

Edvard Shalaev

Containerized Software
Development for Industrial
Environment

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

Bachelor’s Thesis

12 October 2021

Abstract

Author: Edvard Shalaev

Title: Containerized software development for industrial

environment

Number of Pages: 27 pages

Date: 12 October 2021

Degree: Bachelor of Engineering

Degree Programme: Media Technology

Professional Major: Information and Communications Technology

Supervisors: Jyrki Keinänen, Project Manager

 Patrick Ausderau, Senior Lecturer

The main objective of this thesis was to migrate an Agent-application to containerized
environment and studying benefits of application containerization and Industrial Edge
environment. Application was developed using NodeJS and TypeScript, and
packaged with Docker.

NodeJS is an asynchronous event-driven runtime for JavaScript which enables
development of JavaScript back-end applications. TypeScript is a programming
language that is used for development of strict JavaScript applications. Container is
an isolated environment of operating system for running program code. Docker is an
open platform containerization engine, which enables isolation of the applications for
better security and scaling, quicker deployment and development. Agent is a cyclic
application, the purpose of which is to fetch data from Sinema- and Sinec NMS-
servers and upload it to the MindSphere.

The process of the project was divided into three parts. In the first part a simple
application was developed from scratch as a proof of concept and containerized
using Docker. It was published to the IEM from where it was installed to IED. In the
second phase the existing agent application was modified to work in containerized
environment. It was uploaded and tested on the IED. The uploaded agent application
was tested with real data.

Agent application was successfully containerized, migrated and tested. However,
future improvements could include more user-friendly agent configuration, logs
upload to the MindSphere and possible utilization of the IE data busses.

Keywords:

Docker, containerization, NodeJS, MindSphere, Industrial Edge

Tiivistelmä

Tekijä: Edvard Shalaev

Otsikko: Ohjelmistokehitys konttialustalle

teollisuusympäristöön

Sivumäärä: 27 sivua

Aika: 12.10.2021

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Tieto- ja viestintätekniikka

Ammatillinen pääaine: Mediatekniikka

Ohjaajat: Projektipäällikkö Jyrki Keinänen

Lehtori Patrick Ausderau

Opinnäytetyön päätavoitteena oli siirtää agenttisovellus konttiympäristöön ja
tutkia sovellusten säiliöinnin ja Industrial Edge -ympäristön etuja. Sovellus
kehitettiin käyttäen NodeJS-ajoympäristö, TypeScript-ohjelmointikieli ja pakattiin
Docker-konttimoottorin avulla.

NodeJS on JavaScriptin asynkroninen tapahtumapohjainen ajoympäristö, joka
mahdollistaa JavaScript-taustaohjelmien kehittämisen. TypeScript on
ohjelmointikieli, jota käytetään strict-JavaScript-sovellusten kehittämiseen.
Kontti on käyttöjärjestelmän eristetty ympäristö ohjelmakoodin suorittamista
varten. Docker on avoimen alustan konttimoottori, joka mahdollistaa sovellusten
eristämisen paremman tietoturvan ja skaalauksen sekä nopeamman
käyttöönoton ja kehityksen varmistamiseksi. Agentti on syklinen sovellus, jonka
tarkoituksena on noutaa tietoja Sinema- ja Sinec NMS -palvelimilta ja ladata ne
MindSphereen. Mindsphere on Siemensin kehittämä teollinen IoT-pilvipohjainen
käyttöjärjestelmä.

Projektin prosessi jaettiin kolmeen osaan. Ensimmäisessä osassa kehitettiin
yksinkertaista sovellusta konseptin todisteeksi ja pakattiin Dockerilla. Sovellus
julkaistiin Industrial Edge Managmentiin, josta se asennettiin Industrial Edge-
laitteelle. Toisessa vaiheessa olemassa olevaa agenttisovellusta muutettiin
toimimaan konttiympäristössä. Se ladattiin ja testattiin Industrial Edge-laitteella
ensin valetiedolla, minkä jälkeen se testattiin todellisilla tiedoilla.

Agenttisovellus säiliöitiin, siirrettiin ja testattiin onnistuneesti. Tulevat
parannukset voivat kuitenkin sisältää käyttäjäystävällisemmän agentin
kokoonpanon, lokien lataamisen MindSphereen ja mahdollisen Industrial Edge-
tietoväylien hyödyntämisen.

