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Globally, the frequency, severity, and length of heatwaves have intensified and are expected to increase. 

While many methods for estimating heatwave risk and mapping methodologies have been developed, a 

comprehensive, harmonized multiscale assessment of the most impacted areas remains absent. Currently, 

heatwave risk assessment is either too generic and does not adequately represent the heterogeneous urban 

landscape, or it requires a large amount of data, is computationally intensive, and takes a long time at the 

microscale level. This research developed a novel semi-automated approach to analyze heatwaves at two 

different scales: city and neighborhood. Thirteen of the most frequently used machine learning algorithms 

were used in this research to determine which algorithms delivered the best results for heatwave hotspot 

identification. The XGBoost classifier achieved the highest accuracy of 94% and was chosen as the basis 

for forecasting heatwave hotspots. The normalized difference building index (NDBI), the enhanced 

vegetation index (EVI), the percent of the industrial area (Industrial A P), the albedo, the percent of low-

skilled workers (Workers P), and the digital elevation model (DEM) are the factors that contributed the 

most to the projection of heatwave hotspots. NDBI was the most significant factor in the model, 

accounting for 30% of the total. The temperature was positively correlated with NDBI, Industrial A P, 

and Worker P, and EVI, albedo, and DEM were inversely correlated with temperature. The workflow 

combined city-scale analysis into neighborhood-scale analysis by examining the most severely affected 

areas in more detail, and greening scenarios were applied to simulate the appropriate heatwave mitigation 

threshold.  Greening 50% of the three most impacted areas was sufficient to reduce the risk from Extreme 

to High, resulting in a 0.4°C to 0.5°C reduction. It is crucial for decision-makers to quickly explore 

hotspots at different scales within a heatwave-affected region to efficiently allocate emergency operations 

in a timely manner and plan future mitigation strategies to reduce the effect of a heatwave in the most 

impacted areas. 
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CHAPTER 1:  INTRODUCTION 

1.1 Rationale 
 

The Intergovernmental Panel on Climate Change (IPCC) identified heatwaves as one of the extreme 

weather phenomena associated with climate change (Smith et al., 2009). Worldwide, the frequency, 

severity, and length of heatwaves have intensified and are expected to increase. Heatwaves have become 

warmer, longer-lasting, and far more widespread while also happening earlier in the season (Perkins-

Kirkpatrick et al., 2016). Heatwaves are among the most catastrophic natural hazards, yet they are 

overlooked mainly due to the associated fatalities and destruction are not immediately evident. Globally, 

population sensitivity to heat is increasing due to climate change, and this number will grow. Across 

Europe, it is projected that extreme weather events will continue to increase, droughts will deteriorate, and 

heatwaves will become more extreme and extended (Liu et al., 2020). Extreme heat events, in particular, 

are well recognized to have a detrimental effect on human health (Akhtar, 2020). As a result, threat 

assessment analysis is essential for determining which elements are at risk when exposed to a heatwave 

(Lowe, Ebi & Forsberg, 2011; Perkins-Kirkpatrick et al., 2016).  

Many researchers have studied spatial hazard mapping based on the statistical regression method since it is 

simple to operate and provides sufficient accuracy (Chan & Konstantinou, 2020; Morabito et al., 2015). 

Earlier regression methods concentrated on the statistical connection between land surface temperature 

(LST) and vegetation indices, such as the normalized difference and vegetation index (NDVI). Other remote 

sensing indices, such as the normalized difference water index (NDWI) and the normalized difference 

building index (NDBI), were utilized to conduct remotely sensed research in a variety of contexts (Balcik, 

2014; Karakuş, 2019; Soltanifard & Aliabadi, 2019). Recent research has also examined linear and 

nonlinear regression techniques involving temperature and various satellite imagery induced indices, such 

as the spatially weighted regression model, Lasso model, and Polynomial regression model (Liao, Hou & 

Strickland, 2016; Moolgavkar, 2000; Samoli et al., 2007). However, Regression models are susceptible to 

overfitting and have are poor accuracy when dealing with nonlinear relationships between dependent and 

independent variables (Ray, 2019). Due to geographic heterogeneity, the relationship between land surface 

temperature and surface factors is usually spatially nonstationary and nonlinear. 

Support vector machine (SVM), regression trees, artificial neural network (ANN), gradient boosting (GB), 

and random forest (RF) are examples of machine learning algorithms that have achieved excellent 

accuracies in fitting relationships between temperature and other environmental variables (Bakar, Pradhan, 

Lay & Abdullahi, 2016; Huang et al., 2015; Shatnawi & Abu Qdais, 2019; Zhang & Sun, 2019). The 

resilience of machine learning models, when deployed to diverse datasets using a machine learning 

algorithm, may be ascribed to the incorporation of numerous types of independent variables within a robust 

model, representing the nonlinear connection among dependent and independent variables (Kafy et al., 

2021). As a result, numerous studies have been conducted to evaluate existing machine learning methods; 

Bisquert et al. (2016) examined numerous propagation approaches using two distinct sensors, 

demonstrating the utility of segmentation strategies. Many studies on the connection of urban land-use / 

land cover and surface temperature have shown that temperature has an inverse relation with vegetation 

(Masoudi & Tan, 2019; Hua et al., 2017). and positive correlation with an impervious surface (Li, Heap, 

Potter & Daniell, 2011; Myint et al., 2011). Li et al., 2019 used a representative spectral index to assess 

several machine learning models, emphasizing the relevance of vegetation and built-up indices in 

predictions. Recent research has developed large-scale simulation systems to solve complicated problems, 



 

and these new quantitative study methods are particularly relevant to public health management (Sanchez 

Cristal, Metcalf, Kreisberg & Little, 2019; Wang, Olofsson, Shen & Bai, 2015). 

The brief period preceding and following a disaster is critical for humanitarian and assistance relief 

operations; hence, a rapid and generalized analysis is necessary. The fast growth in policymakers' use of 

spatially generated information for decision-making is primarily because of its capacity to handle 

operational requirements efficiently and effectively across all scales (Beamon & Kotleba, 2006). The data 

is used to conduct various in-depth assessments of natural disasters, including disaster assessment, risk 

estimation, and mitigation planning (Sansare & Mhaske, 2020). For visualizing areas damaged by a 

heatwave, rapid damage mapping is crucial for effectively planning and allocating disaster response and 

recovery operations. It is vital to emphasize that non-expert users, such as emergency response workers and 

decision-makers, cannot interpret raw satellite imagery despite improvements in remote sensing availability 

(Beamon & Kotleba, 2006). To ensure that the resulting products are correctly comprehended by everyone, 

hazard maps, analysis, and indicators should be prepared by a GIS specialist. The elements of data 

processing and direct dissemination relationship between the decision-makers and emergency assessment 

team are critical yet usually ignored. Without a clear and straightforward explanation of the complex image 

classification, modeling, and GIS deliverables, the emergency response team will get little value from the 

products (Rao, Rao & Kubo, 2018).  

Airborne remote sensing data is commonly utilized before a severe event to map the regions most 

susceptible to heat exposure and mortality and provide an effective alert system.  The city-scale temperature 

reference based on meteorological station data is overly generalized for heatwave risk and does not 

designate the heterogeneity of the urban environment (Jedlovec, Crane & Quattrochi, 2017). Recently, 

satellite imagery,auxiliary data such as census indicators, and remote sensing indices have been 

incorporated into machine learning models to assess risk variables' geographical variability and create a 

more comprehensive health warning system. Most research in extreme temperature-related forecasting 

frameworks focuses on a particular scale of analysis (Park & Kim, 2018; Shi et al., 2021). Micro-level 

models have a higher resolution in mapping temperature risk, but due to their increased processing 

requirements and greater computational complexity, however, the models cannot be spatially expanded to 

cover the entire municipality. To date, the resolution of mesoscale models is unlikely to bring specifics 

regarding complex urban morphology, despite their ability to study city-scale temperature impacts (Dong, 

Mitra, Greer & Burt, 2018). The reliance on the aggregation of many years of data to produce significant 

accuracies necessitates the availability of various multi-year meteorological and land-use data that might 

not be available for every location. Laaidi et al. (2012) used sixty-one NOAA-AVHRR satellites images of 

Paris, France, to establish the daily fluctuations in surface temperature. Efficient resource management 

necessitates concise data processing as well as assimilation at specific scales, with the core principle being 

that the larger the area of interest, the more aggregate data that can be considered at the expense of thematic 

differentiation and spatial accuracy of the map components (Weiers, Bock, Wissen & Rossner, 2004). Even 

though various approaches have been used to estimate heatwave risk and mapping procedures, a 

comprehensive harmonized multiscale assessment of the most impacted areas remains absent (Zhou, 

Bonafoni, Zhang & Wang, 2018).  Therefore, a new workflow that requires limited data sources that can 

also resolve the feature selection challenges and define heatwave risk concerning an urban environment in 

a more thorough method is urgently required.  

In recent years, research into mitigating the UHI impact has risen in popularity. In the literature, a variety 

of urban mitigation techniques have been suggested, including the use of highly reflecting construction 

materials, attention to building geometry, improving urban vegetation proportions, and the use of green and 

cool roofs (Akbari et al., 2016; Santamouris, 2013; Yang et al., 2018). Most research suggests that 



 

increasing the percentage of green spaces and using higher reflectivity materials in metropolitan areas can 

assist cities in mitigating UHI. Microscale mitigation solutions rely on a wealth of data from a range of 

sources, including meteorological and detailed urban morphology dynamics (Akbari et al., 2016). The 

process is usually computationally intensive, time-consuming, and requires specialized proprietary software 

to simulate scenarios. There is an urgent need for rapid generalized analysis of greening scenarios that 

require only a few resources and can be completed in a short period of time. 

 

1.2 Aims & Objectives 
 

Founded on the current situation, this research intends to: 

1) Quantitatively evaluate the performance of thirteen machine learning algorithms in highlighting the 

most vulnerable areas within an area stricken by heatwaves. 

2) Test various climate, land use/land cover, topographic, socio-demographic, and urban morphology 

metrics to determine the factors that contribute most to the model and their relation to temperature. 

3) Create heatwave risk maps that decision-makers can easily interpret with little to no GIS/technical 

expertise. 

4) Simulation of greening scenarios to mitigate the effects of most impacted areas. 

5) Package the workflow with minimal input from the user while quantifying most vulnerable areas 

quickly.  

Ultimately, this study aims to answer the resulting important questions: 1) Which machine learning model 

produces the best results in heatwave hotspot identification? 2) What factors contribute the most to the 

model prediction? 3) How are the factors correlated to heatwave risk? 4) What are the connections between 

hazard and vulnerable populations, and how are heatwave risk hotspots distributed spatially? 5) How much 

greening is required to sufficiently reduce heatwave risk?  The answers to these questions will impact 

emergency response efforts during a heatwave and future urban planning efforts in mitigating the effects of 

a heatwave in Lyon, France. 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 2:  LITERATURE REVIEW 
 

2.1 Heatwave Overview 
 

Climate change-related hazards have increased in recent decades, particularly in heatwave severity 

and frequency, and are anticipated to persist throughout the twenty-first century. The Intergovernmental 

Panel on Climate Change (IPCC) has identified heatwaves as one of the extreme weather events 

associated with climate change (Smith et al., 2009). Worldwide, the frequency, intensity, and duration of 

heatwaves have increased and will continue to increase. Heatwaves are one of the most deadly natural 

hazards, yet they get limited attention since their fatalities and damage are not usually immediately apparent 

(Mushore, Mutanga, Odindi & Dube, 2018). Climate change is increasing the vulnerability of communities 

globally to heat, and this trend will continue. In the 19 years between 1998 and 2017, around 166,000 

individuals have died from heatwaves. During the 2003 European heatwave, more than 70.000 people died 

in Europe (World Health Organisation, 2017). Since 1880, global surface temperatures have increased by 

0.85 °C, which has resulted in significant shifts in the probability of extreme weather events (IPCC 2013). 

Over the last decade, heatwaves have gotten progressively hotter, last longer, and arrive earlier in the season 

(Perkins-Kirkpatrick & Gibson, 2017). 

 

 

 

 

 

 

 

 

 

 
 

 

It is projected that the number of extreme weather occurrences in Europe will increase in the future, 

droughts will deteriorate, and heatwaves will grow more intense and longer in duration (Morabito et al., 

2015). High temperatures, especially extreme heat events, are well considered to be harmful to human 

health (Akhtar, 2020). Since 1900, excessive heat has caused more deaths in Australia than all other natural 

hazards combined, accounting for more than 55 percent of all deaths related to natural hazards. In order to 

evaluate which aspects are at risk as a result of exposure to an extreme temperature hazard, risk assessment 

analysis is essential (Perkins-Kirkpatrick et al., 2016). Depending on the scale of analysis, efficient resource 

management necessitates explicit data processing and integration definition. The underlying concept would 

Figure 1 - Connection between normal and extreme temperatures, the 
relation between a changing average under climate change, and the ratio 
of extreme weather events (Steffen, 2014) 



 

be that the larger the area of interest, the greater the aggregate level of data that can be considered at the 

cost of the thematic distinction and spatial precision of the map items (Morabito et al., 2015).  Temperature 

increases will raise the risk of heatwaves to public health. A lack of local awareness could jeopardize the 

effectiveness of policies and mitigation measures. To quantify the heatwave danger posed by climate 

change, more extensive localized evaluation methods are still necessary. While the probability of heatwave 

events increasing as a result of climate change is projected to grow in the medium to long term, the degree 

of this shift remains unclear (Chan & Konstantinou, 2020).  

 

By concentrating on instances of higher temperatures, Weiers, Bock, Wissen, & Rossner (2004) detected 

heatwaves above 28°C, observed a two- to three-fold decline in the average duration between 2 consecutive 

occurrences of a six-day long heatwave and a two-three-fold increase in the length of a heatwave with an 

average return period of five years. Population over 65 years old and children, particularly those who have 

chronic illnesses, are especially vulnerable to the effects of a heatwave. Hospital visits increased by 5% 

throughout the population, by 13% for children aged 15 and under, and by 19% for children aged five and 

under, according to Campbell et al. (2019), who looked at the effects of hospital visits and intense 

heatwaves on different socio-demographic categories. 

