
Bachelor’s thesis

Business Information Technology

2021

Antti Komulainen

DEVELOPING A WEB API WITH
.NET CORE ON AN AWS
LAMBDA PLATFORM

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Business Information Technology

2021 | 40 pages

Antti Komulainen

DEVELOPING A WEB API WITH .NET CORE ON
AN AWS LAMBDA PLATFORM

The goal of this thesis was to develop a proof-of-concept solution of a document archive service
with a web API. The API would be used for managing the document uploads and downloads. The
service would be built according to a specification given by the customer. The service had to be
built on Amazon Web Service (AWS) ecosystem using serverless technologies and .NET Core
framework. The HTTP requests had to be authorized using OAuth 2.0 technology. The system
had to be able to maintain the archived data periodically and autonomously.

The API was developed on Amazon Web Service Lambda platform using .NET Core 3.1
framework. The AWS services were implemented as follows: The AWS Lambda function handles
the document management. The Lambda function is available through an AWS API Gateway
using REST API. The archived documents are stored on Amazon Simple Storage Service and
the metadata of the documents are stored on AWS Relational Database Service using
PostgreSQL database. The authorization of the requests was implemented using OAuth 2.0 and
OpenID Connect standards.

The thesis project succeeded on building the proof of concept using the already mentioned
methods to meet the specifications. Some of the required components were replaced with similar
alternative components for the sake of simplicity but the same protocols and techniques as
required were used. The project is viable for further development.

KEYWORDS:

cloud services, cloud storage, serverless computing, AWS Lambda, Amazon Simple Storage
Service, .NET Core

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tietojenkäsittely

2021 | 40 sivua

Antti Komulainen

VERKKORAJAPINNAN KEHITTÄMINEN .NET
CORELLA AWS LAMBDA -ALUSTALLE

Opinnäytetyön tavoitteena oli kehittää toteutettavuusdemonstraatio dokumenttiarkistopalvelusta
verkkorajapinnalla. Verkkorajapintaa käytettiin dokumenttien latauksien hallintaan. Palvelu
toteutettiin asiakkaan antaman määrittelyn mukaisesti. Palvelu tuli rakentaa Amazon Web Service
-ekosysteemiin käyttäen palvelimetonta tietojenkäsittelyä sekä .NET Core -ohjelmistokehystä.
HTTP-pyynnöt oli autorisoitava OAuth 2.0 -teknologialla. Arkistodataa oli pystyttävä ylläpitämään
autonomisesti ja säännöllisesti.

Rajapinta kehitettiin Amazon Web Servicen Lambda -alustalle käyttäen .NET Core
3.1 -ohjelmistokehystä. AWS Lambda käsitteli dokumentteja koskevat pyynnöt. Lambda -funktio
tarjottiin AWS API Gatewayn välityksellä REST-rajapintana. Arkistoidut dokumentit tallennettiin
Amazon Simple Storage Serviceen ja niiden oheistiedot tallennettiin AWS Relational Database
Servicen PostgreSQL -tietokantaan. HTTP-pyyntöjen autorisointi implementoitiin OAuth 2.0- ja
OpenID Connect -standardien mukaisesti.

Opinnäyteprojekti onnistui, ja tulokseksi saatiin määritysten mukaisesti toimiva konseptiversio.
Joitakin määriteltyjä komponentteja korvattiin samankaltaisilla vastaavilla komponenteilla
yksinkertaisemman rakenteen saavuttamiseksi. Komponentit käyttivät kuitenkin samoja
protokollia ja tekniikoita kuin määrittelyissä vaaditutkin. Palvelua voidaan jatkokehittää tämän
projektin tulosten pohjalta.

ASIASANAT:

pilvipalvelut, pilvitallennus, palvelimeton tietojenkäsittely, AWS Lambda, Simple Storage Service,
.NET Core

CONTENTS

LIST OF ABBREVIATIONS 6

1 INTRODUCTION 7

2 CUSTOMER SPECIFICATION 8

3 .NET CORE 9

4 AMAZON WEB SERVICES 10

4.1 Security in AWS 11

4.2 AWS API Gateway 12

4.3 AWS Lambda 14

4.4 AWS Simple Storage Service 17

4.5 AWS Relational Database Service 18

5 AUTHORIZATION 21

5.1 OAuth 2.0 22

5.2 OpenID Connect 25

6 DEVELOPMENT PROCESS 26

6.1 Frontend 27

6.2 Amazon API Gateway 28

6.3 AWS Lambda function 29

6.4 Simple Storage Service 31

6.5 Relational Database Service 32

6.6 Authorization Server 33

7 CONCLUSION 35

REFERENCES 36

FIGURES

Figure 1. Abstract protocol flow (IETF, 2012a). 22
Figure 2. Authorization code flow (IETF, 2012a). 23
Figure 3. System architecture. 26

Figure 4. Upload sequence diagram. 27
Figure 5. Authorization sequence on document upload. 33

PICTURES

Picture 1. Lambda execution environment lifecycle. (AWS, 2021k) 14

LIST OF ABBREVIATIONS

API Application Programming Interface (Fielding, 2000)

ARN Amazon Resource Name (AWS, 2021i)

AWS Amazon Web Services (AWS, 2021a)

DNS Domain Name System (IETF, 1987)

GUID Globally Unique Identifer (IETF, 2005b)

HTTP Hypertext Transfer Protocol (IETF, 1996)

IANA Internet Assigned Number Authority (IANA, 2021a)

IETF Internet Engineering Task Force (IETF, 2012a)

JSON JavaScript Object Notation (Ecma International, 2017)

JWT JSON Web Token (IETF, 2015a)

OIDC OpenID Connect (OpenID Foundation, 2021a)

OIDF OpenID Foundation (OpenID Foundation, 2021b)

PKCE Proof Key for Code Exhange (IETF, 2015b)

RDS Relational Database Service (AWS, 2021e)

REST Representational State Transfer (Fielding, 2000)

S3 Simple Storage Service (AWS, 2021f)

SAM Serverless Application Model (AWS, 2021m)

SDK Software Development Kit (Gartner, 2021)

UML Unified Modeling Language (ISO, 2005)

URI Uniform Resource Identifier (IETF, 2005a)

VPC Virtual Private Cloud (AWS, 2021g)

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

1 INTRODUCTION

The goal of this thesis is to develop a document archive service with a Web API following

the specification given by the customer. The specification is described in the following

section in detail. The API’s purpose is to control a document archive and it is meant to

provide a more flexible alternative with a more modern solution for an existing system.

The service consists of a user interface, web API, document storage, metadata database

and access control components.

The main focus is on the service’s fundamental functionalities. The service is a proof-of-

concept and the service is not fully production ready after the development process.

There are, for example, environment-related issues that affect to the security,

authentication, and authorization properties of the service. Those are out of the scope of

this thesis.

The thesis is structured as follows: Chapter 2 introduces the feature and technology

requirements given by the customer. Chapter 3 briefly describes the different .NET

frameworks available and the reasons behind the selection of the framework used in this

thesis project. Chapter 4 introduces the Amazon Web Services and the individual

services used in the project. Chapter 5 goes into the details of OAuth 2.0 standard and

the OpenID Connect extension built on the standard. Chapter 6 explains the

implementations of the features and technologies. And finally, chapter 7 shares the

results of the project and points out some further development ideas and notes gathered

during the process.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

2 CUSTOMER SPECIFICATION

The customer of the project has given a specification for the service. The specification

defines some of the key features of the service that it must or should have. The main

platform and some of the technologies used in the system are defined in the specification

to ensure the conformity with the existing systems of the customer.

