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CHAPTER 1: INTRODUCTION  

1.1. Rationale 

 

Since the Earth Summit in 1992, as the first large scale organized step towards addressing 

climate change with UN’s initiation (UN, 2019), there has been increasing effort to express 

and guide action towards climate change at global scale. The implications of climate change in 

relation to increasing urbanization have emerged in several forms of catastrophes over the 

globe throughout the last decades (UN, 2011). While they have been encountered as storms 

and flooding in tropical regions, drought and heat waves have been the prominent threat for 

public health that has become a norm after 2003 especially in Europe (Jougla et al., 2019; 

Kwok et al., 2019; UN, 2011). Thus, in an environment of growing concern for climatic issues, 

researchers have urged for special attention to be directed on cities (Masson, et al., 2020). 

Beginning from Luke Howard’s discovery of urban impact on microclimate in the 19th century, 

Oke’s contribution in the 1970s provided a major leap towards understanding urban climate 

dynamics. In association with Urban Heat Island (UHI) phenomenon the field has received 

wider attention in research throughout the last decade (Hidalgo et al., 2019). 

 

Nevertheless, the climatic aspect of urbanization has rarely been conveyed in urban 

development and planning practices (Ren et al., 2011). The narrow context of climatology in 

urban planning is explained by the lack of a systematic approach towards the city-planning-

climate relationship and extensive climate sensitive design methods (Alcoforado & Matzarakis, 

2014). Although there is a growing number of sources that take on the connection between 

global climate change and local modifications at urban scale, the outcomes are found to be 

diverse and adversary (Alcoforado & Matzarakis, 2014) which can also be shown as a 

challenge to structure a systematic method. While transfer of science into planning practice 

comes across as a decades long experience in limited regions of the world (Klimaatlas, German 

experience) (Hebbert, 2014), a big portion of global geography has been recently adapting to 

these concerns and associated techniques. 

 

In this regard, it is essential to examine how practices of bridging climatology and planning 

have evolved and worked for the regions that invested in such applications up to now. As was 

pointed out by Eliasson (2000), maps have been instrumental for communication with decision 

makers (Hebbert, 2014). In relation, urban climate mapping has been applied for this purpose 

under different forms, such as, Urban Climate Maps (UCMaps), Urban Environmental Climate 

Maps (UECM), Urban Climate System (UCS), Air Ventilation Assessment System (AVAS), 

or Local Climate Zones (LCZ) (Hebbert, 2014). As one of the most commonly used type of 

urban climate mapping practices, UCMaps have been adapted to the national contexts of more 

than 15 countries (Ng & Ren, 2015; Ren et al., 2012). UCMaps support the integration of 

climatic considerations into planning through their UC-ReMap component where 

recommendations for climate-oriented planning are provided (Ren et al., 2011). LCZ maps 

which help classifying urban land use in different local climate zones have also been shown 

effective in transmission between climate scientists and planning practitioners (Hidalgo et al., 



 

2 

 

2019). Following this step, the input needs to be passed on to the planning domain in the form 

of master plans, zoning and land use plans and related policy documents.   

 

Although working on maps is intrinsic to the urban planning profession, planners still need the 

consultation of climatologists as the assessment entails expert know-how and qualitative 

interpretations (Ren et al., 2011). In order to support this transition, innovative techniques and 

software have been facilitated and combined in climate data simulation, modelling (e.g. 

EnviMET, SURFEX, UrbClim, etc.), spatial analyses, geovisualization (GIS and remote 

sensing) and automation of these processes (Hebbert, 2014). Nevertheless, considering the 

urgence and scale of climate change from local to global level, the requirement for immediate 

action necessitates even further improvement and application of more practical approaches.  

 

In order to improve the communication between climatology and planning, it is essential to 

consider the stratified and complex structure of planning processes. Urban planning and policy-

making mechanisms function at different scales, levels and responsibilities. It intermediates 

between various sectors and actors (Ren et al., 2011). In this regard, simpler representation 

techniques are sought that are easily communicable and capable of expressing the outcomes of 

analyses and recommendations in the clearest way possible (Mills et al., 2010; Ren et al., 

2011).  

 

Founding on these concerns, innovative approaches have been explored and proposed to make 

contribution in filling this gap. An approach in semiology of graphics and geographic 

visualisation with a focus on urban microclimatic analyses has been proposed by the research 

team of the Interdisciplinary Laboratory Solidarities, Societies, Territories (LISST) and French 

National Centre for Scientific Research (CNRS) (Hidalgo et al., 2021; Jégou et al., 2021; Yin 

et al., 2021). This work was developed on the preceding research conducted through ANR-

MApUCE Project (Applied Modeling and Urban Planning Law: Urban Climate and Energy), 

in collaboration with the Departments of the Environment and of the Urban Regulations of 

Toulouse Métropole (Hidalgo et al., 2021; Jégou et al., 2021). With the objective of producing 

data and developing methods to incorporate climatology into the context of urban policy 

making in France, the project had two major components. The first component was composed 

of producing an urban database on climate data of forty cities in France while the second 

investigated different methodologies to introduce this data into French regulatory framework 

(Hidalgo et al., 2021). Related to the second component, the potential of the chorematic 

approach has been presented to the field and researched over the case of Toulouse city (Jégou 

et al, 2021). This approach has explored the potential of the “chorematic scheme” as a form of 

graphic modelling to translate urban climate output integrated with Urban Climate Analysis 

Maps (UC-AnMaps) and Recommendation Maps (UC-ReMaps). In this manner, schematic 

forms and graphic representations have been identified as supportive tools to address the gap 

in delivering urban climate data to urban planning and policy making processes  (Hidalgo et 

al., 2021; Jégou et al., 2021).  
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1.2. Aims and Objectives 

 

Building on the research that has been conducted throughout ANR MApUCE project, this 

thesis further explores an uncommon technique to respond to the need in communication of 

climatic requirements and simplification of technical input representation for planning and 

policy making processes. Through this research, it is aimed to devise a methodology that could 

support urban climate mapping in meeting and assisting the connection between climatology 

and planning. In this context, the chorematic representation technique implemented on 

Toulouse is applied to 47 French cities towards delivering urban climate analysis and 

recommendations.     

 

In relation, main objectives are defined as below: 

- To assess and showcase the capabilities of chorematic representation as a form of 

graphic modelling to complement the translation of urban climate data for urban 

professionals; 

- To analyse urban climate data for 47 selected French cities; 

- To develop a workflow that allows to handle, analyse, interpret and represent the urban 

climate information of multiple cities; 

- To validate the Toulouse chorematic representation structure on 47 French cities; 

- To demonstrate the chorematic representation of urban climate analysis and 

recommendations on representative cases. 

 

With these motives, initially the state of the art of chorematic applications in research is 

explored throughout Chapter 2 - Literature Review. In Chapter 3 – Methodology section, the 

followed methods are elaborated and justified for the urban climate analysis and chorematic 

representation of 47 French cities. This includes the introduction of data and techniques utilised 

on the way to categorise the UHI data of cities and graphic modelling of the output. Following 

this section, Chapter 4 – Results and Discussion is presented in three sub-sections. Firstly, in 

the context of ‘Results’, the outcomes of the analyses are introduced and interpreted through 

the classification of 47 cities according to their UHI intensity characteristics. Secondly, in the 

‘Discussion’ part, upon the validation of the Toulouse model on the rest of the cities, 

chorematic representation of climatic analysis and recommendations for selected cities is 

exercised. Finally, in the ‘Conclusion’ part, the execution of the workflow is evaluated. 

Accordingly, shortcomings, limitations and improvement points are detailed.  
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CHAPTER 2: LITERATURE REVIEW 

2.1. Chorematic Schemes as a Graphic Modelling and Cartographic 

Representation Tool  

 

Chorems (chorémes in French) were conceptualized by Brunet in 1980 and defined as 

elementary structures of spatial organisation (Brunet, 1980; Brunet, 1986). In this regard, they 

refer to elements that represent complex geospatial situations (Reimer, 2010) alongside spatial, 

temporal and logical relationships (Casanova Enault & Chatel, 2017; Reimer, 2010). For the 

scheme of chorems that define a geography with its most significant components through 

graphic figures, Brunet used the expression, “the alphabet of space” (Dhieb, 2020). Thus, this 

representation is illustrated as a way of communication, in a sense, a language for complex 

spatial processes. In relation, chorematics (chorématique in French) is an approach that 

combines geographic modelling with this symbolic language to depict spatial models (Reimer, 

2010). Nonetheless, chorematism is not just a simulation and in spite of its simplifying notion, 

it requires more than simple skills for an accurate representation. On the contrary, it 

necessitates a broad and comprehensive knowledge to reveal “the hidden or unknown 

structures of the geographical space, its conceals, patterns and forms, whatever the space is and 

whatever the spatial structures are, by pointing their strengths and weaknesses” (Brunet, cited 

in Dhieb, 2020).  

 

Although the chorematic representation method is not widely employed as a visual 

representation tool, it has been emphasized and utilised by many researchers for its strong 

potential in geovisualisation (Cherni, 2019; Del Fatto et al., 2008; Fusco et al., 2017; Laurini 

et al., 2009; Reimer, 2010; Velut, 2001).  

 

2.2. Chorems’ Usage & Evolution in History  

 

Up until chorems’ conceptualisation by Brunet, it is possible to mention a history that dates 

back to the 19th century where different forms of cartographic representations were applied as 

visual summaries.  Beginning from cartograms used in the 19th century (Cherni, 2019), as the 

oldest version of visual summaries, Waldo Tobler’s computer generated models in the 1960s 

took the big leap for graphic models (Cherni, 2019; Del Fatto, 2009). 

 

Similar usage of graphic models can also be found in urban geography theory. Von Thünen’s 

economic rent model (19th century), Christaller’s Central Place Theory (1933), alongside 

pioneering city models by Chicago School, namely, Burgess’s ‘Concentric Zone Model’ 

(1925), Hoyt’s ‘Sector Model’ (1939), Harris and Ullman’s ‘Multiple Nuclei Model’ (1945) 

(Figure 1) are based on similar simplified conceptualisation of the economic impact on urban 

spatial configuration. Such abstractions, especially models developed in the research of 

Chicago School became an inspiration for Brunet (1980). Combined with influences of French 

structuralism and constructivism, situationism and Bertin’s ideas on Semiology of Graphics 
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(1973), Brunet developed his scheme of chorems  (Brunet, 1986; Reimer, 2010) (Table 1). Yet 

this scheme was subjected to changes by different researchers either in the context of 

developing the scheme or according to their own needs (Brocard, 1993; Cheylan, 2007; 

Ducruet, 2006; Fontanabona, 1994).  

