

Lassi Vainola

Automated Hardware Repair
Process

Metropolia University of Applied Sciences

Bachelor of Engineering

Electrical and Automation Engineering

Bachelor’s Thesis

29 September 2021

Abstract

Author: Lassi Vainola

Title: Automated Hardware Repair Process

Number of Pages: 23 pages

Date: 29 September 2021

Degree: Bachelor of Engineering

Degree Programme: Electrical and Automation Engineering

Professional Major: Automation

Instructors: Marko Rajala, Cloud Platform Development Engineer

 Timo Tuominen, Senior Lecturer

This thesis concerns process improvement of Nokia’s Data Center hardware issue
ticket creation process. The main goal is to study and find a way to simplify the
process and make comprehensive documentation about the renewed process.

The thesis begins by describing the target operating environment and the details of
the current process. After the current process is explained, the problem areas are
analyzed. The thesis uses a well-known process development method, Theory of
Constraints. An overview to the used tools is given in the technical baseline.

The two main problems of the current process were examined together with the
Nokia cloud expert and a solution for the problems was planned. The existing
problems are interrelated, and this study can solve both of them.

In the practical phase the production plan was agreed upon, the automation software
code was created, and the required variables and scheduling were defined. The
renewed automated system was taken into production after a testing period.
Feedback was collected from the support team and from the data center managers.
There was one change required from the feedback and that was implemented into
the software code.

The outcome of this thesis work consists of the automated ticket creation process
description, software code changes and parameter settings as well as step-by-step
instructions for the users. The main benefits gained from the improvements of this
study are that the maintenance personnel will significantly save time because
number of visits to the Data Center sites is reduced, and additionally solving time of
the tickets will be faster due to the fact that several hardware issues can be covered
with one ticket.

Keywords: Process, Hardware, Ticket, Scheduling, Data Center

Tiivistelmä

Tekijä: Lassi Vainola

Otsikko: Automatisoitu laitteiston korjausprosessi

Sivumäärä: 23 sivua

Aika: 29.9.2021

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Sähkö- ja automaatiotekniikan tutkinto-ohjelma

Ammatillinen pääaine: Automaatio

Ohjaajat: Marko Rajala, Cloud Platform Development Engineer

Timo Tuominen, Lehtori

Tämä insinöörityö käsittelee Nokian datakeskuksien laitteistoon liittyvien
vikailmoitusten luontiprosessia. Työn päätavoitteena on tutkia olemassa olevaa
prosessia ja löytää tapa yksinkertaistaa sitä ja luoda kattava dokumentaatio
uudistetusta prosessista.

Insinöörityö alkaa kohdeympäristön kuvauksella ja nykyprosessin
yksityiskohdilla. Nykyprosessin jälkeen analysoidaan ongelma-alueet.
Insinöörityössä käytetään tunnettua prosessinkehitysmenetelmää, Theory of
Constraintsia (pullonkaula-ajattelu), jonka jälkeen on yleiskatsaus käytetyistä
työkaluista.

Nykyisen prosessin kahta pääongelmaa tarkasteltiin yhdessä Nokian
pilviasiantuntijan kanssa ja ongelmille suunniteltiin ratkaisu. Olemassa olevat
ongelmat liittyvät toisiinsa, tämä työ ratkaisee molemmat.

Opinnäytetyön toteutusvaiheessa sovittiin tuotantosuunnitelmasta, luotiin
automaatio-ohjelman koodi ja pyydetyt muuttujat ja asetettiin prosessin ajoitus.
Uudistettu ja automatisoitu järjestelmä otettiin käyttöön testivaiheen jälkeen.
Palautetta kysyttiin datakeskuksien vastaavilta ja tukitiimiltä. Palautteena tuli
yksi muutosehdotus, tämä sisällytettiin ohjelmistokoodiin.