 

 

 

2.2 Urban Heat Island (UHI) 
 

Heat has been exacerbated as a result of urbanization and the increased number of people living in cities 

(Sultana & Satyanarayana, 2020). Heatwaves significantly have a negative impact on urban areas due to 

the large area of rough artificial surfaces, regional and local climatic conditions, and a lack of vegetation 

and green space, resulting in variations in air temperatures and the development of intense urban heat 

islands (Cui, Xu, Dong & Qin, 2016) . The UHI indicates the temperature difference between urban and 

rural areas, and the magnitude of the UHI in urban areas is positive. Numerous studies have established a 

strong link between heatwaves and human mortality due to their intensity, frequency, and duration (Akhtar, 

2020; Arsenović et al., 2019; Stafoggia et al., 2006). Death from heat-related illness is among the most 

severe public health threats identified in these findings. The harmful health impacts of high temperatures 

are also dependent on a number of factors impacting the general public's sensitivity to high temperatures  

and their ability to react to and cope with extreme heat (Arsenović et al., 2019). Elderly, children, socially 

marginalized, and chronically ill people are among the demographic categories most vulnerable to 

heatwaves. According to one study conducted in China, the urban heat island effect contributes around 30% 

to global warming (Huang & Lu, 2015). In contrast, according to a peer-reviewed report from 1999, the 

impacts of urban and rural environments on global average temperature trends are negligible (Peterson et 

al., 1999). Climate change, according to several studies, has made this consequence more severe (Hashim 

& Hashim, 2016; Mills, 2009; Otto, 2019). 



 

 

2.3 Sustainable Urbanization 
 

The sustainability capacity of many infrastructure sectors has improved. Green infrastructure is a network 

of natural environment elements within an urban region, including green and blue areas that provide 

ecosystem services (Demuzere et al., 2014). Parks, ponds, street trees, gardens, and urban forests are all 

part of the green infrastructure. Green infrastructure that has been thoughtfully developed includes 

environmental services that contribute to human well-being, wildlife habitat conservation, and biodiversity 

(Rafael et al., 2018). Green infrastructure schemes seek to reduce the environmental impact of buildings 

over their lifetime by focusing on water-saving and energy-efficient technologies. More climate-friendly 

technologies are also being developed and implemented, reducing the reliance on coal, fossil fuels, and 

energy-intensive sectors (Rodrigues et al., 2019; Santamouris & Osmond, 2020). The availability of funds 

for green infrastructure projects has expanded considerably as more financing is made available through 

Paris Agreement-aligned programs to offset some of the impacts of climate change on metropolitan areas 

(Uyar, 2017). 

  

Cities pose significant climate issues with high population densities, including urban heat islands and 

deteriorated ventilation systems. A solid grasp of the urban outdoor climate is necessary for sustainable 

urban development (Demuzere et al., 2014). There has been considerable development in remote sensing 

capabilities, and as a result, satellite data has been widely utilized in the research of UHI concepts and 

mitigation measures. Extensive research has been performed to determine spatial-temporal differences in 

the urban thermal environment and their interconnections with various urban environments (Chen et al., 

2020). Local Climate Zones (LCZs) are one common method of monitoring thermal conditions in diverse 

urban structures in cities (Stewart, Oke & Krayenhoff, 2014). Based on land surface parameters such as 

building height, urban layout, and land use/land cover, the methodology separates the metropolitan region 

into 17 basic groups. Centered on temperature observations and model simulations, the research community 

verifies significant temperature disparities among various LCZs. Bartesaghi Koc, Osmond, Peters and Irger 

(2018) used high-resolution airborne data to understand better the surface temperature properties of LCZs 

in an Australian city and discovered that day and night thermal conditions varied across different LCZ 

Figure 2 - Urban Heat Island Effect (Fuladlu, 2020) 



 

categories. With Landsat data, Geletič, Lehnert & Dobrovolný, (2016) investigated the LST contrast within 

local climate zones in two European cities. Zhao et al. (2019) used remote sensing data to analysis local 

climate patterns in three cities in Texas. In high-density areas, (Zhou, Chen, Zhang & Zhan, 2013) employed 

a combination of multi-source satellite data to assess the thermal characteristics of landuse. However, more 

validation is required due to the fact that temperature varies for cities with varying geographical locations 

and climatic backgrounds in relation to the extent of the city (Chen et al., 2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Classification 
  

The ability to automatically classify urban structures has dramatically improved over the previous decade 

due to better classifiers and the availability of more detailed data sets (Bechtel & Daneke, 2012). Urban 

surface and structural analyses using Synthetic Aperture Radar (SAR), thermal, hyperspectral, and high-

resolution optical data are among the most common applications (Li & Guo, 2016). Furthermore, a large 

number of multi-sensor hybrid techniques have been employed. The use of these methodologies, on the 

other hand, is severely restricted by the wide range of typologies that are employed to discriminate distinct 

urban morphologies (Javanroodi, Mahdavinejad & Nik, 2018; Scott, Petropoulos, Moxley & Malcolm, 

2014). While some studies use a simple distinction between water, plants, and buildings, others use more 

comprehensive land cover categories and, in particular, surface material typologies (Vargo, Habeeb & 

Stone, 2013). These groupings have been mainly defined qualitatively, integrating utility and structure 

characteristics. As a result of this variation, there is limited transferability and inconsistent outcome 

comparability (Bechtel & Daneke, 2012). 

Figure 3 - Local Climate Zone Classes (Stewart, Oke & 
Krayenhoff, 2014) 



 

 

More deaths are due to heatwaves than by any other natural phenomenon, and so, many researchers 

examined the temperature threshold that might have more adverse health impacts on the population 

(Wilhelmi and Hayden, 2010). Gosling, McGregor and Páldy ‘s (2007) findings are based on a thorough 

examination of specific thresholds and accompanying death rates. Mortality increased as a result of not 

only the occurrence of extreme heat events but also owing to the increased intensity and duration of the 

heatwave exposure. Farhan, Pattipati, Wang and Luh (2015) tested multiple machine learning algorithms 

using environmental and physiological factors to predict individual thermal comfort with Support Vector 

Machines (SVM) obtaining the highest accuracy of 77%. Although this exposure has severe health 

implications, it is also a result of other factors, including population sensitivity to temperature, their ability 

to tolerate and react to a temperature increase (Wilhelmi & Hayden, 2010). 

  

 

 

Object-based and pixel-based analysis are the two main methodologies used to analyze urban 

morphological constructs. Through the use of current data sets, it is feasible to classify and monitor surface 

materials. Object-based techniques enable the incorporation of image segmentation into more realistic 

urban contextual morphologies (Hussain et al., 2013). For example, an object-oriented multi-level soft 

classification model for identifying urban structural types may use high-resolution satellite data and a digital 

surface model produced from LIDAR. Given that urban systems on the surface of the earth are among the 

most complex, the object-oriented approach continues to be challenging. A large amount of contextual 

information is, therefore, necessary, making microscale research a challenging endeavor to complete 

accurately (Shackelford & Davis, 2003). For very homogenous urban structures, a less complicated pixel 

method could be considered. There is no segmentation in this procedure. The pixels are instead classified 

explicitly at a lesser degree of detail, which is far less time-consuming. Bechtel and Daneke (2012) used 

multiple parameters to compute different machine learning techniques for LCZ categorization. 

 

  

Figure 4 - Pixel-based vs Object-based Classification (Powell & Brooks, 2008) 



 

2.5 Land Surface Temperature 
 

Most remote sensing heatwave analysis is based on satellite Land Surface Temperature (LST) 

measurements with fewer resources devoted to air temperature (Ban, 2016). The LST readings combined 

with other indexes and auxiliary data are then used to predict air temperature values which is one of the 

main contributors to heatwaves.  Part of this is attributed to the continuous satellite derived LST data while 

the air temperature is calculated at a few places where meteorological stations are sparsely situated across 

a heterogeneous urban landscape (Bokaie, Zarkesh, Arasteh & Hosseini, 2016). A basic statistical analysis 

provides a linear association between LST and air temperature. The calculation precision is related to the 

data used to construct the models, such as time and location. Advanced statistical methods typically involve 

LST, altitude, and NDVI in the air temperature estimation model (Chan & Konstantinou, 2020). This 

technique uses multiple linear regression analysis to measure air temperature, and the precision of the 

estimate is superior to that of a simplified statistical procedure. Although LSTs are a significant control 

variable for urban energy balance as well as for assessing UHI impacts, their importance to human health 

is unclear (Stafoggia et al., 2006). Applying LST towards assessment of hazard is due to the ease with 

which it can be mapped (Sultana & Satyanarayana, 2020). Kalma, McVicar & McCabe (2008) used LST 

and thermal factors from remote sensing to approximation evaporation. LST approaches do not account for 

the multitude of variables that lead to local-scale air temperature heterogeneity, such as land cover, building 

structures, vegetation intensity, exposure to the sun, and wind mechanics (Stewart, Oke & Krayenhoff, 

2014; Voogt & Oke, 2003). The small-scale spatial heterogeneity of these variables (1–100 m) goes 

undetected by weather stations usually placed far apart, from several kilometers to 100km apart (Stewart, 

Oke & Krayenhoff, 2014). Specific approaches are being employed to address this constraint, such as 

implementing dense temperature control systems (Han & Xu, 2013) or portable testing utilizing vehicles or 

bicycles (Fabiani et al., 2019), but these approaches remain expensive to introduce and sustain. 

 

 
Figure 5 - Global LST for 2006 (ESA, 2006) 



 

2.6 Machine Learning Models 
 

Early research centered on utilizing simulations with weighted regression models to monitor heatwaves. 

Regression models, however, cannot capture the typically heterogeneous and spatially complex 

associations between the UHI factors and UHIs. Because of their capability to learn and emulate immensely 

complicated nonlinear data, machine learning algorithms generally produce better fit models than 

traditional statistical methods (Huang et al., 2015; Zhang & Sun, 2019). Even shallow neural network 

models with one hidden layer have been used in the majority of current studies to investigate UHIs with 

significant accuracy (Balcik, 2014). On the other hand, neural networks require a substantial quantity of 

training data, are susceptible to overfitting, and have difficulty with generalization. 

Deep Learning (DL) is one of the most recent developments in the fields of computer learning and artificial 

intelligence science. In 1986, the term "deep learning" was initially used to represent machine learning, and 

in 2000, the definition was broadened to include artificial neural networks (ANN) (Saputra & Lee, 2019). 

There are numerous layers to a deep learning technique, which allows it to learn different aspects of data 

by approaching it from different levels of abstraction (LeCun et al., 2015). For the time being, basic linear, 

multivariate linear, and nonlinear algorithms can be used to distinguish satellite-observed brightness 

temperatures from LST (Liao, Hou & Strickland, 2016). Prior research has demonstrated that machine 

learning algorithms produce more accurate air temperature measurements than other techniques (Bakar, 

Pradhan, Lay & Abdullahi, 2016; Huang et al., 2015; Shatnawi & Abu Qdais, 2019; Zhang & Sun, 2019).  

 

 

Figure 6 - Illustration of Machine Learning Classifier, logistic regression(A) linear regression (B) support 
vector machine (C), artificial neural network (D), and decision tree (E) (Tong, 2019) 



 

A good illustration of this is found in machine learning models such as neural networks, which exhibit 

increased precision and a 1.29°C reduction in root-mean-square error (RMSE) compared to linear models 

(Zhou, Chen, Zhang & Zhan, 2013). Using the newest version of the Chinese meteorological satellite data, 

Zhou et al. (2020) used six machine-learning algorithms for air temperature approximation: random forest, 

multivariate linear regression (MLR), extreme gradient boosting (XGB), gradient boosting decision tree, 

deep neural network (DNN), and k-nearest neighbors. The XGB model produced a more robust and 

significantly more accurate air temperature prediction for China-wide air temperature prediction (Zhou et 

al., 2020). When utilized for large-scale air temperature estimation, it can serve as a reference for machine-

learning algorithms. 

Were, Bui, Dick & Singh (2015) estimated extreme air temperature using random forests, neural networks, 

and support vector machines. More accurate than multivariate regression models, machine learning 

methods capture the nonlinear relation between different inputs and temperature (Modaresi, Araghinejad & 

Ebrahimi, 2018; Were, Bui, Dick & Singh, 2015). Air temperature estimates must be within 1-2°C of the 

actual temperature and have high temporal and geographical precision in order to be considered dependable. 

Further research is required in this situation (Coutts et al., 2016). In previous studies, surface characteristics 

and atmospheric conditions have been significantly impacted by the interaction between LST and air 

temperature (Coutts et al., 2016; Were, Bui, Dick & Singh, 2015). Thus, by including a large number of 

additional characteristics (Coutts et al., 2016), the precision of extreme temperature estimation was 

significantly improved. 

The robustness of machine learning algorithms to solve complex problems has been applied to various 

remote sensing applications. Youssef et al. (2016) used satellite imagery and boosted regression tree 

techniques to generate landslide hazard maps with reasonable accuracy. For boreal landscape, Abdi (2020) 

compared machine learning algorithm performance in classifying land-use/ landcover change. With an 

overall accuracy of 75%, Bavaghar (2015) employed logistic regression to identify the position and degree 

of deforestation based on criteria such as residential area and proximity to roadways. Wu et al. (2017) 

identified changes in landcover on satellite imagery using SVM and decision trees, with SVM having the 

highest accuracy of 93 percent. Potgieter et al. (2007) employed Principal Components Analysis (PCA) to 

predict agricultural area in Australia using a time series of enhanced vegetation index (EVI) measurements. 

Random forests were the most accurate and reliable method for categorizing agricultural areas in Australia 

after comparing many machine learning algorithms using Landsat images (Schmidt et al. 

(2016)).   Individual tree attributes were derived by Corte et al. (2020), utilizing the machine learning 

models by the use of high-density UAV-Lidar data. Modis satellite imagery was integrated into a neural 

network to forecast future forest fires (Kong et al. 2018). 

 

 

2.7 Heatwave Mitigation 
 

In recent years, research into mitigating the UHI impact has risen in popularity. In the literature, a variety 

of urban mitigation techniques have been suggested, including use of highly reflecting construction 

materials, attention to building geometry, improving urban vegetation proportions, and the use of green and 

cool roofs (Akbari et al., 2016; Santamouris, 2013; Yang et al., 2018). All of this research suggests that 

increasing the percentage of green spaces and using higher reflectivity materials in metropolitan areas can 

assist cities mitigate UHI. Because of the large area occupied by rooftops inside cities, green roofs, 



 

according to Akbari et al (2003), are ideal interventions for reducing UHI impacts. Imran (2012) 

demonstrated in Melbourne, Australia, that raising green roof proportions from 30% to 90% reduces roof 

surface UHI by 1°C to 3.8°C during the day, and enhancing cool roof albedo from 0.50 to 0.85 reduces 

UHI by 2.2°C to 5.2°C. By lowering sensible heat flow, green roofs minimize UHI effects. By providing 

shade and redistributing available energy to enhanced latent heat transfer via evapotranspiration, vegetation 

lower sensible heat flux (Rodrigues et al., 2019). However, most models require large amounts of data 

spanning several years to predict greening situations correctly. Data gathering and processing takes time, 

requires constant data input from numerous sources at an extremely high spatial resolution over a long 

period of time, and is often tailored to a particular city (Santamouris & Osmond, 2020). 

