

Visa Soininen

Jetpack Compose vs React Native
– Differences in UI development

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

Bachelor’s Thesis

1 November 2021

Abstract

Author: Visa Soininen

Title: Jetpack Compose vs React Native – Differences in UI

Development

Number of Pages: 32 pages

Date: 1 November 2021

Degree: Bachelor of Engineering

Degree Programme: Information and Communications Technology

Professional Major: Mobile Solutions

Supervisors: Petri Vesikivi, Principal Lecturer

 Peter Hjort, Senior Lecturer

This thesis was written from a topic that was thought out together with Metropolia UAS.
This study includes a comparison between Jetpack Compose and React Native. These
frameworks were compared both from a developer’s standpoint and from a user’s point
of view by performance testing.

During this study there were two applications developed. Both applications utilize the
same API. The applications were both given a simple set of specifications and the
development work needed was compared between the two. The study includes
chapters explaining how the frameworks function and why they were developed and
what needs do they fulfil. Performance was measured with profiling tools provided by
each framework and with Perfetto. All testing was done on a OnePlus 7 -device running
Android OS.

Results imply that from a developer’s standpoint React Native offers a faster way of
developing the application. It is also capable of running on iOS-devices. In terms of
performance Compose was quicker in most of the tests. This implies that React Native
works better for creating prototypes and small applications, but for larger applications
with large amounts of functionality Compose is better suited for.

This thesis can be used to determine which framework should be used when a new
application is entering its development stage. This study offers results and opinions on
different aspects of developing that can help developers decide which framework will
be the best fit for them.

Keywords: UI development, Jetpack Compose, React Native

Tiivistelmä

Tekijä: Visa Soininen

Otsikko: Ohjelmistokehityksen eroavaisuudet Jetpack

Composen ja React Nativen välillä

Sivumäärä: 32 sivua

Aika: 1.11.2021

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Tieto- ja viestintätekniikka

Ammatillinen pääaine: Mobile Solutions

Ohjaajat: Yliopettaja Petri Vesikivi

Lehtori Peter Hjort

Insinöörityön tarkoituksena oli vertailla suorituskykymittausten avulla Jetpack
Compose- ja React Native -käyttöliittymäkehyksiä sekä sovelluskehittäjän että
sovelluksen käyttäjän näkökulmasta.

Työssä kehitettiin kaksi sovellusta, jotka molemmat hyödyntävät samaa
rajapintaa. Sovelluksille annettiin samat yksinkertaiset vaatimukset, minkä
jälkeen työkaluja vertailtiin niin suorituskyvyn kuin ohjelmoinnin helppouden
osalta. Suorituskykyvertailua tehtiin kummankin työkalun tarjoamilla ohjelmistoilla
sekä Perfetto-suorituskykyprofiloijan avulla. Kaikki testit tehtiin Android-
käyttöjärjestelmällisellä OnePlus 7 -puhelimella.

Tuloksista voidaan päätellä, että ohjelmoijan näkökulmasta React Native on
soveltuvampi työkalu, jos sovellus täytyy kehittää lyhyessä ajassa. React
Nativella kehitetty sovellus kykenee toimimaan myös iOS-laitteilla. Suorituskyvyn
kannalta Composen avulla kehitetty sovellus oli suurimmassa osassa testeistä
nopeampi kuin React Nativella kehitetty sovellus. Saatujen tulosten mukaan
React Native toimii hyvin prototyyppien ja pienten sovellusten tekemiseen, mutta
Compose on parempi työkalu, kun tehdään suuria sovelluksia, joissa on paljon
toiminnallisuuksia.

Tätä työtä voidaan hyödyntää, kun on tarve luoda uusi sovellus, mutta
sovelluksen kehittämiseen käytettävästä työkalusta ei ole tehty päätöstä. Työ
tarjoaa kehittämistyön eri osa-alueisiin näkemyksiä, jotka saattavat vaikuttaa
päätöksentekoon.

Avainsanat: käyttöliittymäkehitys, Jetpack Compose, React

Native

Contents

List of Abbreviations

1 Introduction 1

2 Mobile UI development 1

2.1 Native application development 2

2.2 Battle for the best performance 2

2.2.1 Networking efficiency 3

2.2.2 Touch responsiveness 3

2.2.3 Animation fluidity 4

3 React Native – Bringing React to the mobile world 4

3.1 Origins 4

3.2 Architecture 5

3.3 Syntax 6

3.3.1 Class declaration 6

3.3.2 Styling components 8

4 Jetpack Compose – New competitor among UI frameworks 9

4.1 What is Jetpack Compose 10

4.2 Architecture 11

4.3 Syntax 13

4.3.1 Class declaration 14

4.3.2 Styling elements 15

5 Developing the applications 16

5.1 Reddit API as a data source 16

5.2 Specifications of the application 17

5.3 Developing the Jetpack Compose -application 17

5.3.1 Creating the project 17

5.3.2 Documentation available 17

5.3.3 Navigation 18

5.3.4 Network requests from the API with LiveData 20

5.4 Developing the React Native application 22

5.4.1 Creating the project using Expo 22

5.4.2 Documentation available 23

5.4.3 Creating the bottom navigation 23

5.4.4 Fetching the data 25

6 Performance testing 27

6.1 Compiling 28

6.2 Touch responsiveness 28

6.3 Dynamic lists – The benchmark for performance 29

6.4 Animations using Lottie 30

7 Conclusion 31

References 33

List of Abbreviations

UI: User interface. Mean to provide the user a way to interact with the

software.

API: Application Programming Interface. An API allows the application to

communicate with another service.

RN: React Native. A cross-platform application development framework.

JSC: JavaScriptCore. Engine used to interpret JavaScript code.

1

1 Introduction

There is a large variety of frameworks that are used to develop native mobile

applications. The target of the thesis was to compare one of the newest

frameworks, Jetpack Compose with one of the most widely used frameworks,

React Native. The task was to determine factors that should be considered when

starting development on a new application and which of the frameworks would

be a better fit for the developer’s needs.

This study was performed to find and analyze similarities and differences

between these two frameworks from a developer’s standpoint. This can be useful

for developers who are starting a new project but are not sure whether they

should use actual native tools or in this case React Native.