 

Figure 1 – Predecessor Applications of Graphic Models 

On the left (1) Chicago School City Models by Burgess, Hoyt, Harris & Ullman; on the right (2), Christaller’s 

Central Place Theory Model (1933) 

Source: (1)  (Harris & Ullman, 1945), (2)  (Christaller, 1966) 

 
Table 1 – Brunet’s Chorem Table (1986) 

After their extensive application for the production of atlases and for teaching in middle and 

high school levels, the analysis of spatial organisation of cities and countries appear among the 

most common purposes that chorems were exercised. In this regard, one of the pioneering 

researches was presented by Théry for Brazil where he proposed a chorematic atlas (Arreghini, 

1995; Brunet, 1986; Velut, 2001). With his research, Théry introduced the paleochorems and 

chronochorems which serve for tracing a geography’s historical evolution in a graphic 

representation (Arreghini, 1995).  

 

The use of chorems saw a wider application in academy beginning from the mid-90s. It is 

possible to come across chorematic representations in many different countries and contexts 

beginning from France where it was originated and used the most. More cases from Brazil, 
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Bolivia, Argentina, Spain, Poland, Saudi Arabia, India, Thailand, Indonesia joined French 

predecessors in facilitating chorems to represent spatio-temporal dynamics (Arreghini, 1995; 

Brunet, 1986; Dhieb, 2020; Laurini et al., 2009; Reimer, 2010; Velut, 2001).  

 

On the 20th year of chorems’ conceptualisation, Velut (2001) analysed the spatial organisation 

of 90s’ Argentina with a method close to the one Théry used for Brazil (Velut, 2001) (Figure 

2). In a similar manner, Rodier and colleagues (2010) used chrono-chorematics to investigate 

the evolution of Tours’ spatial organisation in history. Arreghini’s work (1995) on Bolivia also 

employed a historical research while comparing two different chorematic work, between J. P. 

Deler’s and his own approach. The difference in graphic choices showed a distinctive result in 

analyses, leading him to recommend different graphic models for different contexts (Arreghini, 

1995). 

 

  

Figure 2 – Chorems’ Implementation for Spatial Organisation 

On the left, Velut’s Graphic Model For Argentina (2001);  

on the right, Thery’s Graphic Model for Brasil (1988) 

 

Chorems’ capability to communicate the spatial dynamics were more commonly tested for 

agricultural research. Beginning from the 90s, initiated by Jean-Pierre Deffontaines, Jean-Paul 

Cheylan and Sylvie Lardon (1990) applied chorems for the analysis of territorial transitions in 

the context of graphic modelling and agronomy (Lardon & Houdart, 2017).  

 

Several different research from various fields have proven the wide range of application and 

flexibility of chorematic schemes. Piveteau and Lardon (2002) made use of chorematic 

representation in education through the training process of engineering students on regional 

planning. They investigated the benefit of graphic models in territorial analyses and the 

communication of these dynamics in an academic platform (Piveteau & Lardon, 2002). Lafon 

(2005) made use of chorems to present the water problem in Brazil  (Laurini et al., 2009).  

Garmy, (2011) utilised chorematic schemes to explore the watercourse crossings and the 

reciprocal influence they have with the spatial organisation in French ancient towns (Garmy, 

2011).  
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With the influence of globalisation and changing inter-territorial dynamics some researchers 

employed chorems to develop an understanding into restructuring spatial relationships. As an 

example, Ducruet (2006) used chorems to grasp the significance of supranational networking 

amid a globalising world. The achievements of partnerships in the context were discussed 

through comparison of two different cases, namely Normandie Métropole (France) and South 

Coast Metropole Partnership (England) with the support of chorematic representation 

(Ducruet, 2006) (Figure 3).  

 

    

Figure 3 – Chorems’ Application in the Context of Restructuring Inter-Territorial Interactions 

On the left, comparison of Normandie Métropole (France) and South Coast Metropole Partnership (England) 

by Ducruet, 2006; on the right, three scenarios for Sustainable Development and Energy Program: Sustainable 

Territory 2030 by Casanova Enault & Chatel, 2017 

In a parallel manner, Casanova Enault & Chatel (2017) demonstrated the use of chorems to 

project alternative futures. They put forth a conspicuous work where they analysed three 

scenarios presented by the Ministry of Ecology, Sustainable Development and Energy's 

program: Sustainable Territory 2030. They produced a scheme of spatio-temporal chorems to 

examine the dynamics of spatial change. The transition from France's 2010 status to its 

projected 2030 status was explored and the territorialization of the three scenarios were put 

under investigation through graphic modelling. In this case, the representation did not just 

focus on spatial compositions but the likely spatial dynamics to arise throughout territorial 

evolution (Casanova Enault & Chatel, 2017) (Figure 3). 

 

Besides appearing in different visual platforms like maps, atlases, infographics, etc., 

advancements in quantitative techniques, modelling, geographic systems and information 

technologies made it possible to observe the combination of chorematic schemes with different 

methods.  
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Houdart and colleagues (2005) demonstrated this by combining chorems with GIS and multi-

agent simulation (MSA) to test the impact of agricultural and rural land organisation on the 

spatial variability of the pollution load. They used the method to investigate the evolution of 

agricultural plots in 46 farms of Pelée along with their capacity for development and the 

polluting pressure they create (Houdart et al., 2005).  

 

Lardon and Capitaine (2008) supported chorematic representation with graphs through the 

collaboration of computer science and agronomy. Farms were compared by using spatial 

modelling to come up with feasible functioning modes. Chorematic schemes were explained 

through diagrams/graphs that helped code spatial and functional relations in agricultural fields. 

Graphs were used to relate and mark matching cases to form an organised system (Lardon & 

Capitaine, 2008). 

 

Certain researchers took the method one step further with the objective to automate the chorem 

creation process. Automation of chorem generation and visual summary production for 

geodatabases were initiated by a research team from Lyon LIRIS INSA (Reimer, 2010). In 

order to overcome the limitations of manual creation process, these researchers introduced a 

computational component in the method (Cherni, 2019; De Chiara et al., 2011; Del Fatto et al., 

2008; Laurini et al., 2009). By proposing a new markup language for chorematic schemes, 

ChorML, they worked on automating the data extraction and visualisation processes  (Del Fatto 

et al., 2008; Laurini et al., 2009). Throughout these operations, the researchers had to modify 

Brunet’s chorems, yet they prioritised the simplification of a spatial database “both at semantic 

and geometric points of view” (Laurini et al., 2009). Del Fatto and colleagues (2008) 

introduced the Chorem Editor to serve for importing, displaying, generating, modifying and 

exporting graphical representation (SVG) and a ChorML representation of chorems (Del Fatto 

et al., 2008). Parallel to that, to simplify the data mining processes, Reimer (2010) proposed a 

taxonomy for chorems (Reimer, 2010). 

 

2.3. Criticisms & Limitations 

 

From the beginning of their conceptualisation and usage, chorematic representations have 

received various criticisms. One of the most reactional viewpoints was presented by Lacoste 

(1995), expressing them as tools for manipulation with the aesthetic graphic representations 

they provide (Lardon & Capitaine, 2008). In addition, the subjectivity intrinsic to the method, 

especially at the stage of choice of elements is found by Lacoste against a rigorous scientific 

approach (Houdart et al., 2005).  

 

Meanwhile, applicational difficulties and limitations of the method were presented through the 

experience of researchers that applied graphic modelling method through chorematic 

representation. Houdart and colleagues mention that sole usage of chorems lead to controversy 

as they might give way to reductionism (Houdart et al., 2005). This is a natural result of the 

simplification process which the user should be wary of when applying. Another restriction 

arises from the flexibility of the structure allowing for the re-creation of different chorematic 



 

10 

 

representations by each user (Lardon & Capitaine, 2008). This stands in the way of coming up 

with a common language or standardisation intentions. 

 

2.4. Chorematic Schemes to Represent Urban Climate Data 

 

As can be observed from the existing research up to now, although utilised mostly in the 

agriculture field, chorematic schemes carry immense potential in various disciplines that 

involve geovisulisation processes. Especially for planning processes where applications need 

to consider and deal with unprecedented and emergent events and where resilience, risk 

mitigation and adaptation have become prior concerns for decision making, chorematic 

representations can be a key tool. In situations where policies build on uncertain geographic 

knowledge (that refer to imprecise, incomplete, fuzzy knowledge), representations like 

chorematic schemes pose great capacity with the way they refer to structures rather than actual 

data and the way they incorporate temporal processes (Fusco et al., 2017). In this regard, 

chorematic representation arise as a powerful tool to be employed for professions shaping the 

future of geographies and to allow for the integration of climate considerations throughout 

relevant processes.     

 

Applying chorems in such context unfolds several possibilities for their application at different 

stages of delivering climate data to planning: 

• First, it can be used when communicating highly technical processes in a synthetic way.  

• Second, it can be employed at the stage of strategy building where recommendations 

are proposed to take action against the current situation. 

• Finally, it might be facilitated at the future projection stage. Through scenario building, 

while exploring different options similar to the approach Casanova Enault and Chatel 

(2017) conducted in their research, visualisation of alternatives can be enabled in a 

refined way, unmasked and free of redundance. This could involve the comparison of 

current state and projected state on how far the situation evolves and if the change is 

effective or efficient in the specific context.  

 

Among the listed potentials, the first one constructs the focus of the research applied on 

Toulouse by the LISST research team with the objective to support the communication of urban 

climate data for urban professionals. Thus, it is presented for use in a pedagogical manner to 

allow for the representation of highly technical processes to non-specialist users in climatology 

(Jégou et al., 2021). Within this framework, the case of Toulouse has been taken through an 

intensive groundwork up to the process of chorematic representation. 

 

2.4.1. Chorematic Representation of Climate Analysis of Toulouse 
 

The steps followed by the LISST research team for the chorematic representation of Toulouse 

climatic considerations were based on the structure of UC-Maps (Figure 4). The components 

of Analysis Map were represented individually to form a combined synthetic model and based 
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on that, recommendations were represented as a separate graphic model to be provided to urban 

planners (Jégou et al., 2021).  

 
Figure 4 - The structure of UC-Maps (adapted from Ng et al., 2015 by Jégou et al., 2021) 

Each chorematic representation termed as a “chorotype” or “chorematic map-model” indicated 

a process on its own (Jégou et al., 2021). In this context, two separate processes were applied 

that led to the representation of urban climate recommendations through graphic modelling for 

the city. Combined with wind and topography data, UHI that represented the night-time 

situation and thermal comfort (UTCI) that represented the day-time situation were prepared as 

chorotypes.  

 

The process of graphic modelling was based on H. Théry’s modelling structure (Jégou et al., 

2021) (Figure 5). At this stage, a combination of Brunet and Cheylan’s chorems were used by 

the authors for Toulouse case. Following the selection of chorems, a “basic model” is prepared 

according to Théry’s structure. With the integration of modifiers into the basic model, a 

“theoretical model” is produced. After the territorial form is applied on the theoretical model, 

the “final graphic model” is achieved. 