 

 

2.8 Mapping Challenges 
 

The fact that urban and microclimate simulations have higher resolution and more precise data does not 

exclude their spatial distribution throughout a city because of their high processing costs and the complexity 

of the elements that are vital to their operation (Demuzere et al., 2014). The results of mesoscale systems 

have yet to be conclusive in terms of the UHI's large-scale consequences. Although they have some 

capabilities, they are not effective in explicitly assessing and defining a heterogeneous urban environment 

(Zhao et al., 2019). To create spatially and computationally viable frameworks, more research is needed to 

address this unsettling challenge. Current geographical and temporal data are typically captured over a 

variety of time intervals when data is collected from several sources. Future studies should collect 

spatiotemporal data over the same time period, and researchers should eventually develop models that 

incorporate meteorological and urban texture components (Scott, Petropoulos, Moxley & Malcolm, 2014). 

The lack of a workflow connecting extreme temperature analysis from different scales is severely lacking.  

 

 

 

 

 

 

 

 

 

 

 

 Figure 7 - Small - Scale vs Large-Scale Mapping (Jain, 2020) 



 

Furthermore, while the amount of information available for decision-making has increased, the ability of 

humans to properly comprehend and utilize this information in disaster management has dropped. Humans 

are at a disadvantage in instances where actions must be made instantly. A challenge currently observed in 

the field is the successful incorporation of analysis into a format that is easily interpreted and accessible to 

the decision-maker (Sultana & Satyanarayana, 2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 3:  STUDY AREA AND DATA 

3.1 Heatwave Event 2018 
 

During the summer of 2018, most of Europe experienced record-breaking temperatures and wildfires as a 

result of a weaker-than-normal jet stream. Because of an unusually high pressure being maintained across 

a large area of the northern hemisphere, a heatwave developed in Europe during the summer.  The EU was 

home to 104,000 people over the age of 65 who died because of heat exposure in 2018, accounting for 

almost one-third of all heat-related deaths in the world (WWA, 2018). The consequences of the heatwave 

was felt throughout France. Figure 8 displays the Land Surface Temperature anomaly from the average of 

previous years, indicating that some France regions witnessed over 10°C deviation from the average 

mean.  Despite not breaking any records in terms of temperature or fatalities, France had prolonged 

temperatures of more than 40 °C  that had a detrimental effect on the population. During the early hours of 

August 4, 2018, the French energy company EDF announced that it would be forced to shut down four 

nuclear reactors. The actions were taken due to the adjacent river, which was utilized to cool the nuclear 

reactors, surpassing a crucial temperature (DNA, 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Study Area 
 

Lyon has been the economic heart of France since the Renaissance, with a population of over 1.6 million 

people spread across 1534.60 kilometers of territory. Lyon is a major financial center and a key hub for 

the pharmaceutical, chemical, and biotechnology sectors. Lyon is located in the central-eastern part of 

France and situated at the junction of the rivers Rhône and Saône, approximately 470 kilometers southeast 

Figure 8 - 2018 Summer Land Surface Temperature Anomaly Across Europe Source: (WWA, 2018) 



 

of Paris (Britannica, 2018). Across the previous two decades, the occurrence of heatwaves has increased 

significantly in Europe. Given that Lyon has consistently been one of the most severely impacted cities in 

France in terms of heatwave-related fatalities, and because the city provides openly available data from a 

wide range of variables, it was selected to train the model for heatwave detection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Data Sources 
 

Lyon's online city platform (https://data.grandlyon.com/) provides a wealth of freely accessible 

geographical data on a variety of environmental, socioeconomic, and demographic aspects. The platform 

integrates data from a variety of sources at various scales, including neighborhood, city, regional, and 

national in a range of formats. Additionally, Lyon's Lidar data is publicly available. Around the time of the 

2018 European heatwave, which peaked on August 4, 2018 two satellite images were downloaded for Lyon. 

The date of image acquisition was constrained since Landsat satellites have a temporal resolution of about 

16 days, and some images were discarded because a substantial area of Lyon was obscured by clouds. Table 

1 shows the Landsat image specifications utilized in the model. A Landsat image for Glasgow, UK, was 

also downloaded to evaluate the model's robustness in a different environment. 

Figure 9 - Map of France (Map France, 2017) 



 

Table 1 - Landsat 8 Imagery Specifications 

Acquisition Date Path/Row Landsat Number of 
Bands 

Spatial 
Resolution 

Radiometric 
Resolution 

12/07/2018 196/28 8 10 30m 16 bit 

04/08/2018 197/28 8 10 30m 16 bit 

25/06/2018 205/21 8 10 30m 16 bit 

 

Lyon was divided into blocks using Ilots Regroupés pour l'Information Statistique (IRIS) limits. IRIS is the 

lowest level of census block utilized in France, and it served as the primary unit for disseminating infra-

municipal information. The blocks are generated depending on population, with each block consisting 

of on average of 1,800 to 5,000 persons. Because satellite image induced data and spatial data downloaded 

from the Lyon city repository are considered simultaneously in the study, the data was assimilated to IRIS 

blocks and analyzed.  In the Lyon area, 29 blocks were removed because they contained missing data for 

several variables, bringing the total number of blocks to 492 blocks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 - IRIS blocks of Lyon 



 

CHAPTER 4:  METHODOLOGY 

4.1 Overview 
 

Even though various approaches have been used to estimate heatwave risk and mapping procedures, a 

comprehensive harmonized multiscale assessment of the most impacted areas remains absent (Zhou, 

Bonafoni, Zhang & Wang, 2018). The research proposes a new semi-automated approach for analyzing 

heatwaves at various scales depicted in Figure 11. Data from Landsat 8 satellite imagery and auxiliary data 

on socio-demographic, topographic, and environmental factors are clipped to the area of interest and 

preprocessed to normalize the data due to its multi-source origin. Preprocessing data is a critical stage in 

Machine Learning. The quality of the data and the valuable information obtained from it directly affect the 

model's learning capacity; the data needs to be calibrated and preprocessed before feeding it to the model. 

Preprocessing is the methodical process of assimilating data into a standardized product via filtering, 

integration, reduction, and transformation (Pant, 2019). The preprocessed data is then routed to the city's 

lowest level divisions, referred to as "blocks" (or "IRIS" in French), which are analogous to census block 

groups in the United States of America or the United Kingdom's lower super output areas. The IRIS blocks 

containing information about 70 factors are then fed into 13 machine learning algorithms for classification, 

including linear models (LM), linear discriminant analysis (LDA), decision trees (TREE), Naive Bayes 

(NB), support vector machines (SVM), ensemble methods ,nearest neighbors (KNN), and neural network 

models. Individual model definitions and hyperparameter adjustment are performed to optimize the 

accuracy of each model. The relevance and weight of each element contributing to each model are then 

examined coupled with Principal Component Analysis (PCA) to determine the most significant factors 

contributing to the prediction of the LST, which is utilized as the premise for defining heatwave hazard. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11 - Semi-Automated Workflow Overview 



 

The machine learning model with the highest overall accuracy and accuracy within the "Extreme" class, 

which represents the most severely affected areas by heatwaves, is then chosen, along with the factors that 

contributed the most to the model using the magnitude of feature attributions. Multi-criteria analysis (MCA) 

is performed on the resulting machine learning output, demonstrating the heatwave's hazard in conjunction 

with the factors affecting the most vulnerable population. MCA will lower the number of "IRIS" blocks 

designated as "Extreme" by factoring in both hazard and vulnerable populations to focus attention on the 

IRIS blocks that require the most attention during a potential heatwave. The MCA-created map will 

highlight the most severely affected locations, allowing emergency responders and decision-makers to plan 

and prioritize crucial assistance when resources and time are limited. Next, lidar data for the most afflicted 

neighborhoods is retrieved to study the areas further. Lidar data provides a more detailed three-dimensional 

depiction of the site, allowing for additional study of the variables contributing to the higher temperature 

of the IRIS blocks than the rest of the city. After converting the 3D analysis to model-compatible data, it is 

used to run several simulations for heatwave mitigation. The most severe IRIS blocks are examined using 

several scenarios involving green roofs and increased vegetation cover to understand better the implications 

of various mitigation techniques and their overall effect on temperature. The results will assist city planners 

in determining the amount of effort necessary to mitigate the areas in the future successfully. Natural 

disaster management necessitates the rapid integration and dissemination of knowledge; consequently, an 

online interactive map will contain the research findings, allowing for simple distribution and revision of 

information with all parties involved.  

The semi-automated workflow comprised of five tools that operate in sequence with necessary visual 

analysis stages in between. In an ideal world, the entire workflow would be implemented in Python, 

utilizing predefined packages to assist in the performance of intermediate processes; however, Python lacks 

an interface for visually inspecting transitional results and provides only limited control over the 

presentation and editing of maps. ArcGIS was utilized to refine the maps and conduct quality control 

evaluations with its superior interface for displaying data. Fugro software was used to visualize the 3D lidar 

data easily, as Python and ArcGIS are not very adept at handling big point clouds. Combining the three 

applications to create the workflow enabled the utilization of each application’s advantages to produce 

readily available results and adhere to modern requirements for cartographical outputs.  

ArcGIS includes tools for spatial and zonal analysis, as well as superior visualization. When working with 

complex procedures, Python is more powerful and effective, particularly large amounts of data, whereas 

Fugro is primarily used to visualize Lidar data. Integrating multiple applications was one way to shorten 

the time required to produce heatwave risk maps. In total, two tools are built within ArcMap using 

ModelBuilder, and three are written in Python. The workflow is structured to need minimum human 

interaction, as one tool serves as the input for the next. The separation of the tools was done to ensure that 

the results were of high quality before going to the next phase. The workflow is divided into five distinct 

stages: 

1. Preprocessing and Zonal Statistics 

2. Evaluation of the Machine Learning Model and Feature Importance 

3. Multi-Criteria Analysis and Production of Heatwave Risk Map 

4. Simulations of Heatwave Mitigation Strategies 

5. Interactive Online Map 



 

4.2 Preprocessing and Zonal Statistics 
 

Figure 12 illustrates the procedure for preparing data for processing. Landsat satellite imagery and auxiliary 

data, comprising all relevant data obtained from the city of Lyon spatial data platform, serve as the two 

primary data sources. Firstly, the satellite image is cropped to exclude a large portion of the image from the 

area of interest. By restricting the data to the area of interest, subsequent processes are significantly 

accelerated. Once the optical bands have been reprojected, the values are scaled using the scale factor 

indicated in the metadata. Individual bands and their combinations generate various indices that highlight 

environmental, built-up, topographic, and waterbody aspects. The bulk of the indices are frequently used 

in research to enhance a particular element of land use/cover; for example, the NDVI index is commonly 

used to improve vegetation areas. The NDVI method determines a plant's health by evaluating how it 

reflects light at specific frequencies. Since certain wavelengths are absorbed while others are reflected, the 

NDVI index optimizes the contrast between visible and near-infrared light. This research aims to evaluate 

as many metrics as possible to understand which ones relate with the intensity of heatwaves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Band 10 of Landsat 8 imagery is the thermal band used to calculate the land surface temperature. Because 

LST is intrinsically related to the Earth's surface's radiative and thermodynamic properties, it is routinely 

used in place of air temperature observations in a wide variety of research. Therefore, digital values must 

first be translated to radiance and then to usable surface temperature to acquire land surface temperature 

data. 

Instead of analyzing individual pixels, object-based image analysis of remote sensing data aggregates pixels 

to homogeneous subgroups or areas that may be analyzed. Individual pixels in such areas carry additional 

data, such as mean and standard deviation for each band. Working with higher quality satellite imagery, 

which is becoming accessible as sensor quality improves, is also less computationally intensive when pixels 

are aggregated into zones (Wu et al., 2017). For example, the Zonal Statistics tool in ArcGIS evaluates and 

Figure 12 - Pre-processing and Model/Feature Selection Workflow 



 

delivers a single statistic at a time. The cell values within an overlapping boundary are used to calculate 

statistics in a zonal statistics process. This value is used as the cell value for the pixels in the raster result 

belonging to that section. Since each pixel inside the output raster could only reflect one value, the statistic 

is generated for only one zone if a zone feature has several overlapping zones (ESRI, 2016). 

Zonal Statistics is a critical step that transforms individual pixel values or attributes to the boundary's 

average. This transformation helps in various ways, including decreasing noise and averaging the readings 

across a larger region, which mitigates the consequences of outlier values caused by instrument or 

calibration errors. The tool collects cell values from the value raster for all cells inside each zone to generate 

a statistic. This classification of cells inside a zone in a value raster is accomplished by superimposing zones 

on the value raster. Lastly, the mean value of all the raster pixels within a boundary layer is computed for 

all data within different IRIS boundaries (ESRI, 2016).  

 

The socio-demographic data and some other layers downloaded from the Lyon city spatial repository 

already came in IRIS boundaries. Therefore, the remainder of the data was converted to the mean pixel 

value of the IRIS boundary. While the data is estimated, this results in a smooth, easy-to-understand map 

that avoids pixel values' “salt and pepper” effect (Wu et al., 2017). Alternatively, the mean values will 

obliterate the detail of hotspots inside an IRIS boundary. However, this detail will add to the ambiguity at 

the city level when the overall pattern of heatwaves is desired. Additionally, the mean value separates the 

impacts of outliers or pixels that may have been warped by atmospheric or radiometric distortion.  

 

 

4.2.1 Landsat 8 Satellite Imagery 

 

The Landsat 8 satellite orbits the Earth in a near-polar sun-synchronous orbit, which means it covers the 

whole planet at a consistent local time of day. The satellite's return period is 16 days. The OLI sensors of 

Landsat 8 imagery can acquire images in the visible to thermal infrared spectral ranges. Sensor, solar, 

atmospheric, and topographic influences all alter Landsat images (Elmes et al., 2020). Preprocessing assists 

in mitigating these effects to the greatest extent possible for a specific application. Radiometric, 

atmospheric, and geometric adjustments are generally used when conducting multi-date change detection 

Figure 13 - Zonal Statistic Illustration (ESRI, 2016) 



 

of images (Li & Guo, 2016). Atmospheric and geometric modifications were excluded since the research 

region was cloud-free and the Landsat images were previously corrected geometrically. Radiometric 

correction is essential for mapping and monitoring because it accounts for variations in the geometry of the 

atmosphere and the sun. Because of minor fluctuation, radiometric corrections can often be neglected when 

the time period between images is short and obtained during the same season (Ban, 2016). According to 

(Song et al., 2001), radiometric modification is unnecessary when employing a classification, conducting 

post-classification on a single date, or categorizing composite imagery from several dates. A simple test 

using linear normalization was performed and, due to the minor disparity concerning the digital numbers 

and normalizing values, the correction was disregarded (Kalma, McVicar & McCabe, 2008). 

