, allowing for a visual

verification of the behaviour of the component. The --quartus-compile option on the other

hand automatically performs a Quartus compilation of the component, which allows for more

accurate estimations on resource usage and fMAX. Some options affect the implementation of the

component, for instance the --dsp_mode command option can be used to set the preferred

implementation method of math operations on the FPGA. (31, p. 6–10.)

These commands and options can be automated through the use of scripts, but currently no

graphical user interface exists for the Intel HLS Compiler.

3.2.2 HTML Report

The Intel HLS Compiler creates an HTML report file which contains information about the resource

usage, performance and functionality. The report has several different graphical views to provide

insight to the internal operation of the component and it can help the developer to further optimise

the design.

The front page of the report lists basic information about the component, such as compile

commands, program version numbers as well as the estimated component resource usage and

23

fMAX. If the --quartus-compile option was used, the estimates are automatically transferred

from Quartus into the report.

There are more detailed sections in the report, such as the System Viewer. It shows the operations

performed by the component as a graph and also provides detailed information about the

operations and their actual implementation in the generated HDL code. The report also includes

the Area Analysis and Loop Analysis views. The former can be used to find the resource usage of

the different sections and even individual operations of the component, while the latter can be used

to analyse the performance of loops.

The report also has the Function Memory Viewer section, which is used to visualise the actual

implementation of the memories declared inside the component. It can be useful if the developer

wants to self-optimise memories by changing their properties using the Intel HLS Compiler’s

memory attributes. In this thesis the Intel HLS Compiler is relied on to create the optimised

implementations of the memory, so the Function Memory Viewer is hardly used.

3.2.3 Verification and Debugging

In source files written for the Intel HLS Compiler, the test bench is contained in the main function,

while the components are described in functions marked with the component keyword. By calling

the component functions from the main function, the behaviour and outputs of the components can

be verified. There are essentially two verification flows for the Intel HLS Compiler depending on the

phase of development.

In the first verification flow the compiler is configured to compile an x86-64 executable of the design

for high-level verification. The executable behaves like any other C++ program and can be

executed and debugged using any C++ compatible debugger in an x86-64 environment. As the

Intel HLS Compiler does not come with a debugger, it is up to the developer to acquire one. High-

level verification is efficient, since the compilation of an x86 program only takes a short amount of

time. However, high-level verification does not guarantee correct functionality for the RTL

implementation of the component. (33, p. 8; 31, p. 7.)

In the second flow, once the functionality has been verified on a higher level, the compiler is

instructed to compile for a specific FPGA line-up, such as the Cyclone V. Now the compiler will

synthesise the component functions into HDL code, which means that their actual RTL

24

implementation can be verified. The test bench is still defined in the main function, but now an

inter-process communication library is used to pass data between the x86 test bench and the RTL

simulator. Intel calls this verification method Co-Simulation. (34.)

3.3 ModelSim

ModelSim is an HDL simulation software from Siemens EDA (former Mentor Graphics) (24; 26).

Intel has their own adaptation of this tool called the ModelSim - Intel FPGA Edition which they offer

with the Quartus design software (25). ModelSim supports mixed-language simulation, which

means that it can be used to simulate a design incorporating both VHDL and Verilog (26). It

supports RTL and gate-level simulations, so the timing of the optimised design can be analysed as

well (26). ModelSim and certain other third party simulation tools can easily be linked to execute

an HDL test bench from Quartus using the NativeLink feature (32).

ModelSim has a graphical waveform viewer, which can be used for visual verification of the

simulated design. Any signals in any module of the design can be added into the waveform and

inspected, allowing thorough debugging and verification. The waveform viewer also has helpful

tools such as bookmarks and cursors. Another helpful tool is the signal search, which can be used

to find the number of positive or negative edges or certain values of a signal in a specified time

region.

The free version of Intel’s adaptation of ModelSim used in this thesis is called the ModelSim Intel

FPGA Starter Edition. Although it has some limitations compared to the full version, such as

decreased simulation performance, it performed well enough for a project of this size. (27.)

25

4 DESIGN PROCESS

In order to study the differences between HLS and RTL design flows, a suitable design was to be

chosen for implementation. As one of the aims was to compare resource usage, the chosen design

should utilise DSP and RAM blocks as well as regular ALMs.

Multiplication of two matrices was deemed suitable for this purpose, since it requires the use of

DSP blocks for multiplication and RAM blocks for storing large matrices. The multiplication would

be done on signed integers, with negative numbers represented as two’s complement. Fixed-point

numbers were chosen for this thesis instead of floating-point numbers to save development time,

due to fixed-point arithmetic being easier to implement.

4.1 Matrix Multiplication

To perform a matrix multiplication operation, the input matrices need to be defined. Take for

example two input matrices, 𝐴 and 𝐵. When the matrix 𝐴 has 2 rows and 3 columns and the matrix

𝐵 has 3 rows and 2 columns, the multiplication of these matrices can be defined with EQUATION

1.

𝐴𝐵 = [
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23
] [

𝑏11 𝑏12

𝑏21 𝑏22

𝑏31 𝑏32

]

= [
𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 𝑎11𝑏12 + 𝑎12𝑏22 + 𝑎13𝑏32

𝑎21𝑏11 + 𝑎22𝑏21 + 𝑎23𝑏31 𝑎21𝑏12 + 𝑎22𝑏22 + 𝑎23𝑏32
]

EQUATION 1 (37.)

The matrix 𝐵 must have a number of rows equal to the number of columns in the matrix 𝐴, but the

column number of matrix 𝐵 is not limited (36).

Calculating an element in the output matrix is a multiply-accumulate operation, as can be observed

from EQUATION 1. Thus, the resource consumption and performance for matrix multiplication on

an FPGA will partly depend on how well the MAC operation can be implemented in the FPGAs

DSP blocks. The configurability of DSP blocks was described earlier in chapter 2.

26

4.2 Design Specification

To achieve consistent and comparable results, a high-level specification of the components

common to both implementations was necessary before starting the development work. In addition

to the matrix multiplication operation, various data flow, control signal and storage (RAM) options

had to be considered in order to form a component specification achievable with both design flows.

The main reason for having to create a common specification is the limitations caused by the high

level of abstraction of the HLS design flow. For example while HDLs can be used to create virtually

any kind of interfaces for components, the HLS Compiler only has a finite number of pre-determined

interface options. This limits the specification to conform with the interfaces available in the HLS

Compiler.

After studying the possibilities and limitations of the HLS Compiler, it was possible to define the

high-level specification as a starting point for the development work. The specification is shown in

FIGURE 6.

FIGURE 6. The high-level specification of the designed components

For the data flow, a simple streaming interface with handshake signals was chosen. On the input

side (on the left in FIGURE 6) it consists of busy, start and data ports. The start signal set high tells

the component that there is valid data on the data input port. The busy output signal, when high,

tells the upstream component that the component is not ready to receive data and it will not accept

27

new data even if start is raised. On the output side, the valid signal is high when new valid data has

been written into the result RAM.

Since the elements of the input matrices are accessed multiple times during the multiplication

process, a temporary cache memory is needed to store the matrices for the duration of the

operation. The cache RAM would be managed by the component and would not be accessible from

the outside. The results on the other hand were to be stored in RAM outside the component,

accessible to other components in the system.

As for the multiplication, it was decided that the component would perform the multiplication on

fixed-size matrices of a certain data width known at compile time. For the sake of simplicity the

component would perform multiplication only on matrices where the number of rows in the first

matrix equals to the number of columns in the second matrix, and the number of columns in the

first matrix equals to the number of rows in the second matrix.

4.3 RTL Implementation

4.3.1 Design

The Verilog implementation of the matrix multiplier was written first. Since designing with an HDL

requires more elaborate design work on the internal functions of the component, a more detailed

specification was crafted to better perceive the necessary constructs.

28

FIGURE 7. Initial specification of the Verilog component

Verilog designs are enclosed in modules. Each module can contain any amount of logic and can

instantiate (place into design) other modules as well, creating a hierarchical structure. As can be

seen from FIGURE 7, there are four main modules in this design in addition to the three RAM

modules. The top-level dsp_rtl_top and the dsp_rtl modules merely act as containers for

connecting the other modules to each other and contain very little logic, which is why they are not

thoroughly explained here.

Streaming to Cache RAM

The design was started from the stream_into_ram module. The purpose of this module was to

stream the incoming matrices into the cache RAMs, element-by-element. It would also be

responsible for stalling (preventing from feeding data) the upstream component for the duration of

the multiplication after receiving all the input matrix elements. Implementation of the

stream_into_ram module was rather simple with a small amount of logic for the data flow control

and a counter for addressing the RAM.

Both of the cache RAMs and the output RAM were implemented with Intel’s own 2-port RAM

Intellectual Property (IP) cores. They allow the designer to include device-optimised functions in

their design by only defining some configurable parameters (38). The IP core implementation was

mo le
 ream n o

 ram

mo le
ma r x m l ply

mo le
cache ram a

mo le re l ram

 mo le cache ram

mo le p r l op
mo le p r l

29

chosen for the memories because the method of RAM implementation was not the primary subject

of the study, instead a more higher-level perspective of embedded memory usage was needed.

Furthermore, the use of IP blocks cut the development time significantly.

The Verilog code of the stream_into_ram module is listed in Appendix 1.

Matrix Multiplier

Most of the design effort went into writing the matrix_multiply module, since it contains all of

the arithmetic logic, the majority of control logic and output RAM addressing. To better understand

the constructs needed, a more detailed specification of this module was created (FIGURE 8).

FIGURE 8. A detailed specification for the matrix_multiply module

The matrix_multiply module, listed in appendix 2, is triggered by the Clock Enable (CE) signal

which indicates that there is new data to be read at the next input RAM address. If CE is set low

during data feeding, the multiplication operation will stop and will resume as soon as CE is set back

high. Also, since the input matrices have to be read several times during the multiplication, the

matrix_multiply module must stall the streaming module from overwriting the data in the cache

RAMs until it has finished the multiplication process. This is what the BUSY signal is for. It will be

mo le ma r x m l ply

30

raised high for the duration of the multiplication process and once it is set low, the module is ready

to perform another multiplication. The BUSY signal is connected to the stream_into_ram

component, which in turn will tell the upstream component not to feed new input matrices until

BUSY is set low. The BUSY signal behaviour can be seen from a waveform capture later in FIGURE

12.

A special feature of the component is parallel MAC operations. It allows the simultaneous

calculation of multiple terms of an output matrix element, allowing the output to be generated in

less clock cycles. In FIGURE 8 the parallel MACs are shown in the middle with their output registers

(Rc1, Rc2) leading to an adder which calculates the final output matrix element.

However, there is a slight complication to the parallel MAC operation. The component was

designed to start the multiplication process as soon as there is at least one pair of input elements

available, allowing a shorter time to complete the operation since the component does not have to

wait until all the elements of the input matrices have been stored in cache RAM. This means that

when there are several parallel MAC operations taking place at the same time, the data also needs

to be input at a faster rate. This was solved by multiplying the input data port widths by the number

of parallel MAC operations, allowing the inputs to receive multiple elements of the matrices during

one clock cycle.

For instance, if the input data width is 20 bits and there are two parallel MAC operations, then the

input data ports have a width of 40 bits. FIGURE 9 shows the hexadecimal representations of the

numbers at the input ports data_a and data_b. In the case of two parallel MAC operations (the

rightmost waveform of FIGURE 9), the first of the two values that are being fed to the inputs needs

to be shifted left by a number of bits equal to the data width, while the second value is placed on

the lower, rightmost bits of the input. The values are then internally separated by the

matrix_multiply module and fed to their respective MAC modules.