The key features of the user interface are search, download and upload functionalities.

The API must have endpoints for the functionalities. The user must be able to search

documents with metadata and download the found documents. The user must also be

able to upload documents and the related metadata into the document archive.

The customer requires that the system must be built on Amazon Web Service (AWS)

platform. The system must be a so called serverless solution and the system must use

AWS S3 cloud service as a document storage solution. The document upload process

must be designed to be fail safe. The metadata related to the documents must be stored

on a separate database within the same fail-safe storage process. The metadata

database should use PostgreSQL technology if applicable.

The access to the service must be secure. All the requests made to the service by the

user must be authorized with OAuth 2.0 technology using a Keycloak server. The

authorization must be controlled through user roles and the access to the documents

must be restricted depending on the user roles and the document metadata.

The system must autonomously be able to remove documents and metadata related to

documents that are older than a specified time threshold defined by the system

administrator. The system must maintain the document data periodically according to

intervals defined by the system administrator.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

3 .NET CORE

There are couple of different software frameworks that use the .NET name or prefix. Let’s

first clarify which is what in chronological order. The first framework is Microsoft’s .NET

Framework. It is a predecessor to the current .NET Core frameworks. The .NET

Framework is targeted only to the Microsoft Windows ecosystem and provides tools for

development of applications and web services for Windows based systems. The last

version is .NET Framework 4.8 which was launched in 2019. It is still supported and

actively used, but it is not recommended by Microsoft to start any new projects built on

it. (Microsoft, 2020b)

The next framework of the .NET family is the .NET Framework’s successor .NET Core.

It is a cross-platform open source software development framework. It supports several

operating systems including the most commonly used Windows, macOS and Linux. It is

free to use and it is released under the MIT and Apache 2 licenses. The last version

under the .NET Core name is 3.1 and it was released in 2019. (Microsoft, 2020a)

The latest release of the .NET framework family is .NET 5.0 framework. It is based upon

the .NET Core 3.1 and it is similarly open source and free to use. The naming of the

framework has skipped 4.0 to avoid the possible confusion with the original .NET

Framework. It has also dropped the Core extension of the name because it is the sole

main branch of the .NET framework that is going to be further developed in the future.

The version was released in 2020 and there are already projected schedules for versions

6, 7 and 8. (Microsoft, 2020a)

The thesis project implements .NET Core 3.1 framework. It is selected because, as the

Amazon’s documentation (2021k) confirms, the AWS Lambda functions do not directly

support the use of the .NET 5.0 framework at the moment. The documentation notes that

is possible to run the framework in Lambda function, but it would require using Docker

containers to host the function. This would unnecessarily complicate the application. In

addition, there is no significant benefit on running the latest version as all the features

required for the function are already available on .NET Core 3.1.

.NET Core framework supports C#, F# and Visual Basic languages. The framework

specifies .NET Standard APIs which form the base for the framework. The framework

can be extended with NuGet packages containing libraries. (Microsoft, 2021b)

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

4 AMAZON WEB SERVICES

Amazon Web Services (AWS) is a part of the Amazon.com Incorporation. AWS was

founded in 2006. According to their own words “AWS provides a highly reliable, scalable,

low-cost infrastructure platform in the cloud”. Their services include a vast variety of

cloud computing services to businesses and individuals around the globe. AWS

announces low cost, agility, flexibility, and security as the main benefits on running

services on their platform. AWS use pay-as-you-go pricing on their services. This means

that the customer pays only for the services they use without any up-front payments.

(AWS, 2021a)

AWS has a global infrastructure of regions which are physical locations around the world

containing logical availability zones. Each region contains multiple availability zones

which are physically separate clusters of data centers grouped as a one logical data

center. In addition, there are also available for an example local zones which improve

performance of some services on targeted local areas. The infrastructure provides

availability, reliability and performance through redundancy and geographical coverage.

The infrastructure enables to orchestrate services, so the most suitable combination is

used depending on the customer’s needs. (AWS, 2021q)

According to AWS (2021h) the different services can be developed and controlled with

a multitude of different tools. The first one and the only one when starting the use of AWS

is the management console which offers a graphical user interface for the services. In

addition to the web console AWS introduces command line tools which allow to perform

activities on command line interface and to write scripts for automation purposes. AWS

also offers plugins and SDKs for different integrated development environments and

languages. On some services there is also an HTTPS API available for programmatical

use. All the tools enable the user to perform configuration and management activities

within the limits of the explicit permissions granted to the currently active user. AWS

introduces on their website (2021t) a plethora of tools for developers to use sorted by

different use cases.

The following sections describe the services and concepts applied in this project. The

descriptions focus on the features of the services which are specifically applied to this

project and are not exhaustive. There are some configurations and properties which do

not affect this project but should be applied to some other use cases. There are also

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

some features which are out of the scope of this thesis and therefore are not discussed.

It is always a good practice to reference documentation and best practices provided by

AWS to ensure availability, performance, and the security of the services.

4.1 Security in AWS

Security of the services is one of the most important things in today’s internet. AWS uses

a shared responsibility model in their services (AWS, 2021s). This means that the

security of the service is divided between AWS and the customer. According to the model

AWS is responsible for protecting the infrastructure that the service is running on. This

includes all the hardware, networking and software used by the platform. The model

defines also that the customer is responsible of the security of using the services and

the scope of responsibility depends on the used services. AWS refers to this model as

the “Security of the Cloud vs. Security in the Cloud” (AWS, 2021s).

Responsibilities of the Security of the Cloud consists of software and hardware sections

(AWS, 2021s). Software section includes all the software related to computing, storages,

databases and networking of the underlying systems. These provide the environment of

the service that the customer is using. The hardware section includes regions, availability

zones and edge locations which provide the physical hardware and networking

infrastructure the software is running on.

Security in the Cloud describes the responsibilities of the customer concerning the

security of the AWS services (AWS, 2021s). AWS notes that the responsibilities depend

on the services that the customer is using. Some infrastructure services require the

customer to configure all the security measures of the system and some more abstract

services require less configuration. In general, according to the shared responsibility

model, the customer is responsible of securing the platform and applications, the data in

the system, the access management, and the configurations of the system.

System security is fundamentally very difficult to accomplish as Saltzer and Kaashoek

(2009) point out. They promote using the principle of least privilege and implementing

explicit permissions to perform actions. Principle of least privileges tries to prepare for

the inevitable and limit the damages when unauthorized activities happen. The principle

says that a user should have only the privileges that are necessary, and they should be

used only when needed. Using the explicit permissions enforces the principle by denying

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

the user activities by default unless it is explicitly allowed. These two fundamentals are

enforced if the recommendations and instructions of the AWS documentation (2021j) are

followed.