 

 

The procedure is streamlined by disregarding any adjustments and working directly with the raw image. As 

a result, the procedure is expedited, which is important for efficiently mapping a region affected by a 

heatwave. The clipping of an area of about 500 km2 from the original Landsat image is seen in Figure 15. 

Lyon and its surroundings were clipped from the Landsat imagery. 

 

 

 

 

 

 

 

 

 

 

Figure 14 - Satellite Imagery Correction Workflow (Peterson, Sagan & Sloan, 2020) 

Figure 15 - Lyon Area Clipped from Landsat Image 



 

4.2.1.1 Land Surface Temperature 

 

Atmospheric conditions are usually measured using ground-based air temperature data from established 

meteorological stations. These stations, however, are frequently placed in sparsely populated areas. Due to 

the inadequacy of current networks for calculating temperature gradients, these data do not reflect the local 

heat experienced in residential contexts. Landsat satellite imagery 8 was chosen for this research because it 

provides the greatest spatial resolution thermal data currently accessible from orbit (Ban, 2016). 

As a result, remote sensing satellites are increasingly being utilized to measure the thermal exposure of the 

population during a heatwave (Fabiani et al., 2019). Thermal data from satellites may be used to visualize 

the geographic gradient of the radiometric surface but not ambient temperature. Land surface temperature 

(LST) was determined using Landsat Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) 

bands taken throughout the day when measurable heat island intensities are most significant. The TIRS 

thermal band has a spatial resolution of 30 m at the nadir, which is deemed sufficient for collecting 

complicated intra-urban surface temperature variations, allowing for a convincing and thorough study of 

the urban climate (Geletič, Lehnert & Dobrovolný, 2016). Two satellite images were taken on July 12, 

2018, and August 4, 2018, at around 10:45 a.m. Universal Coordinated Time (UTC) was used in this study. 

Landsat revisit periods are on average 16 days, making it impossible to capture another image during this 

occurrence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The data from the thermal band imaging was calibrated in six steps. The brightness temperature was 

calculated after Band 10 digital numbers (DN) measurements were transformed to radiance. The Landsat-

8 thermal infrared sensor (TIRS) and Landsat 8 Operational Land Imager (OLI) were employed in this 

research to convert known DNs into LST using a six-step procedure. To transform DN to Land Surface 

Temperature in Celsius, the following steps were performed: 

Figure 16 - Land Surface Temperature from Landsat 8 Satellite Data Workflow 



 

1) Conversion of raw image into a spectral radiance by Equation (1) (Scarano and Sobrino, 2015).  

𝐿 = =
(𝐿𝑚𝑎𝑥  – 𝐿𝑚𝑖𝑛)

( 𝐷𝑁𝑚𝑎𝑥)
 × 𝐵𝑎𝑛𝑑 +  𝐿𝑚𝑖𝑛 (1) 

Where,  

L = Atmospheric SR in 𝑤𝑎𝑡𝑡𝑠/(𝑚2 ×  𝑠𝑟𝑎𝑑 ×  𝜇𝑚)  

𝐿𝑚𝑎𝑥  = Maximum SR Band 

𝐿𝑚𝑖𝑛 = Minimum SR Band  

𝐷𝑁𝑚𝑎𝑥  = 𝑄𝑐𝑎𝑙 𝑚𝑎𝑥  –  𝑄𝑐𝑎𝑙 𝑚𝑖𝑛 = maximum and minimum difference of sensor calibration  

 

2) Equation (2) was used to convert reflectance to BT (NASA, 2017).  

𝐵𝑇 =  
𝐾2

𝐿𝑛 𝑖(
𝐾1
𝐿𝜆

 + 1)
 −  273.15 (2) 

Where,  

𝐾2 and 𝐾1 represents the band-specific thermal conversion constants 

𝐵𝑇 = Brightness temperature in Celsius  

 

3)  Eq. (3) was used for calculating NDVI.  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 (𝐵𝑎𝑛𝑑 5) − 𝑅 (𝐵𝑎𝑛𝑑 4)

𝑁𝐼𝑅 (𝐵𝑎𝑛𝑑 5) + 𝑅 (𝐵𝑎𝑛𝑑 4)
 (3) 

Where,  

the Range: -1 < NDVI < + 1.  

 

4) Proportion of Vegetation (PV) was assessed by Eq. (4) (Roy et al., 2014):  

𝑃𝑣  =  ( 
𝑁𝐷𝑉𝐼 – 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 – 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
 )

2

(4) 

 

5) Land Surface Emissivity (LSE) was calculated by Eq. (5) (Avdan and Jovanovska, 2016):  

𝐿𝑆𝐸 =  0.004 ×  𝑃𝑣  +  0.986 (5) 

 

6) LST was assessed in Celsius using the by Eq. (6) (Avdan and Jovanovska, 2016):  

𝐿𝑆𝑇 =  
𝐵𝑇

{1 + [𝜆𝐵𝑇/𝜌]𝑙𝑛(𝐿𝑆𝐸) }
 (6) 

Where λ is the wavelength of emitted radiance and ρ was calculated as (Eq. (12)):  



 

𝜌 =  ℎ 
𝑐

𝜎
 =  1.438 ×  10−2𝑚𝑘 () 

Where Boltzmann constant =  𝜎 =  1.38 ×  10− 23  
𝐽

𝐾
, Planck’s constant = ℎ =  6.626 ×  10− 34 𝐽 𝑠, and velocity of light = 𝑐 =

 2.998 ×  108 𝑚/𝑠 (Roy et al., 2014). 

 

 

4.2.1.2 Reclassify LST 

 

A classification approach is suitable when the objective is to accurately assign data to a defined, often 

limited collection of predefined classes or groups (Hussain et al., 2013). A data collection consisting of 

input variables and the dependent variable, generally known as the output variable, is utilized to train the 

model. Afterward, the model can be implemented to testing the dataset containing only the independent 

variables (Scott, Petropoulos, Moxley & Malcolm, 2014). Based on the standard deviation from the mean, 

the LST values were divided into four categories, computed by using standard deviation analysis to 

determine the relative deviation of the data points from the mean. If the data points are further from the 

mean, the variance within the dataset is more relevant; as a result, the larger the standard deviation, the 

more widely spread the data is (Vargo, Habeeb & Stone, 2013). The following formula is used to get the 

standard deviation: 

√∑ (𝑥𝑖 − 𝑥̅)𝑛
𝑖=1

2

𝑛 − 1
 

where: 

xi=Value of the ith point in the data set 

𝑥̅=The mean value of the data set 

n=The number of data points in the data set 

 

Figure 17 displays the standard deviation around the mean over a normal distribution. The data represents 

land surface temperature in which the high values (right tail) are of much more importance than the rest of 

the data since LST is correlated with heatwave intensity. The research aims to identify the areas within the 

city that are more affected by heatwaves than their surroundings. In that case, it was decided to classify 

50% of the values associated with relatively low LST values as “Low.” The Low class would equate to all 

data that is equal to the mean or lower. The classification is more sensitive to the higher values since it will 

have three classes explaining 50% of the data above the mean. The mean to one standard deviation data is 

classified as “Moderate” accounting for 34.1% of the data. Next, the values from one standard deviation to 

two standard deviations are classified as “High” which equates to 13.6% of the data. The last class was 

categorized as “Extreme” which are all the values over two standard deviations and accounted for only 

2.2% of the data. The Extreme class only includes the high LST values compared to the rest of the city and 

was purposely chosen to include limited options for emergency services and decision-makers to prioritize 

allocating limited resources on the ground to the most affected blocks. 

 



 

 

 

 

 

 

 

 

 

 

 

The trained model in highlighting heatwave hotspots is designed to work in any urban environment. The 

classifying of values based on standard deviation makes the model more robust when applying to different 

cities. The LST values change when dealing with different geographic regions, and the transformation to 

classes based on the standard distribution makes the classification based on relative values rather than 

absolute. For instance, 30°C might be considered Extreme in specific locations, whereas it might be an 

average summer day in other places. Ignoring the absolute value and focusing on the relative differences 

over an area eliminates training the model to the local environment parameters, making it more applicable 

to other geographic regions. 

 

 

4.2.1.3 Optical Bands 

 

Numerous spectral indices may be used to analyze various variables, such as water resources, vegetation, 

soil and snow (Zhao et al., 2019). Landsat satellite imagery facilitates a variety of operations on its bands, 

the result of which may be converted to a spectral index. Spectral indices distill multi-spectral satellite 

imagery down to a single element, enabling the observation of pixel values over time (Li & Guo, 2016). 

Furthermore, spectral indices exceed individual bands by amplifying beneficial features (ex. land use and 

cover change) while reducing unwanted properties like atmospheric and topographic noise (Fu & Weng, 

2016). Spectral indices are frequently used in remote sensing applications, and their use in evaluating 

various geographical problems has been thoroughly established. The objective of this study was to assess 

the most commonly used indicators to ascertain which ones had the strongest correlation with LST. In all, 

24 distinct band combinations were evaluated in the machine learning model to determine their predictive 

ability for LST (Table 2). 

 

 

 

Figure 17 - Standard Deviation of Normal Distribution 

                    Low                   Moderate   High        Extreme 



 

                    Table 2 – Satellite Imagery Derived Bands/Indices 

Bands/Indices Wavelength 
(micrometers) 

Resolution 
(meters) 

Applications 

Band 2 - Blue 0.45-0.51 30 Assessment of vegetation 
vigour 

Band 3 - Green 0.53-0.59 30 Chlorophyll absorption 
for vegetation 
differentiation 

Band 4 - Red 0.64-0.67 30 Biomass surveys and 
delineation of water 
bodies 

Band 5 - Near Infrared (NIR) 0.85-0.88 30 Vegetation and soil 
moisture measurements 

Band 6 - SWIR 1 1.57-1.65 30 Crop monitoring 

Band 7 - SWIR 2 2.11-2.29 30 Hydrothermal mapping 

Band 10 - Thermal Infrared 
(TIRS) 

10.6-11.19 100 rescaled to 30 Land Surface 
Temperature (LST) 

Natural Composite - 30 Natural color 
composition of RGB 
bands 

Enhanced Vegetation Index 
(EVI) 

- 30 'Optimized' vegetation 
index designed to 
enhance the vegetation 
signal with improved 
sensitivity in high 
biomass regions 

Modified Normalized 
Difference Water Index 
(MNDWI) 

- 30 Uses green and SWIR 
bands for the 
enhancement of open 
water features 

Built-up Index (BU) - 30 Index for analysis of 
urban pattern using NDBI 
and NDVI 

Normalized Difference Built-up 
Index (NDBI) 

- 30 Uses the NIR and SWIR 
bands to emphasize 
manufactured built-up 
areas 

Normalized Difference 
Vegetation Index (NDVI) 

- 30 Quantify of vegetation 
greenness (vegetation 
density) 

Normalize Difference Water 
Index (NDWI) 

- 30 Water bodies analysis 

Adjusted Vegetation Index 
(SAVI) 

- 30 Vegetation index that 
minimizes soil brightness 
influences  

Modified Soil Adjusted 
Vegetation Index (MSAVI2) 

- 30 Minimizes the effect of 
bare soil on the SAVI 

Perpendicular Vegetation Index 
(PVI) 

- 30 Vegetation index 
sensitive to atmospheric 
variations 

Normalized Difference 
Moisture Index (NDMI) 

- 30 Sensitive to the moisture 
levels in vegetation 

Agriculture Index - 30 Emphasizes agricultural 
areas 

Healthy Vegetation Index - 30 More sensitivity to type 
of vegetation 

Atmosphere Index - 30 Index that minimizes the 
effect of the atmosphere 

Infrared Index - 30 High sensitivity to 
vegetation 



 

 

 

 

 

 

 

4.2.2 Auxiliary Data 

 

The majority of supplementary data acquired from Lyon's spatial respiratory platform was vector-based and 

thus easily incorporated into the model. The data were projected to the standard projection, and descriptive 

statistics were used to evaluate the data distribution and account for outliers and null values. After cleaning 

the raw data, all the feature information was compiled into a single file. Continuous data from emission 

measurements were subjected to zonal statistics to determine the mean for each block. Due to the sensitive 

nature of the data, most of the socio-demographic data was already stored in IRIS blocks.  

In comparison, the sum of discrete data was computed by adding the counts of the data points within each 

IRIS. All variables were then normalized on a 0 to 1 scale to guarantee consistency in the machine learning 

models. Table 3 contains a list of the data that were used to create the model prediction. The data is collected 

from various local and national government organizations and is utilized in research as predictions for 

environmental and public health applications. 

 

 

 

 

 

 

 

 

 

 

 

Natural No Atmosphere Index - 30 Natural colors minimizing 
the effects of the 
atmosphere 

Vegetation Analysis - 30 Vegetation index that 
emphasizes on different 
forms of vegetation 

Waterland index - 30 Index that distinguishes 
the boundary of 
water/land. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 – List of Auxiliary Factors 



 

4.3 Machine Learning Models 
 

Machine learning (ML) is increasingly impacting society, assisted by significant improvements in extensive 

data, computer efficiency, conveniently accessible data storage, and continuous connectivity. ML 

approaches are quickly being employed in Earth and Environmental System modeling research due to the 

growing availability of large data sets, accessibility of computation, and enhanced machine learning 

algorithms. Climate modeling (Geletič, Lehnert & Dobrovolný, 2016; Gosling, McGregor & Páldy, 2007; 

Zhao et al., 2019) and remote sensing (Chen et al., 2016; Heung et al., 2016; Peterson, Sagan & Sloan, 

2020; Zhou et al., 2020) are all well-studied areas in Earth Science that utilize machine learning 

applications.   Machine learning-based techniques may bring up viable, alternative routes for developing 

knowledge about urban temperature modeling. In numerous Earth Sciences applications, machine learning 

models have consistently outperformed conventional predictive models and provided broader flexible 

solutions to unanticipated scenarios (Bakar, Pradhan, Lay & Abdullahi, 2016; Huang et al., 2015; Shatnawi 

& Abu Qdais, 2019; Zhang & Sun, 2019). ML techniques are entirely or partially automated methods for 

inferring facts without establishing certain prior assumptions. 

 

 

 

 

 

 

 

 

 

 

 

The most often used machine learning algorithms in research include various learners from linear 

regression, decision trees, random forests, KNN, logistic regression, and gradient boosting domains (Heung 

et al., 2016; Modaresi, Araghinejad & Ebrahimi, 2018; Saputra & Lee, 2019; Were, Bui, Dick & Singh, 

2015; Zhou et al., 2020). The supervised machine learning methods begin with a dependent variable (target) 

that will be forecasted using a set of predictors (independent variables). Next, a model is defined by 

converting inputs to desired outputs utilizing a collection of variables (Zhou et al., 2020). Finally, the 

algorithm is trained until it achieves the desired degree of accuracy when applied to the training data (Heung 

et al., 2016). The thirteen machine techniques used to estimate the LST are listed in Table 4. 