31

FIGURE 9. The effect of parallel MAC operations to data input port width

The parallel MAC support was implemented because it was known that the Intel HLS Compiler has

a similar parallelisation support called loop unrolling. Comparing these two methods was intriguing,

since parallel computation is one of the biggest advantages FPGAs can offer. It provides a

significant performance benefit compared to purely sequential computation and can greatly reduce

data throughput bottlenecks in a system.

Multiply-Accumulators

The MAC operation was enclosed into a separate module called multiply_acc to improve

modularity. The number of parallel MAC operations in the matrix_multiply module is adjusted

with the parameter COMP_MULT. The Verilog language includes a structure called generate,

which makes it possible to instantiate modules several times without creating duplicate code. To

generate a configurable number of instances of the multiply_acc module, the following

generate structure was written:

// Generate multiplier-accumulators

genvar i;

generate

 for(i = 0; i < COMP_MULT; i = i + 1)

 begin: MACCGEN

 multiply_acc macc(

 .clk(clk),

 .CE(macc_CE_reg),

 .sload(macc_sload_reg[2]),

 .a(in_a_wires[i]),

 .b(in_b_wires[i]),

 .c(out_c_wires[i])

);

 defparam

 macc.DATAWIDTH = DATAWIDTH,

32

 macc.ADDITIONS = FIRSTMATRIXCOLS / COMP_MULT;

 end

endgenerate

The outputs of the generated MACs are summed in another part of code and then fed to output

RAM through output registers once the operation is complete. The multiply_acc module can

be found in appendix 3.

Status and flow control

Data flow and internal status control were implemented as a combination of a Finite State Machine

(FSM) and several internal control and status registers within the matrix_multiply module.

Depending on the state of the FSM, different operations are performed by the component.

FIGURE 10. Finite State Machine for internal state control

In FIGURE 10, the WAIT_FOR_CE state is the idle state of the component where it is ready to

begin a completely new matrix multiplication process as soon as CE is set high. The COMPUTE

state is the active state where the component is performing calculations on every clock cycle.

INTERRUPTED is the state where data feed has been interrupted before all input matrix elements

could be stored in cache RAM. An asserted reset signal or the completion of a matrix multiplication

sets the component to its idle state, WAIT_FOR_CE.

33

As mentioned before, several internal status registers determine the state of the component and

the FSM. Certain logic however, such as raising the output RAM write signal if there is valid data

to be written to output RAM, is active regardless of the FSMs state.

Determining the right conditions and assuring the correct operation when the data feed is

interrupted was not a trivial task and, together with the simulation, it took a large portion of the

module’s development time.

4.3.2 Verification

Test bench

For verification, a test bench module was written in Verilog. Its purpose was to test not only the

validity of the results of the matrix multiplication algorithm, but also to ensure that the component

behaves as expected in relation to its control signals. Since it was specified that the data feed could

be interrupted by setting the START signal low, the test bench had to ensure the validity of results

after such interrupts.

The created test bench module is listed in appendix 4. It performs two matrix multiplication

operations consecutively without a reset in between in order to verify the proper self-reset of the

internal state of the component. The test bench also interrupts the data feed twice by lowering the

START signal: once in the middle of calculations and once at a critical spot where an output element

has just been calculated and needs to be written to output RAM. The latter is depicted as a

simulation waveform in FIGURE 11.

The component is fed input bit vectors converted from a file containing hexadecimal

representations of fixed-point integers and the component output is compared to the known, correct

results loaded from a similar file. If the results produced by the component do not match the results

loaded from the file, an error message is displayed indicating the index of the mismatched result

as well as the expected and gotten values. The expected and gotten results are also written into a

file for later inspection, regardless of the validity of the results.

The input and expected output data was generated in Octave software. Octave makes matrix

multiplication a single-line operation and was an obvious choice for generating known results in a

quick manner (38).

34

Simulation in ModelSim

Once the test bench had been written it was possible to use it to verify the design. Since the test

bench notified of possible false results, it was quite difficult to miss any fatal flaws in the design.

Whenever there was an issue, however, the cause of the false results had to be found by manually

inspecting the waveform.

FIGURE 11. A waveform capture of an interrupted data feed before writing to output RAM

A captured waveform of a data feed interrupt is shown in FIGURE 11. As it can be noticed, the

component is able to continue receiving data after the interrupt and writes the output into RAM

successfully. No errors were printed, so the component worked as expected in this case.

The multiplication operation defined in EQUATION 2 can be seen performed by the component in

FIGURE 12, demonstrating the behaviour of the control signals START, BUSY and VALID as well

as proving the correctness of the results. In this simulation no interrupts were performed for clarity.

𝐶 = [
1 2 3 4 5 6
7 8 9 10 11 12

]

[

1 7
2 8
3 9
4 10
5 11
6 12]

= [
91 217
217 559

]

EQUATION 2.

35

FIGURE 12. A successful multiplication of two matrices with the RTL component

Simulations were performed throughout the development process whenever a new functionality

had to be tested. Being able to view signals of any module on any level of a design was essential

for debugging any anomalies during development, since the causes could rarely be found by

inspecting only the top-level signals.

Optimisation & Timing Analysis

Having initially verified the functionality and behaviour of the component, the design was then

further optimised for the resource usage and fMAX. Using the Intel Timing Analyzer together with the

Chip Planner, it was easy to locate the bottlenecks present in the design.

One of the major bottlenecks in the beginning was the implementation of the MACs in the FPGAs

DSP blocks. As mentioned in chapter 2, the DSP blocks in the targeted Cyclone V device can be

configured to perform MAC operations using only one DSP block per MAC. Although functionally

correct, the first implementation of the MAC module did not infer the DSP blocks in their correct

configuration, leading to excess resource usage and less than ideal fMAX.

The ideal Verilog code for implementing a MAC in the Cyclone V devices was found from Intel’s

web page. Now the DSP blocks were configured correctly (FIGURE 13), which lead to greatly

increased fMAX and only one used DSP block per MAC.

36

FIGURE 13. A DSP block in its MAC configuration viewed in Quartus

Due to hardware limitations, however, the DSP block MAC configuration is limited to input data

widths between 20 and 27 bits (11). To allow the use of the MAC configuration of the DSP blocks

with input widths less than 20 bits, a sign extension operation was added into the Verilog code.

Since signed integers were used with negative numbers represented as two’s complement, the

sign extension was performed by padding the extra bits of the extended bit vector with the value of

the most significant bit of the original number. For example, if the input width was 16 bits, the 4

extra bits would be filled with the 16th bit of the original number. This preserves the sign of the

original number and thus the result remains correct. The sign extension was implemented in Verilog

as follows:

genvar n;

genvar k;

generate

 for(n = 0; n < COMP_MULT; n = n + 1)

 begin: MACWIREGEN

37

 // Assign wires for MACs by separating input elements fr

om cache RAM output registers:

 assign in_a_wires[n][DATAWIDTH - 1:0] = in_a_reg[DATAWID

TH * COMP_MULT - DATAWIDTH * n - 1:DATAWIDTH * COMP_MULT - DATAW

IDTH * n - DATAWIDTH];

 assign in_b_wires[n][DATAWIDTH - 1:0] = in_b_reg[DATAWID

TH * COMP_MULT - DATAWIDTH * n - 1:DATAWIDTH * COMP_MULT - DATAW

IDTH * n - DATAWIDTH];

 // Sign-

extension for MACs if datawidth is less than 20 bits:

 for(k = 0; k < MACC_INPUT_WIDTH - DATAWIDTH; k = k + 1)

 begin: SIGNEXTGEN

 assign in_a_wires[n][DATAWIDTH + k:DATAWIDTH + k] =

in_a_wires[n][DATAWIDTH - 1:DATAWIDTH - 1];

 assign in_b_wires[n][DATAWIDTH + k:DATAWIDTH + k] =

in_b_wires[n][DATAWIDTH - 1:DATAWIDTH - 1];

 end

 end

endgenerate

Another major bottleneck was the physical length of the paths between ALMs and DSPs. The long

paths increased the delay between registers, which in turn lead to a worse fMAX. The delays were

mitigated by adding more registers to the input and output data paths of the MAC module.

4.4 HLS Implementation

4.4.1 Design

The initial High-Level design was written in a relatively short amount of time. The high level of

abstraction and not having to deal with control signals made designing the component very time-

efficient. No additional low level specification was needed since the HLS Compiler would make the

decisions for the underlying hardware structure. There are multiple options available in the HLS

Compiler for component interfaces and memory implementation though, and some control

regarding the optimisation of the generated hardware is given to the user as well.

38

Datatypes

Due to C++ being a programming language, it mostly uses consistent data widths for calculations.

For example, standard C++ compilers usually perform arithmetic operations on narrower standard

datatypes as 32-bit operations, even though an operation of a smaller width would suffice (31, p.

82–83). On an FPGA this would lead to excess hardware being generated unless the promotion is

circumvented. Furthermore, it is not necessarily the best choice to use standard datatypes when

designing for FPGAs if the values can be stored in smaller containers.

To simplify the implementation of narrower datatypes, the HLS Compiler includes header files that

define arbitrary-precision datatypes partly based on Algorithmic C (AC) datatypes. The AC-based

datatypes are ac_int, ac_fixed and ac_complex. The HLS Compiler also includes custom

floating point datatypes that include mantissa and exponent bit width customisations, but they will

not be explained further since they are not utilised in this thesis.

To make the implementation as efficient as possible, the ac_int datatype was used in the design.

A 20-bit signed integer datatype for example can be declared as follows:

typedef ac_int<20, true> fixed_input_t;

Any data ports and arithmetic operations using this datatype would be implemented in the minimum

data width possible. For example a sum of two fixed_input_t numbers would lead to a 21-bit

integer, since it is the minimum width the maximum possible result can fit into without overflow. (31,

p. 83.)

Interfaces

The Intel HLS Compiler has several options for interfacing with the component. Due to the specified

simple streaming interface, there were only two suitable options for the component inputs: the pass-

by-value interface and the Avalon Streaming (ST) interface.

A pass-by-value interface is the simplest interface for component invocation in the Intel HLS

Compiler. With it, on every clock cycle the input VALID signal is high and the BUSY signal is low,

a new component invocation is performed and data is read from the input ports. Below is an

example of a pass-by-value interface:

component int dsp_hls(fixed_input_t a, fixed_input_t b)

39

The above implementation would lead to top-level interfaces as shown in FIGURE 14. Unlike the

20-bit, arbitrary width input ports, the output port here is for a standard integer datatype leading to

a 32-bit wide data path. If the component function was defined to return a number of the

fixed_input_t datatype, the output would also be only 20 bits wide.

FIGURE 14. Top-level ports of a pass-by-value interface

By comparing FIGURE 14 with FIGURE 6, it can be noticed that this implementation is very similar

to the top-level specification and seems suitable for the purpose, with the start signal indicating

data validity and the busy signal stalling the upstream component. Since the right-side stall signal

is not needed in this case, it can be omitted by placing the hls_stall_free_return attribute

before the component definition. When simulating this interface option, however, it was noticed that

the Initiation Interval (II) of the component was very poor. II indicates that the minimum number of

clock cycles there has to be between invocations of a structure, in this case the entire component.

The poor II value lead to a slow data input rate, seen in FIGURE 15, which in turn increased the

number of clock cycles it would take to complete the matrix multiplication. Output data signals have

been removed from the waveform as irrelevant.

40

FIGURE 15. Pass-by-value interface data input waveform.

To bypass this issue, another input interface option, called the Avalon ST interface, was

considered. The Avalon interface family by Intel defines several different interfaces including

streaming, Memory-Mapped (MM) and interrupt interfaces. The Avalon ST interface is suitable for

high-bandwidth, low-latency data transfer and it is, at a minimum, controlled by ready and valid

signals similar to the busy and valid signals in the component specification in FIGURE 6. (62, p. 4,

40–42.)

The difference in the component behaviour is such that the component start signal only needs to

be set high once at the start of the component invocation, and after that, the data validity is indicated

by the individual valid signals of the Avalon ST interface ports.