AWS controls users’ and services’ authentication and authorization with Identity and

Access Management (IAM) service. The first user to be created for the account is a root

user which has privileges to perform any activities available in the service. It is

recommended by AWS to use root privileges only to perform a restricted set of strictly

necessary activities and to use other users to perform day to day activities. As a very

simplified version of the authorization model the authorizations are controlled by defining

users, groups, and roles. A user can be added to a group that is granted with similar

privileges. The users and the groups or services are referred as principals within the

AWS system. The principals can be granted a permission to assume roles which have

certain policies attached to them. A policy defines a permission to allow or deny different

actions or operations on different resources on certain conditions. The permissions are

explicit and if the action is denied in any policy or it is not specifically allowed in any policy

the action is always denied. In practice the permission system is a lot more complicated

and the detailed instructions and recommended best practices are available in the IAM

documentation. (AWS, 2021j)

AWS provides a Virtual Private Cloud (VPC) service which can be used on networking

different services together securely. The VPCs are logically isolated and they make it

easier to manage the access and control the internal networking of different cloud

services. VPC allows also for an example to manage routing for external services such

as authentication server or allow incoming connections for database management.

(AWS, 2021g)

AWS provides extensive documentation (AWS, 2021l), best practices (AWS, 2021p),

tools (AWS, 2021o), technical guides and reference materials (AWS, 2021r) which

provide assistance on security related issues.

4.2 AWS API Gateway

AWS API Gateway is a service which enables control over REST, HTTP and WebSocket

APIs. The HTTP and WebSocket APIs are not covered here as they are out of the scope

of this thesis. The service allows to create, control, and secure the APIs. It enables the

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

customer to create a controlled access for a client to an application, a resource or to

another AWS service through the gateway. (AWS, 2021b)

According to the service’s documentation (AWS, 2021b) the HTTP and REST APIs

created by the service follow the constraints of REST architecture. The REST

architecture (Fielding, 2000) defines constraints which specify high level guidelines to

the APIs. The service’s documentation state that the APIs are HTTP-based, enable

stateless client-server communication, and use standard HTTP methods.

While choosing which API type to use one must consider the needs of the use case in

question. The documentation (AWS, 2021b) lists some core features which guide the

selection of the API type. In this use case the REST API was selected for the more

advanced control over the requests and responses compared to HTTP APIs. REST API

also allows the use of API keys to improve security of the API.

The API Gateway service enables the control of multiple API stages and deployments.

It is possible to have multiple versions of the same API at the same time as different

stages. This allows a lifecycle control of the APIs. For an example there can be a

development version and a production version of the API with different access privileges.

This is very convenient while developing, testing, and releasing new features as the

modifications can be made without affecting the production use. (AWS, 2021b)

The deployed API has one or more resources and methods which can be configured to

react to the request accordingly. The methods can be configured individually, and it is

for an example possible to validate payloads at the gateway level if necessary or process

the request otherwise. It is also possible to authorize requests on the gateway level. After

the request is processed the data required by the target or the whole request is passed

forward to the target endpoint. (AWS, 2021b)

This thesis project uses the Lambda proxy integration which relays the entire incoming

request to a Lambda function for further processing. According to the AWS

documentation (2021b) it is possible to relay all HTTP methods using general ANY

method. In this instance the methods are restricted to a limited selection by the gateway.

This helps to ensure that the receiving endpoint does not receive requests that it is not

able to handle.

According to the AWS website (2021c) the pricing model of AWS API Gateway is very

simple. On HTTP and REST APIs the pricing is based on the number of incoming

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

requests and the amount of data transferred. Other optional features might increase the

cost. The documentation of the API Gateway (AWS, 2021b) notes that any failed or

invalid requests are not charged.

4.3 AWS Lambda

AWS Lambda is a service which enables running code in a serverless environment as a

function. Serverless environment means that AWS takes care of the underlying

infrastructure which the function requires to be able to run the code. The customer

configures the function, uploads the code to be executed and determines the triggers

which invoke the function. The function executes when invoked and after the execution

has finished it shuts down. Lambda functions support several languages using specific

runtimes. Supported runtimes include for an example Node.js, Python, .NET Core, Java,

Ruby and Go. It is also possible to run container images on Lambda functions by

modifying base images provided by AWS. (AWS, 2021k)

The invoked function runs inside of an isolated environment. The environment controls

the underlying infrastructure and provides lifecycle support for the runtime which the

function is running on. The lifecycle consists of three phases as depicted in the Picture

1. The first one is the init phase which creates or revives the execution environment. The

environment is set up according to the configuration and it prepares to run the actual

function. The second phase is the invoke phase which invokes the function handler

containing the business logic. The invocation phase can be run repeatedly within the

same existing environment without running the init phase every time unless the

environment is shut down. The last phase of the lifecycle is shut down phase which tries

to shut down the runtime in controlled fashion and releases the reserved resources.

(AWS, 2021k)

Picture 1. Lambda execution environment lifecycle. (AWS, 2021k)

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

The time frame of the lifecycle depends on the configuration of the execution

environment and the processing of the handler function. The init phase has a fixed

timeout value of 10 seconds and if it is not completed on time it is retried in the beginning

of the first function invocation. The Lambda configuration has a timeout value to limit how

long the invoke phase can run. The default value is 30 seconds, but it can be set up to

900 seconds. If the handler function is not completed successfully on time the runtime is

shut down and execution environment is restarted. The shutdown phase has a fixed limit

of two seconds, and the process is terminated forcefully if all the resources are not able

to perform controlled shut down on time. (AWS, 2021k)

The environment instance is not deleted immediately after the completion. The instance

remains frozen for some time and is ready to be reused if a new invocation request

arrives. This has some implications which must be taken into account while designing

the function. For an example database connection object might exist if it was created

outside of the handler function but this cannot be assumed to be true every time the

handler function is invoked. (AWS, 2021k)

AWS Lambda requires all the supported runtimes to implement a programming model

that defines interfaces which enable the customer’s code and the execution environment

to co-operate. The model defines a handler interface which is the entry point of the

customer code. The handler method of the function is defined in the environment

configuration. The handler method receives as parameter an event object or a custom

input depending on the source of the invocation. The object contains information which

the invoking source has sent with the request. The method can optionally receive also a

second object which is the context object. The object holds information and methods

related to the execution environment. The handler method returns a response. If the

method is asynchronous the return type should be void. If the method is synchronous

the return type can be any supported data type that is available. It must be taken into

consideration that the functions are stateless and any persistent information the method

might produce must be recorded somewhere outside of the function if not returned with

the response. (AWS, 2021k)

Lambda functions can be integrated with different services to be triggered by events

created by the services. The triggering event can be an external request, a scheduled

internal event, a direct request from an AWS service, or a lifecycle event on some of the

AWS services. Lifecycle events do not trigger the Lambda function directly and they must

be read through an event source mapping. The mapping reads items from the source

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

service and handles them accordingly. Some of the AWS services invoke Lambda

functions asynchronously. In such a case the function must take care of the possible

error handling and further actions required by the erroneous processing. Synchronous

invocations receive responses as usual. (AWS, 2021k)

Lambda functions scale up and down in a very flexible manner. When a request arrives

and all the currently existing environment instances are still processing the previous

requests Lambda fires up a new instance for the new request. After processing a request,

the execution environment stand by for some time waiting for incoming requests and if

none arrives they shut down. Basically, there is always an environment available or

created for the request unless the regional quota reserved for the function is reached. In

that case the function throttles which means that the function invocation is prevented.