Figure 18 - Machine Learning Workflow (Pant, 2019) 



 

                           Table 4 - Machine Learning Models Used for Prediction of Heatwaves 

 

 

 

 

 

 

 

 

 

 

 

4.3.1 Model Evaluation 

 

Classification is the process of categorizing a set of data. Machine learning processes begin by defining the 

problem, acquiring data and cleaning it, integrating key feature variables, training the model, evaluating 

overall performance, and refining it using an appropriate cost function. A confusion matrix is a quantitative 

assessment of the accuracy of a classification algorithm. Every element in a confusion matrix reflects how 

many classification predictions a model made correctly or incorrectly (Pant, 2019). 

 

 

 

 

 

 

 

True Positive (TP): represent the number of predictions wherein the algorithm correctly predicts the 

presence of a positive class. 

True Negative (TN): This statistic reflects the number of predictions in which the algorithm classified the 

negative class correctly as negative. 

False Positive (FP): This terminology represents the number of predictions produced by the algorithm that 

are incorrectly classified as positive. 

Machine Learning Algorithms  Algorithm Group 

Logistic Regression (LR) Linear Models 

Linear Discriminant Analysis (LDA) 

Support Vector Machines (SVM) Support Vector 
Machines Linear Support vector Machines (LSVM) 

Gaussian Naive Bayes (NB) Naive Bayes 

AdaBoost (ADA)  
Ensemble Methods Random Forest (RF) 

Gradient Boosting Classifier (GBC) 

Extreme Gradient Boosting (XGB) 

K-Nearest Neighbors (KNN) K-Nearest Neighbors 

Multi-Layer Perceptron Classifier (MLP) Neural Network 

Classification and Regression Trees (CART) Decision Tree 

Decision Tree (Tree) 

Table 5 - Confusion Matrix (Pant, 2019) 



 

False Negative (FN): The number of classification predictions in which the positive class is incorrectly 

classified as negative. 

Generally, it is better to use a confusion matrix as the assessment metric for a classification machine 

learning model because the confusion matrix includes many of the most frequently employed performance 

metrics (Pant, 2019). Thus, it gives a precise yet valuable gauge for the performance of the model. The 

following statistics summarizes the most commonly used model performance metrics: 

Accuracy: This parameter reflects the model's overall performance, calculated as the proportion of total 

observations correctly classified by the model. Accuracy is evaluated using the following equation: 

(TN+TP)/(TN+TP+FN+FP). 

Precision: This statistic measures the ratio of positive predictions within a positive class. Precision is 

computed using the following formula: TP/(FP+TP). 

Recall: This measure reflects the fraction of all positive samples correctly recognized as positive by the 

algorithm.  The recall is computed using the subsequent formula:  TP/(FN+TP). 

F1-score: This measure incorporates precision and recall in a single value. In mathematics, it is also the 

harmonic mean of precision and recall. It may be computed as follows: 

 

 

 

 

 

4.2.1 Feature Importance 

 

The concept "feature importance" refers to a method in which input qualities are assigned a value based on 

their predictive capacity for a dependent variable. For example, linear model coefficients, statistical 

correlation coefficients, and permutation importance scores are all types of feature importance scores that 

can be computed (Zien, Krämer, Sonnenburg & Rätsch, 2009). Feature importance scores are critical in 

predictive modeling because they provide insights from data, insights into the model, and the foundation 

for feature selection and dimension reduction, enhancing the efficacy and efficiency for a predictive model 

upon a particular topic (Vargo, Habeeb & Stone, 2013). Fundamentally, machine learning algorithms 

evaluate the relative significance of variables, which can shed light on their predictive ability. 

The issue is that when a classifier is developed with such a large amount of data points, it could also learn 

from noise and inaccuracies. As a result, the model exhibits an excessive amount of flexibility when 

replicating the input data, a phenomenon referred to as overfitting (Zien, Krämer, Sonnenburg & Rätsch, 

2009). Overfitting is a problem that should be acknowledged whenever a model's performance is increased. 

Seventy factors are evaluated in this study to determine which are the most important on the model’s 

performance. In addition, the k-fold cross-validation method was used to investigate the model's validity 

and avoid overfitting the model with the optimal number of features. 



 

Also, Principal Component Analysis (PCA) was utilized to determine which combination of elements 

contributed to cohesiveness. PCA is a dimensionality-reduction approach that is commonly applied to 

reduce the size of large data sets by condensing a collection of factors into a smaller subset that preserves 

the majority of the data contained in the larger set. While reducing the number of components in a data set 

will consistently lower accuracy, the objective of dimensionality reduction would be to trade off some 

precision for simplicity. PCA lowers the number of factors by encapsulating the information in new 

"components." Because the additional variables are irrelevant to this research and the objective is to 

determine which variables contribute to the model, the new "components" can be examined to determine 

the contributions of all the raw variables. Assessing the factors' effect on the new components can aid in 

deciphering patterns and determining which variables contribute to the cohesiveness of the model. In 

addition, this assessment will assist in selecting the most influential elements and determining which 

components function best in conjunction (Fauvel, Chanussot & Benediktsson, 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

The SHAP python package was used to determine the significance of features. SHAP's objective is to 

quantify the effect of each variable on the prediction of an event (Nandlall & Millard, 2020). In the SHAP 

explanation technique, Shapley values are calculated using coalitional game theory (Tao, Chen, Xu & Zhu, 

2011). The principle behind the relevance of SHAP characteristics is simple: It is vital to have Shapley 

values that are high in absolute terms. The overall feature importance is obtained by adding all the 

comparative Shapley scores for each item in the data (Nandlall & Millard, 2020). 

SHAP is an attribute characterization metric based on the magnitude of attribute representations. The 

increase in the model's error rate due to permuting the feature's values, that weakens the relation among the 

feature and the actual result, is calculated using SHAP factor significance, which is a replacement for 

permutation feature importance. There is a substantial difference between the two feature importance 

metrics: The model's performance degradation decides the importance of permutation characteristics. The 

significance of each variable is then shown in declining order of importance—the predictor importance 

graph aids in model evaluation by emphasizing each predictor's relative importance. Given the relative 

nature of the data, all variables are reflected by a value of 1.0. A predictor's significance does not influence 

Figure 19 - Principal Component Analysis Steps (Fauvel, 
Chanussot & Benediktsson, 2009) 



 

the model's accuracy. It refers to the proportional importance of each predictor in making a prediction, not 

to the prediction's accuracy (Nandlall & Millard, 2020). 

 

4.4 Multi-Criteria Analysis and Production of Heatwave Risk Map 
 

A Multi-Criteria Analysis (MCA) identifies and examines several alternatives by assessing their impact, 

effectiveness, and implications. MCA is a systematic approach that enables difficult choices to be explored 

per predefined criteria and objectives (Deng, 2015). MCA is particularly well-suited for resolving difficult, 

complex problems that include many and conflicting goals and objectives. It permits the selection of a 

specific best option as well as the ranking of possible alternatives. In addition, MCA enables the 

identification of trade-offs between various methods (Farhan, Pattipati, Wang & Luh, 2015). MCA was 

used to create the Heatwave Impact Risk Map for this project. MCA primarily utilized two sources of data 

that were weighted equally based on Buscail, Upegui & Viel’s (2012) workflow for heatwave health risk 

mapping. The researchers weighted the following four factors equally (25%); Exposure, Vulnerability, 

Hazard and Exposure & Vulnerability combined index. The Hazard Map, which is constructed entirely 

from reclassified LST measurements, depicts all of the IRIS blocks of Lyon based purely on the 

temperature. The higher the temperature, the more hazardous the circumstance. 

 

 

 

 

 

 

 

 

 

 

The Vulnerability Map is based on numerous variables that have contributed to the vulnerability of the most 

susceptible population. The factors were chosen based on published research and empirical data from prior 

heatwaves, demonstrating a link between the variables utilized and the people most affected by heatwaves 

(Farhan, Pattipati, Wang & Luh, 2015; Gosling, McGregor & Páldy, 2007). For example, the term "extreme 

age" refers to the percentage of the population under the age of five and above the age of 65. The term 

"population density" refers to the amount of people living in a specific area (IRIS boundary). During 

heatwaves, low-income population is disproportionately affected. The low-income population is 

categorized according to education, the percentage of low-skilled occupations, the percentage of 

immigrants, the number of social service outposts and average household income situated in an IRIS, with 

higher scores corresponding to lower-income IRIS zones. The unemployment rate relates to the percentage 

of the IRIS population that is unemployed. Each IRIS is evaluated according to its appropriateness on a 

Figure 20 - Landsat Spectral Index Steps 



 

scale of 1 to 10. Then combined, they generate the vulnerability map. The final heatwave impact risk map 

is constructed using the MCA of hazard and vulnerability maps, as seen in Figure 21. 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.1 Hazard 

 

Since their inception as a strategy for measuring health implications of traffic-related air quality, hazard 

maps have been widely adopted as a method for classifying the spatial variation of environmental dangers, 

such as heatwaves, due to the close relationship between temperatures and land cover types. Hazard maps 

make use of geographic predictor variables to estimate exposure levels for a given population. The hazard 

map is half of the Heatwave risk map and is based entirely on land surface temperature. 

 

4.4.2 Vulnerability 

 

The factors considered in the vulnerability analysis have demonstrated a high correlation between heat and 

health outcomes in the literature (Farhan, Pattipati, Wang & Luh, 2015; Gosling, McGregor & Páldy, 2007). 

The geographical distribution of the IRIS-required vulnerability characteristics was established using 

census data. Socioeconomic status was determined by combining social isolation, deprivation, and a low-

level education. Each IRIS received a score derived from the Townsend score (one of the most widely used 

deprivation indices). Vulnerability indices for IRIS boundaries with less than 100 residents were set to zero 

since a low population density indicates low overall risk. The low educational level measure was calculated 

by measuring the percentage of the population without a high school diploma. Population and land areas 

were utilized to get the population density per IRIS (Inhabitants Per Square Meter). The combination of the 

four components resulted in the vulnerability map, which weighed in at 50% for the final heatwave risk 

map. 

Figure 21 - Multi-Criteria Analysis Workflow 



 

 

 

4.4.3 Mapping 

 

A heatwave health risk index of one to ten was created by combining the four vulnerability factors (each 

weighted 25%) for a total of 50% of the overall weight, and the hazard factor weighted 50% based on . 

Buscail, Upegui & Viel’s (2012) framework for heatwave health risk mapping. Choropleth maps were used 

to illustrate geographical differences in hazard, vulnerability, and risk indices. The index values (1–10) 

were classified into four categories to indicate the growing dangers of heatwaves (Low, Moderate, High, 

and Extreme). The models were generated and analyzed using ArcGIS and Python. 

 

 

4.5 Simulations of Heatwave Mitigation Strategies 
 

A large-scale analysis is conducted after identifying the IRIS with the highest heatwave risk. Due to the 

small number of IRIS bounds, computationally intensive lidar data will be used to more accurately identify 

IRIS characteristics. Lidar data provided additional information on the most impacted IRIS, which can then 

be used to model the effect of greening the IRIS on the entire heatwave risk. The overall process depicted 

in Figure 23 illustrates the various analyses provided by the lidar data and how the result will be 

incorporated into the model to anticipate future mitigation possibilities. The three-dimensional lidar data 

will give critical information on the structure, vegetation, and unused barren/impermeable land. The 

calculation will then be used to simulate changing the landscape by greening 25%, 50%, and 75% of the 

available land and observing the effect on temperature. Two elements contribute to the area's greening: 

1. By increasing the proportion of green roofs on available buildings' roofs. 

2. By increasing the proportion of vegetation on available barren/impermeable land. 

Figure 22 - Using GIS to Convert of Geographic data to Final Product Illustration (Deng, 2015) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

The link between the many components that comprise the final model will be examined to ascertain the 

effect of varying the land use pixel values. After generating the correlation, the impact of greening the IRIS 

in various circumstances will be calculated. The new values are then put into the machine learning model, 

which is used to forecast heatwave risk under different scenario settings. This approach offers a rapid 

estimate of the amount of greening necessary to lower the temperature considerably. There is now much 

more sophisticated customized software available that combines many factors like surface type, soil time, 

meteorological data, urban architecture, and wind patterns to produce a significantly more realistic 

simulation. However, such programs take a significant amount of data and time to process, which is not 

always advantageous during an emergency hazard event. Apart from reducing temperature extremes and 

urban heat islands, urban greening reduces air and noise pollution, absorbs rainwater that would otherwise 

cause flooding (Demuzere et al., 2014; Deng, 2015; Santamouris & Osmond, 2020; Uyar, 2017). It also 

provides habitat for native species and has been shown to boost morale in those who see it, calming traffic 

and reducing urban crime (Santamouris & Osmond, 2020). 

 

4.5.1 Light Detection and Ranging (Lidar) Data 

 

Lidar is a process of remote sensing that utilizes a laser pulse to measure intervals (variable distances) to 

the Earth. When such light pulses are combined with appropriate data acquired by the airborne devices, 

precise three-dimensional measurements about the shape and properties of the Earth are obtained (Corte et 

al., 2020). Lidar information was used to achieve a more detailed view of the most affected IRIS limits and 

simulate urban greening scenarios by adding green roofs and enhanced vegetation throughout the block. 

The method for integrating lidar data into model-compatible data is depicted in Figure 24. After 

incorporating the new information from the lidar data into the model, future situations can be simulated. 

Essential factors determined in the preceding phase can then be modified on the various greening scenarios 

Figure 23 - Greening Simulation Workflow 



 

to observe how it affects the entire IRIS block. The effects of greening potential areas by 25%, 50%, and 

75% were investigated by examining their impacts on the model’s factors. After generating the association 

between altering land use, the pixel values were translated in the simulation to see the effect on temperature. 

 

 

 

 

 

 

 

 

 

 

Three-dimensional urban morphology parameters were constructed to establish the effect of the built 

environment on the UHI model. Separating urban structure and surface points from many other point clouds 

was the first step, followed by generating a digital surface model (DSM) by using a linear interpolation 

approach by means of a triangulated irregular network (TIN) (Corte et al., 2020). Splitting the ground point 

class from other point classes resulted in creating a terrain model (DTM). Next, the building height was 

generated by the subtracting DTM from the DSM (Building Height = DSM – DTM). Finally, building 

heights were transformed to a raster of building heights (Rodrigues et al., 2019). The same steps were done 

for vegetation, but instead of building points, vegetation was separated from the point cloud. Most of the 

processing steps were performed within ArcMap program utilizing a custom tool from LAStools 

(https://rapidlasso.com/lastools/). 