Avainsanat:

Docker, säiliöinti, konttiteknologia, NodeJS, MindSphere, Industrial Edge

Contents

List of Abbreviations

1 Introduction 1

2 Theory 2

2.1 Back-end 2

2.1.1 JavaScript 3

2.1.2 TypeScript 4

2.1.3 MindSphere 5

2.1.4 Siemens Industrial Edge 5

2.2 Containers 6

3 Background 7

3.1 Agent application 7

3.2 OTCM 8

4 Project Development 9

4.1 First phase of development (proof of concept) 10

4.1.1 Application containerization 11

4.1.2 Project and app registration on IEM 11

4.1.3 App Publisher setup 14

4.1.4 Application upload 15

4.1.5 Application installation on IE device 18

4.1.6 Reviewing application after installation 19

4.2 Second phase of development (refactoring, containerization,
deployment) 21

4.2.1 Configuration 22

4.2.2 Local testing 23

4.2.3 Application registration, upload and installation 24

4.2.4 Reviewing application after installation 24

4.3 Third phase of development (testing with real-data, final fixes) 24

5 Conclusion 25

References 26

List of Abbreviations

API: Application Programming Interface.

GUI: Graphic User Interface. Used to allow user visually comprehend

application and control it.

IDE: Integrated Development Environment.

IE: Industrial Edge.

IEM: Industrial Edge Management.

IED: Industrial Edge Device.

IoT: Internet of Things.

OTCM: Operational Technology Condition Monitor.

SDK: Software Development Kit.

UTC: Coordinated Universal Time.

UI: User Interface. Allows user interaction with the application.

NMS: Network Management System.

1

1 Introduction

This project was completed in the interests of Siemens Oy's industrial

department. Siemens Oy is a limited company that is a part of the Siemens AG

conglomerate. Siemens Oy was founded in 1919 in Espoo. It has multiple

departments, such as Industry, Energy, Healthcare, Infrastructure and Cities.

Siemens produces products for industrial environment and automation, two of

which were used in this project namely MindSphere, and Industrial Edge (IE).

MindSphere is an Internet of Things (IoT) service solution built on the Mendix

application platform. IE, on the other hand, is a platform for the industrial

applications that acts as a on field computer. Both products are essential for the

project, as MindSphere was used for analytical data storage and IE was used

for hosting the agent application.

The main idea of this thesis is to containerize an existing back-end Agent

application for IE and to study its interaction with the MindSphere. The project is

considered a success if a working and stable Agent application is converted,

dockerized and hosted on the Industrial Edge platform with MindSphere

integration.

2

The flow of this project’s development will be described in next chapters Theory,

Background, Development, Conclusion.

The theory chapter covers history and description of solutions used in this

project. The background chapter covers previous version of an Agent- and

Operational Technology Condition Monitor (OTCM) -application that works with

it in parallel, and their dataflow and synergy principles. The development

chapter describes with examples how development environment was prepared,

and how project was planned, coded, and tested. The conclusion part describes

the project’s overview: what was the goal, what was achieved, possible

improvements and which should be the next steps.

2 Theory

Software, also known as a program, is a collection of instructions for a computer

to execute. Software can be written in different programming languages. A

programming language is an invented language that can be used to program a

device to perform various functions. The first programming language and the

first piece of software were invented by Ada Lovelace in the 19th century, while

the first upper-level programming language was invented by Konrad Zusen in

the 1940s. [1.]

There are multiple choices for what language should be used when writing an

application. The choice is influenced by such criteria as simplicity of learning the

language, simplicity of writing, environment’s backing for language and support

of the application in the future.

2.1 Back-end

Software can be controlled by the user through ‘user interface’ also referred as

front-end. In a back-end applications, on the other hand, the user does not

control the program, as back-end applications are mostly located out of reach

from clients. The program controls itself regarding of what it is instructed to do

3

and what data it receives or through API (Application Programming Interface) a

software’s interface that allows other software to communicate with it. [24.]

A back-end application, also referred to as server, is a software whose function

is to provide functionality such as parsing data, forwarding data, storing data, to

other applications or devices. Such hardware or software are called clients. This

architecture is called the client-server model and is shown in figure 1.

Figure 1. Client-server model [2].

2.1.1 JavaScript

Javascript is a programming language developed by Brenda Eich and published

in 1995. Originally, JavaScript was used to dynamically process information on

web pages, but today it is used in many different tasks. JavaScript is widely

used in the world because it is simple, well supported and one of the most

popular programming languages. [3, 4.] Due to its popularity, many tools and

libraries are created for it.