This thesis focuses on comparing the performance of these technologies. The

applications performance was evaluated using Perfetto to obtain low-level data

from the device and test responsiveness and rendering performance with simple

use-cases. Performance is one of the most important deciders for users if they

are committed to continue using an application. Even seemingly small delays can

deter the user away from using it.

Two applications were developed during this study. Both applications were given

the same specifications and they use the same API to obtain similar data to

compare performance and development architecture equally. The application

development phase was documented, and these applications were compared

with each other to find each technology’s strengths and weaknesses.

2 Mobile UI development

Over the last couple of years mobile phones are becoming more of a lifestyle than

only being a way to communicate with contacts. In June 2019 50.71% of Googles

search queries were made from mobile devices. From the whole world’s

population more than two million people only use their mobile device to access

2

the internet. Currently this equates to 51% of mobile phone users across the

world. [1]. Reported by the World Advertising Research Center (WARC) this

percentage will rise to 72.6% by 2025 [2].

This fast-moving trend has prompted many companies to provide more efficient

tools for programmers to develop applications and “mobile-first”-design websites.

2.1 Native application development

Native application development expresses that the application is being developed

specifically to a specific platform such as Android or iOS. These applications are

built with Java/Kotlin for Android and Swift/Objective-C for iOS. Applications built

using Native frameworks can access each API provided by the device. [3]. The

ability to access each API gives the developer access to low-level hardware

information and the ability to read values from sensors such as gyroscopes and

accelerometers.

Developing native applications tend to provide the user with a greater experience

since they are equipped with better performance and a larger set of tools to utilize.

Native development frameworks provide the developer ways to theme their

applications to match the system user experience better to avoid large contrast

between the operating system and the developed application. [3]. This creates a

more familiar and therefore a more pleasant user experience.

Downsides of native development include having to manage two codebases and

therefore employing at least two teams working on the project. This also means

that there will be more time spent to reach a viable product since both applications

require to be developed separately to support Android and iOS. [3.]

2.2 Battle for the best performance

Performance is amongst the most important aspects when developing a user-

friendly application. A longer than three second loading time gets an application

3

removed from the users’ phone 40% of the time. [4]. Tools such as Android Studio

and React Developer Tools provide performance monitoring to help developers

minimize loading times and further optimize their applications. Performance can

be divided into networking efficiency, responsiveness, and overall speed of the

application.

2.2.1 Networking efficiency

Networking performance is limited by the size of the data, location of the client

and the available bandwidth. Applications can benefit substantially if data is

stored on the clients’ device instead of fetching the data each time it needs to be

shown. In case the application does not require an internet connection it can be

used offline provided that mandatory data is already stored on the device. [4.]

2.2.2 Touch responsiveness

Using a touchscreen requires the device to react to the touch as soon as possible

to create a sense of interaction between the user and the device. If the device or

application does not immediately respond to the users input, it makes the user

experience feel clumsy. Response speed is restricted by the devices processing

power, technology used to develop the application and sub-optimal coding

practices.

If the input given requires time to render the desired output, it should meanwhile

show a temporary output such as a loading bar to acknowledge the users input

is being processed.

Natively developed applications usually are more responsive as they do not have

to interpret cross-platform code such as JavaScript to function. React Native

renders views natively but inputs are handled by communicating with the

JavaScriptCore introduced later in this thesis. This can lead to the application

taking longer to respond.

4

2.2.3 Animation fluidity

Animations are a large part of a successful application. They provide the user

with visual guidance and enhance the liveliness of the application. Downside of

using complex animations is that they require more computing power than a static

view. Rendering these animations can result in diminished battery life and

dropped frames.

Dropped frames occur when the device cannot keep up with the computations.

This means that the device will skip rendering the frames which in result will lead

to choppy animations. Most modern phones are equipped with a 60Hz monitor.

This means that the device will update the view 60 times per second. As a result,

the animations should try to reach at least 60 frames per second to avoid a bad

user-experience. To achieve 60 frames per second, the application has

approximately 16 milliseconds to compute and render each frame.

In 2017 ROG published the first mobile phone with a 90Hz display [5]. This led to

many other phone manufacturers publishing their own high-refresh-rate devices

with many models supporting displays as fast as 120Hz. These faster displays

demand even faster computation to render animations without dropping frames.

3 React Native – Bringing React to the mobile world

React Native (RN) is a cross-platform developing tool developed by Facebook

that acquired one of the largest userbases after its initial release in 2015. The

strength of RN is being able to create Android and iOS applications writing almost

exclusively JavaScript and maintaining only one codebase.

3.1 Origins

React Native was first introduced to the public in March 2015. Prior to its public

release it was used in Facebooks internal development as they were facing

issues developing with the tools provided by Google and Apple for native

5

application development. In 2012 when Facebook began its transition to a mobile

first company, they bumped into major problems trying to render their current

application in web views from Android and iOS developing toolkits. The largest

hinderances were the lack of a keyboard API, gesture and touch event

recognition and checking if an image has finished loading. [6.]

3.2 Architecture

Before React Native was published cross-platform development required the use

of web views to render the application. RN allows developers to write native code

with Kotlin/Java for Android and Swift/Objective C for iOS. Writing native code is

rarely mandatory to achieve the same results as with using JavaScript. Cases

where the developer must write native code are usually related to hardware

functionalities such as requesting values from the device’s gyroscope.

Compiling the JavaScript to iOS is done by using the JavaScriptCore (JSC) that

is the engine behind Safari [7]. JSC enables the device to interpret JavaScript

programs inside applications developed with Swift, Objective-C or C-language

[8].

For Android the JSC is included in the application bundle during compiling. As

seen in Figure 1 both platforms use RN Bridge to communicate between the

virtual machine JSC and the Native modules rendered on the UI.

Figure 1. Communication between native modules and the JavaScript code [8].

6

The RN Bridge in Figure 1 is responsible for communicating with the device with

tasks such as which views should be rendered and handle requests for hardware

information from the device. JSC sends the required information to the device

and after the native thread handled the request it will send back a confirmation

that the tasks were executed. [7.]