 

 

 

 

 

 

 

 

 

 Figure 25 - Lidar Processing Steps 

Figure 24 - Conversion of Lidar 3D to Model Compatiable Data 



 

Roof Index of Structures: 

The building roof index was calculated as the total of the roof areas of not vegetated buildings. This index 

was determined using the DSM. 

Index of Vegetation: 

Lidar data includes the classification of three types of vegetation based on height. Lidar data can detect the 

difference between low, medium, and high vegetation. The IRIS's total vegetation cover was determined 

by adding all the vegetation pixels within an IRIS. The vegetation was rasterized into two classes: 

vegetation on building roofs and vegetation growing on the ground. 

Analysis of Shades: 

The DSM was calculated using Lidar data, and then shadow analysis was used to determine the percentage 

of the IRIS that is shaded during a heatwave. The shade study will demonstrate the consequences of 

increasing the density of high vegetation in various scenarios. Generally, previous research has relied on 

field tests to determine how shade enhances thermal comfort. For example, 93 percent of individuals 

visiting a public square in July in Taiwan chose to remain under shade trees or in building shade, 

demonstrating the critical nature of shade in outdoor areas (Lin, Matzarakis & Hwang, 2010). In addition, 

greening barren areas have the indirect consequence of making them more accessible and bearable during 

a heatwave and could provide refuge from direct exposure to the sun. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 26 - Lidar Derived Anlaysis (A) Sky View Factor (B) Ground Isolation (C) Building 
Density (D) Building Edge Detection 

A 
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4.5.2 Scenario Simulation 

 

The total usable roof area of buildings is estimated using the DSM of buildings. The 2D roof of each 

structure is then retrieved using statistical means by separating pixels with a relatively consistent height +-

2 m and the area calculated. As a result, the rasterized rooftop structures are isolated from the rest of the 

image. A similar procedure is followed for vegetation on rooftops, which is subsequently removed from 

the total rooftop area available. This approach will eventually provide an estimate of the total area accessible 

for green roof development. 

The different ways green infrastructure can be incorporated within an urban environment can be seen in 

Figure 27. Integrating vegetation in an urban environment requires intensive local knowledge of the urban 

morphology and flora species selection at particular conditions (Demuzere et al., 2014; Santamouris & 

Osmond, 2020). One significant limitation of this study was grouping all greening interventions as the same 

value without any regard to any detail on the type, design, scale, and species used. Therefore, this research 

will not look at various ways of incorporating green infrastructure but rather the number of areas converted 

from grey infrastructure to green. Urban green simulations will adjust pixel values of redesigned roofs in 

the impact variables due to changes in roof materials. This in essense will incorporate the positive effects 

of green and cool roofs relative to temperature. As a result, the parameter pixel size should be as small as 

possible to make these adjustments more precisely of the available roof area. The inclusion of more green 

spaces will, in essence, change the various factors used in the model; for instance, it will increase NDVI 

and Albedo while decreasing the NDBI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 - Green Infrastructure Integration (Wootton-Beard et al., 2016) 



 

CHAPTER 5:  RESULTS AND DISCUSSION 

5.1 Model Evaluation 
 

5.1.1 All Models 

The accuracy results for the thirteen machine learning algorithms are depicted in Figure 28. Most models 

performed between 70% and 90%, except for AdaBoost Classifier, which performed poorly. AdaBoost 

Classifier is similar to the best performing classifiers random forests and XGBoost. Ensemble learning 

algorithm combines multiple base learners’ predictions to produce a single, aggregate estimate for each 

input (Zhou et al., 2020). This approach allows it to discover more intricate correlations between the training 

set's attributes and targets. AdaBoost algorithm might have performed poorly due to irrelevant features 

included in the model. Two parameters included in the model had little effect on the overall model but were 

critical for differentiating the "Extreme" class, which was necessary for classifying the most impacted 

locations. Models constructed using linear regression, logistic regression, support vector machine (SVM), 

naive bayes, k-nearest neighbors (KNN), and neural networks all performed well, with accuracies ranging 

from 70% to 80%. The models demonstrated the most significant degree of confusion between the 

intermediate classes. Confusion may arise due to the models being calibrated to be extremely sensitive to 

the Extreme class, resulting in the incorrect classification of the intermediate classes. The neural network 

model was expected to be one of the best performers; however, because neural networks require a vast 

dataset to train effectively, the results were not as anticipated. The two Landsat images provided insufficient 

data to train the link between input factors and output prediction adequately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The decision tree and ensemble learning algorithms had the highest accuracy scores, ranging around 90%. 

Tree-based algorithms facilitate predictions with high accuracy, consistency, and interpretability. In 

comparison to linear models, tree-based and ensemble algorithms can accurately map nonlinear 

relationships. Ensemble models are a subset of decision trees. Random forest and gradient boosting models 

Figure 28 - Machine Learning Model Accuracy for Predicting Heatwave Hotspots 



 

(CART, XGB, GBC) use ensemble learning. Random forest uses a group of decision trees to categorize 

new objects based on their properties; each tree provides a classification, and the one with the most votes 

win. Gradient boosting algorithms employs a collection of learning algorithms that aggregate the 

predictions of many base estimators to enhance resilience over a single estimator. It takes many weak or 

mediocre predictors and combines them to create a strong predictor (Zhou et al., 2020). The models that 

utilized ensemble methods had the best accuracy, which is consistent with the literature. 

 

5.1.2 Best Performing Model 

 

The best performing model was the XGBoost, with an accuracy of 94%. Gradient boosting (GB) algorithms 

are highly effective classifiers/regressors that work exceptionally well on structured data, and the XGBoost 

module is an exemplary implementation of this approach. XGBoost has several speed advancements that 

enable rapid training of a high-performing model. As a result, XGBoost is widely used, and outputs have 

won many structured dataset competitions (Zhou et al., 2020). 

The accuracy results of the model, based on the testing dataset (25% of data), are shown in Table 6. The 

XGBoost performed well in grouping all classes with accuracies above 88% and perfectly predicting the 

Extreme class, which signifies the most stricken areas due to heatwaves. The model was customized to give 

more weight to the Extreme class by changing the weights assigned to the different categories. Then the 

precision, the proportion of accurately projected positive observations to the overall sum of predict positive 

observations, and the recall, which is the proportion of accurately forecasted positive observations to all 

observations in the actual class, were both high (Pant, 2019). Therefore, the model did not wrongly 

overpredict the Extreme class. F1 Score is the weighted average of Precision and Recall, thus considering 

false positives and false negatives.  

                                      Table 6 - Accuracy Statistics of XGB Model 

 

 

 

 

 

 

 

The results of past studies can be compared to the outcome by merging numerous variables and employing 

different algorithms. For example, Sherafati et al. (2013) achieved an R2 of 0.71 in their study utilizing the 

ANN model to predict the association between urban sprawl factors and LST. Employing a boosted 

regression tree to combine 2D/3D urban data, LST was calculated on a 60m cell size grid, resulting in 

a correlation of around 0.85 for various seasons (Hu et al., 2020). Furthermore, Equere et al. (2020) used a 

spatial regression model to evaluate the association among horizontal and vertical structural features and 

Class Precision Recall F1-Score Support 

Low 0.93 0.99 0.96 67 

Moderate 0.89 0.87 0.88 76 

High 0.94 0.92 0.93 84 

Extreme 1 1 1 87 

Overall Accuracy  0.94 314 

Macro Avg 0.94 0.94 0.94 314 

Weighted Avg 0.94 0.94 0.94 314 



 

LST in San-Francisco and found an R2 of 0.68. Finally, Chun and Guldmann (2014), utilized a regression 

model that attained an R2 of about 0.70 using a 30 m pixel resolution.  

The vast majority of machine learning algorithms perform optimally when the sample size across each class 

is approximately equal. Equal class size improves the algorithm's performance by enhancing accuracy and 

minimizing errors. However, if the data set is unbalanced, high accuracy is achieved by forecasting the 

majority classes while falling short of capturing the minority class, which is the most significant class in 

this study. Due to small number of training input data for the Extreme class, with less than 3% (over two 

standard deviations from the mean), the model had initially performed poorly with significant variation in 

results.  Oversampling, a resampling technique, has been used to expand the proportion of copies in the 

minority class. Oversampling can be advantageous when data are scarce; however, it might result in 

overfitting and weak generalization (Heung et al., 2016). The resampling of the Extreme class did not 

compel the model to produce excessive predictions for the class while keeping high prediction values for 

the other class. Sensitivity tests also showed little impact of overfitting of the model. 

The confusion matrix of the model can be seen in Table 7.  The confusion matrix provides the visualization 

of an algorithm's performance. The model almost predicted the Low and Extreme classes perfectly with 

higher levels of misclassification in the intermediate layers.  A future improvement to the model would be 

integrating the intermediate classes into one, reducing misclassification among them. Additionally, it is 

critical to note that the Extreme class was not overpredicted, even after manually adjusting the class weight 

in the model parameters. 

 

                                  Table 7 - Confusion Matrix of XGB Model 

 

 

 

 

 

 

5.2 Feature Importance 

5.2.1 All Features 

 

Figure 29 depicts the top 20 results of SHAP feature importance for the machine learning model. The 

feature importance is plotted in decreasing order of importance, and the predictor significance diagram 

illustrates each predictor's relative value and relationship to the outcome. The NDBI index was the most 

critical factor in the model, accounting for around 25% of the weight, and it is positively correlated with 

temperature. NDBI is expected to be a key factor in urban environments due to the UHI effect. The 

enhanced vegetation index (EVI) is the second most important factor, accounting for around 10%. The EVI 

has an inverse relationship with temperature, with greater values corresponding to lower temperatures. The 

discovery is consistent with previous research, as trees and plants reduce surface and air temperatures 

through shade and evapotranspiration. Other key characteristics include DEM, Albedo, the percentage of 

the population over 65, the percentage of low-skilled workers, and the percentage of the industrial area, 

Class Low Moderate High Extreme 

Low 66 1 0 0 

Moderate 5 66 5 0 

High 0 7 77 0 

Extreme 0 0 0 87 



 

which accounts for roughly 5% of the total influence. Previous research found that NDVI is crucial in 

predicting temperature-related studies; however, the EVI index surpassed NDVI significantly in the 

XGBoost model. The EVI index reduces both atmospheric and soil background noise simultaneously 

compared to NDVI. NDVI may have performed poorly due to the omission of some preprocessing steps in 

cleaning the satellite imagery data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the sensitivity analysis results, compared to 3D urban form factors, 2D urban feature 

characteristics had a greater impact on the LST. The surface temperature is highly connected to 2D urban 

characteristic factors, whereas the air temperature is closely linked to 3D urban attribute values (Berger et 

al., 2017). Previously published research demonstrated that the connections among LST and 2D surface 

variables are greater than those between LST and 3D urban morphology factors (Huang and Wang, 2019). 

Alavipanah et al. (2018) found both surface and air temperatures to influence UHI formation. Hu et al. 

(2020) found that NDBI and NDVI remained highly connected towards temperature, when they 

investigated the impacts of urban variables on UHI during different times of the year.  By raising air 

temperature, 3D urban structural factors can assist in the formation of UHI (Wu and Lung, 2016). 

 

5.2.2 Feature Selection 

 

The final six factors selected for the XGBoost machine learning model can be seen in Figure 30. The 

correlation with temperature and the overall influence on the model help understand the underlying 

relationship among the factors in predicting heatwave risk. The factors were selected based on importance 

in the model encompassing all 70 factors as the PCA analysis, which indicated which combination of factors 

worked in cohesion. NDBI and the percent of low-skilled workers positively correlate with temperature, 

whereas EVI and DEM negatively correlate with temperature. Percentage of industrial area and albedo both 

Figure 29 - Feature Importance Analysis for Top 20 Factors: Feature Correlation with 
Temperature (Left), Feature Contribution to the Model (Right) 



 

have a very weak varying correlation with temperature. As for influence, NDBI has the most significant 

influence with around 30%, followed by percent of industrial area and EVI accounting for 18%. Albedo is 

next with 14% and finally DEM and percent of low-skilled workers follow close behind. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 depicts in greater detail how the factors influenced different class allocations. Class 0 denotes a 

Low classification, while class 3 indicates the Extreme class. Despite having a minor input in the overall 

model, Workers_P greatly aided the model in distinguishing class 3. The model without Workers P resulted 

in a 12% reduction in overall accuracy, with the Extreme class accuracy reducing by 21%. The general 

Industrial_A_P was the most important predictor of the Extreme class. Tests revealed that removing the 

Industrial_A_P and Workers_P variables lowered the models' ability to predict class 3 by 40%. Because 

class 3 (Extreme) is the most important in this study, it was critical to include Workers_P in the model, 

even though the population over 65 has a greater overall influence. 

 

 

 

 

 

 

 

 

 
Figure 31  - Factor Contribution to Heatwave Risk Classification (Class 0 = Low, Class 1 = 
Moderate, Class 2 = High, Class 3 = Extreme) 

Figure 30 - Feature Importance Analysis for Six Selected Factors: Feature Correlation with 
Temperature (Left), Feature Contribution to the Model (Right) 



 

 

Figure 32 illustrates the Pearson correlation matrix. Understanding the link between the variables is critical 

for the subsequent steps, which will involve using mitigation methods to simulate various greening 

scenarios. The results indicate that EVI, the enhanced vegetation index, is significantly inversely correlated 

to NDBI, the model's most significant factor. In essence, increasing the vegetation ratio of the IRIS will 

result in a decrease in temperature, as it is inversely proportional to temperature. As a result, it should have 

a detrimental influence on NDBI, which is inversely proportional to temperature.  

Additionally, increased flora in the IRIS blocks increases the albedo, which substantially negatively 

influences temperature. Finally, the relationship of changing the one-pixel type to another is established 

among the factors. The effect of “greenifying” the available land in the most affected areas is simulated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Heatwave Impact Maps 

5.3.1 Hazard Map 

 

Figure 33 shows the heatwave hazard map created using the LST estimates. The hazard map shows the LST 

reclassified into four classes. The IRIS bounds to the north and west are categorized as low risk since they 

are less inhabited and have a lower buildup to vegetation ratio. Around the center core, where the population 

density is higher than the surrounding, located at the center of the map with smaller IRIS size, the risk is 

high, with the surrounding areas having a Moderate risk. In all, 23 IRIS borders pose a severe danger and 

are primarily residential with substantial industrial areas. Temperatures were higher to the city’s east, owing 

to a more significant proportion of industrial zones adjacent to residential complexes. The factor analysis 

revealed that industrial areas significantly influenced the model's prediction, particularly in the Extreme 

Figure 32 - Correlation Values Among the Factors 



 

class categorization. The anthropogenic heat and greenhouse gas emission generated by large industries 

such as warehouses and factories appear to have a significant  affect in the microclimate of the area. The 

hazard map accounts for 50% of the total heatwave risk map. 