Tämän insinöörityön lopputulos koostuu vikailmoitusten automatisoidun
luontiprosessin kuvauksesta, ohjelmistokoodin muutoksista ja
parametriasetuksista sekä yksityiskohtaisista ja vaiheittaisista ohjeista
käyttäjille. Tämän työn parannuksista saadut tärkeimmät edut ovat, että
huoltohenkilöstö säästää merkittävästi aikaa, koska vierailut datakeskuksiin
vähenevät. Lisäksi vikailmoitusten ratkaisuaika nopeutuu, koska useista
laitteisto-ongelmista saadaan tieto yhdellä vikailmoituksella.

Avainsanat: Prosessi, Laitteisto, Vikailmoitus, Aikataulutus,

Datakeskus

Contents

1 Introduction 1

2 Environment and Background 3

2.1 Nokia as a Company 3

2.2 Target Operating Environment of the Study 4

2.3 Current Hardware Issue Handling Process 5

2.4 Problem Statement and Goals of the Study 7

3 Theory Baseline and Used Method 9

3.1 Theory of Constraints 9

3.2 Technical Baseline 10

3.2.1 Ansible 11

3.2.2 Prometheus 11

3.2.3 Ansible WorX 12

3.2.4 NetBox 12

3.2.5 Jira 13

4 Hardware Repair Process Automation 14

4.1 Planning and Scoping 14

4.2 Implementation 16

4.3 Testing 18

4.4 Launching 19

4.5 Post Launch Feedback Collection 20

5 Outcome of the Study 21

6 Summary and Conclusions 22

References 23

List of Abbreviations

AWX: Ansible WorX

GSM: Global System for Mobile Communications

HPE: Hewlett Packard Enterprise

iOS: An operating system used in Apple mobile devices

IPAM: Internet Protocol Address Management

NESC: Nokia Engineering and Service Cloud – Organization

PSU: Power Supply Unit

VLAN: Virtual Local Area Networks

VRF: Virtual Routing and Forwarding

1

1 Introduction

The purpose of this thesis is to describe one of Nokia’s processes related to

hardware repair process in a cloud server environment. The aim was to make

the process more streamlined and reduce the number of tickets generated for

broken components. The main problems that are targeted to be solved are

ticket handling time for broken hardware repair process, as well as reduction of

visits that are required to the data centers, where the cloud servers are located.

Reduction of visits is foreseen to be gained by limiting the amount of hardware

repair tickets generated per week. This thesis project was carried out for Nokia

Engineering and Service Cloud organization (NESC).

In chapter 2 the reader is introduced to Nokia’s history and one of its

organizations in which the study is done. The target organization of this thesis

(NESC) manages and develops the Nokia cloud server environment in several

data centers globally. The organization consists of cloud engineers, developers,

specialists, and architects. This chapter also introduces original process of the

hardware issue handling and problem statement with goals of the study.

Chapter 3 introduces the planned process improvement method and explains

the main tools and techniques used in this study. This section is intended to

give a short introduction to each topic to provide the reader some basic

background understanding about the technical environment, where the studied

process is running.

The workflow of the hardware repair process automation is described in chapter

4, which consists of planning and scoping, implementation, testing, launching,

and feedback collection. Planning and scoping were done in co-operation with

the cloud platform expert to be able to find the best practice in the very early

phase of the study. Implementation and testing were performed parallelly to find

out the working solution by learning and realizing the issues immediately.

Feedback collection was done after the system was taken into production.

2

The thesis end results are explained in chapter 5. This section lists the provided

deliverables to fulfill the targets of the study. The analysis of the results for the

hardware repair process development task as well as evaluation of the study

are in chapter 6.

3

2 Environment and Background

This section gives an overview to Nokia and to the studied targeted operating

environment within Nokia. As a starting point for the study, the current hardware

issue handling process and the needed enhancements of the process are

described. Finally, problem statements and goals of the study are outlined.

2.1 Nokia as a Company

Nokia is over 155-year-old company. From its beginnings in 1865 as a single

paper mill operation, Nokia has found and nurtured success over the years in a

range of industrial sectors including cable, paper products, rubber boots, tires,

televisions, and mobile phones. [1.]

Nokia’s transition to a primary focus on telecommunications began in the 1990s.

The first GSM call was made 30 years ago in 1991 using Nokia equipment [1].