 
Figure 5 – Process of graphic modelling based on Théry’s conceptualization.  

Source:(Jégou et.al., 2021) 

The two graphic models representing the climate analysis for Toulouse in the specified 

structure are shown in Figures 6 and 7. The initial models were produced with a focus to detect 

and depict the current situation. These models emphasized the heat intensity, represented with 

a hierarchical structure between the core and the surrounding intensities in small cities, 

propagation and contact fronts created at tension areas, thermal comfort zones, and the river 
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effect (Jégou et al., 2021). On these analyses, recommendations were provided in the form of 

a graphic model (Figures 8 and 9). 

 

 

Figure 6 - Toulouse UHI final model, Source: (Jégou et al., 2021) 

 

Figure 7 – Toulouse UTCI (Thermal Stress) final model, Source: (Jégou et al., 2021) 

 

 

Figure 8 – Recommendations on Toulouse UHI and UTCI Models, Source: (Jégou et al., 2021) 
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The practicality of these models can be observed through the capability of representing not just 

a static structure but also the dynamics. Building on these dynamics and tendencies, focus areas 

were detected more easily which led to the proposal of recommendations. The recommendation 

models for Toulouse helped determine the zones that needed attention for policy making. 

Through this model (Figure 9), it was shown that the cool island effect during the day required 

preservation. The boundaries of strong UHI cores were pointed out to be managed by reducing 

thermal stress through introduction of natural ventilation and intervention in structure 

orientations. In the surrounding areas of small centres permeabilization in pavement and 

vegetation was suggested along with reduction of air conditioning. Finally, attractive zones 

with cooling effect and ventilation corridors to be preserved were emphasized.  

 

 

 

Figure 9 –Model of Strategies and Recommendations for Toulouse 

Source: (Jégou et al., 2021) 

 

As was observed from the work of Jégou and colleagues (2021), through chorematic 

representation, urban climate considerations were brought to an easily interpretable context. 

Thus, a supportive step was introduced in delivering the outputs of urban climate mapping to 

planners and urban policy makers. In the next section, this research will develop a methodology 

to validate this approach on 47 French cities following the steps of Jégou and colleagues. 
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CHAPTER 3: METHODOLOGY 

On the way to represent 47 French cities’ microclimatic data through chorematic schemes, the 

approach was shaped according to how the urban climate trends could be reflected by graphic 

modelling for multiple cities. In this context, the workflow was formulated around preparing 

the ground for collective analysis and interpretation of similar cases based on their 

microclimatic resemblances. To administer the complexities of the process, a stratified 

workflow was followed (Figure 10).  

 

Throughout the workflow, quantitative research methods were applied in the data management 

and analysis steps. This involved data preparation and pre-processing of 47 French cities, 

spatial analysis of the processed data through raster analysis, patch analysis and cluster analysis 

which was then followed by statistical analyses to quantify, interpret and validate the results.  

 

Upon the analysis of the UHI data, qualitative techniques were employed for the chorematic 

representation step. In this regard, a chorem table was prepared compiling suitable chorems 

from previous works by different authors to serve as a framework. This table was used to 

suggest chorematic elements for the communication of UHI analysis output as graphic models. 

This led to the reproduction of the method to other cases and to propose recommendations.  

 
Figure 10 –The Workflow Followed Throughout the Research 

3.1. Data Source 

The chorematic representation of urban climate analysis is based on the Urban Heat Island 

(UHI) data for the case of French cities. The scope was determined by the availability of climate 

data for the cities. Since there was no UTCI indicator available for all of the cities, it could not 

be included in the context of the research.  
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The UHI data used in this research was produced by the National Center of Scientific Research 

(CNRS) during the MApUCE Project using the MésoNH-SURFEX atmospheric model. In 

MApUCE database, the UHI data is stored in the form of R binary data files. For each city 

there are two weather situations that were simulated according to the temperature values of 6 

days of summer that ranges between the years 2000 and 2009. These weather situations are 

based on Local Weather Types (LWT) as were formulated by Hidalgo & Jougla (2018). They 

were defined according to daily values of temperature amplitude, specific humidity, 

precipitation, wind speed and wind direction  (Hidalgo & Jougla, 2018; Jougla et al., 2019).  

 

The simulated UHI data has a horizontal resolution of 250mx250m. Thus, the binary files 

include grid points for each city that store the air temperature (in K) information at 2 meters 

height. The points provide the urban impact in terms of temperature difference between two 

scenarios of with and without urban pattern. They have a repository of 24-hour UHI data with 

constant values of latitude, longitude and surface height.  

3.2. Data Preparation and Preprocessing  

 

Initially, the data required to be validated and prepared for analysis. The binary files were 

converted into dataframes containing grid point constants and 24-hour values for each weather 

situation. As the extent of grid points covered much larger area than the analysis area for cities, 

the points were extracted according to Urban Unit (UU) boundaries for each city.  

 

  

Figure 11 - Urban Units of Research Area 

On the left: Urban Units in France. On the right: Urban Unit and Administrative Boundaries of Toulouse 

The selection of Urban Unit as city extent was made according to the boundary used in 

MApUCE database (Figure 11). This Urban Unit definition was used according to the 

definition by the National Institute of Statistics and Economic Studies (INSEE) under the 

 

Basemap Credit: Esri, DeLorme, HERE, TomTom, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, 
GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, and 
the GIS User Community 
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France Ministry of Economy and Finance. Two criteria considered for this definition were the 

continuity of urban texture and the number of inhabitants. In this context, it was defined as, “a 

municipality or a set of municipalities with a continuous built-up area (no distance of more 

than 200 meters between two buildings) and has at least 2,000 inhabitants” (INSEE, 2020). In 

this context, the population and surface area information for 47 Urban Units are presented in 

Table 2. 

General Information on 47 French Cities 

City 
Urban Unit 
Population 

2018 

Surface 
Area (km²) 

City 
Urban Unit 
Population 

2018 

Surface 
Area (km²) 

Amiens 164,319 137.3 Lille 1,047,075 446.7 

Angers 242,613 243.3 Lorient 121,843 149.4 

Arras 87,745 105.6 Lyon 1,669,730 1141.4 

Avignon 456,651 1364.4 Metz 285,930 308.8 

Bayonne 254,519 513.7 Montbeliard 113,057 166.6 

Beauvais 60,869 70.1 Montpellier 449,187 310.0 

Belfort 79,364 106.8 Mulhouse 247,065 239.1 

Besancon 138,691 134.9 Nancy 286,565 245.9 

Bethune 355,994 760.3 Nantes 655,187 498.6 

Bordeaux 969,897 1287.3 Nice 944,321 743.6 
Boulogne 
sur Mer 84,676 62.8 Nimes 184,347 265.8 

Caen 205,708 173.6 Orleans 282,904 289.5 

Calais 97,789 105.2 Paris 10,816,803 2853.5 
Chalon sur 
Saone 79,405 129.7 Pau 200,401 530.9 
Clermont 
Ferrand 272,551 180.8 Reims 215,729 106.8 

Colmar 94,960 134.4 Rouen 470,369 461.1 

Compiegne 71,210 134.4 Saint Etienne 374,068 414.0 

Creil 124,689 167.3 Saint Nazaire 186,760 472.2 

Dijon 245,895 169.6 Thionville 134,104 137.4 

Douai-Lens 504,281 485.2 Toulon 580,281 763.7 

Dunkerque 165,123 148.7 Toulouse 1,019,460 957.5 

Grenoble 451,096 358.1 Tours 359,992 684.9 
La 
Rochelle 133,597 129.4 Valenciennes 335,262 440.0 

Le Havre 234,945 194.9    

Table 2 - General Information on 47 French Cities 

Source: INSEE, 2020 

At the stage of data exploration, the temperature difference was plotted for each hour (Figure 

12). This provided perspective on where the highest UHI intensities were concentrated. Parallel 

to that, maximum temperature difference values were obtained for each dataframe for each 

weather situation and city. The 24-hour dataframes were subsetted to night-time range and 

maximum values were calculated for each city on R. As the 24-hour data is in UTC time format, 
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they were converted to local time of France (UTC+2). The time ranges representative of 

maximum UHI intensities for both weather situations are shown in Table 3.  

Time Ranges Selected for Each Weather Situation for Each City 

City 
City 

Code 
Time range 

WS1* 
Time range 

WS2* 
City 

City 
Code 

Time 
range 
WS1 

Time 
range 
WS2 

Amiens ami 3-6 a.m. 0-3 a.m. Lille lil 0-3 a.m. 0-3 a.m. 

Angers ang 3-6 a.m. 0-3 a.m. Lorient lor 0-3 a.m. 0-3 a.m. 

Arras arr 0-3 a.m. 0-3 a.m. Lyon lyo 3-6 a.m. 0-3 a.m. 

Avignon avi 3-6 a.m. 3-6 a.m. Metz metz 0-3 a.m. 0-3 a.m. 

Bayonne bay 3-6 a.m. 0-3 a.m. Montbeliard montb 3-6 a.m. 0-3 a.m. 

Beauvais bea 0-3 a.m. 3-6 a.m. Montpellier montp 3-6 a.m. 3-6 a.m. 

Belfort bel 0-3 a.m. 3-6 a.m. Mulhouse mul 3-6 a.m. 0-3 a.m. 

Besancon bes 3-6 a.m. 0-3 a.m. Nancy ncy 0-3 a.m. 3-6 a.m. 

Bethune bet 0-3 a.m. 0-3 a.m. Nantes nant 3-6 a.m. 0-3 a.m. 

Bordeaux bord 0-3 a.m. 3-6 a.m. Nice nic 3-6 a.m. 0-3 a.m. 
Boulogne 
sur Mer bou 0-3 a.m. 3-6 a.m. Nimes nim 3-6 a.m. 3-6 a.m. 

Caen cae 3-6 a.m. 0-3 a.m. Orleans orl 0-3 a.m. 0-3 a.m. 

Calais cal 3-6 a.m. 0-3 a.m. Paris par 3-6 a.m. 0-3 a.m. 
Chalon sur 
Saone cha 0-3 a.m. 0-3 a.m. Pau pau 3-6 a.m. 0-3 a.m. 
Clermont 
Ferrand cle 3-6 a.m. 3-6 a.m. Reims rms 0-3 a.m. 0-3 a.m. 

Colmar col 3-6 a.m. 3-6 a.m. Rouen rou 3-6 a.m. 0-3 a.m. 

Compiegne com 3-6 a.m. 3-6 a.m. Saint Etienne stet 0-3 a.m. 0-3 a.m. 

Creil cre 3-6 a.m. 3-6 a.m. Saint Nazaire stnz 0-3 a.m. 0-3 a.m. 

Dijon dij 3-6 a.m. 3-6 a.m. Thionville thi 3-6 a.m. 3-6 a.m. 