Upon launching a React Native application there are two threads initialized: the

Main thread and the JavaScript thread. It is possible to create more threads to

move heavy workloads from the forementioned threads. Events such as UI

component taps are handled by the Main thread, and it is responsible for sending

the information to the JSC using the RN Bridge. JavaScript thread is where the

code written in React Native executes. [7.]

3.3 Syntax

React Native projects are developed with either JavaScript or TypeScript. RN

supports the use of EcmaScript6 to allow use of anonymous arrow functions and

other modern conventions used in web development.

3.3.1 Class declaration

React Native encourages the use of re-usable views often referred to as

components. Listing 1 shows how a page-component was written for the project

that was developed during this work. The component is created using the

functional component approach utilizing the arrow function from JavaScript ES6.

7

const FeedScreen = ({ navigation }) => {

 const [listofSubreddits, setListofSubreddits] = useState({})

 const [isLoaded, setIsLoaded] = useState(false)

 useEffect(() => {

 Requests.getSubreddits().then((items) => {

 const i: any = items

 setListofSubreddits(i)

 setIsLoaded(true)

 })

 }, [])

 return (

 <SafeAreaView style={styles.container}>

 <Text style={styles.header}>My Subreddits</Text>

 {isLoaded ? <SubredditList list={listofSubreddits} /> : <Spinner />}

 </SafeAreaView>

)

}

Listing 1. Creating a functional RN component that renders a list of objects
requested by a HTTP-request.

As seen in Listing 1 useState is used to remember a state in between rendering

the component. UseState is a hook provided by React that allows the component

to remember variables in between re-renders of the component. Updating a state

triggers an automatic re-rendering of the component and therefore normal class

variables are reinitialized with their default values. States can be accessed to

determine how the component should be rendered after their value was updated.

[9.]

The return value of a functional component is one or more JSX tags. JSX is a

mark-up language that follows similar syntax as a HTML-file but instead of HTML

tags such as <p> for a paragraph JSX uses <Text> provided by React. React

provides several default components for the basic use-cases such as

paragraphs, switches, and buttons but for project specific and more complex

features the components must be developed manually. The return value inside

Listing 1 shows how to render a custom component called SubredditList inside

another component. The SubredditList component is shown in Listing 2.

8

const SubredditList = ({ list }) => {

 useEffect(() => {

 }, [list])

 return (

 <View>

 <FlatList

 data={list.data.children}

 renderItem={({ item }) => <SubredditListItem item={item} />}

 keyExtractor={item => item.data.created.toString()}

 ></FlatList>

 </View>

)

}

Listing 2. A functional component that renders a list of objects using the list
provided to it as a parameter.

There are multiple classes that can render dynamic length lists. For this thesis a

FlatList was used. FlatList contains two mandatory properties, data and

renderItem. Data is the list of objects and renderItem determines how a single

item of the list should be rendered. [10]. In Listing 3 is the functional component

called SubredditListItem that is passed to the renderItem-property in Listing 2.

const SubredditListItem = ({ item }) => {

 return (

 <TouchableOpacity style={styles.container}>

 <Image

 source={{ uri: item.data.icon_img ? item.data.icon_img : null }}

 style={styles.image}

 ></Image>

 <Text style={styles.text}>{item.data.display_name_prefixed}</Text>

 </TouchableOpacity>

)

}

Listing 3. Component determining the look of a single item rendered in a list.
This component is used in SubredditList shown in Listing 2.

Parameters are passed to components as props which is a special keyword. The

props-parameter can be exploded using the curly brackets to directly access

properties to avoid having to use redundant “props”-prefix. This is demonstrated

in Listing 3.

3.3.2 Styling components

Components are styled using a StyleSheet-object. For web-developers changing

over to React Native is very simple as the properties are mostly the same as

9

CSS-properties but instead of using hyphens they use camel case. Listing 4

demonstrates the similarity between CSS and RN styling.

const styles = StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: "row",

 backgroundColor: Colors.grey,

 paddingVertical: 8,

 margin: 2,

 borderWidth: 1,

 borderRadius: 4,

 },

 text: {

 fontSize: 22,

 color: Colors.black,

 alignSelf: "center",

 },

 image: {

 width: 35,

 height: 35,

 resizeMode: "contain",

 borderRadius: 500,

 marginHorizontal: 8,

 },

});

Listing 4. StyleSheet-object with classes to style different elements in
SubredditListItem-component.

These StyleSheet-objects can be passed to the component with the style-

property as shown in Listing 3.

4 Jetpack Compose – New competitor among UI frameworks

Jetpack Compose is a framework developed by Google for creating native

Android applications using Kotlin [11]. Compose had its first stable public version

released in July 2021 [12].

Supporting modern features such as component previews and animation

previews are some of the most prevalent selling points for reasons to start using

Compose.

10

4.1 What is Jetpack Compose

Jetpack Compose is a framework that helps developers use modern developing

practices by utilizing reusable components and providing built-in options to

implement dark theme and animations in projects. Compose is built on top of the

original Jetpack architecture allowing developers to still benefit from all the

functionality available on native Android development.

Compose heavily encourages the use of reusable components in projects called

Composables. These composables can be nested to reuse as much code as

possible. Composables can be elements such as a button or list of objects that

can be reused with different data sources without having to write boilerplate code.

Listing 5 shows an example of a composable with a string-parameter being

rendered on the UI.

class FeedActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 ComposeReaderTheme {

 HelloWorldText(text = "Hello world!")

 }

 }

 }

}

@Composable

fun HelloWorldText(text: String) {

 Text(text = text)

}

Listing 5. Rendering a composable in an activity. The composable is created
outside of the Activity and is initialized in the setContent-function of the Android
activity.

As seen in Listing 5 the Activity contains a setContent-function similarly as in

traditional Android development. Since Compose does not use XML to layout its

views it is not provided with a reference to an XML-file. The function is instead

passed a Composable. In Listing 5 the structure is wrapped with a Theme-

composable that passes each theme property to its children.

11

4.2 Architecture

Instead of using XML to layout components Compose handles everything inside

the Kotlin-files. Compose uses a Kotlin compiler plugin that comes with the

Compose framework. The @Compose annotation is a keyword for Compose that

changes the type of the object and allows Compose to recognize it as a

Composable [13]. As seen in Figure 2, Compose uses a Gap Buffer data structure

to handle the recomposition.