Currently, JavaScript is not only a client-side language, but it is also used in

server-side program development. All JavaScript code works on a V8 machine,

which is a JavaScript and WebAssembly machine written in C++. It is used in

Chrome and NodeJS. [6.]

4

NodeJS (also referred as Node.js) is an asynchronous event-driven runtime for

JavaScript. It enables possible development of scalable back-end programs

with JavaScript. [7.]

2.1.2 TypeScript

TypeScript is a typified programming language that is built around JavaScript. It

was developed by Microsoft and launched for the public in 2012. [8.] Main idea

behind TypeScript is to bring more strictness to development of JavaScript

applications. Strictness of the TypeScript brings better understanding of the

code and greater debugging possibilities. [9.] More strictness is achieved by

utilizing concept of types in code.

In JavaScript all variables by default can be of different types which means that

any kind of data could be assigned to the variable. In case of TypeScript, these

types are assigned to the variables by the user, or they are dynamically

depending on data type that is assigned to the variable. With TypeScript

integration IDE (Integrated development environment) throws an error if wrong

type of data is assigned to the variable.

// JavaScript variable

let num = 1;

// Assigning string to a num variable doesn’t throw an error

number = “text”;

// TypeScript variable

// In this case IDE treats the num variable to be of the number type

let num = 1;

// IDE throws the wrong type error

num = “text”;

Listing 1. Example of the JavaScript and TypeScript code.

For example, if two identical variables were created, but one was in JavaScript

and other in TypeScript, as shown on listing 1, JavaScript variable can be

assigned any type of data, but in case of the TypeScript if wrong type of data is

assigned to the variable, an IDE will immediately throw an error which makes it

possible to do necessary fixes even before launching the application.

5

2.1.3 MindSphere

MindSphere is an Industrial IoT cloud-based operating system developed by

Siemens. It was made for all kind of Industrial IoT use cases. Data upload to the

MindSphere cloud services is possible by utilizing MindSphere’s open APIs. [10,

11.]

MindSphere is divided to multiple different services. Those services are

accessible through straight API requests or through MindConnect Software

Development Kit (SDK). [12, 13.]

2.1.4 Siemens Industrial Edge

Siemens Industrial Edge (IE) is the Siemens’s platform for hosting applications

close to the shopfloor. This allows for better and safer interactions with

automation systems as the Industrial Edge Device (IED) could be located

behind plant’s firewall.

Figure 2. Diagram showing basic idea behind IE platform [14].

As shown in figure 2, IED is usually located on the plant itself and Industrial

Edge Management (IEM) is in the cloud. IED runs operating system based on

Linux. One of the key features of the IED is the installation of the containerized

applications and runtime log collection. Installation of these applications

6

happens through IEM. In this project IED works as a server – a device that

provides functionality for other programs or devices. [14.]

2.2 Containers

Container is an isolated environment of operating system for running program

code. While containers resemble virtual machines, they are different. One of the

key differences is that each of the virtual machines creates a separate entity

with an own operating system. [15.] Containers on the other hand share the

host’s operating system, as shown on in figure 3.

Figure 3. Difference between containers’ and virtual machines’ infrastructures
[15].

This makes containers more lightweight and reduces their start up times

compared to virtual machines. There are many different containerization

solutions as Kubernetes, Mesos and Docker. Docker was used as a

containerization engine in this project as it was required for the IE application

development. [16.]

Docker is an open platform containerization engine. It enables isolation of the

applications for better security and scaling, quicker deployment and

development. Docker ensures that containerized applications run the same way

on all devices. [15, 17, 18, 19.]

7

3 Background

This project is a part of a logical continuation of the existing OTCM

environment’s development. This environment consists of Agent and OTCM

applications and is connected to MindSphere. Those applications will be

described in this chapter.

3.1 Agent application

Agent application is a cyclic application that is installed on a plant, in the same

network or behind same firewall as Sinema or Sinec Network Management

System (NMS) servers. Sinema or Sinec server is a monitoring server for

observing and diagnosing of on plant machinery. [20.]

Figure 4. Graph that depicts Agent’s environment and dataflow.

Agent’s purpose is to fetch data from said servers and upload it to the

MindSphere. In case there are errors or no data available, Agent uploads

event’s to MindSphere with exception description. Agent is configured from

OTCM and config is updated from MindSphere. Agent’s surrounding

environment and dataflow is shown on figure 4.