 

 

 

 

5.3.2.1 Independent Test 

 

To assess the model's predictive capability, it was run on an independent satellite image from a different 

geographic area. Given that the model was trained exclusively in Lyon, it was critical to determine if the 

model did not overfit Lyon and could be extended broadly. Figure 34 shows the Glasgow, Scotland 

heatwave hazard map predicted by the model. The findings indicate that Glasgow's rural regions have the 

lowest risk, and the risk increases moving closer to the city core. The hazard map follows the general UHI 

pattern, with urban centers being warmer than rural areas around them. 

 

Figure 33 - Heatwave Hazard Map for Lyon 



 

 

To properly understand the model's performance, refer to Table 8, which contains the accuracy statistics 

and confusion matrix. The total accuracy was 81%, with the Extreme class having 100% accurate and the 

High class obtaining an accuracy of 86%. The model was modified to be more sensitive to the Extreme 

class, and the accuracy results indicate that this modification was effective. The Moderate class achieved 

the lowest overall accuracy of 56%. According to the confusion matrix, the Moderate class was 

approximately equally confused with the Low and High classes. In general, the model performed well in 

forecasting hazard in Glasgow. 

 

 

Figure 34 - Heatwave Hazard Map for Glasgow 

Table 8 - Accuracy Statistics for Glasgow 



 

5.3.3 Vulnerability Map 
 

Figure 35 illustrates the heatwave vulnerability map generated using vulnerability indicators. Extreme age, 

population density, income, and unemployment factors are encompassed in the vulnerability map. The map 

displays an entirely different pattern from the hazard map, with greater values in western Lyon related to a 

larger senior population ratio, lower income, and a higher unemployment rate. The center is also associated 

with increased vulnerability values due to the high population density and extreme age values. Lyon's east 

and south sides are at Low to Moderate risk, with just two of the four indicators showing high levels. In all, 

19 IRIS limits were identified as being at Extreme risk, all of which are located on the western outskirts of 

Lyon. The vulnerability map accounts for the remaining 50% of the overall heatwave risk map. 

 

 

 

 

 

 

Figure 35 - Heatwave Vulnerability Map of Lyon 



 

5.3.4 Final Heatwave Risk Map 

 

Figure 36 depicts the final heatwave risk map. The combined vulnerability and hazard map reveals a distinct 

pattern of the most susceptible IRIS boundaries. In the central and eastern areas of Lyon, the highest risk is 

concentrated. Three IRIS limits are categorized as Extreme in total. The combined map reduced the Extreme 

class to three from about twenty IRIS zones on the individual hazard and vulnerability maps. Limiting the 

IRIS to a smaller number of possibilities will assist emergency responders and decision-makers allocate 

scarce resources to the most impacted regions during a heatwave. The results show that Lyon heatwave risk 

is not solely influenced by the most urbanized areas but rather a mix of a few factors. The IRIS zones with 

high NDBI values in the proximity of industrial buildings or zones are most at risk, evident by the eastern 

part of Lyon being at higher risk due to the higher proportion of industrial activity. The anthropogenic heat 

and increase in greenhouse gas emission caused by industrial zones could have a major negative effect on 

microclimate of the zone. The three IRIS regions with the highest risk of heatwaves will be examined 

further on a larger scale to develop mitigating solutions. 

 

 

 

Figure 36 - Heatwave Risk Map for Lyon 



 

5.4 Heatwave Mitigation Strategies 

5.4.1 Selected IRIS 

 

A large-scale neighborhood-level analysis of the most affected regions was done using lidar data. Figure 

37 shows the three IRIS limits with the highest risk of heatwaves. The severity of the heatwave hazard and 

the population's sensitivity to heatwaves were used to calculate heatwave risk. Villeurbanne lies in the heart 

of Lyon, with a population density of 6219 people per square kilometer. It is 304730.34 m2 in size. Low- 

and high-rise residential structures and light commercial and industrial facilities make up the IRIS. Extreme 

circumstances arose from the combination of high NDBI values and a low EVI. Lyon 8e Arrondissement 

and Saint-Fons cover 438587.16 and 497303.58 square kilometers, respectively, with a population density 

of about 5500 people per square meters. Both IRIS have a lower NDBI value than Villeubanne, but the 

areas are surrounded by more industrial zones and contain sparse vegetation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name: VILLEURBANNE 

Area: 304730.34 m2 

Population: 1895 people 

Population Density: 6219 

people per square kilometer 

 

Name: SAINT-FONS 

Area: 497303.58 m2 

Population: 2735 people 

Population Density: 5500 

people per square kilometer 

 

Name: LYON 8E 

ARRONDISSEMENT 

Area: 438587.16 m2 

Population: 2431 

Population Density: 5543 

people per square kilometer 

Figure 37 - The Three IRIS bounds with Greatest Heatwave Risk 



 

5.4.2 Lidar Analysis 

 

Lidar data will help turn 3D urban morphology parameters into compatible model parameters, and scenario 

testing will occur. The parameters calculated are the total building roof area available and the total 

barren/impervious area, which will then be simulated into different greenifying scenarios: 25%, 50%, 75% 

of the available area. The scenarios will then be tested in the model, and the results of the mitigation from 

greenifying the IRIS will provide valuable information on future city planning. For the workflow to be 

efficient with results coming within a minute, the following assumptions were made: 

1) Available building roof areas were calculated only considering the size of the green roof already in 

place, ignoring other variables such as building roof material type, building roof angle, or any other 

obstacles that can impede the replacement to a green roof. 

2) The change to greenifying scenarios assumed all changes were the same without considering the 

difference between green roofs and vegetation. All greenifying effects were treated the same 

without considering type (ex. tree vs. bush). 

3) All calculated areas are available for greenifying, and the greenifying scenarios have a uniform 

effect on the overall IRIS. 

Along with precise land-use data, the lidar data aided in the scenario testing of Lyon's most vulnerable areas 

in the event of a heatwave. The lidar data were divided into separate subclasses, and the percentage of the 

area associated with each class is presented in Table 9. Villeurbanne is significantly more densely populated 

and has a greater density of buildings, accounting for 35.34% of the total area. Saint-Fons and Lyon 8E 

arrondissements with a far lower density of structures have 14.61% and 18.27%, respectively. However, 

the percentage of impermeable ground available is more significant in both areas than in Villeurbanne, 

owing to the increased amount of exposed ground in IRIS areas. While Lyon 8e Arrondissement and Saint-

Fons have over 15% more impervious ground in the IRIS, the impervious ground suitable for greening is 

significantly less. The reason is that the latter IRIS areas have a more significant proportion of green space 

and roads than Villeurbanne. The Impervious Ground area is determined by subtracting the Ground area 

from the area of roads with a radius of one meter to account for sidewalks and any land use other than 

barren/impervious surfaces that overlapped the ground areas. Villeurbanne, which also lacks green space, 

saw a minor decrease, from 30.11% to 28.34% in available impervious ground. Lyon 8e arrondissement 

impermeable ground coverage was 32.62%, down from 43.7% in total, indicating a more balanced IRIS 

than Villeurbanne, with modest distributed urban parks and a football pitch. Saint-Fons also decreased from 

nearly 50% to 35.28% impermeable land, showing more vegetation distributed throughout the IRIS than 

the other two IRIS. 

              Table 9 - Percent of Area Associated with Each Class 

CLASS VILLEURBANNE LYON 8E ARRONDISSEMENT SAINT-FONS 

Ground (Total) 30.11 43.7 49.49 

Impervious Ground 28.34 32.62 35.28 

Low-Medium Vegetation 11.86 14 14.16 

High Vegetation 15.79 17.95 16.74 

Building 41.22 23.77 18.52 

Rooftop 35.34 18.27 14.61 

Other 1.02 0.58 1.08 

 



 

The percentages of impervious ground and building rooftops converted to m2 area suitable for greening 

strategies are shown in Table 10. Owing to the IRIS's varied size, the amount of land available for greening 

varies significantly. While Villeurbanne has the highest percentage of open areas for greening at 55.68%, 

due to the smaller size of the IRIS, this equates to approximately 32% less space for development when 

compared to Saint-Fons, which has the lowest percentage of available areas at 49.88% but a much larger 

IRIS size. Thus, Villeurbanne has a more balanced input of impervious open ground to building rooftops 

ratio than the other two IRIS, which has a more dominant contribution from the impervious ground. The 

differences in the impervious ground and building rooftops ratios amongst IRIS areas will aid in 

determining which factor contributes the most to the model and hence mitigates heatwave risk the most 

effectively. 

Table 10 - Area Suitable for Greening 

 

 

5.4.3 Scenario Results 

 

The available areas were simulated into three different greenifying scenarios: 25%, 50%, 75%. The 

outcomes of the situations are shown in Table 11. The outcome of the scenario is provided in terms of 

temperature and heatwave risk categorization. The heatwave risk classification will indicate if the change 

was sufficient to shift the categorization from Extreme to High or away from the top 2.2% of overall risk. 

In essence, it would indicate if the scenario had sufficiently decreased the risk for the IRIS by not being 

categorized as the most extreme class. 

Overall, the simulations demonstrate that mitigating the effects of a heatwave on an IRIS that is more 

densely inhabited with more structures is significantly more challenging than mitigating the impact of a 

heatwave on a more balanced IRIS. Even with greater greening intensity, the benefits appear to be 

diminished, compounding the difficulty of mitigating the effects of UHIs in an urban context. Twenty-five 

percent greening resulted in a minor change in the total temperature and heatwave risk class, with the model 

continuing to classify all three IRIS as Extreme risk. By greening 50% of the available space, all three 

locations were lowered to High risk, indicating that the mitigating actions were partly successful. The 

temperature difference between 0.42°C and 0.52°C was similarly substantial. The importance of other 

factors contributing to the model can also be seen in Saint-Fons, where a temperature of 39.97°C was 

classified as Extreme after 25% greening. In contrast, Villeurbanne and Lyon 8E Arrondissement had 

temperatures of 40.22°C and 40.31°C, respectively, after 50% greening and were classified as High risk. 

The higher elevation may explain the classification discrepancy, which correlates negatively with 

temperature and the higher concentration of low-skilled workers in Saint-Fons compared to Villeurbanne 

and Lyon 8E Arrondissement. Thus, the 75% greening scenario had a negligible effect on Villeurbanne, a 

mediocre effect on Lyon 8E Arrondissement, and a significant influence on Saint-Fons, but not enough to 

classify the areas in a lower overall risk class. 

 

VILLEURBANNE 
(%) 

VILLEURBANNE 
(m2) 

LYON 8E 
ARRONDISSEMENT 
(%) 

LYON 8E 
ARRONDISSEMENT 
(m2) 

SAINT-FONS 
(%) 

SAINT-FONS 
(m2) 

Impervious 
Ground 28.34 86360.58 32.62 143067.13 35.27 175398.97 

Building 
Rooftops 27.34 83313.28 18.27 80129.87 14.61 72656.05 

Total Available 55.68 169673.85 50.89 223197 49.88 248055.02 



 

                     Table 11 - Simulation of Greening Scenario Results 

 

 

 

 

 

 

 

 

The result indicates that there might be a threshold for greenifying highly densely populated areas with the 

effect of mitigation decreasing with more radical plans. The greenifying of impervious ground has the most 

benefits when applying a radical greenifying transformation. The benefit in temperature is most significant 

when moving from 50% to 75% for Saint-Fons, which consists of the highest proportion of impervious 

ground. Figure 38 displays the temperature decrease of the three areas relative to greenifying scenarios. 

The analysis shows that it is essential to understand the local urban morphology, and one solution fits all 

might not be the best way forward. Although only available land was considered and greenifying efforts 

were generalized in this study, it could provide a blueprint for future more intensive methodology and the 

influence of the locality features on temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 VILLEURBANNE 
LYON 8E 

ARRONDISSEMENT SAINT-FONS 

Original Temperature 40.64 40.83 40.28 

Original Risk Class Extreme Extreme Extreme 

25% Green Roof & Vegetation (Temp) 40.42 40.52 39.97 

25% Green Roof & Vegetation (Class) Extreme Extreme Extreme 

50% Green Roof & Vegetation (Temp) 40.22 40.31 39.80 

50% Green Roof & Vegetation (Class) High High High 

75% Green Roof & Vegetation (Temp) 40.16 40.13 39.43 

75% Green Roof & Vegetation (Class) High High High 

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

25% Green Roof & Vegetation

50% Green Roof & Vegetation

75% Green Roof & Vegetation

Temperature(°C)

Scenario Temperature Change

SAINT-FONS LYON 8E ARRONDISSEMENT VILLEURBANNE

Figure 38 - Scenario Temperature Change 



 

The results of the scenario testing are consistent with previous research. For example, Chun and Guldmann 

(2014) demonstrated that raising NDVI on building roofs reduced LST between about 1 and 3 degrees 

Celsius in most cells with a cell size of 120 m. Additionally, a similar study demonstrated that by improving 

the NDVI value by 0.1 in the most vulnerable places, resulting in a 15% improvement in vegetation, the 

LST would decrease by 1.27 °C (Mutani and Todeschi, 2020). Additionally, Herrera-Gomez et al. (2017) 

determined that by raising vegetation cover by 11% to 40%, the LST would decrease by approximately 

1.5°C to 6.5°C. 

The purpose of this work was to develop an appropriate model for heatwave prediction using effective 

2D/3D urban parameters as an expression of hazard and vulnerability indicators. Additionally, sensitivity 

analysis was used to determine the effect of various parameters on the heatwave prediction model. The 

lidar-derived land use information aided in determining where future heatwave mitigation efforts could be 

implemented. Scenarios of greenifying the most stricken areas are simulated to find the effects on urban 

temperature reduction in Lyon, France. The concept of this study was to develop a process that connects 

city-scale and neighborhood-scale analysis to determine the optimal urban characteristics factors and 

machine learning algorithm for heatwave risk, which is beneficial for urban planning policy. The semi-

automated method was designed to generate a more generalized rapid analysis. However, it will need to be 

supplemented with fieldwork and other sources of information to exploit the potential for developing 

successful mitigation strategies. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5.5 Interactive Online Map 
 

The final heatmap risk map and simulation results are published online to disseminate, exchange, and 

instantly update heatwave assessment products during an emergency. Using ArcMap Server, the publication 

of risk maps and analysis products can be remotely accessed and updated from any location. A new layer 

of data can be rapidly uploaded to the online dynamic map, which also contains a variety of basemaps to 

further investigate the area of interest. Zooming in and out and the ease with which analysis layers may be 

switched on/off can be advantageous when assessing damage taking in numerous elements. The online 

interactive map provides a simple-to-understand interface that can assist decision-makers in maximizing 

their input of the product's targeted information needed to make suitable emergency response decisions. 