FIGURE 16. Avalon ST interface data input waveform

The waveform in FIGURE 16 shows that the data can be input on every second clock cycle in this

case, which provides a significantly better data input rate than the pass-by-value interface. Although

41

the validity of the input data is now controlled by the separate valid signals, the behaviour is still

very similar to the specification.

The component was chosen to output data via an Avalon ST interface as well. An output RAM is

also needed to store the results and it would be implemented separately in Verilog along with a

counter for addressing the RAM. This was necessary because the Avalon ST interface by itself

provides no possibility for addressing the RAM. The final, top-level implementation of the interfaces

and output RAM is shown in FIGURE 17.

FIGURE 17. The final top-level structure of the HLS component

It would also have been possible to implement an Avalon MM interface to the output and let the

HLS Compiler handle the addressing of the RAM. Due to the extra generated control logic and

worse performance however, the MM interface was not used.

Although the Avalon ST interfaces fit well to this use case, they exhibit a significant flaw in the

current version of the HLS Compiler according to an Intel employee on the Intel Community forums:

the width of a symbol on the Avalon ST bus has to be a power of two (42). As the data was to be

transferred in one symbol, the symbol width also defines the width of the bus in this application.

Thus, the design was forced to use 32-, 64- or even 128-bit wide output streams to fit the results of

different widths, increasing the number of logic elements and making the timing closure more

difficult due to the increased number of routes.

42

Memory Implementation

Since the output RAM was chosen to be implemented manually by instantiating an IP block in

Verilog, the only memories implemented in C++ were the cache RAMs.

Memory implementation is determined automatically by default. If a large enough array is declared

in the component code, the HLS Compiler will place it in the embedded memory blocks of the

FPGA. Smaller arrays on the other hand may be implemented as registers in MLABs. This

automatic implementation can be bypassed with the hls_memory_impl attribute if necessary.

Writing the input matrices to the cache RAMs is done with two nested for loops, with the innermost

loop reading the input streams and writing them to their respective memories. Unlike the RTL

component, the HLS component does not start the multiplication process before all input matrix

elements have been stored in cache RAM. This design decision was made because a code

structure, which would have allowed the multiplication to start earlier, would have hindered the

ability of the HLS Compiler to optimise the design, especially on the loops’ part. Delaying the start

of multiplication also eliminates the need to widen the data input ports when using parallel MAC

operations and further simplifies the HLS component design.

The Intel HLS Compiler Recommended Practices document states that avoiding nested loops

would be beneficial to the performance of the component (41, p. 66). Nested loops with a known

iteration count can be automatically coalesced to a single loop, however, with the pragma

loop_coalesce. Coalescing the following loop brought some performance improvements in the

form of increased fMAX.

#pragma loop_coalesce

for(uint6 input_row_counter = 0; input_row_counter < (uint6) fir

st_matrix_rows; input_row_counter++){

 for(uint7 input_col_counter = 0; input_col_counter < (uint7)

 first_matrix_cols; input_col_counter++){

 a_mem[input_row_counter][input_col_counter] = a.read();

 b_mem[input_row_counter][input_col_counter] = b.read();

 }

}

Manually coalescing the loop was also tried in the form of the code below, but the performance

difference was negligible. The nested loop was implemented due to better readability and slightly

better performance in the cases recorded in this thesis.

43

uint6 input_row_counter = 0;

uint7 input_col_counter = 0;

while(input_row_counter < first_matrix_rows){

 a_mem[input_row_counter][input_col_counter] = a.read();

 b_mem[input_row_counter][input_col_counter] = b.read();

 input_col_counter++;

 if(input_col_counter == first_matrix_cols){

 input_col_counter = 0;

 input_row_counter++;

 }

}

Multiplication Algorithm & Loop Unrolling

Implementing a matrix multiplication operation is rather straightforward in C++. It can be done using

three nested loops, with the outermost loop iterating over the rows of the first matrix and the second

loop iterating over the columns of the second matrix. The innermost loop iterates both, the columns

of the first matrix and the rows of the second matrix. This implementation was found performing

best overall, and it was the easiest to optimise using the pragmas supported by the HLS Compiler.

Since C++ is traditionally run in a sequential manner, the parallel nature of FPGAs does not directly

fit into the C++ coding style. But as mentioned before, the HLS Compiler has a feature called loop

unrolling to help the implementation of parallel operations. It can be used to ‘unroll’ for loops by a

factor known at compile time, causing the execution of some (or all) iterations of the for loop in

parallel instead of their normal, sequential execution. In the matrix multiplier, the innermost loop

can be unrolled by a known factor to reduce the number of clock cycles it takes to calculate an

output matrix element.

The created matrix multiplier structure is shown below. If comp_mult would be defined as 2, the

structure would have its innermost loop unrolled by a factor of two. Instead of having to perform

iterations equal to the number of columns in the first matrix, it performs two loop iterations in parallel

per clock cycle, effectively halving the number of clock cycles it takes to write a result into the output

stream. In the RTL implementation this is equivalent to the MAC parallelisation written using the

generate construct of the Verilog language.

#pragma loop_coalesce 2

for(uint6 a_row = 0; a_row < (uint6) first_matrix_rows; a_row++)

{

44

 for(uint6 b_col = 0; b_col < (uint6) first_matrix_rows; b_co

l++){

 fixed_output_t c = (fixed_output_t) 0;

 #pragma ii 1

 #pragma unroll comp_mult

 for(uint7 count_primary = 0; count_primary < (uint7) fir

st_matrix_cols; count_primary++){

 c += a_mem[a_row][count_primary] * b_mem[b_col][coun

t_primary];

 }

 out_c.write(c);

 }

}

The loop_coalesce pragma is also used here. The number after it defines how many nested

loops it will coalesce, and in this case it will only coalesce the two outermost loops. The innermost

loop has also the ii pragma. It is used to force the II of the loop to be 1 using pipelining techniques,

so that a new iteration of the loop can be started in every clock cycle, even if one iteration would

take longer than a single cycle. This behaviour is depicted in FIGURE 18 and FIGURE 19.

FIGURE 18. A loop which has an II equal to the number of clock cycles an iteration takes

45

FIGURE 19. A loop with an II of one

FIGURE 18 is an extreme example of a completely unpipelined loop, where the II is equal to the

number of cycles it takes to complete one iteration. It is very inefficient compared to the ideal

scenario of a pipelined loop shown in FIGURE 19, where a new iteration can be started in every

clock cycle even though the previous one has not finished. Although achieving an II of 1 through

pipelining uses more resources, the benefits in reduced clock cycles usually outweigh the increased

FPGA area usage. The Intel HLS Compiler normally aims for a low II value, but using the II pragma

can force the compiler to achieve an II of 1, even with the cost of additional resources or reduced

fMAX.

The entire C++ source file with the implementation of the matrix multiplier component is included

in appendix 5.

4.4.2 Verification

C++ Test bench

Since the Intel HLS Compiler builds the test bench from the main function of the C++ file calling

the component function, no separate test bench is needed to test the functionality of the HLS

component.

Because very little thought needed to be put into optimisation, the test bench function was rather

effortless to write. To calculate valid results, the same matrix multiplication performed by the

component is also performed in the main function and the results are compared to each other.

46

Again, if there is a mismatch between the results, an error message would be shown during test

bench execution. The test bench function can be found together with the component function in

appendix 5.

Simulation

As a result of compiling the source file containing the component and its test bench, an executable

file is created. If the compile target is x86-64, the executable performs a high-level simulation and

no HDL is generated. Usually this flow was used in the design process whenever the component

function would not run or produce correct results. If the high-level simulation worked, the fault could

be traced to the FPGA implementation. Running a high-level simulation was quick, in the order of

seconds to perform a 32 by 64 matrix-matrix multiplication.

If the compile target is an FPGA, running the executable performs a co-simulation using the test

bench defined in the main function and the component HDL files generated by the HLS Compiler.

If the -ghdl option is used in this case, the simulation results will be stored in a waveform file

which can be opened and observed with ModelSim.

A waveform capture of the matrix multiplication defined earlier in EQUATION 2 is shown in FIGURE

20. By observing the waveform, it can be seen that the component does not begin the multiplication

operation before all input matrix elements have been received and stored, as was intended. There

are also other differences compared to the RTL component. As indicated by the a_ready and

b_ready signals, the input streaming interfaces seem to take a few clock cycles to be ready to

receive data. After that, however, they take in new data every clock cycle. In addition, the

component start signal only needs to be raised high for one clock cycle, due to the data validity

being controlled by the port-specific valid signals. There is also a done signal present which is not

included in the RTL implementation. It indicates that the component is done and ready to start a

new matrix multiply operation. However, the busy signal does not seem to be used for indicating a

running component invocation.

47

FIGURE 20. A waveform capture of a matrix multiplication performed by the HLS component

The component was also tested in a slightly modified version of the Verilog test bench intended for

the RTL component, as the HLS implementation was supposed to be nearly identical in behaviour

with the RTL implementation. The modifications adapted the test bench mainly to work with the

different start signal behaviour and streaming interfaces, but after making these changes, the

component simulated successfully in the Verilog test bench, too.

Report and Optimisation

The report file generated by the HLS Compiler helped debug and optimise the design. It was

especially helpful for pinpointing the source of a problem, such as the operation responsible for the

excess resource usage.

As an example, the System Viewer representation of the nested loops used to store the input

matrices in cache RAM is shown in FIGURE 21. By clicking the nodes in the graph more detailed

information can be acquired, like the bit width and latency of the selected operation.

48

FIGURE 21. System Viewer representation of the loops used to write into cache RAM

The Loop Analysis and Area Analysis of System sections of the report were helpful in finding the

resource and performance bottlenecks in the system and thus helped optimise the design.

The poor II of the pass-by-value interface component was troubleshooted with the help of the Loop

Analysis view. With the Loop Analysis it was observed that the latency of the operations performed

in one invocation of the component was too high to allow a lower II. It is possible that even though

the matrix multiplication operation would only be performed once all the input matrix elements had

been stored, the HLS Compiler prepares to perform the operation on any component invocation,

thus increasing the latency and II. Several optimisation efforts were made to reduce the latency to

allow the use of pass-by-value interfaces, but none were effective enough.

There was also a problem relating to the MAC operation generated by the HLS Compiler. While

the MAC operation of the RTL implementation was optimised to fit into one DSP block on the

Cyclone V, the HLS design seemed to use more than one DSP blocks even when there were no

parallel MAC operations and the data width was between 20 and 27 bits. It was confirmed from the

Area Analysis page that it was indeed the MAC operation that consumed these DSP blocks. The

problem was further studied by viewing the occupied DSP blocks in the Quartus Chip Planner and

it was noticed that they were not placed in their MAC configuration at all.

Surprisingly, according to the Intel HLS Compiler Reference Manual, it is not possible to implement

a MAC operation using only DSP blocks with anything else but floating point numbers in the Intel

49

HLS Compiler. For arbitrary precision integers, a combination of DSP blocks and ALMs is used

instead. (31, p. 140.)

50

5 RESULTS AND COMPARISON

Having completed both designs, it was possible to start collecting results of resource usage and

performance of different configurations. It was decided that the input matrices would be of a fixed

size, with the first matrix having 32 rows and 64 columns, and the second matrix having 64 rows

and 32 columns. Only the effect of changing the input data width and the number of parallel MAC

operations would be studied, since they were deemed as the most significant factors that affect the

performance and resource usage of the components.

Four different input data widths were selected: 16, 20, 27 and 32 bits. Because it was known that

the MAC operations can only be implemented inside a single DSP block on the Cyclone V device

only if the width is between 20 and 27 bits, 16 and 32 bits were selected outside that range. They

also provide more standard bit width references, both being power of two values and 32 bits being

common in modern processor architectures.