8

3.2 OTCM

OTCM is Siemens’s private application used for clients’ network state and

health monitoring, and support purposes. Development of this application is

currently in continuous development.

Figure 5. Diagram that shows OTCM application’s data flow.

Application has three main components

• Front-end

• Back-end

• Event-processor.

Front-end component displays data to user and allows for user friendly

interaction with the application, while back-end processes user requests and

returns processed data to the front-end component. Some of the simple front-

end’s requests that do not require heavy data parsing are redirected straight to

the MindSphere’s services. Event-processor is a data processor that runs in

background in cycles. Its job is to fetch raw event files from MindSphere and

parse those into events and upload back to MindSphere’s Event Service.

Communication between those components is shown in figure 5.

9

4 Project Development

Migration of the agent application was done in three phases. The first phase

was to develop a simple application as a proof of concept. After said application

was uploaded on the IED and was running, the second phase of development

should commence. The second phase of development was to remove unused

parts from the code and packages, and upload a containerized version of the

application to the IED. Third phase was to connect this Agent that is running on

the IED to the Sinec server on the same network. This phase simulated real-

world situation to test the application’s behaviour. Based on results from testing,

the code was refactored final time and containerized.

After three phases of development were passed, the final version of the

application was released on the Gitlab in a separate branch, but in the same

repository as previous versions of the Agent.

Git is a version control system. It was developed by Linus Torvalds. [21.] GitLab

is the DevOps platform created for streamlining and speeding up development.

[22.]

Development was carried out on a notebook provided by Siemens, it carried

Windows 10 x64 operating system. Before development could start, the dev-

environment should have been prepared. Visual Studio Code was selected for

development as IDE (Integrated Development Environment) of choice because

it was most familiar, opensource and is considered as one of the best IDEs for

TypeScript and JavaScript application development. List of plugins were

installed for better development experience

• Auto Import

• Better Comments

• Prettier - Code formatter.

Git was installed locally, and git bash was used as the main terminal

application. Docker was used for containerization.

10

4.1 First phase of development (proof of concept)

As a proof-of-concept, a simple application was developed from scratch. The

idea behind this application was to test IE environment’s behaviour and to go

through a complete deployment process before deploying the real application.

The application did not have any UI and its functionality was limited to reading

config file, writing to console and one HTTP GET request. The application was

written in TypeScript and after compiled to JavaScript, for local testing cfg-data

folder was created with template config.json which was red if application was

not launched in production mode. In case errors happened while reading config,

simple error catcher was added. To be able to track if the application has

successfully read the config file, config object logging was added. Before

containerizing the application, it was tested by running it locally.

import express from "express";

import fs from "fs";

let config;

try {

 config = JSON.parse(

 fs.readFileSync(

 process.env.PROD ? "/cfg-data/config.json" : "./cfg-data/config.json",

 "utf-8"

)

);

} catch (error) {

 console.log(error);

}

const app = express();

app.get("/", (req, res) => {

 return res.json({

 message: "Everything worked!",

 });

});

console.log("wow app 0.0.2?", config);

app.listen(2000, () => {

 console.log("App working on port:", 2000);

});

Listing 2. Test application’s code from index.ts file.

11

Test were considered successful when config object was logged to console, as

seen in line 25 of listing 2. Also GET request, in lines 19-23 of listing 2, should

return desired message.

4.1.1 Application containerization

After testing was complete Dockerfile, contents of which are shown in listing 3,

was created in the root of the application.

FROM node:12-alpine

#! Env

#! Create Directory for the Container

WORKDIR /app

#! Only copy the package.json file to work directory

COPY package.json .

#! Install all Packages

RUN npm i

#! Copy all other source code to work directory

ADD . /app

#! TypeScript

RUN npm run build

#! Start

CMD ["npm", "start"]

EXPOSE 2000

Listing 3. Applications Dockerfile.

The final version of the test application was containerized by running the

following command: docker build . -t docker-test:0.0.4.

Node:12-alpine was used as it is considered smallest node 12 image. [25.]

4.1.2 Project and app registration on IEM

Next step was to create a project on IEM. It was possible by accessing IEM via

internet browser by visiting

https://*ip_of_edge_management*:9443/pp/app/home and signing

in, in this case Google Chrome was used as the web browser. After sing-in user

is greeted with multiple Edge Management options illustrated in figure 6.

12

Figure 6. IEM home page.