Figure 2. How Compose utilizes a data structure called Gap Buffer [13].

Figure 2 shows that components are inserted in the Gap Buffer in the order that

they appear in. If during one the render-cycles the UI hierarchy has changed, and

new elements must be inserted between components the empty slots are moved

to the current location. [13]. This can be seen in Figure 3.

12

Figure 3. Gap inside the Gap Buffer is inserted in the middle of the buffer if new
elements are added [13].

As shown in Figure 3, the Gap is inserted where the new components will be

inserted to make room for them. Composables that appear after the new additions

are pushed to the bottom of the buffer. [13.]

Composables must be annotated with the @Composable annotation to be

injected with a Compose-object and an Integer-object during compiling as seen

in Figure 4.

Figure 4. Composables are injected with a Composer-object and an Integer
during compiling [13].

13

Figure 4 shows the variables that are injected when the composable is compiled.

The functions start with an internal Composer-function called start and end with

the same objects function called end. Figure 5 highlights how elements are

inserted in the Gap Buffer.

Figure 5. Variables being added to the Gap Buffer sequentially [13].

As seen in Figure 5 the Gap Buffer is filled with variables in the order that they

appear in. These variables are assigned a group and the group is used to

differentiate the objects from each other. If the group-key does not match while

iterating through the Gap Buffer, the compiler knows that there has been a

change in the UI. [13] This is where the empty slots are inserted as shown in

Figure 3.

Compose renders the application by using a ComposeView-object.

ComposeView extends View from Android and the Kotlin compiler plugin handles

how the Compose-code should be rendered on the display. [14.]

4.3 Syntax

Building UIs with Compose is similar to how React Native UIs are built. It utilizes

reusable components to minimize the amount of code needed and to avoid

repetition. Elements are nested inside each other in a similar fashion as in HTML.

Example component is shown and explained in the next chapter.

14

4.3.1 Class declaration

Compose components are written the same way as normal Kotlin-functions with

the difference being they do not return a value and are annotated with a

@Composable-annotation. Listing 6 shows the structure of a composable with a

state.

@Composable

fun MessageCard(msg: Message) {

 Row(modifier = Modifier.padding(all = 8.dp)) {

 Image(

 painter = painterResource(R.drawable.profile_picture),

 contentDescription = null,

 modifier = Modifier

 .size(40.dp)

 .clip(CircleShape)

 .border(1.5.dp, MaterialTheme.colors.secondaryVariant,

 CircleShape)

)

 Spacer(modifier = Modifier.width(8.dp))

 var isExpanded by remember { mutableStateOf(false) }

 Column(modifier = Modifier.clickable { isExpanded = !isExpanded }) {

 Text(

 text = msg.author,

 color = MaterialTheme.colors.secondaryVariant,

 style = MaterialTheme.typography.subtitle2

)

 Spacer(modifier = Modifier.height(4.dp))

 Surface(

 shape = MaterialTheme.shapes.medium,

 elevation = 1.dp,

) {

 Text(

 text = msg.body,

 modifier = Modifier.padding(all = 4.dp),

 maxLines = if (isExpanded) Int.MAX_VALUE else 1,

 style = MaterialTheme.typography.body2

)

 }

 }

 }

}

Listing 6. Structure of a composable that remembers its state and utilizes
Composes styling conventions [11].

As seen in Listing 6 the state is initialized with the word remember and it is passed

a mutableStateOf-object. The state is stored in memory and any updates done to

the object will trigger the re-rendering of the composable. This is called

recomposition. [11]. Recomposition is also triggered if a child of the composable

updates the value. To update a composable the developer is encouraged to call

15

the composable function with new data instead of using a setter to change the

data. Re-rendering the activity requires more computing power and consumes

more battery than updating only composables that request recomposition. [15.]

4.3.2 Styling elements

Compose provides the developer with a tool to preview composables. These

previews allow the developer to do changes such as update paddings and

margins with immediate updating instead of building the project again. The

preview-tool can show multiple composables at the same time to avoid having to

transition in the application manually and it can render the composables in

multiple themes concurrently. At the expense of performance, previews can be

started in interactive mode. Interactive mode enables gesture controls, data

updates and animations on the composable preview to test the functionality

without the need for an emulator or a physical device.

Styling composables is done inside the function instead of passing it a style-

object or using XML (Extensible Markup Language) similarly as in traditional

Android development. Figure 6 shows the preview generated by using the

composable created in Listing 6.

Figure 6. Preview generated by Android Studio with code shown in Listing 6.

As seen in Listing 6, each views’ properties are split when compared to traditional

Android development. Properties that all of the views share are passed inside

their modifier-property. These include properties such as paddings, margins, and

sizing. The modifier is passed a Modifier-object that stores all these values.

16

Utilizing the Modifier-object allows Android Studio to show changes done to these

modifiers inside the previews immediately. Live previews are useful when the

developer is trying to mimic a prototype as close as possible.

When a composable is ran in Interactive mode its animation values can be

inspected at any given time. The animation can be paused, slowed down to

debug and fine tune the animation more easily. [16.]

5 Developing the applications

Target of the thesis was to create two applications with the same specifications.

One was developed using React Native and the other with Jetpack Compose.

These applications and their development were compared with each other to

determine factors that should be accounted for when starting to develop a new

project.

5.1 Reddit API as a data source

Reddit is a social media that lets its users subscribe to communities that interest

them and communicate with users who share their interests. These communities

are described as subreddits. Subreddits are prefixed with “r/” ending with the

name of the subreddit (e.g., r/cars or r/dogs). Each subreddit allows users to

create new posts and comment and vote on existing ones [17]. Reddit possesses

over 52 million active daily users [17.] which made the service a reliable source

for large amounts of data. Reddit provides developers access to their data if their

terms are followed correctly. These terms include rules such as oAuth2-

authentication must be implemented, and the application must not include Reddit

in its name. [18; 19.]

17

5.2 Specifications of the application

To compare the technologies in similar conditions the two applications were given

the same specifications:

• User can login to their personal Reddit-account with oAuth2-validation.

• Show the user a list of subreddits they are subscribed to.

• Implement a bottom navigation bar.