The number of parallel MAC operations was chosen to be varied among three values: 1, 2 and 4.

Having over four parallel MAC operations would consume significantly more resources and thus it

was not studied thoroughly.

The resource usage is presented in the results as the number of consumed ALMs, DSPs and RAM

blocks (BRAM). Performance on the other hand is presented with 5 different measures. One of

them is the maximum component clock frequency, fMAX. Then there is COUT, which is the number

of clock cycles between output RAM writes, and CEND, which is the number of clock cycles between

feeding the first input elements and the end of the matrix multiply operation.

The most accurate measures of the performance of the component are the output frequency (fout),

which depicts the frequency at which results are written to output RAM, and the time to finish (tend),

which depicts the time it takes to perform a complete matrix multiplication with the component. Both

of these are calculated from the component fMAX and the number of clock cycles it takes to perform

the said operations (COUT and CEND).

51

5.1 Performance Comparison

The performance results of the components with different parameters are presented in different

tables according to the input data widths. It should be noted that the input and output data widths

represent the width of the data itself, not the width of the input and output streams. In the case of

the HLS implementation, the input and output stream widths are rounded to the next largest power

of two value that can contain the data. This is due to the previously mentioned limitations of the

Avalon ST interface in the current version of HLS Compiler. On the RTL implementation the input

and output streams have the same width as the data.

Starting from the results of the 16-bit wide inputs shown in TABLE 2, it can be seen that the RTL

implementation is clearly superior to the HLS implementation in all cases. The sign extension of

the 16-bit inputs to 20 bits allow the DSP blocks to be used in their MAC configuration, providing

good results in performance. While COUT is virtually the same between the implementations, the

CEND of the HLS component is slightly worse. This is mainly because of the HLS component having

to wait until all input elements have been fed before starting the matrix multiplication process.

TABLE 2. The performance of the components with 16-bit inputs

Type Input width Output width MACs fMAX (MHz) COUT CEND fOUT (MHz) tEND (µs)

HLS 16 38 1 155.13 65 68625 2.387 442.4

RTL 16 38 1 219.68 64 65545 3.433 298.4

HLS 16 38 2 150.44 33 35857 4.559 238.3

RTL 16 38 2 207.81 32 32777 6.494 157.7

HLS 16 38 4 163.75 17 21522 9.632 131.4

RTL 16 38 4 165.95 16 16393 10.372 98.8

TABLE 3 presents the results of the components with 20-bit wide inputs. The RTL implementation

is still ahead of the HLS implementation in all of the cases. The RTL implementation does fall short

in fMAX when there are 4 parallel MAC operations, but makes up for it by having a better COUT and

CEND.

52

TABLE 3. The performance of the components with 20-bit inputs

Type Input width Output width MACs fMAX (MHz) COUT CEND fOUT (MHz) tEND (µs)

HLS 20 46 1 154.11 65 70678 2.371 458.6

RTL 20 46 1 218.25 64 65545 3.410 300.3

HLS 20 46 2 159.36 33 37909 4.829 237.9

RTL 20 46 2 211.91 32 32777 6.622 154.7

HLS 20 46 4 167.98 17 21526 9.881 128.1

RTL 20 46 4 158.55 16 16393 9.909 103.4

When the input width is raised to 27 bits, the HLS component encounters major performance loss

when measuring fOUT and tEND, as can be observed from TABLE 4. This is because the HLS

Compiler failed to achieve an II of 1 for the inner loop of the matrix multiplication despite using the

ii pragma. The best II value it could achieve was 2, which meant that the value of COUT doubled

and therefore fOUT was halved.

TABLE 4. The Performance of the components with 27-bit inputs

Type Input width Output width MACs fMAX (MHz) COUT CEND fOUT (MHz) tEND (µs)

HLS 27 60 1 147.73 131 136210 1.128 922.0

RTL 27 60 1 215.33 64 65545 3.365 304.4

HLS 27 60 2 147.23 67 70676 2.197 480.0

RTL 27 60 2 195.69 32 32777 6.115 167.5

HLS 27 60 4 146.99 35 39955 4.200 271.8

RTL 27 60 4 144.53 16 16393 9.033 113.4

However, it was discovered that the HLS Compiler was able to reach an II of 1 for the inner loop

by forcing a lower target frequency with the --clock option. For this purpose, a target of 100 MHz

was used and the results are shown in TABLE 5. Now fOUT and tEND of the HLS component are

improved, but the performance is still not on par with the RTL implementation due to the lower fMAX.

53

TABLE 5. The performance of the components with 27-bit inputs when the HLS clock target is 100
MHz

Type Input width Output width MACs fMAX (MHz) COUT CEND fOUT (MHz) tEND (µs)

HLS 27 60 1 132.05 65 68622 2.032 519.7

RTL 27 60 1 215.33 64 65545 3.365 304.4

HLS 27 60 2 128.95 33 35854 3.908 278.0

RTL 27 60 2 195.69 32 32777 6.115 167.5

HLS 27 60 4 128.49 17 19470 7.558 151.5

RTL 27 60 4 144.53 16 16393 9.033 113.4

TABLE 6 shows the results with 32-bit inputs. Now the RTL implementation suffers from a terrible

fMAX, since the DSP blocks can no longer be placed in their MAC configuration due to the input

width being over 27 bits. Again, the HLS Compiler was not able to reach an II of 1 with the default

settings. This was solved by setting the target frequency to 100 MHz, allowing the HLS design to

surpass the RTL design in terms of performance.

TABLE 6. The performance of the components with 32-bit inputs when the HLS clock target is
100MHz

Type Input width Output width MACs fMAX (MHz) COUT CEND fOUT (MHz) tEND (µs)

HLS 32 70 1 104.57 65 68622 1.609 656.2

RTL 32 70 1 82.89 64 65545 1.295 790.7

HLS 32 70 2 116.33 33 35855 3.525 308.2

RTL 32 70 2 85.57 32 32777 2.674 383.0

HLS 32 70 4 111.96 17 19471 6.586 173.9

RTL 32 70 4 83.56 16 16393 5.223 196.2

Across the results of all data widths, it would appear that the HLS Compiler is good at keeping the

fMAX of the component consistent: While the fMAX of the RTL component drops all the way from the

highest frequency of 219.64 MHz to the lowest of 82.89 MHz, resulting in a delta of 136.75 MHz,

the delta of the best and the worst fMAX of the HLS component was 63.41 MHz and it would have

been even lower if the --clock option would not have been used with 27 and 32-bit inputs.

54

5.2 Resource Usage Comparison

In order to evaluate the QoR of the implementations as a whole, the resource consumption was

studied as well. In case of the 16-bit inputs (TABLE 7), the HLS component always uses more

ALMs than the RTL component, but less DSP blocks when there are 2 or 4 parallel MACs. When

cross-comparing these results to the equivalent performance results in TABLE 2, the use of HLS

in this case can hardly be justified. However, the performance of the HLS implementation is quite

close to the RTL performance when there are 4 parallel MACs.

TABLE 7. The resource usage of the components with 16-bit inputs

Type Input width Output width MACs ALMs DSPs BRAM

HLS 16 38 1 261.6 1 12

RTL 16 38 1 69.0 1 12

HLS 16 38 2 270.2 1 12

RTL 16 38 2 83.0 2 12

HLS 16 38 4 311.7 2 12

RTL 16 38 4 112.5 4 12

With 20-bit inputs the HLS implementation still cannot compete in resources, as can be seen from

TABLE 8. Compared to the equivalent results of 16-bit inputs, the resource consumption of the HLS

component has nearly doubled in some cases. In the worst scenario, 4 times the DSP blocks and

nearly 5 times the ALMs are consumed compared to the RTL implementation. Considering this and

the slightly worse performance of the HLS component with this input width, the RTL implementation

would be a better choice with 20-bit inputs.

TABLE 8. The resource usage of the components with 20-bit inputs

Type Input width Output width MACs ALMs DSPs BRAM

HLS 20 46 1 399.2 4 15

RTL 20 46 1 71.5 1 13

HLS 20 46 2 441.1 8 13

RTL 20 46 2 98.5 2 13

HLS 20 46 4 611.6 16 13

RTL 20 46 4 129.0 4 13

55

The situation is not improving with an input width of 27 bits either. As can be seen from TABLE 9,

the resource usage is again several times larger in the HLS implementation, except for BRAM.

These results are with the default compiler settings and an II of 2 for the inner loop.

With the --clock 100MHz option however, resource usage drops significantly for the HLS design

as is shown in TABLE 10. This is likely because the HLS Compiler does not need to create any

stall logic for the inner loop, which now only takes 1 iteration instead of 2. In addition, if the target

frequency is lower, less registers need to be placed into the design to achieve it. Still, the HLS

implementation uses up to 3 times more resources than the RTL implementation.

TABLE 9. The resource usage of the components with 27-bit inputs

Type Input width Output width MACs ALMs DSPs BRAM

HLS 27 60 1 509.1 3 18

RTL 27 60 1 85.5 1 18

HLS 27 60 2 585.3 5 18

RTL 27 60 2 115.5 2 18

HLS 27 60 4 705.4 10 18

RTL 27 60 4 154.0 4 18

TABLE 10. The resource usage of the components with 27-bit inputs when the HLS clock target is
100MHz

Type Input width Output width MACs ALMs DSPs BRAM

HLS 27 60 1 255.7 1 18

RTL 27 60 1 85.5 1 18

HLS 27 60 2 270.1 2 18

RTL 27 60 2 115.5 2 18

HLS 27 60 4 312.8 4 18

RTL 27 60 4 154.0 4 18

In TABLE 11, the results of the 32-bit inputs show that the HLS component uses less DSP blocks

in some cases, since the MAC operation cannot be implemented with a single DSP block with this

data width. The HLS component does still uses more ALMs, but not as substantially in the case of

4 parallel MACs. Unless the non-optimal implementation of the MACs in the RTL design is solved,

the HLS design could be a viable option if performance is a priority and there are excess ALMs

available.

56

TABLE 11. The resource usage of the components with 32-bit inputs when the HLS clock target is
100MHz

Type Input width Output width MACs ALMs DSPs BRAM

HLS 32 70 1 301.2 3 21

RTL 32 70 1 142.5 3 21

HLS 32 70 2 330.7 4 23

RTL 32 70 2 231.0 6 21

HLS 32 70 4 430.9 8 23

RTL 32 70 4 376.0 12 21

Curiously enough, the BRAM usage sometimes varies in the HLS implementation with different

numbers of parallel MACs, unlike in the RTL implementation. It was noticed from the HTML reports

that the HLS Compiler automatically adjusts the widths of the accesses to the cache RAMs

according to the number of parallel MACs and this also seems to affect the total number of

consumed RAM blocks.

5.3 Overall Evaluation

Looking at the performance and resource usage results, the HLS implementation seems to fall

behind the RTL implementation in most cases. However, the fMAX results of the HLS implementation

are more consistent with different parameters compared to the results of the RTL implementation.

As mentioned before, an II of 1 for the inner loop in the HLS design was achieved with 27 and 32-

bit inputs by using the --clock option of the HLS Compiler to force a lower target frequency.

According to the Intel HLS Compiler Reference Manual though, the HLS Compiler should have

tried to achieve the specified II even when the --clock option was not used (31, p. 99). It is unsure

whether this is a bug or the intended behaviour of the HLS Compiler.

Although the RTL design was parametrised so that no modifications to the modules would be

necessary when changing the data width and parallel MACs, wildly different performance results

were produced with different parameters. The design could likely be optimised further to better

meet the needs of different data widths and different number of parallel MACs. The optimisation

would require a significant effort though, and it is possible that different implementations would be

required for different parameters. For instance, different Verilog implementations of the MAC

57

modules would likely have to be used whenever the data width prevents the use of the MAC

configuration of the DSP blocks.