Rapid success in the mobile phone sector allowed Nokia to become by 1998

the best-selling mobile phone brand in the world. In 2011, to address increasing

competition from iOS and Android operating systems, Nokia entered into a

strategic partnership with Microsoft and finally in 2014 Nokia sold its mobile and

devices division to Microsoft. [1.]

The creation of Nokia Networks, following the buy-out of joint-venture partner

Siemens in 2013, laid the foundation for Nokia’s transformation into primarily a

mobile broadband network hardware and software provider. The acquisition of

Franco-American telecommunications equipment provider Alcatel-Lucent

greatly broadened the scope of Nokia’s portfolio and customer base in 2015.

Additional acquisitions have positioned Nokia to be a global technology leader

in the communications industry. [1.]

Nokia’s net sales in 2020 was 21,9 billion euros and it operates in roughly 130

countries. Nokia is known as a forerunner in technology development, with

examples of 129 billion euros invested into research and development in the

4

past two decades and 3500+ patent families declared as essential to 5G, as

well as gained 9 Nobel prizes as a company. [1.]

2.2 Target Operating Environment of the Study

Nokia has four different business groups: Cloud & Network Services, Mobile

Networks, Network Infrastructure and Nokia Technologies. Within Cloud &

Network Services, the study is done for Nokia Mobile Networks - organization.

NESC Private Cloud delivers reliable and scalable commodity infrastructure as

a service to all Nokia Business Groups, enabling them to focus on their

applications and solutions rather than setup and management of the own

underlying infrastructure. A view to a typical data center environment is given in

figure below.

Figure 1. Nokia server racks in Espoo data center. [12.]

The operating environment for the study is at and about NESC data centers and

their server hardware. NESC data centers are globally distributed to different

regions: North America, Europe, and Asia.

5

Nokia data centers houses different manufacturers server racks, mostly they

are from Hewlett Packard Enterprise (HPE) and Nokia’s self-designed Nokia

Airframe Rackmount servers. The racks contain server nodes, storage nodes,

and data and management switches.

Each data center has a spare part storage, from where replacements can be

easily found. Mostly single point of failure is storage disks or power supply units

where this study will focus on.

The issue ticket creation and handling process of the hardware issues are

currently handled by the support team and corrected in the data centers by the

maintenance personnel; it is described in section 2.3 Current process. The

current process has certain identified inefficiencies and development needs,

which are introduced in section 2.4 Problem statement.

2.3 Current Hardware Issue Handling Process

Currently the process of ticket creation of broken hardware is mostly manual for

the support team. Figure 2 contains workflow of ticket creation for the support

team.

6

Figure 2. Current workflow of ticket creation.

Below is the ticket creation and handling workflow explained. The whole

workflow is manual at this moment, except the automatic email which is sent to

the support team in step 1.

1. Issue is detected by alert manager application and information of the

broken node or parts is sent into the support team’s email.

2. The support team ensures that the node/server is possible to be disabled

from the cloud which allows node/server to be shut down. If not, then the

support team moves the broken servers load to other node/servers and

then disables the impacted node/server from the cloud.

3. The firmware of the node/server is updated by the support team to the

latest version if it is not already running with the latest firmware version.

In computing, firmware is a specific class of computer software that

provides the low-level control for a device's specific hardware.

7

4. The support team creates a ticket into Jira. The ticket is then assigned to

the corresponding regions data centers manager, who then assigns the

job for the local maintenance personnel.

5. Local maintenance personnel go to the data center site and replaces the

broken parts mentioned on the ticket in Jira. After replacing the broken

parts, local maintenance personnel comments on the ticket for the

support team what parts were replaced.

6. The support team checks if everything is correctly configured in NetBox,

clears server cache (temporary memory) and if needed for a clean

operating system, reinstalls operating system on the node.

7. The support team performs quality assurance script to help placing

instances directly to the fixed broken nodes to verify the node/server

functionality.

8. The support team enables the node back online.

9. The support team resolves the ticket in Jira. If an issue persists or the

problem is not totally fixed, a new ticket is created.

2.4 Problem Statement and Goals of the Study

In this study, the aim is to enhance the current hardware issue handling process

due to the following identified problems in the current process.