• Display popular posts from the subreddits the user is subscribed to.

5.3 Developing the Jetpack Compose -application

The Compose application was developed using Android Studio as the integrated

development environment.

5.3.1 Creating the project

Creating a Jetpack Compose project requires Android Studio Arctic Fox (version

2020.3.1). Android Studio provides an empty template Compose-project from its

New Project -tab. [20]. This process required no changes from the user and took

less than five minutes to build the application on a physical device or an emulator.

Upon creation many of the dependency versions were outdated but Android

Studio can change each version to their latest stable version by hovering the

dependency and clicking the latest version. To access a broader selection of

Compose-features there were dependencies that can be added to the projects

gradle-file. These dependencies were provided in the setup documentation.

5.3.2 Documentation available

Googles developers have added Compose its own section in their developer

documentation. All the properties and classes for Compose are documented and

explained with a great deal of detail. The documentation contains many step-by-

step tutorials that thoroughly explain how composables are built and rendered.

18

Sample projects are linked to display projects that are developed using proper

coding conventions.

Upside of the documentation residing in the same domain allows developers to

easily access other Android documentation. Both documentations share the

same documentation conventions.

5.3.3 Navigation

Jetpack Compose bottom navigation relies on a NavController-object that is part

of Androids androidx-library. The NavController is responsible for remembering

the navigation stack and handles the transitions between components. [21]. The

development of the bottom navigation bar started by defining the different pages

as shown in Listing 7.

sealed class NavigationItem(var route: String, var icon: ImageVector, var

title: String) {

 object Feed :

 NavigationItem("feed", Icons.Rounded.Home, "Feed")

 object All :

 NavigationItem("all", Icons.Rounded.Book, "r/All")

 object Profile :

 NavigationItem("profile", Icons.Rounded.VerifiedUser, "Profile")

}

Listing 7. Sealed class that holds the three different NavigationItems needed for
the bottom navigation bar.

Each NavigationItem is defined inside the sealed class with three properties

shown in Figure 7. Route is of type String, and it is provided to the NavController

to navigate to the correct component. Icon is used as the graphic for the item and

title is the text displayed under the icon. These are the three different pages

needed for the developed application.

The next step was to implement the layout for the bottom navigation bar. This is

shown in Listing 8.

19

@Composable

fun BottomNavigationBar(navController: NavController) {

 val items = listOf(

 NavigationItem.Feed,

 NavigationItem.All,

 NavigationItem.Profile

)

 BottomNavigation(

 //Style properties

) {

 val navBackStackEntry by navController.currentBackStackEntryAsState()

 val currentRoute = navBackStackEntry?.destination?.route

 items.forEach { item ->

 BottomNavigationItem(

 icon = { Icon(item.icon, contentDescription = item.title) },

 label = { Text(text = item.title) },

 //Style properties

 selected = currentRoute == item.route,

 onClick = {

 navController.navigate(item.route) {

 navController.graph

 .startDestinationRoute?.let { route ->

 popUpTo(route) {

 saveState = true

 }

 }

 //State saving

 }

 }

)

 }

 }

}

Listing 8. Composable for the bottom navigation bar.

As shown in Listing 8 the objects initialized in Listing 7 are passed to a

composable called BottomNavigation. BottomNavigation is a class provided by

Compose. Optional properties were cut out of the example to only highlight

necessary values.

The final step to implementing a functional navigation bar is to insert the

composables to the root of the activity. This is shown in Listing 9.

20

@Composable

fun MainScreen() {

 val navController = rememberNavController()

 Scaffold(

 topBar = { TopBar() },

 bottomBar = { BottomNavigationBar(navController) }

) {

 Navigation(navController)

 }

}

@Composable

fun Navigation(navController: NavHostController) {

 NavHost(navController, startDestination = NavigationItem.Feed.route) {

 composable(NavigationItem.Feed.route) {

 ListOfSubreddits()

 }

 composable(NavigationItem.All.route) {

 ListOfPosts()

 }

 composable(NavigationItem.Profile.route) {

 ProfilePage()

 }

 }

}

Listing 9. Inserting the navigation items to the root of the activity.

Listing 9 shows a similar design pattern that is used in the React Native

application covered later in this thesis. In Compose Scaffold closely resembles a

component called SafeAreaView used in React Native. These are both used to

avoid displaying elements inside display notches, embedded front cameras, and

other non-standard device features. The Scaffold is being passed the

composable from Listing 8.

The MainScreen composable is passed a reference to the Navigation

composable that defines the components that should be rendered in each route.

The earlier mentioned NavController is initialized in the MainScreen composable.

5.3.4 Network requests from the API with LiveData

Connecting the application to the Reddit API started with creating the ViewModel.

The ViewModel is responsible for storing the LiveData in a variable and fetching

the network request. The ViewModel is shown in Listing 10.

21

class SubredditListModel : ViewModel() {

 val _list: LiveData<SubredditList> get() = list

 val list = MutableLiveData<SubredditList>()

 init {

 val accessToken = BearerHandler

 .bearerHandler.getAccessToken()

 .toString()

 val gson = Gson()

 val httpclient = OkHttpClient()

 val request = Request.Builder()

 .url("https://oauth.reddit.com/subreddits/mine/subscriber.json")

 .header("User-Agent", "App by Developer")

 .header("Authorization", "Bearer $accessToken")

 .build()

 viewModelScope.launch {

 Thread {

 val response = httpclient.newCall(request).execute()

 list.postValue(

 gson.fromJson(

 response.body!!.string(),

 SubredditList::class.java)

)

 }.start()

 }

 }

}

Listing 10. ViewModel-class used to fetch and store the list of subreddits the
user is subscribed to.

As seen in Listing 10, to utilize the LiveData design pattern there are two variables

of the list of subreddits. As soon as the network request returns a value it is set

to the list-variable. Setting the updated value is done with the MutableLiveData-

objects postValue-function. This list variable is observed in a Composable and is

used to render the list on the display as shown in Listing 11.

@Composable

fun ListOfSubreddits(model: SubredditListModel = viewModel()) {

 val subredditList = model._list.observeAsState()

 LazyColumn {

 subredditList.value?.data?.let {

 items(it.children) { subreddit ->

 Subreddit(subreddit.data)

 }

 }

 }

}

Listing 11. Composable function that observes the state from the ViewModel.
This composable utilizes a LazyColumn Composable that can render a list that
carries a dynamic length.