A new project was registered on My Projects page. To access said page, the

user should select the Applications folder from side-menu and click on My

Projects button. First, the user needs to create a new project by clicking on

Create Project button in right top corner, after which s/he is greeted with a

modal window as shown in figure 7, where project name, description of a

project and a company for which project is created should be specified. If the

company is not available for selection on the modal window, it should be added

manually by clicking the + icon and filling required fields.

Figure 7. Project creation modal window.

After filling all fields, it is possible to create an empty project by clicking the

Create button or, as in this project, continue to the creation of a new application

13

straight away by clicking the Next button. When the button is clicked the

application creation modal window is opened as shown in figure 8. Fields as the

Application name, the Repository name, the Website and the Description need

to be filled and an icon needs to be selected from the existing or added new

icon by the user.

Figure 8. Application creation modal window.

After everything is completed, a new application can be created. The created

application will appear on the My Projects page as a clickable icon. The

Developers user group was added to the application by clicking an icon of the

application and clicking on the plus button on the right from the User Groups.

Adding the Developers user group was essential for the deployment of the

application as for the privacy settings of the IE device.

14

Figure 9. Configuration template creation modal window.

Configuration template was added on the same page. It was possible by

pressing the Configurations button and filling all the required fields and selecting

the template file from the local files, as shown in figure 9. Saving the new

configuration template enables application configuration with the file.

4.1.3 App Publisher setup

For application uploading App Publisher – Industrial Edge application was used.

Application needs to be setup before uploading applications to the IEM.

 Docker Engine needs to be connected to the publisher. Connection can be

established by clicking + Docker Engine button on top right corner and filling

15

Docker engine ip and port. Also, the publisher needs to be connected to IEM.

To connect App Publisher to IEM, user must click Go Online button and fill in

URL of the IEM, after which user is redirected to IEM login page. On successful

login App Publisher connects to the IEM and setup of the App Publisher is

done.

4.1.4 Application upload

Before starting the upload process, the application needs to be containerized

locally. To upload application first it needs to be selected from My Projects list of

applications. After selection list of application’s versions is displayed, a new

application’s version must be created to initialize upload process.

To create a new version +Add New Version button was clicked, which opened a

modal window with docker compose version selection; 2.4 version of docker

compose was selected at it was newest version available for selection. On

selection the user is redirected on a new page for application configuration

before upload.

The user can manually configure application or YAML file can be uploaded and

finalized manually if required. In case of developed test application YAML file

was created beforehand, and its content is shown in listing 4. YAML was

imported by pressing Import YAML button in top right corner and selecting

YAML file from opened explorer window.

version: "3"

services:

 docker-test-app:

 image: "docker-test:0.0.4"

 environment:

 - PROD=true

 mem_limit: 200mb

Listing 4. Code from docker-compose.yaml

As the application has web API, reverse proxy had to be configured manually

on upload. Reverse proxy was needed for communication between client and

containerized application. To configure it, the configuration menu was opened

16

by pressing pen icon in top right corner. After the menu opened, Network tab

was selected and under Reverse Proxy headline all fields were filled, except

custom headline, as shown in figure 10. After filling a new rule was added by

pressing + button and saved in top right corner of the modal window.

Figure 10. Reverse proxy configuration.

When configuration was done it was saved by pressing “Review” button and

after “Validate & Create” button. On newly opened modal window, as shown on

figure 11, the version was changed to be 0.0.4 as the third iteration of test app

was being uploaded.

17

Figure 11. Version selection before creating new version of application.

After creation of a new version, the user is redirected back to the version

selection list with the new version on the top of the list, as seen in figure 12.

Figure 12. List of application’s versions in App Publisher with newly created
version ready for upload.

18

In the new version’s row on the second column a Start Upload button appeared.

Clicking it uploads application to the IEM, from where it could be installed to IE

device.

4.1.5 Application installation on IE device

Application installation happens from application’s page. After uploading a new

version of the application to IEM it should be shown in the list of app’s versions,

which is shown in figure 13.

Figure 13. Application’s page with list of its versions.

To install the desired version of the application, install button should be clicked.

Next the modal window with a two-step installation opens. In first step, the

configuration template should be selected, if such is required by the app. It

could be instantly modified by inputting desired code and saving it. In case of

this test project, ConfigurationViaFile template was selected and modified to

contain code from listing 5.

19

{

 "PORT": 2000,

 "MESSAGE": "IF THIS IS WORKING; THEN IT IS! :D"

}

Listing 5. Code imputed to configuration file.