Problem 1: Slow and complicated process of hardware issue handling

Current process is too complicated because of many, and mostly manual tasks

involved, as listed in chapter 2.3. Manual tasks affect slowness for the whole

process.

8

Problem 2: Too many generated hardware issue tickets

Local maintenance teams of the data centers get too many hardware issue

tickets, and currently one ticket is only for one node/server. The target is to

collect such simpler hardware issues, which can be swapped without disabling

the node/server from the cloud, in a one larger collection of alerts into a ticket

that gets sent weekly. This would increase the time spent with one ticket, but

the maintenance would only have to visit the site once a week for these types of

issues. This lessens the time used on travelling to and from the data center and

reduces travelling costs.

In this study, the goals are to streamline and fasten the existing hardware issue

handling process, as well as reduce the number of generated tickets. The

expected outcome from this thesis work is a simplified and automated hardware

issue handling process for the organization.

9

3 Theory Baseline and Used Method

As described in the previous section, the problems of the current hardware

issue handling process are clearly understood, and the goals of the thesis work

have been set in advance by the ordering organization. Because of the pre-set

targets and well-known development topics, from the process development

methodology viewpoint Theory of Constraints has been selected among a wide

range of process development methods. Theory of Constraints, and technical

baseline to be able to make the necessary automations from the viewpoint of

different tools used in the process, are explained in this section.

3.1 Theory of Constraints

A constraint or a bottleneck is a limiting factor which causes inefficiency in a

process [9]. Generally, inefficiency typically leads either additional process cost

or lost revenue. To overcome the constraint of bottleneck in a process, Theory

of Constraints process development method aims to identify and remove the

main bottleneck or a constraint from a process [9].

According to [9], Theory of Constraints consist of five steps that are described

below in figure 3.

 Figure 3. Steps of Theory of Constraints.

10

As part of this study, the steps are utilized as follows to optimize the automated

hardware issue handling process:

1. Identify the system constraint

Main system constraint has been identified to be the single fault

indications, resulting frequently need to travel to the data center site

2. Decide how to exploit the constraint

It has been decided to combine the fault corrections and thus limiting site

visit amount to once a week per data center site

3. Subordinate everything else

At the moment, the system is seen to function otherwise properly,

assuming the planned optimization in step 2 is in place

4. Elevate the constraint

No additional major modifications to the process are foreseen to be

needed, thus step 4 can be omitted

5. Return to step one

Identification of other potential constraints are for further study and not

part of this thesis

3.2 Technical Baseline

This section gives an overview to main tools and techniques that are relevant for

this study. The purpose of these sections is informational to understand better

the actual process under development, instead of providing full introduction to

each.

11

3.2.1 Ansible

Ansible is an IT automation tool. It can configure systems, deploy software, and

orchestrate more advanced IT tasks such as continuous deployments or zero

downtime rolling updates. [7.]

Ansible’s main goals are simplicity and ease-of-use. It also has a strong focus

on security and reliability, featuring a minimum of moving parts, usage of

OpenSSH for transport (with other transports and pull modes as alternatives),

and a language that is designed around auditability by humans, even those not

familiar with the program. [7.]

Playbooks work as an instruction manual for Ansible. At a basic level,

playbooks are used to manage configurations of and deployments to remote

PCs which is mostly how Ansible is used in this study. Playbooks are made to

be read by people and are developed in a basic text language. [2.]

3.2.2 Prometheus

Prometheus is the software used in the alerts. It is an open-source systems

monitoring and alerting toolkit. Since its inception in 2012, many companies and

organizations have adopted Prometheus, and the project has a very active

developer and user community. It is now a standalone open-source project and

maintained independently of any company. [3.]

Prometheus can collect metrics from an application and infrastructure. Metrics

are small concise descriptions of an event: date, time, and a descriptive value.

Rather than gathering a great deal of data about one thing, Prometheus uses

the approach of gathering a little bit of data about many things to help to

understand the state and trajectory of the system. It has many features for

monitoring metrics and providing alerts that can automate responses to

changing conditions. [10.]