22

The Composable shown in Listing 11 shows how Compose is used to render a

list of items using a LazyColumn. LazyColumn follows the same design patterns

as a RecyclerView in Android [22]. It requires a dataset to render, in this case a

list of subreddits received from the ViewModel. Each item is given their styling

and layout properties in similar fashion as shown in Listing 6.

5.4 Developing the React Native application

The React Native application was developed using Expo. Expo provides its own

application called Expo Go that can be downloaded from the App Store or Play

Store. Using Expo Go provides the developer with a way to build and share the

application during development. Expo provides their own development libraries

that allow developers to access a quick way to utilize a larger variety of features

to make developing the application easier.

Visual Studio Code was used as the integrated development environment as it

offers plugins to format JavaScript correctly.

5.4.1 Creating the project using Expo

There are multiple ways to initialize a RN-project with Expo. For this thesis Node

Package Manager (npm) was used. When installing npm the installation includes

npx (Node Package Execute). Listing 12 shows the process of creating a project

with the name SampleProject and starting the Expo service.

npx react-native init SampleProject

cd SampleProject

expo start

Listing 12. Initializing and launching a RN-project with the name SampleProject.

As shown in Listing 12 starting the Expo service opens Metro bundler on a new

tab on the developers default browser. Metro bundler provides a QR-code that

can be read with Expo Go application to build the project on the users’ device.

The bundler shows every device that compiled the application and outputs all

logging events from them. It carries the functionality to test the applications

23

performance and share it with other users to let them test the application without

needing to install it on their device. This can be utilized to check if any device is

emitting either console warnings or errors.

5.4.2 Documentation available

RN possesses a great amount of easily understandable documentation that is

available online. Each view has all its properties thoroughly explained and contain

multiple code examples on how to use them. React Native shares a great deal of

functionality with React allowing developers to refer to its documentation also.

5.4.3 Creating the bottom navigation

SafeAreaProvider is a component from Expo that allows the application to

correctly consider notches, front cameras, and other device-specific elements

that other devices may not be equipped with [23]. Therefore, SafeAreaProvider

is simply there to make developing easier and not mandatory for navigation or

other reasons.

During development there was an observation that some React Native

components behave differently on iOS-devices and Android-devices. These were

components such as the status bar and the header bar. These components are

given their own default styling properties depending on the platform they are built

on.

React Native provides its own libraries to implement a bottom navigation bar

without the need to import any third-party libraries. As seen in listing 13 the root

function of the application is wrapped inside a NavigationContainer.

24

const Stack = createNativeStackNavigator()

export default function App() {

 return (

 <SafeAreaProvider>

 <NavigationContainer>

 <Stack.Navigator

 /*

 Styling properties

 */

 initialRouteName="Login"

 >

 <Stack.Screen name="Login" component={LoginScreen} />

 <Stack.Screen

 name="Tabs"

 component={Tabs}

 options={{ headerShown: false }}

 />

 <Stack.Screen name="PostDetails" component={PostDetails} />

 </Stack.Navigator>

 </NavigationContainer>

 </SafeAreaProvider>

)

}

Listing 13. RN-application wrapped inside navigation components.

As seen in Listing 13 the Stack-object handles events such as a back-button

press to return to a previous screen. Inside the stack the different pages are

nested on top of each other. The application that was developed required a

separate login-page and the page with the bottom navigation bar. Therefore, two

Screen-objects were nested inside the stack. These Screen-objects require a

name that is used to navigate to the correct screen, and they require a component

that defines how the screen should be rendered. As seen in Listing 14, the tabs

are very similarly defined as the Stack Navigator but instead of nesting

Stack.Screen-objects there are Tab.Screen-objects.

25

const Tab = createMaterialBottomTabNavigator()

const Tabs = () => {

 return (

 <Tab.Navigator

 shifting={true}

 barStyle={{ backgroundColor: Colors.lightGrey }}

 activeColor={Colors.black}

 inactiveColor={Colors.darkGrey}>

 <Tab.Screen

 name="Feed"

 component={FeedScreen}

 options={{

 tabBarIcon: ({ color }) => (

 <MaterialCommunityIcons name="home" color={color} size={28} />

),

 }}

 />

 <Tab.Screen

 name="r/All"

 component={DetailsScreen}

 options={{

 tabBarIcon: ({ color }) => (

 <MaterialCommunityIcons name="fire" color={color} size={28} />

),

 }}

 />

 <Tab.Screen

 name="Profile"

 component={ProfileScreen}

 options={{

 tabBarIcon: ({ color }) => (

 <MaterialCommunityIcons

 name="account-key"

 color={color}

 size={28}

 />

),

 }}

 />

 </Tab.Navigator>

)

}

Listing 14. Bottom navigation bar tab-hierarchy. Each screen of a navigation bar
is nested inside the Tab.navigator.

As seen in Listing 14 each screen is passed their name, component and the icon

used in the bottom navigation bar with a tabBarIcon-property. For this project a

third-party library MaterialCommunityIcons was used to implement the icons.

5.4.4 Fetching the data

Network requests were done with vanilla JavaScript without the use of third-party
libraries. Listing 15 shows an example fetch-request of the subreddits the user is
subscribed to.

26

getSubreddits: () => {

 let list

 return new Promise((resolve, reject) => {

 try {

 fetch("https://oauth.reddit.com/subreddits/mine/subscriber.json", {

 method: "GET",

 headers: {

 Accept: "application/json",

 "Content-Type": "application/json",

 "User-Agent": "App by developer",

 Authorization: `${bearer}`,

 },

 }).then(async (response) => {

 await response.json().then((json) => {

 list = json

 resolve(list)

 })

 })

 } catch (error) {

 console.log(error)

 }

 })

 },

Listing 15. A function that returns a Promise containing all the subreddits that
the user is subscribed to.

As seen in Listing 15 the function returns a Promise-object. The Promise is

resolved as a list of items in JSON-format. The data is fetched with a GET-request

with headers providing Reddit with the mandatory information on who is

requesting the data. User-Agent is used to verify that the developer is the same

developer as registered on the Reddit API.