The HLS Compiler is better in this regard. While creating a design from the ground up with an HDL

achieves far superior results for a narrow set of parameters, the HLS Compiler succeeds at

providing consistent performance results even with radically different parameters, albeit at the cost

of resources. An example of this is the implementation of the MAC operation: By not using the MAC

configuration of the FPGA’s DSP blocks on any data width, the HLS Compiler ensures a consistent

performance across all data widths. This, however, completely cancels out the benefits from having

such specialised embedded constructs on the FPGA. Although it can be speculated that this design

decision has been made to ease the synthesis process of the HLS Compiler, a possibility to force

the compiler to use a different implementation could be beneficial.

The development of the HLS component took less than half the time it took to develop the RTL

component, with the most time being consumed in finding the correct pragmas and compiler options

for the HLS Compiler to produce the best results. No separate test bench needed to be coded apart

from the high-level one described in the source file itself. The verification of the RTL design on the

other hand took a lot of time, more than the development of the component itself. Although some

of the development time of both designs was spent in learning the tools and methods, it is clear

that the HLS design flow was both easier to learn and quicker to develop with.

A theoretical advantage of HLS is the portability of the high-level code. Optimally, the code written

for HLS is pure high-level code with no device-specific optimisations and the HLS tools would

perform these optimisations automatically. While RTL code can also be written in a way that allows

it to be synthesised for different FPGAs even from different manufacturers, optimising the code for

specific hardware can require significant effort.

In this work the C++ code of the component function is rather pure with little optimisations. The only

parts of the component code that are specific to the Intel HLS Compiler are the pragmas used in

the loops of the component and the Avalon streaming interfaces. However, if there are no similar

streaming interfaces available in the targeted HLS tool, the code structure has to be modified. Had

the pass-by-value interfaces been used instead, the component function would be almost

completely portable with very little modifications.

58

5.4 Verdict

Having been released as late as 2017, the HLS Compiler is still a relatively new tool on the market

and is clearly a work-in-progress: Not all Intel FPGA families can be targeted, only one simulation

tool is supported and the HTML report has some views that are stated to be in a beta or alpha state.

Also, the Avalon interface symbol width restriction is yet to be fixed, although it was acknowledged

as an issue already in 2020 (42). Even if these issues may not be critical for development, it might

be worthwhile to research other available tools as well while the Intel HLS Compiler evolves further.

That said, the Intel HLS Compiler may be a useful tool for projects that require swift development

of a DSP component, which does not need to have the absolute best performance. Due to the easy

implementation of Avalon interfaces, the HLS Compiler could also prove useful in accelerator

applications where data processing is offloaded from the CPU to an application-specific

component. It is not, however, suitable for implementing control logic due to its interface limitations,

nor should it be used in high throughput communication or data processing applications due to its

performance limits. In smaller FPGAs and resource-critical applications, the available logic

elements would be better utilised by designing components traditionally with an HDL due to the

higher resource consumption of the HLS designs.

59

6 CONCLUSION

The aim of this thesis was to study the feasibility of using the Intel HLS Compiler in FPGA design

by comparing the QoR of a design implemented in Verilog to the QoR of the same design

implemented with C++ and the Intel HLS Compiler. By defining a common specification, two

components with negligible differences in behaviour (caused by the interface limitations of the HLS

Compiler) were created. The best-case results of both implementations were then collected and

compared to each other in order to evaluate the HLS Compiler.

The study process in its entirety was reasonably challenging. Before beginning the development of

either of the components, the limitations and possibilities of the HLS Compiler had to be studied.

After all, if the implementations would not provide the same functionality, the comparison between

them would not be valid. In addition, the author had not designed for FPGAs this extensively before,

only having written a handful of circuits in VHDL. Verilog, timing analysis and some of the design

tools were not familiar at all and took some time to learn. Toward the end of the development of

the RTL component however, writing circuit descriptions in Verilog and using the design tools had

become fluent.

Due to the Intel HLS Compiler being a relatively new tool, not many studies of it exist. Therefore,

this thesis could prove useful when assessing whether to use the Intel HLS Compiler for FPGA

design or not. For the same reason the results may not be valid for a long time, however, since the

QoR is likely to be impacted by future updates. On the other hand, this thesis provides a reference

point for possibly comparing a future version of the tool to the current version, 21.2.

As a whole, the thesis work can be considered a success. A clear verdict could be drawn from the

results, providing an evaluation of the Intel HLS Compiler and paving way for further studies on it.

These future studies could involve more complicated components and more extensive trials of

using the different pragmas and attributes of the Intel HLS Compiler. Another interesting approach

would be to implement one or more components of a larger system with the HLS Compiler and see

how much time could be saved by using it when it is feasible.

60

REFERENCES

1. Nane, Razvan, Sima, Vlad-Mihai, Pilato, Christian, Choi, Jongsok, Fort, Blair, Canis,
Andrew, Chen, Yu Ting, Hsiao, Hsuan, Brown, Stephen, Ferrandi, Fabrizio, Anderson,
Jason & Bertels, Koen 2015. A Survey and Evaluation of FPGA High-Level Synthesis
Tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
35 (10). Accessed 22.7.2021. https://ieeexplore.ieee.org/document/7368920. Requires a
license.

2. Intel. Intel High Level Synthesis Compiler. Accessed 3.8.2021.
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-
compiler.html.

3. Xilinx 2021. Vivado Design Suite User Guide. High-Level Synthesis. Accessed 3.8.2021.
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-
high-level-synthesis.pdf.

4. Xilinx. Vitis Unified Software Development Platform 2021.1 Documentation. Accessed
3.8.2021.
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/introductionvitishls.html.

5. National Instruments 2020. FPGA Fundamentals. Accessed 22.7.2021.
https://www.ni.com/fi-fi/innovations/white-papers/08/fpga-fundamentals.html#section-
1251506615.

6. Xilinx 2021. Opening a World of Possibilities: Vitis HLS Front-end is Now Open Source for
All on GitHub. Accessed 22.7.2021. https://forums.xilinx.com/t5/AI-and-Machine-Learning-
Blog/Opening-a-World-of-Possibilities-Vitis-HLS-Front-end-is-Now-Open/ba-p/1211207.

7. Etteplan. Accessed 22.7.2021. https://www.etteplan.com/

8. Etteplan. FPGA competence group meeting 31.5.2021.

9. Maxfield, Clive 2011. FPGAs: Instant Access. Oxford, UK: Newnes.

10. Maxim integrated 2008. What is a Transmission Gate (Analog Switch)? Accessed
26.7.2021. https://www.maximintegrated.com/en/design/technical-
documents/tutorials/4/4243.html.

11. Altera corporation 2020. Cyclone V Device Handbook Volume 1: Device Interfaces and
Integration. Accessed 26.7.2021.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-
v/cv_5v2.pdf.

12. Intel. Adaptive Logic Module (ALM) Definition. Accessed 26.7.2021.
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProject
s/reference/glossary/def_alm.htm.

13. FPGAKey. Slice. Accessed 26.7.2021. https://www.fpgakey.com/wiki/details/52.

14. National Instruments 2020. Slices on an FPGA Chip. Accessed 26.7.2021.
https://www.ni.com/fi-fi/support/documentation/supplemental/18/slices-on-an-fpga-
chip.html.

https://ieeexplore.ieee.org/document/7368920
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/introductionvitishls.html
https://www.ni.com/fi-fi/innovations/white-papers/08/fpga-fundamentals.html#section-1251506615
https://www.ni.com/fi-fi/innovations/white-papers/08/fpga-fundamentals.html#section-1251506615
https://forums.xilinx.com/t5/AI-and-Machine-Learning-Blog/Opening-a-World-of-Possibilities-Vitis-HLS-Front-end-is-Now-Open/ba-p/1211207
https://forums.xilinx.com/t5/AI-and-Machine-Learning-Blog/Opening-a-World-of-Possibilities-Vitis-HLS-Front-end-is-Now-Open/ba-p/1211207
https://www.etteplan.com/
https://www.maximintegrated.com/en/design/technical-documents/tutorials/4/4243.html
https://www.maximintegrated.com/en/design/technical-documents/tutorials/4/4243.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v2.pdf
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/reference/glossary/def_alm.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/reference/glossary/def_alm.htm
https://www.fpgakey.com/wiki/details/52
https://www.ni.com/fi-fi/support/documentation/supplemental/18/slices-on-an-fpga-chip.html
https://www.ni.com/fi-fi/support/documentation/supplemental/18/slices-on-an-fpga-chip.html

61

15. Altera Corporation 2005. Stratix II vs. Virtex-4 Density Comparison. Accessed 26.7.2021.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wpstxiixl
nx.pdf.

16. Intel 2017. DSP block definition. Accessed 27.7.2021.
https://www.intel.com/content/www/us/en/programmable/quartushelp/17.0/reference/glos
sary/def_dsp_block.htm.

17. Xilinx 2020. UltraScale Architecture. DSP Slice. Accessed 27.7.2021.
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf.

18. Holdsworth, Brian & Woods, Clive 2002. Digital Logic Design. Fourth edition. Oxford, UK:
Newnes.

19. Navabi, Zainalabedin & Kaeli, David R. 2009. Computer Science and Engineering. Oxford,
UK: EOLSS Publishers/UNESCO.

20. Mehler, Ronald W. 2014. Digital Integrated Circuit Design Using Verilog and
SystemVerilog. Oxford, UK: Newnes.

21. Smith, Gina 2010. FPGAs 101. Everything you need to know to get started. Oxford, UK:
Newnes.

22. Intel. About the Netlist Viewers. Accessed 3.8.2021.
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProject
s/verify/rtl/rtl_view.htm.

23. Intel. About the Chip Planner. Accessed 3.8.2021.
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProject
s/optimize/ace/acv_view_acv_overview.htm.

24. Joe Sawicki 2020. Redefining Electronic Design Automation, an IC Perspective. Accessed
3.8.2021. https://blogs.sw.siemens.com/news/redefining-electronic-design-automation/.

25. Intel. ModelSim - Intel FPGA Edition Software. Accessed 3.8.2021.
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-
sim.html.

26. Siemens 2019. HDL Simulation. ModelSim. Accessed 3.8.2021.
https://static.sw.cdn.siemens.com/siemens-disw-
assets/public/6gMVEbq0wlPDGdqA1yvNuE/en-
US/Siemens%20SW%20HDL%20Simulation%20ModelSim%20FS%2078330%20C2.pdf
.

27. Intel. ModelSim – Intel FPGA Edition Software. Accessed 4.9.2021.
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-
sim.html.

28. Intel 2018. Intel Quartus Prime Standard Edition: User Guide. Timing Analyzer. Accessed
4.8.2021.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qps-
timing-analyzer.pdf.

29. Intel 2019. Timing Constraints. Accessed 4.8.2021. https://community.intel.com/t5/FPGA-
Wiki/Timing-Constraints/ta-p/735562.