12

3.2.3 Ansible WorX

The AWX Project is a community driven open-source project sponsored by Red

Hat, that enables users to better control their Ansible project use in IT

environments. [4.]

AWX is built to run on top of the Ansible project, enhancing the already powerful

automation engine. AWX adds a web-based user interface, job scheduling,

inventory management, reporting, workflow automation, credential sharing, and

tooling to enable delegation. [5.]

3.2.4 NetBox

NetBox is an infrastructure resource modeling application designed to empower

network automation [6]. It is an open-source web application designed to help

manage and document computer networks [11]. It encompasses the following

aspects of network management:

• Internet Protocol Address Management (IPAM) - IP networks and

addresses, Virtual Routing and Forwarding (VRF), and Virtual Local Area

Networks (VLAN)

• Equipment racks - Organized by group and site

• Devices - Types of devices and where they are installed

• Connections - Network, console, and power connections among devices

• Virtualization - Virtual machines and clusters

• Data circuits - Long-haul communications circuits and providers

• Secrets - Encrypted storage of sensitive credentials

13

NetBox gives a user interface from the point of view of a network organization to

help document IP addressing, while keeping the primary emphasis on network

devices, system infrastructure, and virtual machines. [11.]

3.2.5 Jira

Jira is a tool developed by Australian Company Atlassian. This software is used

for bug tracking, issue tracking, and project management. The basic use of Jira

tool is to track issue and bugs related to software and Mobile applications. It is

also used for project management. The Jira dashboard consists of many useful

functions and features which make handling of issues easy. [8.]

14

4 Hardware Repair Process Automation

The expected outcome of the hardware repair process automation development

was agreed to consist of an updated automated hardware repair process

description, the actual script and files of the process and instructions for end

users, for example data center managers and support personnel.

From the practical viewpoint, the work was split into phases that are

summarized in the figure 4 below. The different steps are described in this

section.

Figure 4. Work phasing in the thesis.

4.1 Planning and Scoping

First, meetings were arranged within a team that consisted of the manager and

cloud expert in addition to the thesis worker. Discussions were had on what

direction to move forward. Weekly meetings were scheduled for the three

members. Then to collect the information on how the process currently works,

the support team was contacted and got a hold of their workflow which contains

details for the Jira tickets but also ticket creation in other systems. The focus is

only on the Jira tickets. There was already a proof of concept available as

baseline, which had been created by the Nokia cloud expert earlier.

15

To understand the data center environment, a visit was arranged to Telia data

center in Helsinki, Pitäjänmäki. During the visit, a tour within data center was

guided by a Cloud Architect who introduced the servers power supply, cooling,

server layout and the server identification coding.

In another meeting discussion was on what program is going to be used to

create the tickets. Python programming language is more versatile, but Ansible

was chosen as it was easier to learn and read.

Figure 5. New workflow for ticket creation.

The new workflow for the ticket creation is explained below:

1. Ticket is automatically created for example every Monday at 7:55. Timing

is adjustable in AWX scheduling by authorized users. Ticket contains an

excel sheet which includes a list of servers that has broken components.

These components are either storage drives or power supplies.

16

2. Data center manager sends the maintenance personnel to the site who

will change the broken parts.

3. Maintenance personnel ensures the node is working properly.

4. Ticket is resolved and the maintenance personnel comments on the

ticket, which parts were changed. Support team verifies this after the

comments.

4.2 Implementation

The server list that will be attached to the ticket, which will be sent to the data

center managers, is created at the same time as the Ansible playbook is ran. It

is a task in the playbook which creates the server list using python and it gets

the broken disk or power supply data from Prometheus. The Nokia expert had

created the proof of concept for the server list creation and the python script

which creates the excel sheet of servers with broken components.

The generated excel sheet contains a great amount of data about the broken

components which makes it easier for the maintenance personnel to find the

server and their broken parts. The detailed information that the excel sheet

contains is:

• Node: Server name

• Sensor Name: Disk or Power Supply Unit name

• Event: Failure message

• Role: Server type (Openstack server or storage server)

• Node Type: Different variants for Openstack server and storage server.