(AWS, 2021k)

According to the AWS documentation (2021k) there are two ways to control the

concurrency of Lambda function instances. The first one is the reserved concurrency

and the other one is the provisioned concurrency. The reserved concurrency makes sure

that there is a certain number of instances available for the specific function to use. These

instances are not available for any other function and if they are not used, they are shut

down but ready to be fired up if needed. The provisioned concurrency keeps a certain

number of instances ready to receive requests and they are not shut down. This lowers

the latency of request handling, but the instances are also using resources and

generating costs while just standing by. The documentation also notes that these

configurations can be managed with Application Auto Scaling feature which allows to

manage the values automatically by defining a schedule or a set of rules based on the

utilization levels. If quota or concurrency limits are reached the function throttles.

AWS Lambda documentation (2021k) states that a Lambda function requires a

permission to execute the functions and also an explicit permission to use other AWS

services integrated to the function. The documentation recommends that the

permissions are managed and distributed through roles using AWS Identity and Access

Management service. Every function can be configured with an appropriate execution

role which allow the correct combination of permissions.

The latest currently available documentation (AWS, 2021k) claims that there are no costs

for creating the Lambda functions. The documentation emphasizes that the costs of

running functions consists of the actual processing time of the functions and the data

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

transfer between integrated services. The documentation also notes that some of the

optional features for an example concurrency related features generate additional costs.

4.4 AWS Simple Storage Service

AWS Simple Storage Service (S3) is a data storage. It is designed to be easily accessible

and to be able to store any amount of data with highly scalable and reliable infrastructure.

The service is designed to be very simple and robust. The data is stored into buckets as

objects and the service does not take any stand on the structure of the data content itself.

(AWS, 2021f)

The data is stored as objects and the object consists of the file data and metadata

attached to it. The data can be basically any file containing bits. The maximum size of

an object is five gigabytes using a single upload request and can be extended up to five

terabytes using multipart upload requests. The metadata is a set of name-value pairs

which can contain any information about or related to the object. There are some default

system-defined metadata values such as creation date automatically attached to the

object. The object metadata also contains some values defined in the HTTP standard

such as Content-Length which are automatically set by the system. Other values are

user-defined metadata set and controlled by the user. The user can add additional

custom metadata values as necessary. The objects can have versioning enabled if

multiple versions of a single object is required. (AWS, 2021f)

Every object has an identifier key which is unique within a bucket. The key is specified

when the object is created, and it is a sequence of Unicode characters. The length of the

UTF-8 encoded key cannot be longer than 1024 bytes. The key can contain any UTF-8

character, but it is recommended by AWS to use a set of safe characters to ensure

conformity with some applications and protocols. The key can be used to form logical

hierarchies within a bucket by using prefixes and delimiters in the keys of the objects.

(AWS, 2021f)

Buckets are containers for the objects. Every object belongs to a bucket. The buckets do

not have any substructures. They can be used to organize access control and

namespaces within the account. The bucket must have a globally unique and dns-

compliant name. The bucket is created into a certain region. The documentation assures

that the objects in a bucket do not leave the region at any time if not explicitly transferred

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

elsewhere. The bucket can be configured to manage object lifecycles. The configurable

rules can be set for an example to archive or remove an object after a certain period of

time. (AWS, 2021f)

S3 is equipped with a REST API which it is used through. The API uses standard HTTP

requests, and it is possible to use with any application or tool that supports the standard.

There are SDKs available to simplify the programmatical usage, but it is also possible to

use regular HTTP requests to manage the storage. Unless using anonymous requests

all the requests must be authenticated. The SDKs are recommended especially with

authenticated requests as they make the process of creating valid signatures for the

requests considerably more straightforward and less error prone. (AWS, 2021f)

The pricing model of S3 is similar to other AWS services. User pays according to the

usage of the service. S3 pricing is based on six cost components: storage, requests,

data transfer, replication, management and analytics features, and S3 Object Lambda.

The storage is priced at gigabytes per month basis and there are different storage types

for data with different access requirements. Request cost is based on per thousands of

requests and what data is targeted with the requests. Data transfer cost is simple per

gigabytes of data transferred. Management and analytics costs as also the S3 Object

Lambda costs depend on the features enabled and are optional. (AWS, 2021f)

4.5 AWS Relational Database Service

Amazon provides several different relational databases as a service. There are MySQL,

MariaDB, PostgreSQL, Oracle, Microsoft SQL Server, and Amazon Aurora databases

available. The service handles the underlying infrastructure, and the user only has to

manage the configuration of the database and the service itself. The service is scalable,

and the user can configure the service to use the appropriate amount of resources to

meet the performance requirements. The service can be configured to automatically take

care of backing up the data and redundancy is also available for enhanced availability.

(AWS, 2021e)

Usage of a database running on Relational Database Service (RDS) is very similar to a

regular database running on a dedicated server. After the service is fired up and

configured accordingly the database is available for connecting. The database can be

utilized with any standard sql client for an example with the database providers own client

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

application. The database instance is recommended to be run inside of a virtual private

cloud (VPC). The access to the database requires granting an explicit permission for the

client to access the VPC by granting an access through a security group. If the client is

outside of the AWS ecosystem there must be also a network gateway available for the

client to be able to connect to the service. The access can be restricted with client’s VPC

or IP address. (AWS, 2021e)

Each database instance has dedicated resources assigned to it. The resources

dedicated for the database affect the performance and the amount of storage available.

The amount of resources reserved for the instance affect also to the cost of running the

instance. There are several database instance classes which determine the amount of

reserved computation and memory capacity. There are some classes which have special

properties designed for a certain usage such as memory-intensive or high throughput

applications. There are also more flexible instance classes available which are able to

momentarily provide extra performance if required. The instance class can be modified

during the use to optimize the balance of performance and costs. The storage type can

be selected according to the usage and required responsiveness of the database. The

selected database provider and the storage type affect to the minimum and maximum

size of the storage available. (AWS, 2021e)

Database services can utilize the availability zones to improve availability. The database

can be configured to utilize multiple zones by Multi-AZ deployment. Each zone is isolated

from each other and the service can recover from a availability zone failure using the

other zones. One of the database instances is assigned as the primary instance and the

secondary instances on other availability zones are replicated synchronously. On failover

the primary instance is replaced with a secondary instance until the primary instance has

recovered. (AWS, 2021e)

As an example of the pricing model the RDS with PostgreSQL database engine is based

on five components: database instance type, storage type, backup storage, snapshot

export and data transfer. The database instance cost depends on the selected instance

class and the use of single or multiple availability zone deployment. There are two pricing

options depending on how the instance cost is billed. The reserved instance is billed with

a cheaper but continuous rate for a longer period of time while the on-demand instance

is billed with a higher rate but only according to the processing time used. Storage type

cost depends on the selected storage format with a varying billing terms. Backup storage

cost is included if the backup is stored in the same region and the used storage space is

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

no more than the total amount of storage reserved for the service. The excess storage

and storage used on other regions are billed accordingly. Snapshots and the data

transfer are billed per gigabyte basis. Other database engines may be priced differently,

and some engines might include additional licensing fees. (AWS, 2021d)

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

5 AUTHORIZATION

Authenticity, integrity, and authorization are defined by Saltzer and Kaashoek (2009) as

the three corner stones of protecting computer systems. According to their definition

authenticity defines if the agent or user in this case are who they claim to be. Integrity

means in their definition the integrity of the authenticity claim. Authorization is defined as

having a permission to perform some action as the authenticated user.