30. Intel. Specifying Timing Constraints and Exceptions (TimeQuest Timing Analyzer).
Accessed 4.8.2021.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wpstxiixlnx.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wpstxiixlnx.pdf
https://www.intel.com/content/www/us/en/programmable/quartushelp/17.0/reference/glossary/def_dsp_block.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/17.0/reference/glossary/def_dsp_block.htm
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/verify/rtl/rtl_view.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/verify/rtl/rtl_view.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/optimize/ace/acv_view_acv_overview.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/optimize/ace/acv_view_acv_overview.htm
https://blogs.sw.siemens.com/news/redefining-electronic-design-automation/
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html
https://static.sw.cdn.siemens.com/siemens-disw-assets/public/6gMVEbq0wlPDGdqA1yvNuE/en-US/Siemens%20SW%20HDL%20Simulation%20ModelSim%20FS%2078330%20C2.pdf
https://static.sw.cdn.siemens.com/siemens-disw-assets/public/6gMVEbq0wlPDGdqA1yvNuE/en-US/Siemens%20SW%20HDL%20Simulation%20ModelSim%20FS%2078330%20C2.pdf
https://static.sw.cdn.siemens.com/siemens-disw-assets/public/6gMVEbq0wlPDGdqA1yvNuE/en-US/Siemens%20SW%20HDL%20Simulation%20ModelSim%20FS%2078330%20C2.pdf
https://static.sw.cdn.siemens.com/siemens-disw-assets/public/6gMVEbq0wlPDGdqA1yvNuE/en-US/Siemens%20SW%20HDL%20Simulation%20ModelSim%20FS%2078330%20C2.pdf
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qps-timing-analyzer.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qps-timing-analyzer.pdf
https://community.intel.com/t5/FPGA-Wiki/Timing-Constraints/ta-p/735562
https://community.intel.com/t5/FPGA-Wiki/Timing-Constraints/ta-p/735562

62

https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProject
s/analyze/sta/sta_pro_constraints.htm.

31. Intel 2021. Intel High-Level Synthesis Compiler Pro Edition Reference Manual. Accessed
10.6.2021.
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960
255.html.

32. Intel. Simulation with the NativeLink Feature in Quartus II Software. Accessed 4.8.2021.
https://www.intel.com/content/www/us/en/programmable/support/support-
resources/design-examples/design-software/simulation/modelsim/exm-ncsim-native-
link.html.

33. Intel 2021. Intel High-Level Synthesis Compiler Pro Edition: User Guide. Accessed
4.8.2021.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-
hls.pdf.

34. Intel 2017. Introduction to High-Level Synthesis (Part 1 of 7). Accessed 4.8.2021.
https://www.youtube.com/watch?v=nYbw9k7KNJ4.

35. Intel 2020. Timing Analyzer: Introduction to Timing Analysis. Accessed 16.8.2021.
https://www.youtube.com/watch?v=HMAqjjCuDEI.

36. Nykamp, Duane. Multiplying matrices and vectors. Accessed 24.8.2021.
https://mathinsight.org/matrix_vector_multiplication.

37. Weisstein, Eric W. Matrix Multiplication. Accessed 24.8.2021.
https://mathworld.wolfram.com/MatrixMultiplication.html.

38. Intel 2020. Introduction to Intel FPGA IP Cores. Accessed 27.8.2021.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_intro_
to_megafunctions.pdf.

39. Octave. Arithmetic Operators. Accessed 26.8.2021.
https://octave.org/doc/v4.0.3/Arithmetic-Ops.html.

40. Intel 2021. Avalon Interface Specifications. Accessed 26.8.2021.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_
avalon_spec.pdf.

41. Intel 2021. Intel High Level Synthesis Compiler Pro Edition: Best Practices Guide.
Accessed 26.8.2021.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-
hls-best-practices.pdf.

42. Intel Community Forums user and Intel Employee whitepau 2020. Intel Community Forum
message. Accessed 30.8.2021. https://community.intel.com/t5/Intel-High-Level-
Design/About-10bitsPerSymbol-of-ihc-stream-out/m-p/692172#M625.

https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/analyze/sta/sta_pro_constraints.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/analyze/sta/sta_pro_constraints.htm
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/simulation/modelsim/exm-ncsim-native-link.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/simulation/modelsim/exm-ncsim-native-link.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/simulation/modelsim/exm-ncsim-native-link.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls.pdf
https://www.youtube.com/watch?v=nYbw9k7KNJ4
https://www.youtube.com/watch?v=HMAqjjCuDEI
https://mathinsight.org/matrix_vector_multiplication
https://mathworld.wolfram.com/MatrixMultiplication.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_intro_to_megafunctions.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_intro_to_megafunctions.pdf
https://octave.org/doc/v4.0.3/Arithmetic-Ops.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls-best-practices.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls-best-practices.pdf
https://community.intel.com/t5/Intel-High-Level-Design/About-10bitsPerSymbol-of-ihc-stream-out/m-p/692172#M625
https://community.intel.com/t5/Intel-High-Level-Design/About-10bitsPerSymbol-of-ihc-stream-out/m-p/692172#M625

63

APPENDICES

Appendix 1. Verilog code of the stream_into_ram module.

Appendix 2. Verilog code of the matrix_multiply module.

Appendix 3. Verilog code of the multiply_acc module.

Appendix 4. Verilog code of the RTL test bench module.

Appendix 5. C++ code of the HLS implementation and test bench.

 APPENDIX 1/1

// Module to stream incoming data into block RAM

module stream_into_ram(

 clk,

 RST,

 CE,

 CE_out,

 busy,

 stall,

 data_a,

 data_b,

 ram_a_addr,

 ram_a_data,

 ram_a_write,

 ram_b_addr,

 ram_b_data,

 ram_b_write);

 parameter RAM_ADDRESS_WIDTH = 12;

 parameter DATAWIDTH = 16;

 parameter FIRSTMATRIXROWS = 32; // Row number of first matrix, column

 number of second matrix

 parameter FIRSTMATRIXCOLS = 64; // Colum number of first matrix, row

of second matrix

 parameter COMP_MULT = 1; // Affects how many elements from each matri

x are read from RAM

 input wire RST, CE, clk, stall;

 input wire [DATAWIDTH*COMP_MULT-1:0] data_a;

 input wire [DATAWIDTH*COMP_MULT-1:0] data_b;

 output reg CE_out;

 output wire ram_a_write, ram_b_write;

 output wire [RAM_ADDRESS_WIDTH-1:0] ram_a_addr;

 output reg [DATAWIDTH*COMP_MULT-1:0] ram_a_data;

 output wire [RAM_ADDRESS_WIDTH-1:0] ram_b_addr;

 output reg [DATAWIDTH*COMP_MULT-1:0] ram_b_data;

 output reg busy;

 reg [RAM_ADDRESS_WIDTH-1:0] ram_addr_reg;

 reg CE_in_reg;

 assign ram_a_write = CE_in_reg & !busy;

 assign ram_b_write = CE_in_reg & !busy;

 assign ram_a_addr = ram_addr_reg;

 assign ram_b_addr = ram_addr_reg;

 APPENDIX 1/2

 always @(posedge clk)

 begin

 if(!RST)

 begin

 ram_addr_reg <= 0;

 ram_a_data <= 0;

 ram_b_data <= 0;

 CE_out <= 0;

 CE_in_reg <= 0;

 busy <= 0;

 end

 else

 begin

 CE_in_reg <= CE;

 ram_a_data <= data_a;

 ram_b_data <= data_b;

 CE_out <= CE_in_reg;

 if(CE_in_reg & !busy)

 begin

 ram_addr_reg <= ram_addr_reg + 1;

 end

 // If we reach the end of the defined matrix size

 if(ram_addr_reg == FIRSTMATRIXROWS*FIRSTMATRIXCOLS/COMP_MULT-

1)

 begin

 ram_addr_reg <= 0;

 busy <= 1; // Raise busy out to stall upstream component

from writing

 end

 // If busy_reg is high, lower it only when stall is asserted

 if(busy)

 begin

 if(!stall)

 begin

 busy <= 0;

 end

 end

 end

 end

endmodule

 APPENDIX 2/1

// Matrix multiplier

 module matrix_multiply(

 RST,

 CE,

 busy,

 clk,

 CE_out,

 inputram_a_addr,

 inputram_a_read,

 inputram_a_q,

 inputram_b_addr,

 inputram_b_read,

 inputram_b_q,

 outputram_addr,

 outputram_data,

 outputram_write);

 parameter DATAWIDTH = 16;

 parameter FIRSTMATRIXROWS = 32; // Row number of first matrix, column

 number of second matrix

 parameter FIRSTMATRIXCOLS = 64; // Colum number of first matrix, row

number of second matrix

 parameter COMP_MULT = 1; // Factor to multiply inferred components (m

ultipliers, adders etc..) by. Increases resource usage but multiply opera

tion will be done in less clock cycles

 parameter INPUT_RAM_ADDRESS_WIDTH = 11;

 parameter OUTPUT_RAM_ADDRESS_WIDTH = 10;

 localparam MACC_INPUT_WIDTH = (DATAWIDTH < 20) ? 20 : DATAWIDTH;

 localparam MACC_OUTPUT_WIDTH = DATAWIDTH * 2 + $clog2(FIRSTMATRIXCOLS

 / COMP_MULT); // Multiply-adders output width

 localparam INPUT_RAM_DATAWIDTH = DATAWIDTH * COMP_MULT;

 localparam OUTPUT_RAM_DATAWIDTH = DATAWIDTH * 2 + $clog2(FIRSTMATRIXC

OLS);

 localparam PRIMARY_COUNTER_WIDTH = $clog2(FIRSTMATRIXCOLS / COMP_MULT

);

 localparam STATE_WIDTH = 2;

 localparam [STATE_WIDTH - 1:0] // States

 WAIT_FOR_CE = 0,

 COMPUTE = 1,

 INTERRUPTED = 2;

 input wire RST, CE, clk;

 output wire CE_out, busy;

// reg CE_in_reg;

 reg CE_out_reg;

 reg busy_reg;

 APPENDIX 2/2

 // Registers for tracking internal state

 reg [STATE_WIDTH - 1:0] state_current;

 reg [PRIMARY_COUNTER_WIDTH:0] count_primary;

 reg output_pending;

 reg stalling;

// reg start;

 // Input RAM wires

 output wire [INPUT_RAM_ADDRESS_WIDTH - 1:0] inputram_a_addr;

 input wire [INPUT_RAM_DATAWIDTH - 1:0] inputram_a_q;

 output wire inputram_a_read;

 output wire [INPUT_RAM_ADDRESS_WIDTH - 1:0] inputram_b_addr;

 input wire [INPUT_RAM_DATAWIDTH - 1:0] inputram_b_q;

 output wire inputram_b_read;

 // Output RAM wires

 output wire [OUTPUT_RAM_ADDRESS_WIDTH - 1:0] outputram_addr;

 output wire [OUTPUT_RAM_DATAWIDTH - 1:0] outputram_data;

 output wire outputram_write;

 // Output RAM control registers

 reg [OUTPUT_RAM_ADDRESS_WIDTH - 1:0] outputram_addr_reg;

 reg [OUTPUT_RAM_DATAWIDTH - 1:0] outputram_data_reg;

 reg outputram_write_reg;

 // Input RAM control registers

 reg [INPUT_RAM_ADDRESS_WIDTH - 1:0] inputram_a_addr_reg;

 reg [INPUT_RAM_ADDRESS_WIDTH - 1:0] inputram_b_addr_reg;

 reg inputram_read_reg;

 // Multiply-accumulator registers

 reg [INPUT_RAM_DATAWIDTH - 1:0] in_a_reg ;

 reg [INPUT_RAM_DATAWIDTH - 1:0] in_b_reg ;

 reg signed [OUTPUT_RAM_DATAWIDTH - 1:0] final_output_reg;

 wire [MACC_INPUT_WIDTH - 1:0] in_a_wires [0:COMP_MULT-1];

 wire [MACC_INPUT_WIDTH - 1:0] in_b_wires [0:COMP_MULT-1];

 wire signed [MACC_OUTPUT_WIDTH - 1:0] out_c_wires [0:COMP_MULT - 1];

 reg signed [MACC_OUTPUT_WIDTH - 1:0] out_c_regs [0:COMP_MULT - 1];

 reg macc_CE_reg;

 reg [4:0] macc_sload_reg;

 // Counter a and b end wires rise when their respective input RAM add

resses reach their end values

 wire counter_a_end;

 wire counter_b_end;

 APPENDIX 2/3

 wire counter_primary_end; // Rises every FIRSTMATRIXCOLS / COMP_MULT

cycles

 wire can_compute;

 // Connect RAM control wires to their registers

 assign inputram_a_read = inputram_read_reg;

 assign inputram_a_addr = inputram_a_addr_reg + count_primary;

 assign inputram_b_read = inputram_read_reg;

 assign inputram_b_addr = inputram_b_addr_reg;

 assign outputram_data = outputram_data_reg;

 assign outputram_write = outputram_write_reg;

 assign outputram_addr = outputram_addr_reg;

 assign counter_a_end = (inputram_a_addr == (FIRSTMATRIXROWS * FIRSTMA

TRIXCOLS) / COMP_MULT - 1);

 assign counter_b_end = (inputram_b_addr_reg == (FIRSTMATRIXROWS * FIR

STMATRIXCOLS) / COMP_MULT - 1);

 assign counter_primary_end = (count_primary == FIRSTMATRIXCOLS / COMP

_MULT - 1);

 // can_compute indicates if we have data to run the component forward

.