• Device Type: Server brand and model

17

• Device Position: Server’s location in data center. For example, “in-bh-dc-

z2-85-u40” (Two letter country code – two letter city code – site code –

room name – server rack name – server location in rack)

The Ansible program requires a virtual environment to run. Nokia is using a

system like AWX which works as a virtual PC where programs can be ran. The

program and the needed files were deposited to Nokia GitHub where they can

be loaded into the AWX. AWX has a scheduling option that can be used for

scheduling the playbook to run once a week.

Figure 6. Jira ticket creation related software communications.

The software communications is explained below:

1. AWX starts the playbook “hw-fault-jira-creation.yml”

2. Playbook starts a python script “get_hw_failures.py” as its first task which

extracts the list of servers with broken components from Prometheus into

an excel file.

18

3. Playbooks second task creates the ticket into Jira with the needed extra

variables used in the AWX schedule.

4. Playbooks third task is to insert the generated excel alert list to the Jira

ticket as an attachment.

5. If all the variables were correct and the first ticket was created without

error, AWX receives success information. If an error occurs, it is most

probably in authentication, which means Jira is down or the functional

entry user that is used in the program does not have access to Jira. The

most likely reason is expired password or no access to Jira.

4.3 Testing

Testing was performed in a Nokia AWX test environment. The script was

created in a Nokia GitHub test branch and after every modification made to the

script, it was executed in AWX test environment. This was repeated until all the

parameters were correct and the wanted result was achieved.

Running a job in AWX requires a template which has all the settings to use a

correct project that fetches the playbook from GitHub. When the template

parameters are correct, schedule can be created and executed. With schedule,

job can be run for example every Monday at 7:55. Schedule also has extra

variables that alter the playbooks original variables.

Figure 7. Example of extra variables.

19

Explanations of variables in figure 7 are given below:

1. Alert filter for metrics e.g., 'fi-es' filters servers from Espoo data centers.

2. Data center’s name which is set to the ticket's summary, title.

3. URL for used Jira.

4. Jira project name.

5. Location field for specific data center used in Jira.

6. Component field used in Jira. Broken Components is used in the

hardware replacement process.

7. Jira username of who the ticket will be assigned to.

At the end of the testing phase the system was introduced to the end users and

the feedback was requested. One feature was added after the feedback

received, which was the location field for Jira tickets.

4.4 Launching

Automated hardware repair process was taken in use in September 2021. Test

branch in GitHub was merged into the master branch which is used in the

production side of Nokia AWX. Regional data center managers started to

receive once a week the Jira tickets of faulty components.

As an outcome of this work the following items were provided:

1. Updated automated hardware repair process description.

2. Script and files of the process.

20

3. Instructions for end users. E.g., Data center managers and support

personnel.

4.5 Post Launch Feedback Collection

After the launching an email was sent to the corresponding parties to collect

further feedback about the process. The main questions were, if the process

change has been helpful with the ticket handling and hardware replacement

process and are there any ideas for developing it further. Additionally, more

generic feedback was requested from the manager and the cloud expert about

overall successfulness of the project.

21

5 Outcome of the Study

The goals of this study were to make the hardware repair process more

streamlined and decrease the number of tickets created for each region data

centers.

To fulfill the goals of the study, the following items were covered and provided:

1. Updated automated hardware repair process description is outlined in

this document in section 4.1 figure 4.

2. Script and files of the process were transferred into the NESC GitHub. If

there is a need to modify the script or files, this will be possible based on

the existing versions.

3. Step-by-step instructions were created for end users, e.g. Data center

managers and support personnel. Due to confidentiality requirements the

instructions are provided for the specified user group in Nokia intranet.

22

6 Summary and Conclusions

The defined goal was to study the hardware repair process and its ticket

management and make the ticket creation more streamlined by automating it

and clustering small tasks into one bigger ticket per data center. The step-by-

step instructions were simple for anyone if the schedule needs to be changed.

The first difficulties were getting all the accesses to Nokia’s systems and doing

the whole study remotely from home, due to COVID-19. More difficulties were

with learning to use all the tools and understanding how Ansible works, but it

was close to other programming languages that were studied in Metropolia.