Douai-Lens dou 0-3 a.m. 0-3 a.m. Toulon tou 3-6 a.m. 3-6 a.m. 

Dunkerque dun 0-3 a.m. 3-6 a.m. Toulouse touls 0-3 a.m. 3-6 a.m. 

Grenoble gre 3-6 a.m. 3-6 a.m. Tours trs 0-3 a.m. 3-6 a.m. 
La 
Rochelle lar 0-3 a.m. 3-6 a.m. Valenciennes val 0-3 a.m. 0-3 a.m. 

Le Havre leh 0-3 a.m. 3-6 a.m.     

Table 3 – Time Ranges Selected for Each City 

*WS: Weather Situation 

City Codes represent the abbreviations used for cities in later graphs and figures 
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Figure 12 – 24 Hour UHI Intensity Distribution in Toulouse for Weather Situation 2
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3.3. Raster Operations 

 

Certain steps that involved spatial analysis were continued in GIS platform over raster format. 

There were two main reasons for the processing to be carried out on pixelated data. Since 

spatial metrics were going to be applied through Patch Analysis extension in ArcMap, the data 

format had to be made compatible with the software which could be either vector or raster 

format. In relation, regarding that the UHI data for cities was already in the form of grid points, 

the spatial analysis steps were decided to be continued in raster format. 

 

Building on the time range analysis carried out in the previous step (see Table 3 and Figure 

12), datasets were rasterised based on the mean value of 3-hour time ranges with maximum 

night-time temperature difference. During the conversion, few of the pixels were returned with 

null values for certain cities. At this stage, focal statistics were applied to manage the empty 

pixels and interpolate the values from neighbouring cells. In the next step, the raster files of 

each weather situation for cities were composited to reflect the highest exposure area of UHI 

intensity (Figure 13). 

 

 

Figure 13 – Composition of Rasters with Two Weather Situations Into One Raster (Toulouse) 

Following the raster processing operations, the outputs were reclassified into different UHI 

intensity classes as shown in Table 4. 

 

Temperature Range UHI Intensity Class 

Below 0 °C Cool zones 

0 °C to 2 °C Negligible exposure 

2 °C to 3 °C Significant exposure 

3 °C to 6 °C Strong exposure 

Over 6 °C  Very strong exposure (only Paris) 

Table 4 – UHI Intensity Classes’ Definition 

 +  
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3.4. Patch Analysis 

 

Patch analysis was fundamental to the investigation of UHI intensity trends for cities and to 

detecting similarities between them. This method allows to analyse the form and spatial 

distribution of UHI zones corresponding to the intensity classes. Thus, this step was crucial to 

first classify the cities into clusters and then to deduct specific features of these clusters towards 

their representation with chorems.  

 

While conducting analysis that is based on spatial forms, the high variety of parameters that 

need to be considered based on extremely varying characteristics from geography to geography 

is a major challenge to overcome. Landscapes are composed of elements which exist in the 

form of a patch mosaic (Forman 1995, Urban et al. 1987, cited in McGarigal, 2015). The efforts 

to quantify complex urban form and landscape characteristics in research has brought about 

many different approaches and methods (Chelaru et al., 2014). Besides zonal statistics, 

landscape/spatial/shape metrics employed in this research through patch analysis, have been 

used in different contexts to quantify and classify varying spatial forms. It is possible to 

encounter the use of these metrics, especially to analyse the degree of fragmentation in habitats 

and urban areas. Thus, its application ranges from biodiversity studies to urban form and 

sustainable development over land use change analyses (Fang et al., 2017; Gherraz et al., 2020; 

Lowry & Lowry, 2014; Schneider & Woodcock, 2008; Tsai, 2005). In relation, some 

researchers benefitted from shape metrics to investigate the influence of open and vegetated 

areas on UHI intensity (Gherraz et al., 2020). This research takes the method a step further 

using shape metrics to depict typologies based on UHI intensity classes for graphic modelling 

purposes.  

 

Various definitions and combinations of spatial metrics are present in research depending on 

the context through dimensions termed as compactness, centrality, complexity, density, 

porosity, accessibility, fragmentation and so forth (Fang et al., 2017; Gherraz et al., 2020; 

Lowry & Lowry, 2014; Schneider & Woodcock, 2008; Tsai, 2005). While these dimensions 

can be formed using specified formulas according to metrics of interest, pre-defined metrics 

can be used in the way they were provided by certain tools. FRAGSTATS Software is one of 

the tools that was established and used for examining the landscape ecology and pattern 

characteristics. Developed by McGarigal and Marks, the tool allows the analysis of spatial 

patterns of categorical maps  (McGarigal, & Marks, 1994). Besides FRAGSTATS, it is 

possible to conduct this analysis with other software like QGIS, ArcGIS and LEAP II (Chelaru 

et al., 2014). For this research ArcGIS was found suitable to apply patch analysis as it builds 

on FRAGSTATS metrics. Following the application of packages provided for ArcGIS (Patch 

Analyst) and QGIS (LecoS – Landscape Ecology Statistics by Martin Jung)1, it was observed 

that Patch Analyst was a more suitable option for masked raster datasets with irregular shaped 

boundaries and extents. Patch Analyst allows for the processing of rasters through Patch Grid 

extension which will be elaborated on later. 

 
1 For more information on LecoS, see Jung, M., 2015. LecoS - A Python Plugin For Automated Landscape Ecology Analysis. 
Ecological Informatics. 31. Available from: 10.1016/j.ecoinf.2015.11.006. 
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In this research, patches that were processed in Patch Analyst – Patch Grid were treated as 

constituents of Urban Heat Island Intensity patterns. This was instrumental to form typologies 

among cities. Three levels of analysis were addressed: 

• Urban Unit Level: the level where different intensity classes form the whole city area 

in terms of urban units and where comparison with other cities is carried out; 

• Urban Heat Island Intensity Class Level: the level where several patches with the 

same intensity value are found and where the Patch Analysis is based on;  

• Patch Level: the level where individual patches are found. 

 

These levels are shown in Table 5 with the terminology used in the extension that correspond 

to the levels of this research.  

 

Patch Grid 

Extension 

Terminology 

Research Terminology 

Landscape Level Urban Units 

Class level 

UHI Intensity 

Class 

Number 

UHI Intensity Class 

1 Cool zones 

2 Negligible exposure 

3 Significant exposure 

4 Strong exposure 

5 Very strong exposure (only Paris) 

Patch Level 

Table 5 – Levels of Patch Analysis 

The choice of spatial metrics for patch analysis was built on ArcMap Patch Analyst – Patch 

Grid metrics (see definitions in Table 6). Within this framework, dimensions were identified 

that would lay the foundation for cluster comparison in the next stages. The dimensions are 

defined as: 

• Homogeneity: implies the purity of the Urban Unit to the degree of patchy and/or 

mosaiced structure it holds; 

• Complexity: implies the shape irregularity based on individual patches; 

• Depth: implies the breadth of individual patches referring to the dimensions of patch 

shape;  

• Fragmentation & Isolation: implies the extent of dispersity of patches among 

intensity classes opposite to having a compact structure (see also Figure 14).  

 

The definition of these dimensions through spatial metrics was an iterative process. According 

to the results obtained at the Cluster Analysis stage, the dimensions were revised, and the 
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analysis was repeated. While doing so, the objective of chorematic representation was taken 

into consideration. It was ensured that the cities would reflect and be classified in terms of their 

similarities in the UHI intensity trends. This facilitated the handling of similar cases 

collectively and made it easier to select chorems in the next stages.  

 

 

Table 6 – Spatial Metrics’ Definitions (Compiled from (1) ArcMap- Patch Analyst Help (Rempel et al., 2012) 

and (2) Landscape Ecology Lecture Notes (McGarigal, 2001)) 
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Figure 14 – Illustration of Dimensions 

To reflect homogeneity some of the general metrics were taken into account. Total Landscape 

Area or urban unit area (TLA) and Class Area (CA) were not directly included as they were 

not determining to define chorematic elements but were used to normalize size related 

indicators to direct the clustering. Class Area Proportion (ZLAND) and Patch Number (NP) 

were considered selective to form clusters as main features of UHI intensity classes. They 

reflect homogeneity through the proportion of classes and patch numbers within urban units. 

In relation, Mean Patch Size, as a function of these two indicators (McGarigal & Marks, 1994) 

was included after being normalized by urban unit area (TLA).  

 

As the second dimension, depth is measured through Core Area metrics. This group of metrics 

were considered essential regarding the correlation between centrality and exposure to strong 

UHI intensity. Core area reflects shape, area and edge depth effects. It has a direct relationship 

with area effect while having an indirect relationship with shape and edge-depth effects  

(McGarigal, 2001). What this metric implies for this research is the increasing likelihood of 

strong exposure areas to occur with more compact and deeper forms of significant exposure 

classes. With this in mind, Total Core Area Index (TCAI) was computed in the analysis. Taking 

edge as “an area of varying width” rather than a boundary, Core Area Index gives the edge-to-

interior ratio (McGarigal, 2001). Thus, TCAI represents the total core area in the urban unit 

(Rempel et al., 2012). 

 

In terms of complexity, shape and edge metrics were used. Area Weighted Mean Shape Index 

(AWMSI) was implemented to calculate the degree of patch shape irregularity. AWMSI 

adjusts to patch size while calculating this index  (Rempel et al., 2012). In addition to shape 

Homogeneity Depth

Complexity Fragmentation



 

25 

 

metrics Edge Density (ED) was found complementary to the complexity of UHI intensity 

classes. The amount of edge is calculated relative to the Urban Unit area by dividing total edge 

by total urban unit area  (Rempel et al., 2012). In this context, the result represents the shape 

irregularity at class level as the value increases.  

 

The last dimension that focuses on fragmentation and isolation benefitted from Diversity 

metrics. These indices represent the degree of diffusivity and sprawl of patches through 

calculation of patches’ adjacency and proximity. In other words, it shows to what extent the 

different intensity classes are found adjacent to each other. Mean proximity Index (normalised 

by Urban Unit Area) gives the adjacency of patches from same classes (Rempel et al., 2012). 

Thus, sparse distribution and fragmentation of small patches are quantified. Mean Nearest 

Neighbour (MNN) measures the shortest distance to a similar patch  (Rempel et al., 2012). In 

this regard, it quantifies the degree of isolation of similar patches from each other.  

 

3.5. Cluster Analysis 

 

To come up with a categorisation for the 47 cities according to their microclimatic properties, 

cluster analysis was determined as the optimal method. The aim was to be able to detect 

typologies between UHI intensity trends of different cities and to review similar cases 

collectively. Clustering techniques build on the spatial distribution of sample points 

(Lemenkova, 2019) and grouping of them according to similarities/dissimilarities that are 

represented in terms of distances. Thus, it can be applied to many fields and topics. Several 

studies are found in the field that conduct UHI analysis together with cluster analysis 

(Kamruzzaman et al., 2018; Kim & Baik, 2004; Zhou et al., 2013). Some of them also 

combined spatial metrics with cluster analysis and have been inspirational for this research  

(Huang et al., 2007).  