 // It will go LOW if CE goes LOW before all data is fed into cache ra

m,

 // triggering the INTERRUPT state.

 assign can_compute = CE | (! CE & stalling);

 assign CE_out = CE_out_reg;

 assign busy = busy_reg;

 // Final adder input registers

 integer j;

 always @(posedge clk)

 begin

 for(j = 0; j < COMP_MULT; j = j + 1)

 begin

 // Not wiring reset to these improves fMAX 10-

15 MHz in some cases, although out_c_regs are inferred in ALM's

// if(!RST)

// begin

// out_c_regs[j] <= 0;

// end else

// begin

 out_c_regs[j] <= out_c_wires[j];

// end

 end

 APPENDIX 2/4

 end

 // Combinational adder for outputs of multiplier-accumulators

 // Calculates the final addition for storing in output RAM

 // Note: When COMP_MULT > 2, this will infer combinational chains of

adders, which limits fMAX.

 always @(*)

 begin

 final_output_reg = 0;

 for(j = 0; j < COMP_MULT; j = j + 1)

 begin

 final_output_reg = final_output_reg + out_c_regs[j];

 end

 end

 genvar n;

 genvar k;

 generate

 for(n = 0; n < COMP_MULT; n = n + 1)

 begin: MACWIREGEN

 // Assign wires for MACs by separating input elements from ca

che RAM output registers:

 assign in_a_wires[n][DATAWIDTH - 1:0] = in_a_reg[DATAWIDTH *

COMP_MULT - DATAWIDTH * n - 1:DATAWIDTH * COMP_MULT - DATAWIDTH * n - DAT

AWIDTH];

 assign in_b_wires[n][DATAWIDTH - 1:0] = in_b_reg[DATAWIDTH *

COMP_MULT - DATAWIDTH * n - 1:DATAWIDTH * COMP_MULT - DATAWIDTH * n - DAT

AWIDTH];

 // Sign-extension for MACs if datawidth is less than 20 bits:

 for(k = 0; k < MACC_INPUT_WIDTH - DATAWIDTH; k = k + 1)

 begin: SIGNEXTGEN

 assign in_a_wires[n][DATAWIDTH + k:DATAWIDTH + k] = in_a_

wires[n][DATAWIDTH - 1:DATAWIDTH - 1];

 assign in_b_wires[n][DATAWIDTH + k:DATAWIDTH + k] = in_b_

wires[n][DATAWIDTH - 1:DATAWIDTH - 1];

 end

 end

 endgenerate

 // Generate multiplier-accumulators

 genvar i;

 generate

 for(i = 0; i < COMP_MULT; i = i + 1)

 begin: MACCGEN

 multiply_acc macc(

 .clk(clk),

 APPENDIX 2/5

 .CE(macc_CE_reg),

 .sload(macc_sload_reg[2]),

 .a(in_a_wires[i]),

 .b(in_b_wires[i]),

 .c(out_c_wires[i])

);

 defparam

 macc.DATAWIDTH = DATAWIDTH,

 macc.ADDITIONS = FIRSTMATRIXCOLS / COMP_MULT;

 end

 endgenerate

 // Update multiplier-accumulator input and output registers

 always @(posedge clk)

 begin

 if(!RST)

 begin

 // Wiring reset to these registers hinders fMAX, when COMP_MU

LT = 2. Because there is no sclr in DSP blocks, and these registers are i

nferred within DSP's

// in_a_reg <= 0;

// in_b_reg <= 0;

 outputram_data_reg <= 0;

 end else

 begin

 in_a_reg <= inputram_a_q;

 in_b_reg <= inputram_b_q;

 outputram_data_reg <= final_output_reg;

 end

 end

 // State machine to keep track of current state

 //

 // WAIT_FOR_CE: No data is being processed, ready to start new matrix

 multiplication

 //

 // COMPUTE: Currently multiplying a matrix and new data is being fed

to input RAM (or all data has been stored in the

 // input RAM and the upstream component is being stalled unt

il the end of the multiply operation).

 //

 // INTERRUPTED: Matrix multiplying has been interrupted because CE in

put was asserted before all elements

 // of input matrices could be stored in RAM. Multiplyin

g will continue once CE is raised.

 //

 APPENDIX 2/6

 always @(posedge clk)

 begin

 if(!RST)

 begin

 state_current <= WAIT_FOR_CE;

 end else

 begin

 state_current <= state_current;

 case (state_current)

 WAIT_FOR_CE : begin

 if(CE)

 state_current <= COMPUTE;

 end

 COMPUTE : begin

 if(counter_a_end & counter_b_end)

 begin

 state_current <= WAIT_FOR_CE;

 end else

 begin

 if(!can_compute & !counter_b_end)

 state_current <= INTERRUPTED;

 end

 end

 INTERRUPTED : begin

 if(CE)

 state_current <= COMPUTE;

 end

 endcase

 end

 end

 // Addressing, multiplier-

accumulator control and input/output control

 always @(posedge clk)

 begin

 if(!RST) // RESET condition

 begin

 count_primary <= 0;

 inputram_a_addr_reg <= 0;

 inputram_b_addr_reg <= 0;

 busy_reg <= 0;

 macc_CE_reg <= 0;

 macc_sload_reg <= 5'b00111;

 end

 APPENDIX 2/7

 else

 begin

 // Registers to delay sload signal for multiply-accumulators

 // Also used for triggering output RAM writes after

 // macc result is valid:

 macc_sload_reg[4] <= macc_sload_reg[3];

 macc_sload_reg[3] <= macc_sload_reg[2];

 macc_sload_reg[2] <= macc_sload_reg[1];

 macc_sload_reg[1] <= macc_sload_reg[0];

 // State-dependent operations

 case (state_current)

 WAIT_FOR_CE : begin

 end

 COMPUTE : begin

 busy_reg <= 1'b1;

 macc_CE_reg <= busy_reg;

 macc_sload_reg[0] <= counter_primary_end;

 count_primary <= count_primary + 1;

 inputram_b_addr_reg <= inputram_b_addr_reg + 1;

 if(counter_primary_end)

 begin

 count_primary <= 0;

 end

 if(counter_b_end)

 begin

 inputram_b_addr_reg <= 0;

 inputram_a_addr_reg <= inputram_a_addr_reg + (FIR

STMATRIXCOLS / COMP_MULT);

 if(counter_a_end)

 begin

 // RESET

 count_primary <= 0;

 busy_reg <= 0;

 inputram_a_addr_reg <= 0;

 end

 end

 end

 INTERRUPTED : begin

 // Stop multiply-accumulators

 APPENDIX 2/8

 macc_CE_reg <= macc_sload_reg[0] | macc_sload_reg[1];

 // If we have processed all data for the next output,

 reset multiply-accumulators:

 if(counter_primary_end)

 begin

 macc_sload_reg[0] <= 1;

 end

 end

 endcase

 end

 end

 // State-independent operations

 always @(posedge clk)

 begin

 if(!RST)

 begin

 output_pending <= 0;

 stalling <= 0;

 outputram_write_reg <= 0;

 outputram_addr_reg <= 0;

 CE_out_reg <= 0;

 inputram_read_reg <= 0;

 end else

 begin

 // Read from input RAM only if the data there is valid

 inputram_read_reg <= can_compute | counter_b_end;

 // Set output pending LOW after data has been written.

 if(macc_sload_reg[4])

 begin

 output_pending <= 0;

 end

 // If counter b has reached its end at least once, it means a

ll data should now be in input RAM.

 // Stalling register is used in internal state tracking.

 if(counter_b_end)

 begin

 stalling <= 1;

 end

 // Raise output pending when primary counter reaches end

 if(counter_primary_end)

 begin

 output_pending <= 1;

 APPENDIX 2/9

 end

 // Raise output write signal if output is pending and multipl

y-accumulators are done

 outputram_write_reg <= output_pending & macc_sload_reg[4];

 // Raise valid signal 1 cycle after writing to output RAM

 CE_out_reg <= outputram_write_reg;

 // If not busy and data has been writted to output RAM, it me

ans all data should have been processed.

 // Thus we can reset the appropriate registers.

 if(outputram_write_reg & !busy_reg)

 begin

 outputram_addr_reg <= 0;

 outputram_write_reg <= 0;

 output_pending <= 0;

 stalling <= 0;

 end

 // Increment output RAM address after a successful write

 if(outputram_write_reg & busy_reg)

 begin

 outputram_addr_reg <= outputram_addr_reg + 1;

 end

 end

 end

endmodule

 APPENDIX 3/1

// Multiply-accumulator module

//

//

// NOTE: DSP Blocks of Cyclone V devices are placed in their

// MAC configuration only if data width is over 19 bits.

// Therefore the input width is limited to minimum of 20 bits.

//

// If the input width is less than 20 bits, the added bits should be p

added

// with the MSB of the original vector before feeding them to this mod

ule.

 module multiply_acc(

 clk,

 CE,

 sload,

 a,

 b,

 c);

 parameter DATAWIDTH = 16;

 parameter ADDITIONS = 64;

 localparam DATAWIDTH_LIMITED = (DATAWIDTH < 20) ? 20 : DATAWIDTH;

 localparam OUTPUT_WIDTH = DATAWIDTH_LIMITED * 2 + $clog2(ADDITIONS);

 localparam COUNTER_WIDTH = $clog2(ADDITIONS);

 input wire clk, CE;

 input wire signed [DATAWIDTH_LIMITED - 1:0] a;

 input wire signed [DATAWIDTH_LIMITED - 1:0] b;

 output reg signed [OUTPUT_WIDTH - 1:0] c;

 input wire sload;

 wire signed [DATAWIDTH_LIMITED * 2 - 1:0] mult;

 reg signed [OUTPUT_WIDTH - 1:0] c_reg;

 reg CE_in_reg;

 reg sload_reg;

 assign mult = a * b;

 always @(sload_reg, c)

 begin

 if(sload_reg)

 begin

 c_reg <= 0;

 end else

 begin

 c_reg <= c;

 end

 APPENDIX 3/2

 end

 always @(posedge clk)

 begin

 CE_in_reg <= CE;

 sload_reg <= sload;

 if(CE_in_reg)

 begin

 c <= c_reg + mult;

 end

 end

endmodule

 APPENDIX 4/1

// Test bench for dsp_rtl

`timescale 1ps / 1ps

module dsp_rtl_tb();