There was a visit arranged to the Telia data center in Helsinki, which helped to

understand the structure of the data center and the components what will be

changed using this process. Also, it gave practical knowledge to understand the

whole process and the server position coding, which is a crucial part to identify

the broken component.

For future developments this process could be made to be used with other

ticket management systems than Jira, if Ansible has working modules for the

other ticket systems.

23

References

1 Our history. 2021. Internet document. Nokia.
https://www.nokia.com/about-us/company/our-history/. Visited 4.6.2021.

2 Working with playbooks. 2021. Internet document. Ansible.
https://docs.ansible.com/ansible/latest/user_guide/playbooks.html. Visited
11.6.2021.

3 What is Prometheus? 2021. Internet document. Prometheus.
https://prometheus.io/docs/introduction/overview/. Visited 30.6.2021.

4 The AWX Project. 2020. Internet document. Red Hat Ansible.
https://www.ansible.com/products/awx-project/faq. Visited 27.7.2021.

5 The Inside Playbook, 5 Things You Can Do With AWX. 2017. Internet
document. Red Hat Ansible. https://www.ansible.com/blog/5-things-you-
can-do-with-awx. Visited 14.9.2021.

6 What is NetBox? 2021. Internet document. NetBox.
https://netbox.readthedocs.io/en/stable/. Visited 14.9.2021.

7 About Ansible. 2021. Internet document. Ansible.
https://docs.ansible.com/ansible/latest/index.html. Visited 14.9.2021.

8 What is JIRA? 2021. Internet document. Thomas Hamilton.
https://www.guru99.com/jira-tutorial-a-complete-guide-for-beginners.html.
Visited 14.9.2021

9 What is Theory of Constraints? 2006. Internet document. Lean Enterprise
Institute.
https://www.lean.org/common/display/?o=223. Visited 16.9.2021

10 What is Prometheus and Why Should You Use It? 2021. Internet
document. Opsani.
https://opsani.com/resources/what-is-prometheus-and-why-should-you-
use-it/. Visited 22.9.2021

11 The Inside Playbook, Using NetBox for Ansible Source of Truth. 2020.
Internet document. Red Hat Ansible.
https://www.ansible.com/blog/using-netbox-for-ansible-source-of-truth.
Visited 22.09.2021

12 Nokia. Nokia takes AirFrame data center solution to new performance
levels with @intel’s #XeonScalable processors. 2017. Twitter.
https://twitter.com/nokia/status/884850990532497408. Visited 22.09.2021

https://www.nokia.com/about-us/company/our-history/
https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://prometheus.io/docs/introduction/overview/
https://www.ansible.com/products/awx-project/faq
https://www.ansible.com/blog/5-things-you-can-do-with-awx
https://www.ansible.com/blog/5-things-you-can-do-with-awx
https://netbox.readthedocs.io/en/stable/
https://docs.ansible.com/ansible/latest/index.html
https://www.guru99.com/jira-tutorial-a-complete-guide-for-beginners.html
https://www.lean.org/common/display/?o=223
https://opsani.com/resources/what-is-prometheus-and-why-should-you-use-it/
https://opsani.com/resources/what-is-prometheus-and-why-should-you-use-it/
https://www.ansible.com/blog/using-netbox-for-ansible-source-of-truth
https://twitter.com/nokia/status/884850990532497408

	1 Introduction
	2 Environment and Background
	2.1 Nokia as a Company
	2.2 Target Operating Environment of the Study
	2.3 Current Hardware Issue Handling Process
	2.4 Problem Statement and Goals of the Study

	3 Theory Baseline and Used Method
	3.1 Theory of Constraints
	3.2 Technical Baseline
	3.2.1 Ansible
	3.2.2 Prometheus
	3.2.3 Ansible WorX
	3.2.4 NetBox
	3.2.5 Jira

	4 Hardware Repair Process Automation
	4.1 Planning and Scoping
	4.2 Implementation
	4.3 Testing
	4.4 Launching
	4.5 Post Launch Feedback Collection

	5 Outcome of the Study
	6 Summary and Conclusions
	References