Figure 7 shows the list of subreddits rendered on the screen inside a FlatList-

object.

27

Figure 7. Rendering data using the function from Listing 15 on the first page of
the bottom navigation bar.

Figure 7 displays the subreddits the user is subscribed to. The list uses code from

Listings 1, 2, 3 and 15. React Native can benefit from the Promise-architecture

from JavaScript which enables the use of design patterns found in web

development.

6 Performance testing

The developed applications were compared in multiple different performance

categories using Perfetto and the built-in application profiling provided by each

framework. Perfetto is a performance monitoring software.

28

6.1 Compiling

Two different bundling times were measured. The first test was the initial time

taken to bundle the application and build it on the device. The second value is

the subsequent build times after the initial one. Subsequent builds were built five

times and the average time was reported. For Compose this was reported by

Android Studio and for React Native reporting was done by the Metro Bundler.

Results are shown in Figure 8.

Figure 8. Initial bundling time in seconds. Each value is an average of 5 results.

App Initial bundle time Subsequent build time

Compose 22.5 seconds 1112 milliseconds

React Native 21.5 seconds 54 milliseconds

As seen in Figure 8 the initial bundling times are close to one another.

Considering this is only the initial bundling time it is a non-factor in development.

Subsequent build times on the other hand are significantly quicker on React

Native. This makes it more enjoyable to do small tweaks and changes to the

application. Compose does support live editing of properties but they are

restricted to properties such as paddings, margins, and text sizes.

6.2 Touch responsiveness

Rendering speed was tested with Perfetto. The test activity for both frameworks

had a button without any text inside it. Once the button was clicked, the whole

activity was re-rendered, and five new buttons were added below the original

button. The time started once the Android devices’ SurfaceFlinger-service

reported a new touch. The time was stopped when the RenderThread-service

was put back to sleep. These results are shown in Figure 9.

29

Figure 9. Time it takes from the device reporting a touch to end re-rendering the
activity. Each value is an average of five results.

App Time elapsed

Compose 450 milliseconds

React Native 371 milliseconds

As Figure 9 shows, React Native managed a slight edge over Compose in re-

rendering an activity. The time difference is large enough to be noticeable by the

user but Compose was not far behind.

6.3 Dynamic lists – The benchmark for performance

Nearly every application must implement a dynamic list to render on the UI.

Therefore, it is a prime benchmark to compare different technologies as it

requires CPU and GPU -computing while also showing how memory-efficient the

framework is when its rendering dynamic lists. Figure 10 shows that a native

application was able to render the list with just a fifth of the CPU power required

by React Native.

Figure 10. Resources used for rendering a list of 100 objects each with an image
loaded from a URL. [24]

App CPU % Memory
Consumed (Max)

Battery Usage

Native Android 2.6 72 Mb 56.6 mAh

Flutter 5.6 106 Mb 69.2 mAh

React Native 12.1 128 Mb 78.7 mAh

30

As seen in Figure 10 the React Native application used almost twice as much

memory and 39% more battery to output the list on the screen. This will negatively

impact the users’ device battery life when using the application. High battery

consumption is due to the large amount of processing power needed by the CPU.

It is plausible to assume that rendering different views also requires more

computing power and memory on React Native.

6.4 Animations using Lottie

Animations are more and more important as companies are trying to achieve the

most user-friendly UIs possible. Animations make the application feel more

responsive, easier to follow and keeps the user interested in the application.

Lottie is a library that renders Adobe After Effects animations natively on Android,

iOS, and web applications without the need to create the animation by hand in

the codebase [25].

Figure 11 shows that while React Native consumed slightly less CPU power, it

required over 50% more memory to render the animation.

Figure 11. Resources consumed by rendering a Lottie animation on the UI. [24]

App CPU % Memory
Consumed (Max)

Battery Usage

Native Android 16.8 172 Mb 14.76 mAh

Flutter 11.3 238 Mb 13.40 mAh

React Native 14.5 264 Mb 13.17 mAh

As seen in Figure 11 the React Native application required a considerably larger

amount of memory to perform the animation. If there are multiple concurrent

animations running it can impact the rendering time of a frame. Increased

computation time can lead to dropped frames and a choppy user experience.

31

7 Conclusion

Every time a new development project is started there must be a decision on

which technology will be used. This thesis compared two frameworks and

excluded other viable options.

When comparing the difficulty of developing a project with Compose and React

Native, it should be considered that because of React Natives maturity and large

userbase there are more tutorials, libraries, and discussion around React Native.

Having access to great documentation provided by Facebook and endless

discussions online on different bugs and problems made developing the

application faster than with Compose. Compose being released in the summer of

2021 made finding discussions online harder. This hindered the problem-solving

process when something did not work as intended. Since Compose is still very

new there is a plausible reason to believe that there will be more information

found on the internet after developers have been using it for a longer time.

In terms of design patterns, I believe Compose, and other object-oriented

programming languages make it easier to split code into maintainable small parts.

React Native relies on using several pre-built implementations of classes and

components, which can make it harder to understand the application’s high-level

architecture, since abstraction layers are hidden from the developer. React

Native does a large part of its work hidden from the developer when it is

transforming elements into native iOS/Android-views.

If the company developing the application possess the resources to manage two

codebases and hire developers who can develop the project with native

technologies separately then they should be preferred. Performance of a native

application is a valid reason to pick native technologies over cross-platform tools

to create a better user experience.

Native applications performed better in many sections of the performance testing.

Results lean over to Compose being faster or close to even in each category.

React Native was slightly quicker in the rendering test. The differences are

32

difficult for the user to notice since they are small and information such as memory

usage or battery consumption are not displayed. If the application has many

animations or does heavy computations, it will be better to stay away from cross-

platform tools to avoid effecting the user experience.

When it comes to build times excluding the initial bundling, React Native is the

dominant tool. Compose previews and Android bundling usually take seconds,

while React Native building could be described as instant.

This research could be continued by developing an application with a larger

scope. The developed application could be tested from several aspects that were

not considered in this study. Continuing the application development process

could lead to finding more advantages or disadvantages specific to each

framework.