When config was changed and selected by clicking on it, the second step was

to select device on which to install the app. As only one device was provided for

the project it was selected and Install Now button was clicked. As an app being

installed does not contain trusted certificate, a warning message appears, and

the installation process continues by pressing allow button.

4.1.6 Reviewing application after installation

When reviewing application after installation it is important to determine

• Is the application running?

• Is the application running correctly?

• Is the application configured correctly and is configuration
reachable?

The application could be reviewed from the said device’s web-UI. To access

devices UI, https://*ip_of_edge_device*/device/edge/app/apps

URL should be opened from internet browser. All applications installed are

listed on Apps page.

To determine if an installed application is running and if it is running correctly, a

decision to view its logs was made. Logs were downloaded by clicking three-

dots-icon under the icon of the application and selected Download Logs, as

seen in figure 14.

https://*ip_of_edge_device*/device/edge/app/apps

20

Figure 14. Button to download application’s logs.

Clicking said button initiated download of tar file containing logs, part of which is

shown in listing 6. After unpacking the downloaded file and opening logs

containing a file it was determined that back-end of the application was running

correctly, and the new configuration was readable as its logs matched text

inputted on installation.

{"log":"\n","stream":"stdout","time":"2021-08-24T12:33:35.147939578Z"}

{"log":"\u003e docker-test@1.0.0 start /app\n","stream":"stdout","time":"2021-

08-24T12:33:35.148210098Z"}

{"log":"\u003e node dist/index.js\n","stream":"stdout","time":"2021-08-

24T12:33:35.148269738Z"}

{"log":"\n","stream":"stdout","time":"2021-08-24T12:33:35.148324027Z"}

{"log":"wow app 0.0.2? { PORT: 2000, MESSAGE: 'IF THIS IS WORKING; THEN IT IS!

:D' }\n","stream":"stdout","time":"2021-08-24T12:33:36.522541455Z"}

{"log":"App working on port: 2000\n","stream":"stdout","time":"2021-08-

24T12:33:36.640613337Z"}

Listing 6. Application’s logs.

The front-end of the application was tested by simply clicking the application’s

icon on Apps page. On click, a new tab opened with json, which is shown in

listing 7.

{

 "message": "Everything worked!"

}

Listing 7. Json returned from the application.

21

Thus, it was determined that both back-end and front-end of the application

were working. After successful testing it was decided that instead of writing

Agent from scratch, the existing Agent application with minimal changes should

be containerized, as it was deemed less time consuming and a simpler solution.

4.2 Second phase of development (refactoring, containerization,
deployment)

To start the second phase of development, the code of the Agent application

needed to be stored locally and all required applications should be installed.

Development started by cloning online repository to local. Authorization process

on the web page is seamless, as it only requires the user’s smart card to be

read from card reader.

After successful authorization, it was possible to find the needed repository and

copy the cloning link. Repository was cloned by executing command, which is

illustrated in listing 8, before locating to the desired folder in terminal.

$ git clone git@<host>:<path> && cp -r ./sinema-mdsp-agent/* . && rm -rf

sinema-mdsp-agent/

Cloning into 'sinema-mdsp-agent'...

remote: Enumerating objects: 517, done.

remote: Counting objects: 100% (517/517), done.

remote: Compressing objects: 100% (242/242), done.

remote: Total 517 (delta 306), reused 452 (delta 263), pack-reused 0

Receiving objects: 100% (517/517), 267.37 KiB | 1.60 MiB/s, done.

Resolving deltas: 100% (306/306), done.

Listing 8. Terminal log after repository cloning command execution.

For running the application while development packages were installed and to

install packages npm install command was executed. List of installed

dependencies is shown in listing 9.

22

"devDependencies": {

 "@types/cron": "redacted",

 "@types/moment-timezone": "redacted",

 "@types/node": "redacted",

 "@types/prompts": "redacted",

 "pkg": "redacted",

 "standard-version": "redacted",

 "ts-node": "redacted",

 "tslint": "redacted",

 "tslint-config-prettier": "redacted",

 "typescript": "redacted",

 },

 "dependencies": {

 "@mindconnect/mindconnect-nodejs": "redacted", "@types/winston":

"redacted",

 "axios": "redacted",

 "cron": "redacted",

 "moment-timezone": "redacted",

 "winston": "redacted",

 "winston-daily-rotate-file": "redacted"

 }

Listing 9. Project dependencies, with redacted version numbers, before starting
migration.