 `define NULL 0

 localparam DATAWIDTH = 20;

 localparam FIRSTMATRIXROWS = 32; // Row number of first matrix, colum

n number of second matrix

 localparam FIRSTMATRIXCOLS = 64; // Colum number of first matrix, row

 number of second matrix

 localparam COMP_MULT = 1; // Factor to multiply number of components

(multipliers, adders etc..) by. Increases resource usage but multiply ope

ration will be done in less clock cycles

 localparam OUTPUT_RAM_WIDTH = DATAWIDTH*2 + $clog2(FIRSTMATRIXCOLS);

 localparam INPUT_RAM_ADDRESS_WIDTH = 11;

 localparam OUTPUT_RAM_ADDRESS_WIDTH = 10;

 localparam RUN_TWICE = 1; // 0 for not, 1 for run twice

 reg [DATAWIDTH-1:0] input_data_a [0:FIRSTMATRIXROWS*FIRSTMATRIXCOLS-

1];

 reg [DATAWIDTH-1:0] input_data_b [0:FIRSTMATRIXROWS*FIRSTMATRIXCOLS-

1];

 reg [OUTPUT_RAM_WIDTH-

1:0] res_expected [0:FIRSTMATRIXROWS*FIRSTMATRIXCOLS-

1]; // Expected results

 reg [OUTPUT_RAM_WIDTH-

1:0] res_actual [0:FIRSTMATRIXROWS*FIRSTMATRIXCOLS-1]; // Gotten results

 reg clk;

 reg start;

 reg start_internal, interrupted;

 wire busy_w;

 reg done;

 wire valid_w;

 reg reset;

 reg [DATAWIDTH*COMP_MULT-1:0] data_a;

 reg [DATAWIDTH*COMP_MULT-1:0] data_b;

 wire [OUTPUT_RAM_ADDRESS_WIDTH-1:0] outputram_addr;

 wire [OUTPUT_RAM_WIDTH-1:0] outputram_data;

 wire outputram_write;

 integer count;

 integer output_count;

 integer output_file;

 integer run_count;

 APPENDIX 4/2

 dsp_rtl dsp_block(

 .data_a(data_a),

 .data_b(data_b),

 .clk(clk),

 .start(start),

 .busy(busy_w),

 .valid(valid_w),

 .RST(reset),

 .outputram_addr(outputram_addr),

 .outputram_data(outputram_data),

 .outputram_write(outputram_write));

 defparam

 dsp_block.INPUT_RAM_ADDRESS_WIDTH = INPUT_RAM_ADDRESS_WIDTH,

 dsp_block.DATAWIDTH = DATAWIDTH,

 dsp_block.FIRSTMATRIXROWS = FIRSTMATRIXROWS,

 dsp_block.FIRSTMATRIXCOLS = FIRSTMATRIXCOLS,

 dsp_block.OUTPUT_RAM_ADDRESS_WIDTH = OUTPUT_RAM_ADDRESS_WIDTH,

 dsp_block.COMP_MULT = COMP_MULT;

 initial

 begin

 clk = 0;

 start = 0;

 reset = 0;

 count = 0;

 output_count = 0;

 interrupted = 0;

 run_count = 0;

 output_file = $fopen("io_files/counter_output_run_1.csv", "w"); /

/ open file

 $fdisplay(output_file, "count, res_expected, res_actual");

 $readmemh("io_files/input_data_a_run_1.csv", input_data_a);

 $readmemh("io_files/input_data_b_run_1.csv", input_data_b);

 $readmemh("io_files/expected_results_run_1.csv", res_expected);

 #120;

 reset = 1;

 #120;

 start_internal = 1;

 end

 always

 begin

 clk = !clk;

 #50;

 end

 APPENDIX 4/3

 integer i;

 // Test for interrupt mid-calculations

 always @(output_count)

 begin

 if(output_count == 4)

 begin

 start_internal = 0;

 interrupted = 1;

 #1000;

 start_internal = 1;

 interrupted = 0;

 end

 end

 // Test for interrupt at the end of a multiply operation

 always @(count)

 begin

 if(count == 63 + COMP_MULT)

 begin

 start_internal = 0;

 interrupted = 1;

 #1000;

 start_internal = 1;

 interrupted = 0;

 end

 end

 always @(posedge clk)

 begin

 if(reset)

 begin

 if(start_internal)

 begin

 data_a = 0;

 data_b = 0;

 for(i = 0; i < COMP_MULT; i = i + 1)

 begin

 if(i > 0)

 begin

 data_a = data_a << DATAWIDTH; // Shift left by DA

TAWIDTH*2

 data_b = data_b << DATAWIDTH; // Shift left by DA

TAWIDTH*2

 end

 APPENDIX 4/4

 data_a = data_a | input_data_a[count + i]; // Insert

new data

 data_b = data_b | input_data_b[count + i]; // Insert

new data

 end

 if(count == FIRSTMATRIXROWS * FIRSTMATRIXCOLS + COMP_MULT

)

 begin

 start = 0;

 end else

 begin

 if(busy_w == 0)

 begin

 start = 1;

 count = count + COMP_MULT;

 end

 end

 // If data is valid @ output RAM

 if(outputram_write)

 begin

 res_actual[output_count] = outputram_data;

 case(res_actual[output_count] == res_expected[output_

count])

 1'b1 : begin

 end

 default : begin

 $display("Unexpected multiply result at index

 %d, run %d: Expected: %d Got: %d", output_count, run_count, res_expected

[output_count], res_actual[output_count]);

 end

 endcase

 $fdisplay(output_file, "%d,%d,%d", output_count, res_

expected[output_count], res_actual[output_count]);

 output_count = output_count + 1;

 end

 if(output_count >= FIRSTMATRIXROWS * FIRSTMATRIXROWS)

 begin

 start_internal = 0;

 count = 0;

 end

 end else

 begin

 start = 0;

 APPENDIX 4/5

 if(output_count >= FIRSTMATRIXROWS * FIRSTMATRIXROWS)

 begin

 count = 0;

 output_count = 0;

 if(!interrupted)

 begin

 #1000;

 $fclose(output_file);

 // Start run 2 to test if components reset corre

ctly:

 if(run_count < RUN_TWICE)

 begin

 run_count = run_count + 1;

 $readmemh("io_files/input_data_a_run_2.csv",

input_data_a);

 $readmemh("io_files/input_data_b_run_2.csv",

input_data_b);

 $readmemh("io_files/expected_results_run_2.cs

v", res_expected);

 output_file = $fopen("io_files/counter_output

_run_2.csv", "w"); // open file

 $fdisplay(output_file, "count, res_expected,

res_actual");

// reset = 0;

// #120;

// reset = 1;

 start_internal = 1;

 end else

 begin

 $stop;

 end

 end

 end

 end

 end

 end

endmodule

 APPENDIX 5/1

#include "HLS/stdio.h"

#include "HLS/math.h"

#include "HLS/hls.h"

#include "HLS/ac_fixed.h"

#include "HLS/ac_fixed_math.h"

#include "HLS/math_dsp_control.h"

#include "HLS/matrix_mult.h"

#define first_matrix_rows 32

#define first_matrix_cols 64

#define data_width 20

#define comp_mult 1

#define output_width 46

typedef ac_int<data_width, true> fixed_input_t;

typedef ac_int<output_width, true> fixed_output_t;

struct fixed_input_arr

{

 fixed_input_t data[comp_mult];

};

typedef ihc::stream_in<

 ac_int<32, true>,

 ihc::bitsPerSymbol<32>, // Has to be a power of two value

 ihc::buffer<0> > in_stream_interface_t;

typedef ihc::stream_out<

 ac_int<64, true>,

 ihc::bitsPerSymbol<64>,

 ihc::buffer<0>,

 ihc::usesReady<false> > out_stream_interface_t;

// Avalon ST interfaces

component hls_max_concurrency(1) hls_use_stall_enable_clusters hls_stall_

free_return hls_disable_component_pipelining

 void dsp_hls(in_stream_interface_t &a, in_stream_interface_t &b, out

_stream_interface_t &out_c)

{

 // Declare memories

 fixed_input_t a_mem[first_matrix_rows][first_matrix_cols] hls_memory_

impl("BLOCK_RAM");

 fixed_input_t b_mem[first_matrix_rows][first_matrix_cols] hls_memory_

impl("BLOCK_RAM");

 #pragma loop_coalesce

 APPENDIX 5/2

 for(uint6 input_row_counter = 0; input_row_counter < (uint6) first_ma

trix_rows; input_row_counter++){

 for(uint7 input_col_counter = 0; input_col_counter < (uint7) firs

t_matrix_cols; input_col_counter++){

 a_mem[input_row_counter][input_col_counter] = a.read();

 b_mem[input_row_counter][input_col_counter] = b.read();

 }

 }

 #pragma loop_coalesce 2

 for(uint6 a_row = 0; a_row < (uint6) first_matrix_rows; a_row++){

 for(uint6 b_col = 0; b_col < (uint6) first_matrix_rows; b_col++){

 fixed_output_t c = (fixed_output_t) 0;

 #pragma ii 1

 #pragma unroll comp_mult

 for(uint7 count_primary = 0; count_primary < (uint7) first_ma

trix_cols; count_primary++){

 c += a_mem[a_row][count_primary] * b_mem[b_col][count_pri

mary];

 }

 out_c.write(c);

 }

 }

}

// Test bench

int main()

{

 fixed_input_t in_a[first_matrix_cols * first_matrix_rows];

 fixed_input_t in_b[first_matrix_cols * first_matrix_rows];

 fixed_output_t out_c[first_matrix_rows * first_matrix_rows];

 fixed_output_t expected_c[first_matrix_rows * first_matrix_rows];

 in_stream_interface_t in_streams[2];

 out_stream_interface_t out_c_stream;

 for(int i = 0; i < first_matrix_cols * first_matrix_rows; i++){

 in_a[i] = (fixed_input_t) i + 1;

 in_b[i] = (fixed_input_t) i + 1;

 in_streams[0].write((fixed_input_t) i + 1);

 in_streams[1].write((fixed_input_t) i + 1);

 }

 APPENDIX 5/3

 int count = 0;

 int out_count = 0;

 fixed_output_t c = 0;

 // Expected results:

 for(int a_count = 0; a_count < first_matrix_cols * first_matrix_rows;

 a_count = a_count + first_matrix_cols){

 for(int b_count = 0; b_count < first_matrix_cols * first_matrix_r

ows; b_count++){

 c = c + in_a[a_count + count] * in_b[b_count];

 if(count == first_matrix_cols - 1){

 expected_c[out_count] = c;

 c = 0;

 count = 0;

 out_count++;

 }

 else{

 count++;

 }

 }

 }

 dsp_hls(in_streams[0], in_streams[1], out_c_stream);

 printf("Component calls done\n");

 for(int i = 0; i < first_matrix_rows * first_matrix_rows; i++){

 out_c[i] = out_c_stream.read();

 if(out_c[i] != expected_c[i]){

 printf("Unexpected result at %d: %X, expected %X\n", i, out_c

[i].to_uint(), expected_c[i].to_uint());

 }

 }

 return 0;

}

	Contents
	1 Introduction
	1.1 Background
	1.1.1 High Level Synthesis
	1.1.2 Etteplan

	1.2 Scope and Objectives
	1.3 Structure of Thesis

	2 FPGAs
	2.1 Physical Structure
	2.1.1 LUTs
	2.1.2 ALMs and LABs
	2.1.3 DSP Blocks
	2.1.4 Block RAM

	2.2 Designing for FPGAs
	2.2.1 Hardware Description
	2.2.2 Synthesis and Design Considerations
	2.2.3 Verification and Simulation

	3 Design Tools
	3.1 Intel Quartus Prime
	3.1.1 RTL Viewer and Technology Map Viewer
	3.1.2 Chip Planner
	3.1.3 Timing Analyzer

	3.2 Intel HLS Compiler
	3.2.1 Command-Line Interface
	3.2.2 HTML Report
	3.2.3 Verification and Debugging

	3.3 ModelSim

	4 Design Process
	4.1 Matrix Multiplication
	4.2 Design Specification
	4.3 RTL Implementation
	4.3.1 Design
	4.3.2 Verification

	4.4 HLS Implementation
	4.4.1 Design
	4.4.2 Verification

	5 Results and Comparison
	5.1 Performance Comparison
	5.2 Resource Usage Comparison
	5.3 Overall Evaluation
	5.4 Verdict

	6 Conclusion
	References
	APPENDICES