 

Since R was used at the data management stage of the research, cluster analysis was also 

performed on the same platform. In R it is possible to use the {cluster} and {factoextra} 

packages to conduct cluster analysis (Kassambara, 2017; Lemenkova, 2019). For this research, 

the {factoextra} package was preferred as it provides a practical way to implement the 

clustering and the visualisation of the results.  

 

As the clustering method, the Partitioning Around Medoids – PAM algorithm that was 

developed by Kaufman & Rousseeuw (1990) was selected. The intention for the clustering to 

be based around real observations was the main reason behind this choice. PAM searches for 

k-number of representative medoids that are derived from data points. Following this set of k 

medoids, k clusters are formed by assigning each observation to the nearest medoid. This 

method focuses on the dissimilarities between observations and their closest representative 

object trying to minimize the dissimilarities (Kassambara, 2017). In this regard, Euclidean 

distance was used to measure the distance between object while calculating the dissimilarities 

between objects. 
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To prepare patch analysis results for clustering, it was checked that the dataset satisfied a 

number of conditions. Initially, to assemble the output in one matrix, data tables of cities were 

brought to the same size and structure. These tables were processed to have 4 UHI intensity 

classes as rows and indicators as columns. As a second condition, the analysis requires null 

values to be removed (Kassambara, 2017). Thus, cells with “na” values were interpolated. 

Another requirement for the analysis is the scaling of the dataset. Scaling is essential for 

algorithms that calculates distances between data as especially machine learning algorithms 

are sensitive to “relative scales of data”  (Roy, 2020). With methods like K Nearest Neighbours, 

k means, PCA that use distance values to generate outputs, data scaling becomes critical (Roy, 

2020). Especially datasets that have high range of mean and standard deviation values or 

columns with different units need to be scaled before clustering (Kassambara, 2017)   

 

At the analysis stage, after a number of clustering attempts the number of cities was decreased 

to 46. It was decided to remove Paris from clustering considering its peculiarities. As one of 

the most influential cities in the global extent and as the biggest city and capital of France, it 

was concluded that it would not be easily comparable to other cities. This point showed itself 

on cluster plots where Paris was not clustered with any other city and its observation point was 

located much more remote from the rest (see Appendix 1). Therefore, as an outlier, and as a 

unique case, it was concluded that Paris should be represented through a separate review 

process. Following the partitioning of the 46 cities, clusters were examined in terms of the UHI 

intensity trends they show. They were compared with their medoid cities in relation to the 

footprint of UHI intensity classes on reclassified raster datasets and the patch analysis tables. 

For the general statistics, information like cluster size, medoid objects, average distance within 

and between clusters were calculated throughout the process and analysed. To check the quality 

of the partitioning, silhouette width values were reviewed (Kassambara, 2017).  

 

3.6. Chorematic Representation 

 

For the chorematic representation stage, the workflow applied for Toulouse in Jégou and 

colleagues’ work (2021) was followed. The process is integrated with urban climate mapping 

practices specifically with Urban Climate Analysis and Recommendation Maps. As was 

mentioned earlier at the Data Source section, due to the lack of information on thermal stress 

aspect for the 47 cities, it was not added to the representation. Thus, among the climatic 

elements of UC-AnMaps only one component, air temperature, was focused on through UHI 

effect to be represented by graphic modelling. In this context, only night-time intensities were 

investigated.  

 

Based on the clusters formed at the Cluster Analysis stage, chorematic elements were suggested 

according to the characteristics they show and were compiled in a chorem table. This step went 

hand in hand with the validation of Toulouse model for other cities. At this step, the group that 

Toulouse was clustered in was reviewed together with Toulouse’s chorematic model. In the 

light of the outcomes achieved in the validation step, suggestions on chorematic representation 

were provided for other clusters. For graphic modelling, the clusters that were showing strong 
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UHI intensities were given priority. As was mentioned previously in the Literature Review 

chapter, the structure of Théry was used up to the theoretical model building stage. Based on 

the theoretical model, urban climate recommendations based on night-time situation were 

represented through chorematic representation which are elaborated in the next chapter. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1. Results 

4.1.1.  Data Structure & Analysis 
 

Prior to the interpretation of Cluster Analysis results the data matrix was analysed. The matrix 

consisted of the observations (46 cities) in rows and 8 spatial metrics applied for each UHI 

intensity class in each city (32 metrics) in columns.  

 

In order to identify the relationship between selected metrics a correlation matrix was generated 

based on Pearson’s correlation coefficient (r) (Figure 15). Positive correlation was represented 

with shades of blue while negative correlation was shown by shades of red. Darker shades and 

larger radii indicated more extreme values.  

 

 
Figure 15 – Data Matrix – Correlation Between Spatial Metrics 

When focused on the shape complexity of strong and significant exposure classes (3 and 4), it 

was found that they were affected comparatively more by class proportion (ZLAND) and 

number of patches (NP) metrics in classes 2, 3 and 4. It was detected that class 3 shape index 

(AWMSI3) was affected positively by the core area index of class 4 (TCAI4) even more than 

class 3 (TCAI3). This meant that growing extent of strong exposure classes impacted on the 

shape regularity of the significant exposure class. Mean Proximity Index of class 3 (MPI3) also 

had a positive high correlation with the shape complexity. In contrast, it was observed that it 

had high negative correlation with Mean Patch Size class 2 (MPS2). This is explained by the 

fact that class 2 decreased in size with increasing irregularities in class 3 due to direct contact. 

Edge Density for high intensity classes (ED3, ED4), as another metric for shape complexity, 

showed high correlation with class proportion, positive with classes 3 and 4 and negative for 

class 2. On the contrary, they displayed high negative correlation with TCAI2 similar to the 
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case of mean patch size. They showed high positive correlation with shape index of class 4 

(AWMSI4). In addition, proximity index of class 4 (MPI4) was detected to increase with 

growing complexity in both classes.      

 

Before the Cluster Analysis step, the clustering tendency of the data matrix with 46 cities and 

spatial metrics was visualised through a Matrix of Dissimilarity (Figure 16). Matrix of 

dissimilarity is based on the Euclidean distance between observations regarding disparities 

among them (Kassambara, 2017). The observations that have dissimilarity value approaching 

zero are located closely. As the grade of dissimilarity decreases, it gets more likely for the 

observations to be clustered. As can be inspected from the changing scale of colour in Figure 

8, there are clear distinctions between certain groups. Shades of darker purple indicate a clearer 

distinction and it is possible to divide some groups where dissimilarity values reach 10. In this 

structure, while some cities showcased stronger link between each other (such as Dunkerque, 

Arras, Lorient in one group; Toulouse, Bordeaux, Nantes in one; Valenciennes, Douai-Lens 

and Bethune in another), others seem harder to cluster due to higher dissimilarity values (such 

as Reims, Lille, Lyon). 

 

 

Figure 16 – Matrix of Dissimilarity 

4.1.2.  Cluster Analysis 
 

At the clustering stage, one of the critical steps was to determine the number of clusters. In 

order to help with this decision, the optimal number of clusters (k number) was computed on 

R. As can be seen from Figure 17, three clusters seemed optimal. While it is possible to increase 

the clusters, the quality of clustering might decrease. As was mentioned previously, for the 

number of medoids (k), the practicality for chorematic representation stage was taken into 

consideration and k number was increased to 4 after experimenting from 3 to 7 (see Appendix 

2 for results obtained with different values of k).  
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Figure 17 – Optimal Number of Clusters Plotted 

During Cluster Analysis, four clusters were formed and grouped around the medoid cities, 

Orléans, Lorient, Metz and Toulon. In Figure 18, the partitioning among cities can be observed 

from different angles according to the dimensions selected to be displayed (For more details 

on the visualisation of dimensions see Appendix 3). Special attention must be given to the cities 

that lie between two clusters and are at similar distances from both medoids. In order to analyse 

the clustering accurately and to be able to make a comparison between cities, the distribution 

of values according to spatial metrics is examined in the next section.  

 

   
Figure 18 – Cluster Analysis Plot 
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Figure 19 - Distribution of Clusters within France with Medoid Cities Marked 

France, Basemap Source: Esri, DeLorme, HERE, TomTom, Intermap, increment P Corp., GEBCO, USGS, 

FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong 

Kong), swisstopo, MapmyIndia, and the GIS User Community 

 

 
Cluster No Cluster Name Medoid City Cluster Size 

1 Concentrated High Intensity Orléans 20 

2 Limited Intensity Lorient 12 

3 Dispersed High Intensity Metz 11 

4 Dispersed Cool Zones Toulon 3 

Table 7 – General Information on Clusters 

 

The general distribution of the clusters and the features they carried were analysed together 

with the UHI maps of urban units. From the results it was found out that the clustering satisfied 

the expectations to classify similar cases in associated clusters. Depending on the UHI intensity 

features they showed, the clusters were given titles to represent their main characteristics (see 

Table 7). The cities in clusters and their UHI intensity maps are presented in the next sub-

sections.

 

 

 

 

Cluster 
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4.1.2.1. Cluster 1 – Concentrated High Intensity  

General Characteristics of Cluster 1 

 
Strong exposure is concentrated at the 
urban cores 
 

 
Strong exposure zones in highly compact 
forms are interrupted with water bodies 
passing through the cores of the cities 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Table 8 – UHI Intensity Maps of Orléans and Remaining Cities in Cluster 1 

Medoid city - Orléans 

Figure 21 – Map of Urban Units with Orléans 
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Figure 20 - Orléans  

 
Orléans 
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4.1.2.2. Cluster 2 – Limited Intensity 

 

General Characteristics of Cluster 2 

 
Significant exposure shows limited 
expansion, sometimes they are observed in 
dispersed forms 
 

 
Low patchiness in urban units 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 - UHI Intensity Maps of Lorient and Remaining Cities in Cluster 2

Figure 22 - Lorient 

Medoid city - Lorient 

Figure 23 – Map of Urban Units with Lorient 
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4.1.2.3. Cluster 3 - Dispersed High Intensity 

 

General Characteristics of Cluster 3 

 
Strong exposure zones are highly 
dispersed and fragmented  
  
 
Strong UHI exposure class is dominant and 
sprawled within significant exposure class 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10 - UHI Intensity Maps of Metz and Remaining Cities in Cluster 3

Medoid city - Metz 

Figure 25 – Map of Urban Units with Metz 
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Figure 24 – Metz 
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4.1.2.4. Cluster 4 – Dispersed Cool Zones  

 

General Characteristics of Cluster 4 

 
Cool zones’ widespread presence causes 
high patchiness in Urban Units. 
 