After package installation, a new branch was created and named container-

development. Migration process started by creating three essential docker files

as Dockerfile, docker-compose.yaml, .dockerignore.

Power Shell scheduled job creation code was removed as it was not used in the

new environment and code line determining config path was refactored to read

config file from /cfg-data location when application is running in container.

pkg package and exe script were removed as they were no longer needed.

start script was changed to launch the built application and dev script was

added to test application during development. After all changes were committed

and pushed to remote, the application had to be tested locally.

4.2.1 Configuration

A new asset was created. soydev.sinemaserveragent asset type was

given to the asset and AppVersion variable was set to 3, so it would be

visible in the newest version of OTCM application, from where the agent was

configured.

23

Figure 15. Web-view of agent’s config in the OTCM.

Sinec server’s address and credentials were added to the agent configuration to

be able to fetch data from it. After agent’s config was done it was validated and

saved as shown in figure 15.

4.2.2 Local testing

Before uploading the application, it needed to be tested locally. To do it, the

application was containerized. mindConnectConfig.json was manually

added to the container for testing purposes. Said file was added when building

container by adding COPY mindConnectConfig.json line to the Dockerfile

and removing said file from .dockerignore file.

After the container was built without errors it was launched in Docker GUI and it

successfully connected to the MindSphere. The Agent was able to fetch config

and tried to fetch data from Sinec server. As Sinec server did not exist in local

network, it was not reachable by the Agent. This generated constant flow of

network errors which was considered correct behaviour at the current situation.

Local testing was deemed successful.

24

4.2.3 Application registration, upload and installation

Before uploading the application, it was registered in IEM. Application upload

was done in a similar way as for the proof of concept with the only difference

that reverse proxy was not configured, as the application did not have a user

interface or any API.

After the application was visible in the list of uploaded applications it was

installed on the IE device. When installing the application, MindConnect token

was pasted into config, which was copied from the MindSphere agent’s page.

4.2.4 Reviewing application after installation

To review the application’s state after installation logs were fetched and

examined. After quick examination of the logs it was clear that the application is

working and is trying to fetch data from Sinec server from the configuration.

4.3 Third phase of development (testing with real-data, final fixes)

In the third phase of testing real Sinec server with real data was used. It was

configured by a separate engineer. The same version of Agent used in the

second phase of development was used. As Agent was already configured and

already trying to fetch data from Sinec serve,r no additional actions were

required regarding Agent’s configuration. After Sinec server’s configuration the

Agent immediately connected to it, but no events were fetched. The reason for

this was wrong time-zone, as default time-zone for Docker container was UTC.

[23.]

{"log":"{\"message\":\"Fetching events from server: Sinec server for time

frame of 2021-09-06 12:17:00 .. 2021-09-06

14:16:45\",\"level\":\"debug\",\"timestamp\":\"2021-09-06

14:17:00\"}\n","stream":"stdout","time":"2021-09-06T11:17:00.211481802Z"}

{"log":"{\"message\":\"Got 200 from Sinec

server\",\"level\":\"info\",\"timestamp\":\"2021-09-06

14:17:02\"}\n","stream":"stdout","time":"2021-09-06T11:17:02.417116039Z"}

Listing 10. Agent’s logs of fetched events.

25

This bug was fixed by adding a new line, which sets the time-zone of the

container to the Dockerfile of the Agent. Going through building, uploading and

installation process was required to update the application on the IE device.

After update, the Agent was able to fetch events from the Sinec server as seen

in listing 10.

5 Conclusion

Core idea of the project was to migrate an Agent application from windows

environment to work on IE device for creating product for IE, development

process optimization and experience. Docker and IE environment were studied

and utilized in this project. As a result of this project an Agent application was

successfully containerized, migrated, and tested.

Figure 16. Diagrams with Agent’s current environment (top) and improved
environment (bottom).

26

As described in the third phase of development, time-zone was hardcoded to

the Dockerfile of the Agent application. In the future this should be configurable

from the OTCM application. For future improvements, the Agent should be able

to utilize IE device’s data bus for event fetching, as shown in figure 16, and log

fetching should be available from OTCM application for ease of the

development.

References

1 Computer Programming Languages. 2020. Online material.
ComputerScience.org.
<https://www.computerscience.org/resources/computer-programming-
languages/>. Updated 24.11.2020. Read 28.9.2020.