Authentication and authorization are easily mixed up with each other. In this thesis the

focus is on authorization as the developed service does not really take a stand on who

is using the service and does not require the authentication information. There is a third-

party service used to authenticate and deliver the authorization information about the

end user. The authorization of the end user is requested using OAuth 2.0 framework and

OpenID Connect which is built on OAuth 2.0.

OAuth authorization enables authorizing a user to a resource without authenticating the

user directly to the resource server. This is especially convenient when the user does

not trust the target service completely or there is no reason to hand over the identity

information to the target service. OAuth reduces the amount of identification information

shared with the resource and the users have more control over the use of their

credentials. (IETF, 2012a)

OpenID Connect (OIDC) is an identity layer built on the OAuth 2.0 framework and it

allows authenticating a user without delivering the user’s actual credentials directly to the

resource server (OpenID Foundation, 2021a). OIDC focuses more on who the user is

unlike OAuth 2.0 which should only be used to authorize users.

The following sections describe the OAuth and OIDC from the point of view of this thesis.

There are aspects on these technologies which are not discussed because they are out

of the scope of this thesis. It is always recommended to consult the official up to date

documentation while implementing them.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

5.1 OAuth 2.0

The OAuth 2.0 Authorization Framework is based on a proposed standard by the Internet

Engineering Task Force (IETF, 2012a). The proposed standard defines the purpose of

the framework as follows:

“The OAuth 2.0 authorization framework enables a third-party application to obtain

limited access to an HTTP service, either on behalf of a resource owner by

orchestrating an approval interaction between the resource owner and the HTTP

service, or by allowing the third-party application to obtain access on its own behalf.”

(IETF, 2012a)

The standard (IETF, 2012a) defines a communication protocol and a flow of activities for

the authorization process. The flow includes redirecting the client into an authorization

server for authentication. The authorization server delivers the client an access token

which can be used to authorize access to the resource server. The abstraction of the

authorization process is presented in Figure 1. The standard specifies that the

authorization server and the resource server can be but are not required to be the same

server. The standard’s definition for a client is very broad and includes basically any

application trying to access the resource.

Figure 1. Abstract protocol flow (IETF, 2012a).

Authorization cannot be successfully completed by anyone just capable of accessing the

authorization server. The user making the request must have an authorization grant

requested from the resource owner. The grant contains a proof of ownership for an

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

example credentials of the resource owner, the information identifying the target

resource and URI of the endpoint where the authentication must be done. If the

information attached to the grant is not valid the request is denied or dropped. (IETF,

2012a)

With the grant the user is allowed to perform the authentication on the authorization

server. If the authentication is successful, the user is redirected back to the client with

the authorization code as a query parameter. The client is able to request an access

token directly from the authorization server with a valid authorization code. The client

can use the access token to authorize the access to the resource server. The flow of

requesting the authorization code and the access token is depicted in detail in the Figure

2. (IETF, 2012a)

Figure 2. Authorization code flow (IETF, 2012a).

The client must register to the authorization server in a separate process before the

authorization can take place. This ensures that the authorization server can trust the

client when requesting tokens and reduces the chance of access tokens being delivered

to fake clients. In the registration the client provides the redirection URI which the

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

authorization server redirects the user to after the authentication. In this use case the

client receives a client identifier and a client secret from the authorization server which

are used on validating the requests. (IETF, 2012a)

The OAuth 2.0 standard defines an optional scope parameter for the authorization

request. The value can be used to further specify the target resource of the request. The

value can contain a single scope, multiple scopes or it can be omitted. The authorization

server processes the scopes of the request and grants or denies the authorization

accordingly. If the scope is omitted the pre-defined default value on the authorization

server can be used if available or the request is denied with invalid token response. If

the request contains scopes not available to the resource the server is allowed to ignore

them. In such a case the server must include the granted scope in the response. (IETF,

2012a)

The OAuth 2.0 standard (IETF, 2012a) introduces various safety considerations to be

taken into account while implementing the standard. In addition to other measures the

standard requires that the authorization code must have a short expiration time to

minimize the timespan when the authorization code can be misused.

There are also additional standards available for reinforcing the authorization process.

IETF introduces the Proof Key for Code Exchange (PKCE) standard (IETF, 2015b) which

defines an additional key to be used to mitigate authorization code interception attacks.

The PKCE standard defines a cryptographically random code verifier that is created for

every request. The standard defines that a code challenge is derived from the verifier

and the challenge is added to the authorization request. The standard notes that the

authorization process continues as usual on other phases but when the authorization

code is used to fetch the access token the code verifier is sent with the request. The

authorization server can validate the request by calculating the code challenge from the

code verifier and comparing it to the authorization request’s code challenge. The

standard assures that if the authorization code has been compromised it cannot be used

to fetch the access token without the possession of the code verifier.

The OAuth standard is accompanied with another standard defining the bearer token

usage (IETF, 2012b). The bearer token usage standard defines the details of the bearer

token which can be used as an access token. The standard enforces the use of

encrypted network traffic while using bearer tokens. The bearer token is a proof of

authorization to do something by the possession of the token. The standard defines three

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

methods which can be used to send the token. The recommended ways are to send the

token as request header field or as a form-encoded body parameter. If these both are

impossible the standard defines a third method by sending the token as a query

parameter, but this is very insecure and should be avoided if possible. The form of bearer

token can be an obfuscated string of characters containing the token or it can be in the

form of a JSON Web Token (JWT) which is defined in a separate standard (IETF, 2015a).

5.2 OpenID Connect

OpenID Connect (OIDC) can be used to identify and authorize a user for a service and

to deliver some information about the user at the same time. OIDC uses the OAuth 2.0

framework and the bearer token as a basis for the token exchange. The authorization

process is similar to the OAuth 2.0 but the authorization request must have openid scope

attached to it. The response is an ID token instead of an access token. The token is in

the form of a JSON Web Token (JWT) containing the information about the user.

(OpenID Foundation, 2021a)

The ID token contains claims which are defined in the JWT standard (IETF, 2015a). The

standard defines a group of registered claim names which form a basic set of claims

which can be used. Use of the registered claims is defined optional in the standard but

they cover some default items such as issuer, subject and expiration time claims. In

addition to the default claims the standard allows to use public claims registered in the

IANA JWT claims registry (IANA, 2021b). The JWT standard allows the authorizer and

the client also to agree upon using a custom set of private claims if necessary, but this

is to be used with caution due to the risk of collision with other claims.