Cross-platform tools can be useful if the company is interested in creating a

prototype application. It is faster and cheaper to develop an application using a

cross-platform framework since they make the application available to more users

and only require the work to be done once. This opens the possible route to see

if an application would interest possible users and it can be used as a prototype

for user testing. After identifying if there is a market for such application, it can be

developed using for example Compose and SwiftUI, which is Apple’s equivalent

to Jetpack Compose.

33

References

1 Handley, Lucy. 2019. Nearly three quarters of the world will use just their
smartphones to access the internet by 2025. Online. CNBC.
<https://www.cnbc.com/2019/01/24/smartphones-72percent-of-people-will-
use-only-mobile-for-internet-by-2025.html>. Read 27.8.2021.

2 Rathi, Reshu. 2021. Mobile-First Web Design: Why You Should Make It A
Priority In 2021? Online. Lambdatest.
<https://www.lambdatest.com/blog/mobile-first-web-design/>. Read
27.8.2021.

3 Marchuk, Anastasiya. 2021. Native Vs Cross-Platform Development: Pros
& Cons Revealed. Online. uptech. <https://www.uptech.team/blog/native-
vs-cross-platform-app-development/>. Read 8.10.2021.

4 Vaughn, Lance. 2019. The Importance of Improving Mobile App
Performance. Online. iTexico. <https://www.itexico.com/blog/the-
importance-of-improving-mobile-app-performance>. Read 26.8.2021.

5 Singh, Ritik. 2021. (Updated) List of Phones with 90Hz and 120Hz Display
Refresh Rate. Online. Gadgets To Use.
<https://gadgetstouse.com/blog/2021/04/05/list-of-smartphones-with-90hz-
and-120hz-refresh-rate-display/>. Read 25.10.2021.

6 The history of React Native: Facebook’s Open Source App Development
Framework. 2016. Online. TechAhead.
<https://www.techaheadcorp.com/blog/history-of-react-native/>. Read
28.9.2021.

7 React Native Internals. Online. React Native.
<https://www.reactnative.guide/3-react-native-internals/3.1-react-native-
internals.html>. Read 1.10.2021.

8 JavaScriptCore. Online. Developer Apple.
<https://developer.apple.com/documentation/javascriptcore>. Read
1.10.2021.

9 State. Online. React Native. <https://reactnative.dev/docs/state>. Read
11.10.2021.

10 FlatList. Online. React Native. <https://reactnative.dev/docs/flatlist>. Read
12.10.2021.

11 Jetpack Compose Tutorial. Online. Developers Android.
<https://developer.android.com/jetpack/compose/tutorial>. Read
5.10.2021.

34

12 Bellini, Anna-Chiara. Jetpack Compose is now 1.0: announcing Android’s
modern toolkit for building native UI. Android Developers Google Blog.
<https://android-developers.googleblog.com/2021/07/jetpack-compose-
announcement.html>. Read 1.10.2021.

13 Understanding Compose (Android Dev Summit '19). Online. Android
Developers. <https://www.youtube.com/watch?v=Q9MtlmmN4Q0>.
Accessed 25.10.2021.

14 ComposeView. Online. Developers Android.
<https://developer.android.com/reference/kotlin/androidx/compose/ui/platf
orm/ComposeView>. Read 26.10.2021.

15 Thinking in Compose. Online. Developers Android.
<https://developer.android.com/jetpack/compose/mental-
model#recomposition>. Read 5.10.2021.

16 Compose tooling. Online. Developers Android.
<https://developer.android.com/jetpack/compose/tooling >. Read
5.10.2021.

17 Dive Into Anything. Online. Reddit. <https://www.redditinc.com>. Read
26.8.2021.

18 Wardle, Josh. 2015. API. Online. GitHub. <https://github.com/reddit-
archive/reddit/wiki/API>. Read 26.8.2021.

19 Reddit API Access. 2016. Online. Reddit.
<https://www.reddit.com/wiki/api>. Read 26.8.2021.

20 Use Android Studio with Jetpack Compose. 2021. Online. Developers
Android. <https://developer.android.com/jetpack/compose/setup>. Read
27.8.2021.

21 Navigating with Compose. 2021. Online. Developers Android.
<https://developer.android.com/jetpack/compose/navigation>. Read
5.10.2021.

22 Lists. Online. Developers Android.
<https://developer.android.com/jetpack/compose/lists>. Read 26.10.2021.

23 SafeAreaContext. Online. Expo documentation.
<https://docs.expo.dev/versions/latest/sdk/safe-area-context/>. Read
18.10.2021.

24 Chellakannu, Gunalan. 2020. Android App’s Performance – Native vs
Flutter vs React Native. Online. Perficient.
<https://blogs.perficient.com/2020/11/02/android-app-native-vs-flutter-vs-
react-native/>. Read 28.9.2021.

35

25 Lottie for Android, iOS, Web, React Native, and Windows. Online. AirBnb.
<https://airbnb.io/lottie/#/>. Read 28.9.2021.

	1 Introduction
	2 Mobile UI development
	2.1 Native application development
	2.2 Battle for the best performance
	2.2.1 Networking efficiency
	2.2.2 Touch responsiveness
	2.2.3 Animation fluidity

	3 React Native – Bringing React to the mobile world
	3.1 Origins
	3.2 Architecture
	3.3 Syntax
	3.3.1 Class declaration
	3.3.2 Styling components

	4 Jetpack Compose – New competitor among UI frameworks
	4.1 What is Jetpack Compose
	4.2 Architecture
	4.3 Syntax
	4.3.1 Class declaration
	4.3.2 Styling elements

	5 Developing the applications
	5.1 Reddit API as a data source
	5.2 Specifications of the application
	5.3 Developing the Jetpack Compose -application
	5.3.1 Creating the project
	5.3.2 Documentation available
	5.3.3 Navigation
	5.3.4 Network requests from the API with LiveData

	5.4 Developing the React Native application
	5.4.1 Creating the project using Expo
	5.4.2 Documentation available
	5.4.3 Creating the bottom navigation
	5.4.4 Fetching the data

	6 Performance testing
	6.1 Compiling
	6.2 Touch responsiveness
	6.3 Dynamic lists – The benchmark for performance
	6.4 Animations using Lottie

	7 Conclusion
	References