2 Mgyugcha. A computer network diagram of clients communicating with a
server via the Internet. 2011. Image. Wikipedia.org.
<https://en.wikipedia.org/wiki/Client%E2%80%93server_model#/media/Fil
e:Client-server-model.svg>. Updated 5.12.2014. Downloaded 30.9.2020.

3 2020. Online material. quirksmode.
<https://www.quirksmode.org/js/intro.html>. Accessed on 25.11.2020.

4 Kamaruzzaman, Md. 2020. Top 10 In-Demand programming languages to
learn in 2020. Online material. Towards Data Science.
<https://towardsdatascience.com/top-10-in-demand-programming-
languages-to-learn-in-2020-4462eb7d8d3e>. Updated 4.2.2020. Accessed
on 5.10.2020.

5 <https://miro.medium.com/max/2452/1*8YmyAEb3raC2gqj1AeVcvQ.png>.
Downloaded 4.6.2021.

6 What is V8?. Online material. V8. <https://v8.dev/>. Accessed on
5.10.2020.

7 About Node.js®. Online material. NodeJS. < https://nodejs.org/en/about/>.
Accessed on 26.09.2021.

8 TypeScript. Online material. Cleverism. <https://www.cleverism.com/skills-
and-tools/typescript/>. Accessed on 26.09.2021.

9 What is TypeScript?. Online material. TypeScript.
<https://www.typescriptlang.org/>. Accessed on 23.09.2021.

10 TechTarget Contributor. 2018. MindSphere. Online material. WhatIs.com.
<https://whatis.techtarget.com/definition/MindSphere>. Updated 10.2018.
Accessed on 27.09.2021.

27

11 MindSphere. Online material. Siemens.
<https://siemens.mindsphere.io/en>. Accessed on 27.09.2021.

12 MindSphere Services. Online material. Siemens.
<https://developer.mindsphere.io/apis/index.html>. Accessed on
20.09.2021.

13 MindConnect-NodeJS. Online material. npm.
<https://www.npmjs.com/package/@mindconnect/mindconnect-nodejs>.
Updated 08.09.2021. Accessed on 20.09.2021.

14 Posey, Brian. 2021. What is a Server?. Online material. WhatIs.com.
<https://whatis.techtarget.com/definition/server>. Updated 07.2020.
Accessed on 20.09.2020.

15 Online material. Docker. <https://www.docker.com/resources/what-
container>. Accessed on 26.09.2021.

16 Industrial Edge apps. Online material. Siemens.
<https://mall.industry.siemens.com/mall/en/WW/Catalog/Products/103641
20>. Accessed on 12.09.2021.

17 What are containers?. Online material. NetApp.
<https://www.netapp.com/devops-solutions/what-are-containers/>.
Accessed on 28.09.2021.

18 Introduction to Containers. 2021. Online material. Unity.
<https://fullstackopen.com/en/part12/introduction_to_containers>.
Accessed on 28.09.2021.

19 Docker overview. Online material. Docker Docs.
<https://docs.docker.com/get-started/overview/>. Accessed on
28.09.2021.

20 SINEMA Server – Making your network transparent. 2018. Online material.
Siemens.
<https://assets.new.siemens.com/siemens/assets/api/uuid:2a0ce858-
ee1d-43d1-9692-8f5ea16088e8/di-ca-pi-rcm-sinema-server-brochure-
en.pdf>. Accessed on 28.09.2021.

21 What is Git. Online material. Atlassian Bitbucket.
<https://www.atlassian.com/git/tutorials/what-is-git>. Accessed on
30.09.2021.

22 What is GitLab?. Online material. GitLab. <https://about.gitlab.com/what-
is-gitlab/>. Accessed on 30.09.2021.

23 Modifying a Container Time-Zone. Online material. TIBCO Software Inc. .
<https://docs.tibco.com/pub/om-ll/5.0.0/doc/html/GUID-0618A976-3E0A-
4750-B44E-F329452C05CE.html>. Accessed on 03.10.2021.

28

24 Application Programming Interface (API). 2020. Online material. IBM
Cloud Education. <https://www.ibm.com/cloud/learn/api>. Accessed on
10.10.2021.

25 Garcia Perilla Julia. 2020. Alpine, Slim, Stretch, Buster, Jessie, Bullseye
— What are the Differences in Docker Images?. Online material. Medium.
< https://medium.com/swlh/alpine-slim-stretch-buster-jessie-bullseye-
bookworm-what-are-the-differences-in-docker-62171ed4531d>. Accessed
on 10.10.2021.