 
All cities are coastal cities in  
southern France. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 - UHI Intensity Maps of Toulon and Remaining Cities in Cluster 4 

Medoid city - Toulon 

Figure 27 – Map of Urban Units with Toulon 
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Figure 26 – Toulon 
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4.1.3.  Comparison Between Clusters 
 

While comparing different clusters in terms of spatial metrics, variations in Significant 

Exposure Class and Strong Exposure Class were targeted as the main concern of the research 

(Figure 28). This selection was indicative of the characteristics displayed by strong heat island 

exposure patterns of different clusters.  

 

 

 

In this context, value distributions among clusters were represented by box plots through focus 

on high intensity showing classes. The box size illustrates the degree of variety among values 

while the grey line in the middle of a box is the median. Outliers are represented by dots outside 

the boxes that were calculated according to the 25th and 75th percentiles.  

 

For the homogeneity dimension, initially general metrics were analysed followed by size 

metrics. Homogeneity of the cities depended on how diffusive and extensive various classes 

were in the urban unit. In this regard, Class Proportion (ZLAND) and Patch Number (NP) value 

distributions were compared (Figure 29).  

 

Although Clusters 1 and 2 showed similar features regarding significant and strong exposure 

class proportions, there was a considerable difference in terms of patch number between the 

clusters. For Cluster 1, Lille stood out as a constant outlier for both exposure classes. This is 

explained by the fact that the urban unit area of Lille is very dense, and it includes the commune 

of Roubaix in its agglomeration. Therefore, the extension of two intensive centres influenced 

the calculation which explains the high difference in values from other cities. In terms of patch 

number, Toulouse and Bordeaux joined Lille showing differences from other cities. In Cluster 

2, Creil, Compiegne and Nimes diverged from the rest as they were the only cities that 

displayed strong exposure despite being very limited in extent. Yet, in patch number Nimes 

was separated from the outliers as strong exposure was observed over only one patch. For 
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Cluster 3, while Reims showed a high difference in class proportion, Lyon appeared as an 

outlier in number of patches.  

 

  

  

Figure 29 – Class Proportion (ZLAND) and Number of Patches (NP) Box Plots for Significant and Strong 

Exposure Classes 

In terms of size metrics, it is important to note that indicators that involved areal measurements 

were normalized by the Urban Unit Area to make the metric less reliant on size. The purpose 

was to make cities of different sizes that ranged between medium and big cities as the subject 

of this research more comparable to each other.  

 

  

Figure 30 – Mean Patch Size (MPS) Box Plots for Significant and Strong Exposure Classes 

During the analysis of Mean Patch Size (MPS) (Figure 30), it was found out that while 

significant and strong exposure classes showed similar range of value distribution for Cluster 

1, the difference was much more dramatic for other clusters. Whereas Besancon staoot out this 

time as an outlier for Cluster 1- significant exposure class, Compiegne, Creil and Nimes 
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remained for Cluster 2 as anticipated, and Clermont joined Reims as an outlier for Cluster 3 – 

strong exposure class.  

 

Regarding the depth dimension, core area metrics were analysed (Figure 31).  

 

  

Figure 31 – Total Core Area Index (TCAI) Box Plots for Significant and Strong Exposure Classes 

While for Cluster 1 Total Core Area Index (TCAI) did not show much difference in data 

distribution for both exposure classes, an increase in distribution was observed for strong 

exposure of Cluster 3 compared to the significant exposure class. Cluster 2 and 4 were absent 

in strong exposure as a result of low or zero intensity. Overall, although having high variation, 

Cluster 1 stood out with higher depth in the significant exposure class compared to others. In 

terms of strong exposure, Cluster 1 and 3 showed similar characteristics. Overall, when the 

median values of the two clusters were compared, it was concluded that significant and strong 

exposures were much more balanced in Cluster 1 whereas for Cluster 3, strong exposure had 

more dominance over significant exposure. This illustrated the strong UHI intensity pattern 

difference between two clusters that showed similar intensity characteristics in size and extent. 

 

From the angle of complexity, shape metrics along with edge metrics were examined (Figure 

32).  

 

Area Weighted Mean Shape Index (AWMSI) was found to have greater difference between 

clusters in terms of significant exposure variability. While Cluster 1 was observed to have 

higher irregularity levels than other clusters in significant intensity, Cluster 3 showed similar 

irregularity for both exposure levels. Furthermore, Cluster 3 presented higher irregularity 

values in strong exposure than other clusters. As the outliers in significant exposure level, Lille 

stood out for Cluster 1 and Lyon for Cluster 3. When analysed together with intensity patterns 

over maps, the outcome was not surprising as both cities were highly dispersed and much more 

irregular in comparison to their peers. This was also the case for Toulouse in strong exposure 

that appeared as the outlier for Cluster 1.  
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Figure 32 – Area Weighted Mean Shape Index (AWMSI) and Edge Density (ED) Box Plots for Significant and 

Strong Exposure Classes 

Edge density value distribution illustrated that Cluster 3 carried the highest irregularity and 

complexity values both in significant and strong exposure. For Cluster 1 Lille was the outlier 

in both classes to which Besancon was added in strong exposure level. For Cluster 2 and 4 low 

complexity was detected for both classes. Similar to previous metrics Compiegne, Creil and 

Nimes appeared as outliers as they showed strong intensity.  

 

In terms of fragmentation and isolation, diversity metrics were examined. As was the case for 

Mean Patch Size, Mean Proximity Index (MPI) and Mean Nearest Neighbour (MNN) were 

included in the analysis after being normalized by urban unit area (Figure 33).  

 

MPI showing higher median values in significant exposure than strong exposure for Cluster 1 

indicated that the sparse patches were more isolated in comparison to Cluster 3. This implied 

that Cluster 1 was likely to show rather polycentric structure while Cluster 3 was more 

dispersed with continuity when interpreted together with previously analysed metrics. For 

Cluster 1, Lille appeared as the outlier in both classes. While Dunkerque was observed as an 

outlier for Cluster 2 in the significant exposure class, Compiegne and Creil remained constant 

for the strong exposure class. What differentiated Dunkerque from other cities was its 

considerably higher extension in significant exposure. In relation, the reason why it did not 

appear in the Mean Patch Size metric was likely to be the number of small individual patches 

that decreased the average for the city. Meanwhile, it was not surprising that Lyon was detected 

as an outlier for significant exposure and Reims for strong exposure within Cluster 3 

considering their widespread form. 

Tls 

Lyo 

Lil 

Com 

Bes 

Lil 

Cre 
Nim 

Rms 

Lil 



 

41 

 

 

 

  

  

Figure 33 – Mean Proximity Index (MPI) and Mean Nearest Neighbour (MNN) Box Plots for Significant and 

Strong Exposure Classes 

Regarding Mean Nearest Neighbour (MNN), while the median values were close to each other 

among clusters in significant exposure level, in strong exposure the values were found higher 

for Cluster 3 than Cluster 1. Emergence of outliers for Cluster 1 implids the presence of another 

patch in the form of a second centre in considerable distance from the main exposure 

concentrated at the core. This caused a rise in MNN value which was the case for Beauvais in 

significant exposure class and Le Havre and Colmar for strong exposure class. For Cluster 2, 

Boulogne-sur-Mer and Avignon showed higher distances between dispersed patches in 

significant exposure. While Creil and Compiegne were expected as the outliers in strong 

exposure, Nimes, as the other city with strong exposure presence, did not stand out since it 

carried only one patch in that class.    

 

As a result, dimensions of clusters were compared with a focus on high intensity classes (strong 

and significant exposures) (Figure 34). It was shown that Cluster 1 had the highest depth 

features with high complexity and homogeneity values. Showing similarities in shape 

complexity with Cluster 3, the main distinction between Clusters 1 and 3 seemed to be the 

difference in fragmentation which was significantly lower for Cluster 1. This also showed in 

the values of homogeneity and depth. Meanwhile, Clusters 2 and 4 had similarities with a clear 

distinction in homogeneity where Cluster 4 was far more patchy with a wide distribution of 

cool zones within the Urban Unit. 
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Figure 34 – Radar Chart for Dimensional Values of Clusters 

The main distinctions between clusters that define their main characteristics are summarised in 

Table 13. 

 

  Class 1 
Cool zones 

Class 2 
Negligible 
exposure 

Class 3 
Significant 
exposure 

Class 4 
Strong 

exposure 

Outliers 

Cluster 1 – 
Concentrated 
High 
Intensity 

- 

(Exception 

Amiens) 

Medium 

Homogeneity 

High complexity, 

medium-low 

fragmentation 

Circumscribing 

strong exposure 

Compact & 

concentrated at 

the core 

Lille 

Cluster 2 – 
Limited 
Intensity 

Limited 

presence in 

some cities 

High 

Homogeneity 
Low complexity 

Limited presence 

in outliers 

Nimes, 

Compiegne, 

Creil 

Cluster 3 – 
Dispersed 
High 
Intensity 

- 

(Exception 

Clermont) 

Medium -Low 

Homogeneity 

Highly complex 

and fragmented 

Highly 

fragmented, 

widespread in 

significant 

exposure class 

within urban unit 

Lyon, Reims, 

Clermont 

Cluster 4 – 
Dispersed 
Cool Zones 

Highly 

decentralized, 

fragmented 

Low 

Homogeneity 

Medium-low 

complexity 

Very limited 

presence in 

Toulon 

  

Table 12 – Comparison of Clusters in terms of Dimensional Characteristics 

Before moving on to the next step, the quality of the partitioning was checked. In addition to 

the detection of outliers based on the comparison of spatial metrics, silhouette width values 

were reviewed for cities within clusters (Figure 35). Cities with negative values implied that 

their clustering could be flawed. These cities required more attention to investigate whether a 

revision in the clustering was needed or not.  

-3
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Figure 35 – Silhouette Widths of Cities in Clusters 

As the cities with negative silhouette widths, Lille, Toulouse, Amiens, Tours and Mulhouse in 

Cluster 1 and Montpellier in Cluster 4 emerged as cases to be reviewed. Firstly, as Montpellier 

and Pau had very low negative values that approached zero, they were disregarded. It is 

important to note that, the spatial patterns of UHI intensities showed a continuous sequence 

among cities. This made some cities a possible fit for more than one cluster. At this stage, 

priority was given to the characteristics they showed in strong and significant UHI intensities.  