The claim of an ID token is some information about the subject which the authorizer

assures to be valid. The claim constructs from a key-value pair which contains the name

of the claim and the value of the claim. The name is a string, and it has to be unique

within the claims set. The value of the claim can be any valid JSON value. (IETF, 2015a)

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

6 DEVELOPMENT PROCESS

This project’s goal was to build a proof of concept of a document archive using customer

specified technologies. Addition to that an unofficial personal goal was to loosely follow

the fail fast philosophy on the development process. The philosophy revolves around the

notion of proving quickly if something works or not and iterating that until finding the

solution as Adam Savage summarizes effectively in a short interview (Alexa Developers,

2019). He reminds that iteration that fails to find a working solution is not a failure but

instead it successfully eliminates a wrong solution. In this project the idea was to build a

fairly crude pipeline that proves that the components work, and the system is possible to

build with the intended components.

The development process started with a technology overview based on the customer

specification. The overview’s function was to get an overall conception of the possibilities

and restrictions of the technologies required in the specification. During the overview the

use of the components in the system were further detailed and sketched into a system

architecture using unified modeling language (UML). The system architecture was

presented to the customer at a very early stage and through a couple of iterations the

current version was fixed in place. The final iteration of the system architecture is

depicted in Figure 3.

Figure 3. System architecture.

With the system architecture available it was possible to design the details of the process

which the user’s actions required. There were a couple of obvious use cases: the upload

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

of a document and the search of a document. The use cases were modeled with

sequence diagrams using UML to clarify the required process. As an example of the

diagrams the upload sequence diagram is attached as Figure 4.

Figure 4. Upload sequence diagram.

The tools to be used in the development were selected based on the .NET Core

framework and C# language used on the project. As mentioned in the section 4 AWS

delivers a wide range of tools for the development. In this project the main tools were the

AWS Management Console and Microsoft Visual Studio extended with AWS Toolkit for

Visual Studio extension. Git was used for version control.

6.1 Frontend

The frontend service is very simple and it is meant to emulate the possible future usage

of the system. It is just barely in the scope of the thesis, and it can be replaced by

integrating the user interface into another web service. The main responsibilities of the

frontend are redirecting the user for authentication to the authorization service and

delivering the access token with the request to the archiving system. It is modified out of

a default ASP.NET Core MVC template available in Visual Studio.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

The most significant modification to the template was implementing the authorization of

incoming requests. It was configured to use cookies and OpenID Connect using methods

provided by ASP.NET Core’s Authentication NuGet package and applying the

documentations (Microsoft, 2021a) instructions. The instructions did not apply out of the

box and had to be supplemented with the authorization service’s documentation (Okta,

2021). The authorization service’s details are further discussed in the section 6.6.

The authorization is applied to the requests as middleware. The middleware checks the

user’s authorization and if not valid, it takes the necessary steps to authorize the user.

The claims received from the authorization server are added to the user object residing

in the request context object. The access token delivered by the authentication service

is added to the cookie, so the user does not have to authenticate every time accessing

the service. It is good to point out that the expiration time of the access token must be

limited to an acceptable timespan to minimize the chance of misuse.

The frontend has only two functions available for the user. The user is served with a user

interface for uploading the document and for searching and downloading the documents.

The user interface is very rugged and does not contain any excess functionalities. The

usability or layout of the user interface was not taken into consideration.

The controllers of the frontend authorize the user for the action, validate the users’ inputs,

and build the requests to the AWS service. The controllers fetch the user claims from the

request context object and validate the permission to perform the action. The controllers

also attach the OAuth 2.0 access token to the outbound requests. The requests must be

made using encrypted connection so the access token cannot be extracted if the request

is intercepted in transit.

6.2 Amazon API Gateway

Amazon API Gateway functions as a gatekeeper for other services. In this case the

gateway is configured to validate the requests and to redirect the valid ones to the

Lambda function. The gateway is set to allow three HTTP methods: GET, POST and

PUT.

All the methods require an API key which must be included on the request header. The

API key does not take any stand on the validity of the actual request. It is the first line of

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

defense and allows the gateway to drop requests which are obviously not intended for

the service.

Valid requests are passed to the Lambda function as Lambda Proxy integration requests

which adds all the request details to the event object of the Lambda function. It would be

possible to authorize the requests and to validate the payloads on the gateway level

(AWS, 2021b). This has not been implemented for simplicity on the proof-of-concept

project but would be worth investigating further if the gateway is used in production.

The API is configured to pass certain HTTP content types forward as binaries to minimize

encoding issues. These content types are not transformed into text by the gateway and

are available as binaries to the receiving service. The use of binary media types requires

the response to the integration request to be encoded into base64 encoded string (AWS,

2021b).

6.3 AWS Lambda function

The Lambda function code was developed with Microsoft Visual Studio extended with

AWS Toolkit for Visual Studio extension. The toolkit enables control over the AWS

services into some extent. In development phase it makes deployment easier and faster

than manually uploading the code. It would be also possible to use command line tools

to achieve the same result, but this felt like more simple solution at this point.

Amazon’s toolkit introduces templates which can be used as a base for Lambda

functions. The template contains the required minimum structure and code for the

function. The templates are available among the other project templates in the Visual

Studio. (AWS, 2021n)

The developed function is responsible of authorizing the request, validating the content,

and performing the requested action. The request authorization process is discussed in

detail on section 6.6. If the authorization is granted, the request content is put through

validation. The validation can be done more thoroughly if required, but in this case the

function just checks the contents existence to avoid issues on further processing. The

requested actions depend on the request's HTTP verb. A simple switch statement

delivers the request to the correct method for further processing.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

AWS provides a handful of NuGet packages specifically for Lambda development on

.NET Core as the AWS documentation (2021k) confirms. The packages provide basic

tools for development. The basic tools include for an example Lambda logger and JSON

serialization methods. There are also plenty of service specific NuGet packages

available. For an example S3 is much more fluent to use with the tools of the dedicated

AWS SDK package than using the HTTP API of the service.

The Lambda function is set to trigger from the API Gateway. The actual configuration

can be done automatically while defining the gateway methods. The function has a

separate trigger for all the gateway’s HTTP methods. It is easy to have an overview on

all the function’s triggering events from the function configurations.

The function needs permissions to be able to use the required AWS services. The

permissions are granted to a role defined in Identity and Access Management (IAM)

service. The role is configured to be the execution role of the function. This way the

function is able to assume necessary roles within the limits of the execution role and for

an example call other services. (AWS, 2021k)

Different variable values can be stored for the function in the environment variables. In

this project the values contain for an example access credentials, connection strings and

service URIs. Environment variables can contain any information as a string which is

required for the function and is not recommended to be hard coded into the source code.

Environment variables enable also to use different versions of the function without

changing the source code. The variables can be reviewed and edited on function’s

environment variable configuration settings. According to the AWS Lambda

documentation the environment variables are encrypted in rest with AWS managed key.

The values are still accessible in plain text through the management console. (AWS,

2021k)

For the function to be able to reach other services it is required to have an access through

a virtual private cloud (VPC). The VPC can be configured through security groups to

allow access to required AWS services and external resources. In this case the function

requires outbound connection to the external authorization server. All the rules affecting

the connectivity can be reviewed from the function’s VPC configuration settings. (AWS,

2021k)

The functions invocations and debugging can be logged through the CloudWatch

service. The service records logs for an example the function execution flow and loggings

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

made with the Lambda logger in the function’s code. The use of the service requires the

function to be implicitly allowed to record logs into the service. Without the logs it is nearly

impossible to get any information about the state of the internal processing or how the

function is running. (AWS, 2021k)

6.4 Simple Storage Service

The archived documents are stored in Simple Storage Service (S3) buckets as objects.