The interactive map is available at: https://arcg.is/0ODz0v . 

 

 

 

Figure 39 - Snapshots of the Interactive Map 

https://arcg.is/0ODz0v


 

CHAPTER 6:  CONCLUSION 
 

For urban heat studies that have depended on a few sparsely distributed meteorological stations in the past 

to estimate air temperature for a vast and generally diverse zones, it is difficult to capture the heterogeneous 

makeup of a city. At the onset of a heatwave occurrence, satellite thermal imagery can aide in effectively 

mapping the regions most susceptible to extreme temperature as well as issuing necessary warnings. 

Estimation of the geographical heterogeneity of risk variables conducted using satellite images and thermal 

indices can be produced and can contribute valuable information to the emergency health warning 

system. Currently, heatwave risk assessment is either too generic and does not portray an accurate 

representation of urban conditions or require too much data resources, computationally intensive and time-

consuming at microscale level. 

This research developed a novel semi-automated approach to analyze heatwaves at two different scales: 

city and neighborhood. Thirteen of the most frequently used machine learning algorithms were used in this 

research to determine which algorithms delivered the best results for heatwave hotspot identification. 

XGBoost classifier provided the highest accuracy of 94% and was chosen as the algorithm to base the 

model on predicting heatwave hotspots. NDBI, EVI, Industrial_A_P, Albedo, Workers_P and DEM are the 

factors that contributed the most to the projection of heatwave hotspots. NDBI was the most significant 

factor in the model, accounting for 30% of the total. NDBI, Industrial_A_P and Worker_P had a negative 

correlation to temperature whereas EVI, albedo and DEM had a negative correlation with temperature. The 

workflow combined city-scale analysis into neighborhood-scale analysis by examining the most severely 

affected areas in more detail, and greening scenarios were applied to simulate the appropriate heatwave 

mitigation threshold. Greenifying 50% of the three most impacted IRIS was sufficient to reduce the risk 

from Extreme to High, resulting in temperature decrease of 0.4°C to 0.5°C. The model's capacity to forecast 

heatwave hotspots in other locations was not confined even though it was trained on a heatwave event in 

Lyon, France. This approach is partly because heatwave intensity was classified using standard deviation 

statistics based on relative measures rather than absolute temperature readings.  When applied to Glasgow, 

UK, the model produced accuracy of 81% during the 2018 heatwave that swept throughout Europe. It is 

crucial for decision-makers to quickly explore hotspots at different scales within a heatwave-affected region 

in order to efficiently allocate emergency operations in a timely manner as well as plan future mitigation 

strategies to reduce the effect of heatwave in the most impacted areas. 

Additionally, the study had several limitations. First, due to a lack of data, the factors included in the 

analysis may have been incomplete, decreasing the prediction performance. The factors used in the model 

came from various data sources from different times, sometimes spanning over 10 years which is not 

representative of the latest ground data.  Second, the model was trained on one heatwave event in one city, 

in order to facilitate processing time. The research data set consisted of two satellite images obtained around 

a heatwave, which was relatively brief in comparison to other climate studies.  Deriving LST from a single 

heatwave event may be affected by many meteorological conditions such as precipitation, wind direction, 

and wind speed, therefore more case studies in different seasons and urban environment settings could 

verify and enhance the results of this study. Cities in various climate zones and data collected over extended 

periods would expand the data range and representation. Third, various medical incident data from the 

heatwave and crowdsourced Twitter data can be used to conduct a complete analysis since the data can 

display exactly where the vulnerable population are located. Finally, the accuracy of existing predicting 

models is exclusively predicated on LST values derived from satellite images, with no ground-based 

verification. 



 

While the study's objective was to ascertain a rapid scenario testing framework, the model's estimation 

might not be very relevant in practice. It is essential to point forth the significant intrinsic constraints of the 

study. Urban vegetation and green space, according to research, can help to minimize UHI. However, 

implementing a 75 percent rise in ground-based flora and a green roof with greater albedos across a whole 

community will be difficult. The model's core building processing assumptions, regardless of whether the 

roof is slanted or flat, could potentially influence the amount of rooftop space that's available. However, 

this research is essential because it establishes a fundamental methodology for rapidly forecasting broad-

scale green space expansion scenarios. The findings may be applied to other regions to estimate greenifying 

scenarios. The results should provide an extra resource to city planners and be supplemented by field studies 

and input from local botanists to provide a comprehensive assessment. 

Further research will focus on optimizing the parameters and standardizing the processes associated with 

machine learning methods to produce accurate LST results with a high spatial resolution. Soil moisture, 

humidity and other land surface factors associated with LST could be incorporated to determine if these 

variables aid in heatwave identification. Although the cooling effect of vegetation is significant, based on 

the findings of this study and previous literature, future research could include vegetation attributes 

including canopy height, flora species, and biomass, because the cooling effect is reliant on not just the 

presence of vegetation but also on its type, shape, and size. The investigation of industrial areas within 

proximity of residential blocks should also be studied in more detail, as the model showed significant 

negative influence of industrial buildings within residential IRIS blocks. According to previous studies, the 

3D urban characteristic factors significantly influence air temperature than they do surface temperature. 

Thus, to develop a more accurate model, future research should incorporate in-situ data on air temperature 

as one of the factors for predicting LST fluctuations when designing the heatwave hazard map. 

Additionally, wind is inextricably linked to urban morphology characteristics and can significantly impact 

UHIs, which was not examined in this study. As a result, it is advised that future research incorporate wind 

circulation and wind velocity. This study demonstrated a method for rapidly evaluating the IRIS with 

minimal resources and established a framework for incorporating the method into a more comprehensive 

methodology for analyzing heatwaves at the neighborhood level. Locality considerations may assist 

enhance the methodology in the future by integrating variables such as the kind and location of the 

intervention since various mitigation actions will have varying degrees of efficacy when considering urban 

morphology indicators. Also, the results of in situ data regarding greenifying change can be incorporated 

into the model to calibrate the weights and produce more realistic results.  
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CHAPTER 8:  APPENDIX 

8.1 Machine Learning Algorithms Confusion Matrix and Accuracy 
ADA 

Classification Report 

 

              precision    recall  f1-score   support 

 

           1       0.76      0.81      0.78        67 

           2       0.55      0.30      0.39        76 

           3       0.49      0.88      0.63        84 

           4       0.92      0.54      0.68        87 

 

    accuracy                           0.63       314 

   macro avg       0.68      0.63      0.62       314 

weighted avg       0.68      0.63      0.62       314 

 

 

Confusion Matrix 

 

[[54 13  0  0] 

 [17 23 36  0] 

 [ 0  6 74  4] 

 [ 0  0 40 47]] 

Accuracy 

 

TrainADA: 0.579790 (0.105931)  TestADA: 0.490271 (0.081446) 

 

 

 



 

CART 

Classification Report 

 

              precision    recall  f1-score   support 

 

           1       0.90      0.96      0.93        67 

           2       0.82      0.76      0.79        76 

           3       0.88      0.88      0.88        84 

           4       0.99      1.00      0.99        87 

 

    accuracy                           0.90       314 

   macro avg       0.90      0.90      0.90       314 

weighted avg       0.90      0.90      0.90       314 

 

 

Confusion Matrix 

 

[[64  3  0  0] 

 [ 7 58 10  1] 

 [ 0 10 74  0] 

 [ 0  0  0 87]] 

Accuracy 

 

TrainCART: 0.866030 (0.023974)  TestCART: 0.770558 (0.033811) 

 

 

 

 

 



 

GBC 

Classification Report 

 

              precision    recall  f1-score   support 

 

           1       0.90      0.99      0.94        67 

           2       0.86      0.82      0.84        76 

           3       0.91      0.87      0.89        84 

           4       0.98      1.00      0.99        87 

 

    accuracy                           0.92       314 

   macro avg       0.91      0.92      0.91       314 

weighted avg       0.92      0.92      0.92       314 

 

 

Confusion Matrix 

 

[[66  1  0  0] 

 [ 7 62  7  0] 

 [ 0  9 73  2] 

 [ 0  0  0 87]] 

Accuracy 

 

TrainGBC: 0.885967 (0.016043)  TestGBC: 0.757860 (0.026415) 

 

 

 

 

 



 

KNN 

Classification Report 

 

              precision    recall  f1-score   support 

 

           1       0.83      0.94      0.88        67 

           2       0.64      0.59      0.62        76 

           3       0.76      0.67      0.71        84 

           4       0.93      1.00      0.96        87 

 

    accuracy                           0.80       314 

   macro avg       0.79      0.80      0.79       314 

weighted avg       0.79      0.80      0.79       314 

 

 

Confusion Matrix 

 

[[63  4  0  0] 

 [13 45 18  0] 

 [ 0 21 56  7] 

 [ 0  0  0 87]] 

Accuracy 

 

TrainKNN: 0.808609 (0.017676)  TestKNN: 0.697184 (0.047082) 

 

 

 

 

 



 

LDA 

Classification Report 

 

              precision    recall  f1-score   support 

 

           1       0.76      0.90      0.82        67 

           2       0.73      0.50      0.59        76 

           3       0.61      0.77      0.68        84 

           4       0.86      0.76      0.80        87 

 

    accuracy                           0.73       314 

   macro avg       0.74      0.73      0.73       314 

weighted avg       0.74      0.73      0.73       314 

 

 

Confusion Matrix 

 

[[60  6  1  0] 

 [19 38 19  0] 

 [ 0  8 65 11] 

 [ 0  0 21 66]] 

Accuracy 

 

TrainLDA: 0.743984 (0.022632)  TestLDA: 0.719611 (0.059743) 

 

 

 

 

 



 

LR 

Classification Report 

 

              precision    recall  f1-score   support 

 

           1       0.78      0.90      0.83        67 

           2       0.66      0.58      0.62        76 

           3       0.65      0.67      0.66        84 

           4       0.86      0.83      0.84        87 

 

    accuracy                           0.74       314 

   macro avg       0.74      0.74      0.74       314 

weighted avg       0.74      0.74      0.74       314 

 

 

Confusion Matrix 

 

[[60  7  0  0] 

 [17 44 15  0] 

 [ 0 16 56 12] 

 [ 0  0 15 72]] 

Accuracy 

 

TrainLR: 0.734432 (0.030466)  TestLR: 0.703687 (0.055405) 

 

 

 

 

 



 

LSVM 

Classification Report 

 

              precision    recall  f1-score   support 

 

           1       0.72      0.96      0.82        67 

           2       0.75      0.32      0.44        76 

           3       0.60      0.74      0.66        84 

           4       0.82      0.84      0.83        87 

 

    accuracy                           0.71       314 

   macro avg       0.72      0.71      0.69       314 

weighted avg       0.72      0.71      0.69       314 

 

 

Confusion Matrix 

 

[[64  1  2  0] 

 [25 24 26  1] 

 [ 0  7 62 15] 

 [ 0  0 14 73]] 

Accuracy 

 

TrainLSVM: 0.710512 (0.016522)  TestLSVM: 0.678239 (0.037682) 

 

 

 

 

 



 

MLP 

Classification Report 

 

              precision    recall  f1-score   support 

 

           1       0.85      0.93      0.89        67 

           2       0.76      0.59      0.67        76 

           3       0.72      0.81      0.76        84 

           4       0.92      0.93      0.93        87 

 

    accuracy                           0.82       314 

   macro avg       0.81      0.81      0.81       314 

weighted avg       0.81      0.82      0.81       314 

 

 

Confusion Matrix 

 

[[62  5  0  0] 

 [11 45 20  0] 

 [ 0  9 68  7] 

 [ 0  0  6 81]] 

Accuracy 

 

TrainMLP: 0.771076 (0.039029)  TestMLP: 0.748387 (0.036856) 

 

 

 

 

 



 

NB 

Classification Report 

 

              precision    recall  f1-score   support 

 

           1       0.78      0.87      0.82        67 

           2       0.64      0.58      0.61        76 

           3       0.61      0.63      0.62        84 

           4       0.83      0.80      0.82        87 

 

    accuracy                           0.72       314 

   macro avg       0.72      0.72      0.72       314 

weighted avg       0.72      0.72      0.72       314 

 

 

Confusion Matrix 

 

[[58  8  1  0] 

 [16 44 16  0] 

 [ 0 17 53 14] 

 [ 0  0 17 70]] 

Accuracy 

 

TrainNB: 0.740810 (0.029679)  TestNB: 0.697440 (0.020172) 

 

 

 

 

 



 

RF 

Classification Report 

 

              precision    recall  f1-score   support 

 

           1       0.88      0.99      0.93        67 

           2       0.83      0.78      0.80        76 

           3       0.90      0.87      0.88        84 

           4       1.00      1.00      1.00        87 

 

    accuracy                           0.91       314 

   macro avg       0.90      0.91      0.90       314 

weighted avg       0.91      0.91      0.91       314 

 

 

Confusion Matrix 

 

[[66  1  0  0] 

 [ 9 59  8  0] 

 [ 0 11 73  0] 

 [ 0  0  0 87]] 

Accuracy 

 

TrainRF: 0.900306 (0.011400)  TestRF: 0.783359 (0.031686) 

 

 

 

 

 



 

SVM 

Classification Report 

 

              precision    recall  f1-score   support 

 

           1       0.82      0.96      0.88        67 

           2       0.77      0.62      0.69        76 

           3       0.69      0.79      0.74        84 

           4       0.91      0.84      0.87        87 

 

    accuracy                           0.80       314 

   macro avg       0.80      0.80      0.80       314 

weighted avg       0.80      0.80      0.79       314 

 

 

Confusion Matrix 

 

[[64  3  0  0] 

 [14 47 15  0] 

 [ 0 11 66  7] 

 [ 0  0 14 73]] 

Accuracy 

 

TrainSVM: 0.791066 (0.031547)  TestSVM: 0.726011 (0.034760) 

 

 

 

 

 



 

Tree 

Classification Report 

 

              precision    recall  f1-score   support 

 

           1       0.90      0.94      0.92        67 

           2       0.80      0.78      0.79        76 

           3       0.89      0.87      0.88        84 

           4       0.99      1.00      0.99        87 

 

    accuracy                           0.90       314 

   macro avg       0.89      0.90      0.90       314 

weighted avg       0.90      0.90      0.90       314 

 

 

Confusion Matrix 

 

[[63  4  0  0] 

 [ 7 59  9  1] 

 [ 0 11 73  0] 

 [ 0  0  0 87]] 

Accuracy 

 

TrainTree: 0.863630 (0.010887)  TestTree: 0.776959 (0.042047) 

 

 

 

 

 