 

Among cities with negative silhouette widths, Lille was an expected outcome due to its 

peculiarities like including another commune in the agglomeration, its high density, and the 

effects of commercial zones. With these factors in mind, it was decided that Lille should be 

considered separately. As another city in the margins, Amiens, with considerable presence of 

cool zones, showed characteristics that could suit Cluster 4. However, the patterns of strong 

and significant UHI intensities it held made it more compatible with Cluster 1 rather than 

Cluster 4. Toulouse and Mulhouse, showing more sprawl in significant exposure in comparison 

to their peers, were additional cities with negative values. Although Cluster 3 could be an 

alternative for them, since they did not show high irregularities as other cases in Cluster 3 and 

had quite compact strong exposure classes, they were better suited for Cluster 1. For Tours, it 

was the limited intensity of significant and strong exposure that could make it a good fit for 

Cluster 2. However, once again the compact strong exposure pattern concentrated at the core 

made it a better match for Cluster 1. 

 

In light of these factors, outliers were revisited that had been detected at the stage of spatial 

metrics comparison and did not appear at the silhouette width calculation. Creil, Compiegne 
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and Nimes as the outliers for Cluster 2 represented the characteristics of it. Therefore, they 

were not considered to be reclustered. In Cluster 4, Lyon appeared to be a fit for Cluster 1 as 

well. However, the way its strong exposure intensity class was sprawled throughout the 

significant exposure zones and the proportion of it within significant exposure area made 

Cluster 4 a suitable cluster for Lyon. This was also valid for Clermont and Reims. Although 

their strong exposure class areas seemed to be denser and more concentrated compared to the 

other cities of the cluster, they were more dispersed and irregular for Cluster 1. Thus, the 

clusters of these two cities were also decided to leave unchanged. 

 

4.2. Discussion 

 

Based on the findings of the Cluster Analysis, the discussion evolved around the following 

questions:  

• Is the chorematic representation structure proposed for Toulouse suitable for 

application on Cluster 1 – Concentrated High Intensity? 

• Considering Toulouse case, what type of graphic modelling structures can be proposed 

for other clusters?  

• Based on these models what are the recommendations for cases with high exposure 

situation and how can this be represented through graphic modelling? 

 

Before delving into the suitability of the chorems that were chosen for Toulouse for other cities 

in the cluster, it is essential to briefly explain the structure of the theoretical model of Toulouse 

developed by Jégou and colleagues (2021). 

 

 

Figure 36 – Theoretical Model of Toulouse  

Conception: N. Touati, 2021 in Jégou et al., 2021 



 

45 

 

For the representation of Toulouse, the chorems were chosen from a combination of Brunet 

(1986), Casanova-Chatel (2017) and Cheylan’s (2007) tables. In the beginning, four elements 

were used to form the basic structure (Figure 36). The concentration of the UHI intensity at the 

core, the changeover line that represented the surrounding area of the high intensity, the cooling 

components that served as thermal regulation areas and the element of the Garonne River effect 

constituted the basic model. Next, modifier elements were introduced that had a transforming 

effect as dynamic processes. Hereby, surrounding town centres emerged as UHI attraction 

nodes in peripheries. Areas in tension that stood out as contact areas of different UHI intensities 

formed the transition areas. Watershed effect added on thermal regulation areas brought out 

the fresh zones. With the influence of topography and the city centre, the river effect underwent 

a slowdown. In the end, the derived structures combined formed the theoretical model for 

Toulouse (Jégou et al., 2021).  

 

4.2.1.  Validation of the Toulouse Model 
 

Regarding the graphic model structure proposed for Toulouse, Cluster 1 with Concentrated 

High Intensity was investigated to decide on the suitability of the suggested elements and 

models. The most straightforward way for it was to make a qualitative judgement over spatial 

patterns of UHI in combination with specific geographical characteristics. With the model 

structure in mind, one of the most definitive aspects was the composition of strong UHI 

intensity concentrated at the core. In relation, a hierarchical structure of centre-periphery was 

sought. The second critical aspect was the river effect that was created with a water body 

passing through the city. Thus, firstly Orléans as the medoid city of Cluster 1 was checked 

followed by the remaining cities in the cluster for these two conditions.  

Figure 37 – Reproduction of Toulouse Chorematic Representation Model on Orléans 

Toulouse Model Conception: N. Touati, 2021  
in Jégou et al, 2021   

Toulouse  

Orléans  
UHI Concentration 
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to Surrounding Centres River Effect  

Thermal 
Regulation Area 

Basic model 
Derived, theoretical  

model 



 

46 

 

Compatibility of Cluster 1 with the Toulouse model was determined resulting from the 

application of the structure on Orléans (Figure 37). For Orléans, it is visible from the UHI 

intensity map that there was a concentration of strong UHI intensity at the centre. Formations 

of significant exposure zones around surrounding communal centres, like Ormes and Ingré in 

the northwest, Checy and Mardié in the east, and La Source where the Orléans University 

campus is located in the south, complemented the polycentric structure and the hierarchy 

between centres and peripheral intensity zones. A significant characteristic of the Toulouse 

model was also present in Orléans and other cities in Cluster 1 which is the disruption of strong 

UHI exposure by a water body. For Orléans this was observed through the River Loire in the 

mid part and by the Loiret, a tributary, in the south. Furthermore, forests and agricultural area 

in the south that limited the development created a thermal regulation area in addition to the 

forests in the northeast and northwest. Similarly, the cities in Cluster 1 were also found to 

exhibit the main characteristics that were detected in Toulouse and Orléans. In other words, it 

was concluded that this model could be easily applied and reproduced on the other cities. 

 

4.2.2.  Proposal of Chorems for Clusters 
 

Following the validation of the Toulouse model for Cluster 1, a chorem table was formed 

regarding the main characteristics of the clusters (Table 14). In addition to the elements 

employed in Jégou and colleagues’ work (2021) additional elements from Brunet (1986), 

Casanova-Chatel (2017), Cheylan (2007) and Helle’s (1995) tables were used (see Appendix 

5). Elements that were found suitable for the representation were classified in four categories 

according to the way they were termed by the authors mentioned above. The first category 

represents the quality and structure of UHI intensity classes. The quality is reflected through 

the presence of high UHI intensity. Regarding the structure of zones with high UHI intensity, 

the dimensions of depth and fragmentation/isolation were complementary to their distribution 

within urban units. The second category represents hierarchy and orientation aspects. In this 

section, all the dimensions that were constructed by the spatial metrics were represented. 

Hereby, a combination of Brunet’s centre-periphery model and Casanova-Chatel’s 

dissemination/concentration elements were used. The remaining two categories are 

complementary to each other; territorial dynamics and fronts of contact. While propagation and 

barriers make disruptions and create additional fronts, transition areas become critical to 

manage and restrain the intensity and expansion. In this category spatial metrics that measure 

adjacency and edge metrics were influential. 

 

In addition to the elements identified for Cluster 1, the spatial organisation of cases with higher 

complexity was a major factor to be addressed. In this sense, ‘orbital alignment’ around major 

intensity centres and ‘links’ between centres were preferred. Since UHI intensity has a strong 

association with urban development, elements of urban organisation used by the authors 

mentioned previously were found suitable to represent heat exposures. For the cases with no 

principal centre of concentrated structure but rather several fragmented intensity nodes, 

‘disseminated orientation’ element was employed. According to the quality of the interaction 

among intensity zones, ‘nodal influence’ and ‘zonal interaction’ elements were suggested. For 

situations where intensity cores were split, ‘disrupted zone/node’ was introduced. In relation, 
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Brunet’s split and propagation elements were employed as limiters. Finally, for the fronts 

between different exposures, Cheylan’s ‘contact front’ element was chosen (Table 14).   

 

Chorematic 

Categories 

Dimensions Reflected by 

the Categories 

  
Chorems 

Quality 

(Attraction/ 

Repulsion) 

 

Alignment 

(Grid) 

High Intensity Pattern 

 

Presence and configuration 

of Strong Exposure Class 

- Depth - Extent of high 

exposure class 

- Fragmentation/Isolation 

– Spatial alignment of 

Strong and Significant 

Exposure Classes 

   

 

  

  

Hierarchy 

 

Structure 

Overall Spatial 

Organisation 

 

- Homogeneity – 

Mosaiced/ Patchy 

structure of UU 

- Complexity – irregularity 

of exposure classes 

- Fragmentation/Isolation 

Adjacency of Strong and 

Significant Exposure 

Classes 

- Depth of Strong 

Exposure Classes in UU  

 

 

 

 

Center- 

periphery  

 

 

 

 

Structure 

 

  

Territorial 

Dynamics  

 

Tropism  

 

Territorial interaction 

 

Presence of Limiter 

elements within exposure 

classes 

- Complexity caused by 

limiters 

- Depth - high intensity 

classes interrupted 

  

 

Influence - 

Interaction 

 

 

 

Split-

separation 

 

Propagation, 

Limiter   

Contact 

Transition and Fronts 

 

- Fragmentation/Isolation 

- Adjacency of Strong 

and Significant Exposure 

Classes 

Contact Areas 

- Fronts 
  

Table 13 – Chorem Table  

Elements compiled from: (1)Brunet, 1986 – (2)Casanova-Enault & Chatel, 2017 -  

(3)Brunet, 1985; Helle, 1995 – (4)Maby, 2002 cited in Casanova-Enault & Chatel, 2017  - (5)Cheylan, 2007 

Network1 
Main-

peripheral 
centres 1 

Concentrated 
structure4 

Disseminated 
structure4 

Orbital 
alignment3 Links1 

Attractive/re
pulsive 
centre1 

Attractive/re
pulsive 
zone2 

 +/- +/- 

Disrupted 
node/zone2 

Nodal 
influence2 

Zonal 
interaction2 

Contact 
front5 

Split 
element1 

Axis of 
propagation1 

Dissymmetry1 
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4.2.3.  Chorematic Model Reproduction for Cluster 3 with Dispersed High 

Intensity 
 

For the reproduction of the chorematic model, Cluster 3 with Dispersed High Intensity was 

given priority regarding the criticality of the UHI intensity trends it showed. In this context, a 

graphic model was produced for the medoid city, Metz, as the representative case of the cluster.  

 

H. Théry’s modelling structure (Jégou et al., 2021), as elaborated earlier on, was followed for 

the graphic modelling process (Figure 38). In this context, firstly, a basic model of Metz UHI 

structure that is composed of static components was prepared. The major element was the 

disseminated intensity cores of the UHI and their spatial configuration throughout the Urban 

Unit. To represent the organisation of the pattern, dissemination/concentration element and 

networking element that were used in Casanova-Chatel’s work (2017) were used. The orbital 

alignment and links were important to show the interrelation between disseminated cores which 

stood out in multimodal structures. As a second element, influence zones were introduced as 

the continuity of UHI intensity cores with lower degree of intensity. This indicated the areas in 

contact with high intensity zones. At the next step thermal regulation areas and water bodies 

were introduced that were influential on the form of the UHI intensity. These elements 

combined formed the basic model. 