The object is given a name which is also the objects key. S3 documentation (AWS,

2021f) states that key must be unique within the bucket. Lambda function gives for the

new uploaded object a new GUID value as the name. The GUID standard (IETF, 2005b)

guarantees the uniqueness of the value.

The object can be stored in the S3 bucket with metadata attached to it. In this case only

the document type is added but the metadata could contain also other file specific

information. The object contains automatically some information set by the system such

as the content length. The metadata is not that significant in this case because the file

specific metadata is stored into a separate database for searching and indexing

purposes.

The bucket is accessed through an access point. The access point allows to set access

controls through policies. In this case the bucket is blocked for public access and the

only way to be able to connect to it is to get an access permission through bucket policy.

The policy restricts the access to a certain VPC and thus enhances security. It also allows

only certain actions and for an example prevents removal of objects.

Lifecycle management was not implemented in the thesis project, but the mechanisms

required for the functionality exist. The S3 enables lifecycle management which can be

set to remove documents after a certain time. There can be multiple rules affecting

different kind of documents if necessary. The lifecycle management also allows to set

different storage classes for documents with different storage and availability

requirements. For an example some documents might need to be available for a longer

time, but they can be stored on a cheaper storage type than some other documents.

(AWS, 2021f)

S3 allows encryption of the stored objects. In this case the encryption was not

implemented but it is recommended by the documentation. The objects can be encrypted

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

also before being sent to the bucket. This helps to mitigate the risk of data being leaked

due to misconfiguration. (AWS, 2021f)

6.5 Relational Database Service

The metadata of the document is stored into PostgreSQL database running on AWS

Relational Database Service (RDS). The data is used for searching the documents. The

requirements for the database are not demanding. The most significant feature is to be

able to search the data efficiently. In this case the selection was made based on the

customer’s existing systems and experience on the database.

The database content was administered with pgAdmin which is an open source

administration platform for PostgreSQL (pgAdmin Development Team, 2021). To be able

to connect to the database from outside of the AWS ecosystem the connection has to be

specifically allowed by the VPC security group (AWS, 2021e). The security group

assigned to the database instance must have a rule to allow the connection from the

client.

The database structure is very simple and has not been optimized in any way in this

project. The database has only one table with one row per document. The table has one

column per each piece of metadata. The document’s object key is stored as the primary

key of the table.

The database can handle a fairly large amount of document objects without any

optimization. With a larger amount of documents, the database design and usage should

be reconsidered to ensure the performance. The optimization might be achieved for an

example through indexing and more efficient search statements (The PostgreSQL

Global Development Group, 2021).

The removal of expired document’s metadata was not implemented to the project but

can be accomplished with AWS tools. The maintenance functions can be executed for

an example by invoking a Lambda function with S3 object removal event or by running

a scheduled function.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

6.6 Authorization Server

The authorization server was intended to be a Keycloak server to ensure the

compatibility to the customer’s existing system. The keycloak server would have required

setting up a separate virtual server to the AWS or to an external server and configuring

the service from scratch. For this reason, the server was replaced with Okta web service

which offers authentication as a service (Okta, 2021). The Okta service could emulate

the Keycloak server close enough to be used as a replacement. The Okta service forced

the project to follow the OpenID Connect standard on authorization but otherwise there

were no major changes.

Figure 5. Authorization sequence on document upload.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

The document archive does not care who the user is. The only concern the archive has

is that the user is authorized to access. The authorization is implemented using methods

described in section 5. The user must be registered to the Okta service and granted with

an access for different archive operations. The permissions are granted by adding the

user to different access groups.

The authorization process is initiated on the frontend when the unauthenticated user

lands on the web page. The user is redirected to the authorization server for

authentication. The user returns with authentication code and is able to perform

requested actions if the frontend service is able to fetch and verify the authorization of

the user. The authorization sequence is depicted in Figure 5.

In this project the authorization information of the user is stored in the cookie of the user

for development reasons. The cookie is a relatively unsafe method of storing sensitive

information and it should be implemented in other ways in production version. One viable

option is to implement the zero trust principle and to verify every request from the

authentication server (Rose, et al., 2020). This removes the need of storing the

authorization information but increases the number of requests to the authorization

server.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

7 CONCLUSION

The thesis project fulfilled the requirements set to the project and successfully created a

proof-of-concept solution of the document archive. The product was functional and

contained the necessary features. Some of the properties were not implemented in

practice due to time limits but the implementations were planned in theory, and they

should be executable if the process continues.

There were no major issues during the development. The greatest problem during the

process was an encoding issue with the PDF document during the Lambda function

processing. The problem was found and fixed with changing how the document binaries

are processed in the function. Another time-consuming issue was handling the network

traffic in the AWS VPC during the database development phase. Simultaneous traffic

from external network to configure the database and from the internal VPC to access the

data was complicated to configure with the minimal resource usage. The issue was

solved by alternating manually the security policies depending on the current usage

profile.

If the project is continued further, here are some development suggestions and ideas.

The Lambda function might be beneficial to be separated into dedicated functions for the

upload and download operations. Currently they both run on the same function and the

function is more complicated than necessary. Especially if the usage is relatively

constant, the separate functions could deliver some performance gain and the resource

usage could be more accurately controlled.

The deployment process should be made automatic by using the Serverless Application

Model (SAM). The SAM provides a framework for modelling and building applications

using YAML syntax. The SAM defines the application, and it can be used during

deployment to create the services automatically according to the model. (AWS, 2021m)

An alternative implementation idea came up during the demonstration of the solution.

The service could be implemented also by uploading the document directly to the S3

bucket while the metadata would be processed with Lambda function triggered by the

S3 upload. In this solution, the file archiving process is more straight forward but the data

validation and user authorization responsibility are completely on the frontend. The user

cannot get immediate response with success or fail message of storing the document.

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

REFERENCES

Alexa Developers, 2019. Adam Savage: Forget About “Fail Fast”—the Future is “Iterate

Fast”. s.l.:YouTube.

AWS, 2021a. About AWS. [Online]

Available at: https://aws.amazon.com/about-aws/

[Accessed 10 September 2021].

AWS, 2021b. Amazon API Gateway Developer Guide. [Online]

Available at:

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-dg.pdf

[Accessed 7 September 2021].

AWS, 2021c. Amazon API Gateway pricing. [Online]

Available at: https://aws.amazon.com/api-gateway/pricing/

[Accessed 15 September 2021].

AWS, 2021d. Amazon RDS for PostgreSQL Pricing. [Online]

Available at: https://aws.amazon.com/rds/postgresql/pricing/

[Accessed 15 September 2021].

AWS, 2021e. Amazon Relational Database Service User Guide. [Online]

Available at: https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-ug.pdf

[Accessed 1 July 2021].

AWS, 2021f. Amazon Simple Storage Service User Guide. [Online]

Available at: https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-

userguide.pdf

[Accessed 1 July 2021].

AWS, 2021g. Amazon Virtual Private Cloud User Guide. [Online]

Available at: https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ug.pdf

[Accessed 13 September 2021].