 

On the basic model, the effect of modifying structures that would transform the basic elements 

were conceptualised. Initially, the intensity cores were represented with the territorial 

interactions in the form of radial connections and orbital alignments. In relation, following the 

interaction between nodes the tendency to sprawl and unite around the intensity cores was 

depicted through influence zones. Thermal regulation areas were illustrated with their limiting 

impact on the sprawl of the intensity in the western and eastern parts of the Urban Unit. This 

was also represented with a slowdown in the connection of influence zones between the core 

and the satellite centers in the north (Maizières-lès-Metz, Talange, Hagondange, Rombas). 

Finally, while perturbing the UHI intensity at the cores, water bodies’ cooling effect slowed 

down with the density of activities and development in the urban core. As a result of the 

combination of these transforming effects with the basic model, the theoretical model of Metz 

was obtained. This theoretical model was defining for the propositions provided for the 

management of UHI effect in the city and to reduce its severity. 
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Figure 38 – Theoretical Model of Current UHI Situation for Metz 

 

4.2.4.  Recommendation Model for Cluster 3 with Dispersed High Intensity 
 

Based on the theoretical model, certain focus areas were emphasised to decrease the impact of 

UHI intensity within Metz. Recommendations were proposed in the scheme of a graphic model 

(Figure 39) with the use of elements employed for the representation of the current situation in 

the previous step. In this context, the focus areas are: 

 

1. Strong exposure areas: The most critical areas that show high UHI intensity require 

measures to support the reduction of UHI impact. These are mostly residential areas 

concentrated around commercial activities. Considering the already built structure, 

Basic Structures Modifiers 

Derived Structure 

Theoretical Model 
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complementary policies on increasing vegetation through the introduction of green areas, 

permeabilisation of urban pavement and providing ventilation corridors where possible are 

crucial. Strong exposure areas emerge mainly as the city core (A) and the peripheral centres 

that are located at the suburbs and outskirts (B). 

 

2. Significant exposure areas: These are the areas that show considerable but lower UHI 

intensity compared to the strong exposure zones. They require intensity monitoring and 

controlling of urban development tendencies. They are found as transition zones surrounding 

the high intensity areas at the city centre and small communal centres. 

 

 

Figure 39 – Recommendation Model for Metz 
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3. Contact areas: The contact areas surrounding the core and circumscribing significant 

exposure areas require controlling for sprawl towards the eastern part of the urban core.  

 

4. Sprawl areas: In relation with the contact areas, the connection zones between high 

exposure zones and centres should be considered for UHI intensity prevention through 

avoiding the sprawl of strong exposures in the area. It is proposed to introduce vegetated areas 

that can acts as obstructions or buffer zones for potential sprawl areas.  

 

5. Thermal regulation zones: The natural and vegetated areas that create a thermal 

regulation effect ought to be conserved. In association with the measures proposed for 

peripheral centres, the effect of forests and parks is recommended to be enhanced at the west 

and east sides of the Urban Unit. Furthermore, the agricultural lands in the south of the urban 

unit that create an obstruction against urban development should be preserved to avoid 

spreading of UHI effect. 

 

6. Thermal regulation axes: It is observed that the high exposure zones are interrupted 

with water bodies at certain parts. It is recommended to enhance these axes especially at the 

urban core and high exposure locations through provision of additional ventilation corridors 

that could penetrate into the concentrated intensity areas.  

 

7. Infrastructural areas: The railway footprint that creates disruption within strong 

exposure should be turned into an advantage through the addition of green elements and to 

create a cooling effect. This will also be influential for the side of the railways showing strong 

exposure. 

 

4.3. Conclusion 

 

Based on the graphic modelling work conducted by the LISST research team on Toulouse for 

urban climate analysis and recommendation purposes, this thesis aimed to provide a practical 

approach that could be applied to 47 French cities. Patch analysis and cluster analysis stages 

were crucial for this approach to be validated and reproduced on other cities.  

 

Depending on the results obtained, it was concluded that the clustering was in alignment with 

the chorematic representation requirements. Through the partitioning of the cities, it was first 

ensured that cases with critical UHI intensity levels were separated from the rest. Following 

this step, they were grouped according to the spatial characteristics of UHI intensity patterns. 

This allowed for the steps of chorem selection and representation to be reduced and applied 

simultaneously to multiple cases. This point is one of the main implications of this research. 

The other major implication in relation to the research aim is the introduction of the practicality 

offered by the chorematic representation method for the translation of urban climate 

information. This functionality was assessed over two steps. Firstly, a check was done through 

the application of the Toulouse graphical model on Cluster 1 with Concentrated High Intensity. 

On this cluster with less complex cases, it was demonstrated that the Toulouse model was 
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easily applicable and reproducible to represent the microclimatic situation. The second step 

was made through the reproduction of graphic modelling for Cluster 3 with Dispersed High 

Intensity through the chorems proposed for Toulouse. Alongside the elements used for the 

Toulouse model, supportive chorematic elements were added to meet the peculiarities of this 

cluster. This process led to the generation of analysis and recommendation models of Metz 

where suggestions were provided on areas to pay attention to and the types of measures to be 

followed. The representation of the medoid city - Metz showed that, besides the practicality 

offered by the pre-determined chorems, clusters with complex cases are more likely to require 

further focus on individual cases while applying the medoid model to the rest of the cluster. 

 

In the end, the whole process illustrated to what extent the chorematic map-models can be 

supportive for the transfer of microclimatic analysis and recommendations to planners and 

urban policy makers. Nonetheless, certain points need attention for future applications and the 

reproduction of the method proposed in this research.  

 

4.3.1. Shortcomings, Limitations & Improvement Areas 

 

To begin with, as was mentioned in the Methodology Chapter, due to the lack of weather data 

for the 47 French cities, the UHI analysis was based on the SURFEX simulation model output. 

When using simulation data for analyses, there is the risk of not being able to accurately 

represent the real situation and to amplify inaccuracies and errors in calculations. Although 

data validation was conducted through expert views in this research, application with real data 

or comparing the results with real data will improve accuracy for future applications and will 

provide a more robust approach.  

 

Another shortcoming arises at the stage of spatial pattern and form analysis. When the 

peculiarities of each city based on several parameters are considered, clustering them on shape 

and patterns is a challenging task. This research used raster format to build the Patch Analysis 

on as the UHI data was generated in the form of grid points. Nevertheless, using vector format 

data might increase the precision and could lead to reveal additional focus areas. Furthermore, 

the definition of indicators is a significant aspect of this stage of analysis. Throughout this 

research, FRAGSTATS metrics were used to build the cluster analysis. Particular attention was 

paid to reducing the dimensionality of the data matrix for the cluster analysis stage. The term 

dimensionality here refers to the proportion of the number of variables (indicators) to the 

number of observations. Since the indicators were applied to each of the four different UHI 

intensity classes one by one, this increased the number of indicators, thus the dimensionality. 

A way to improve this aspect can be to create new formulas for indicators where the 

relationship of the intensity classes between each other is reflected. This could increase the 

practicality of the method and allow the addition of more parameters for the clustering.  

 

Among the limitations the treatment of the outlier cases stands out. In this regard, as anticipated 

with its highly different and peculiar features, Paris was removed from the partitioning due to 

the disability to cluster it with any other city. Another case was Lille that needed to be regarded 

separately. This shows the methodology’s restrictions for cases with high numbers of outliers. 
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The last note is on shortcomings at the chorematic representation stage. The application on 

Toulouse included both daytime and night-time conditions through graphic modelling of UHI 

and UTCI effects. However, in this research due to the lack of data on UTCI for other cities, 

only the night-time condition could be represented, which led the recommendations to be solely 

based on UHI effect. Another point to consider is that, although clustering is convenient for 

the representation process and enables practicality for the handling of multiple cases, during 

the graphic modelling of each city and especially for clusters with high complexity, cases 

should be considered critically along with complementary information like land use, density, 

wind, and other influential factors.   

 

4.3.2. Final Remarks 

 

The method of chorematic representation as a form of graphic modelling has been applied in 

several different fields in research that include geovisualisation. Jégou and colleagues’ work 

showed that it could additionally serve as a practical method to provide urban climate 

information into planning context. Through representation of highly technical climatological 

input in simpler forms, graphic models offer a significant step in bridging climatology and 

planning. The flexibility of these models allows for application in various levels and contexts 

through coupling with different research methods. In this regard, this research aimed to take 

the chorematic representation technique one step further to devise a methodology for its 

application in a collective and time efficient manner. At a time of need for urgent climate 

action, it shows great potential to speed up the processes of strategy making and putting policies 

into execution. Nevertheless, this research showed that human input and the artistic 

interpretation is still needed complementary to the collective analysis. For future developments 

in the field of geovisualisation, the automated generation of chorems should be explored further 

to expedite the timely production of easily interpretable urban climate information. The 

achievements in this field will extensively support enabling communication between 

climatology and urban planning. 
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APPENDIX 

Appendix 1 – Clustering with Paris  
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Appendix 2 – Clusters with Different k-numbers 

 

Cluster Plot with k=3 

 

 
Cluster Plot with k=5 
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Appendix 3 – Cluster Visualisation 

 

During visualisation, {factoextra} package uses Principal Component Analysis (PCA). The 

default visualisation is based on first 2 dimensions. Hereby, the term “dimensions” is used to 

indicate the axes of the plot and should not be confused with the dimensions term used 

throughout the research that stands for the classification of spatial metrics (homogeneity, 

complexity, depth, and fragmentation). In the figure below, the percentage of variance for 

represented metrics (termed as “variables” in the operation) are shown for dimensions (axes) 

of the plot.    

 

 
 

In the graph below, the representation of metrics (variables) in visualisation are shown. From 

blue to red, the weight in representation of the metrics (variables) decrease.  
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Appendix 4 – Medoid Cities & Paris 

Tables with full shape metric values calculated throughout Patch Analysis for Medoid Cities: 
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Abbreviations of Spatial Metrics: 

 

 

ABBREVIATION SPATIAL METRIC 

CACV Patch Core Area Coefficient of Variation 

ZLAND Class Area Proportion 

CA Class Area 

CACOV Core Area Coefficient of Variation 

MCA Mean Core Area 

CASD Core Area Standard Deviation 

TCA Total Core Area 

TCAI Total Core Area Index 

CAD Core Area Density 

IJI Interspersion Juxtaposition Index 

MPI Mean Proximity Index 

MNN Mean Nearest Neighbour 

AWMSI Area Weighted Mean Shape Index 

MSI Mean Shape Index 

MPFD Mean Patch Fractal Dimension 

AWMPFD Area Weighted Mean Patch Fractal Dimension 

CWED Contrast Weighted Edge Density 

TE Total Edge 

ED Edge Density 

MPS Mean Patch Size 

NUMP Number of Patches 

PSCOV Patch Size Coefficient of Variance 

PSSD Patch Size Standard Deviation 

TLA Total Landscape Area 
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Appendix 5 – Chorems Used from Mentioned Authors’ Tables 
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