AWS, 2021h. AWS Fundamentals Overview. [Online]

Available at: https://aws.amazon.com/getting-started/fundamentals-overview/

[Accessed 15 September 2021].

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

AWS, 2021i. AWS General Reference. [Online]

Available at: https://docs.aws.amazon.com/general/latest/gr/aws-general.pdf

[Accessed 17 September 2021].

AWS, 2021j. AWS Identity and Access Management Documentation. [Online]

Available at: https://docs.aws.amazon.com/IAM/latest/UserGuide/iam-ug.pdf

[Accessed 15 September 2021].

AWS, 2021k. AWS Lambda Developer Guide. [Online]

Available at: https://docs.aws.amazon.com/lambda/latest/dg/lambda-dg.pdf

[Accessed 25 5 2021].

AWS, 2021l. AWS Security Documentation. [Online]

Available at: https://docs.aws.amazon.com/security/

[Accessed 7 September 2021].

AWS, 2021m. AWS Serverless Application Model. [Online]

Available at: https://aws.amazon.com/serverless/sam/

[Accessed 26 September 2021].

AWS, 2021n. AWS Toolkit for Visual Studio. [Online]

Available at: https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-

guide/aws-tkv-ug.pdf

[Accessed 26 September 2021].

AWS, 2021o. AWS Well-Architected. [Online]

Available at: https://aws.amazon.com/architecture/well-architected

[Accessed 7 September 2021].

AWS, 2021p. Best Practices for Security, Identity, & Compliance. [Online]

Available at: https://aws.amazon.com/architecture/security-identity-compliance

[Accessed 7 September 2021].

AWS, 2021q. Global Infrastructure. [Online]

Available at: https://aws.amazon.com/about-aws/global-infrastructure

[Accessed 13 September 2021].

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

AWS, 2021r. Security Learning. [Online]

Available at: https://aws.amazon.com/security/security-learning

[Accessed 7 September 2021].

AWS, 2021s. Shared Responsibility Model. [Online]

Available at: https://aws.amazon.com/compliance/shared-responsibility-model/

[Accessed 7 September 2021].

AWS, 2021t. Tools to Build on AWS. [Online]

Available at: https://aws.amazon.com/tools/?e=gs2020&p=fundoverview&p=gsrc&c=fo

[Accessed 15 September 2021].

Ecma International, 2017. ECMA-404 The JSON data interchange syntax. [Online]

Available at: https://www.ecma-international.org/wp-content/uploads/ECMA-

404_2nd_edition_december_2017.pdf

[Accessed 22 September 2021].

Fielding, R. T., 2000. Architectural Styles and the Design of Network-based Software

Architectures. Irvine(California): University of California.

Gartner, 2021. Definition of SDK (Software Development Kit). [Online]

Available at: https://www.gartner.com/en/information-technology/glossary/sdk-software-

development-kit

[Accessed 13 September 2021].

IANA, 2021a. About us. [Online]

Available at: https://www.iana.org/about

[Accessed 22 September 2021].

IANA, 2021b. JSON Web Token (JWT). [Online]

Available at: https://www.iana.org/assignments/jwt/jwt.xhtml

[Accessed 22 September 2021].

IETF, 1987. Request for Comments: 1034. [Online]

Available at: https://datatracker.ietf.org/doc/rfc1034/

[Accessed 17 September 2021].

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

IETF, 1996. Request for Comments: 1945. [Online]

Available at: https://datatracker.ietf.org/doc/html/rfc1945

[Accessed 9 September 2021].

IETF, 2005a. Request for Comments: 3986. [Online]

Available at: https://datatracker.ietf.org/doc/html/rfc3986

[Accessed 17 September 2021].

IETF, 2005b. Request for Comments: 4122. [Online]

Available at: https://datatracker.ietf.org/doc/html/rfc4122

[Accessed 17 September 2021].

IETF, 2012a. Request for Comments: 6749. [Online]

Available at: https://datatracker.ietf.org/doc/html/rfc6749

[Accessed 15 August 2021].

IETF, 2012b. Request for Comments: 6750. [Online]

Available at: https://datatracker.ietf.org/doc/html/rfc6750

[Accessed 15 August 2021].

IETF, 2015a. Request for Comments: 7519. [Online]

Available at: https://datatracker.ietf.org/doc/html/rfc7519

[Accessed 20 September 2021].

IETF, 2015b. Request for Comments: 7636. [Online]

Available at: https://datatracker.ietf.org/doc/html/rfc7636

[Accessed 17 September 2021].

ISO, 2005. ISO/IEC 19501:2005. [Online]

Available at: https://www.iso.org/standard/32620.html

[Accessed 22 September 2021].

Microsoft, 2020a. .NET documentation. [Online]

Available at: https://docs.microsoft.com/en-us/dotnet/

[Accessed 15 August 2021].

Microsoft, 2020b. .NET Framework documentation. [Online]

Available at: https://docs.microsoft.com/en-us/dotnet/framework/

[Accessed 15 August 2021].

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Komulainen

Microsoft, 2021a. Overview of ASP.NET Core authentication. [Online]

Available at: https://docs.microsoft.com/en-us/aspnet/core/security/authentication/

[Accessed 23 September 2021].

Microsoft, 2021b. What is .NET?. [Online]

Available at: https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet

[Accessed 25 September 2021].

Okta, 2021. Okta Developer Portal. [Online]

Available at: https://developer.okta.com/

[Accessed 23 September 2021].

OpenID Foundation, 2021a. OpenID Connect Core 1.0. [Online]

Available at: https://openid.net/specs/openid-connect-core-1_0.html

[Accessed 15 August 2021].

OpenID Foundation, 2021b. OpenID Foundation. [Online]

Available at: https://openid.net/foundation/

[Accessed 22 September 2021].

pgAdmin Development Team, 2021. pgAdmin 4 5.7 documentation. [Online]

Available at: https://ftp.postgresql.org/pub/pgadmin/pgadmin4/v5.7/docs/pgadmin4-

5.7.pdf

[Accessed 26 September 2021].

Rose, S., Borchert, O., Mitchell, S. & Connelly, S., 2020. Zero Trust Architecture, s.l.:

National Institute of Standards and Technology (NIST).

Saltzer, J. H. & Kaashoek, F. M., 2009. Principles of Computer System Design: An

Introduction Part II. Version 5.0 ed. Online: Massachusetts Institute of Technology.

The PostgreSQL Global Development Group, 2021. PostgreSQL: Documentation.

[Online]

Available at: https://www.postgresql.org/files/documentation/pdf/13/postgresql-13-

A4.pdf

[Accessed 26 September 2021].

	List of Abbreviations
	1 Introduction
	2 Customer specification
	3 .NET Core
	4 Amazon Web Services
	4.1 Security in AWS
	4.2 AWS API Gateway
	4.3 AWS Lambda
	4.4 AWS Simple Storage Service
	4.5 AWS Relational Database Service

	5 Authorization
	5.1 OAuth 2.0
	5.2 OpenID Connect

	6 Development process
	6.1 Frontend
	6.2 Amazon API Gateway
	6.3 AWS Lambda function
	6.4 Simple Storage Service
	6.5 Relational Database Service
	6.6 Authorization Server

	7 CONCLUSION
	references

