
Zoltan Gere

Implementation of LoRaWAN
from end-device to application

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Bachelor’s Thesis

11 November 2021



Abstract

Author: Zoltan Gere
Title: Implementation of LoRaWAN from end-device to

application
Number of Pages: 29 pages + 1 appendices
Date: 11 November 2021

Degree: Bachelor of Engineering
Degree Programme: Information and Communication Technology
Professional Major: Smart Systems
Supervisors: Joseph Hotchkiss, Project Engineer

Keijo Länsikunnas, Senior Lecturer

LoRaWAN is long range, low power, wireless communication technology for Internet
of Things devices. It has an increasing number of applications in various industries,
such as manufacturing, smart cities, and agriculture.

In this project a complete LoRaWAN network is implemented. The resulting system
gives an infrastructure for application developments and experiments. The network
consists of three main components. The Chirpstack open-source LoRaWAN server
stack is running on a personal computer. The LoRaWAN gateway is a separate
network device. The reference end-device is built with widely available, inexpensive
components. The project contains the schematics of the end-device for easy
reproduction. The project also contains a software library implemented in
MicroPython language. The library handles all the necessary LoRaWAN related
communication.

Keywords: LoRaWAN, IoT, Network, Gateway, Raspberry Pi Pico



Contents

List of Abbreviations

Glossary

1 Introduction 1

2 Project Specifications 3

3 Material and Methods 5

3.1 Initial briefing 5
3.2 Researching and Planning 5
3.3 Network implementation 6
3.4 End-device Development 7
3.5 Testing 9
3.6 Software installation on target computer 9

4 Theoretical background 10

4.1 LoRa and LoRaWAN 10
4.2 Chirpstack LoRaWAN Network Server Stack 14

4.2.1 LoRa Gateway 14

4.2.2 Chirpstack Gateway Bridge 15

4.2.3 Chirpstack Network Server 15

4.2.4 Chirpstack Application Server 15

4.3 Message Queuing Telemetry Transport 16
4.4 Transport Layer Security 16
4.5 End-devices 17

4.5.1 Raspberry Pi Pico 17

4.5.2 LoRa Radio module 17

4.5.3 MicroPython 18

5 Proposed solution 19



5.1 LoRaWAN network hierarchy 19
5.2 Chirpstack Server Suite 19
5.3 IoT end-device implementation 21
5.4 IoT end-device software library 22
5.5 Deviations from the specification 24

6 Conclusions 27

References 28

Appendices

Appendix 1 Schematic drawing of the end-device



List of Abbreviations

ABP: Activated By Personalisation.
ACL: Access Control List.
ADR: Adaptive Data Rate.
AES: Advanced Encryption Standard.

CMAC: Cipher-based Message Authentication Code.
CRC: Cyclic Redundancy Check.

DevEUI: Device Extended Unique Identifier.

FEC: Forward Error Correction.

GUI: Graphical User Interface.

IoT: Internet of Things.

LoRa: Long Range.
LoRaWAN: Long Range Wide Area Network.

MAC: Medium Access Control.
MIC: Message Integrity Code.
MQTT: Message Queuing Telemetry Transport.

OTAA: Over-The-Air Activated.

SPI: Serial Peripheral Interface.
SQL: Structured Query Language.

TLS: Transport Layer Security.

UDP: User Datagram Protocol.

Glossary

docker: Virtual machine environment, where the operating system and
applications run in containers.

LORIX One: LoRaWAN gateway device, developed and manufactured by
Wifx Sàrl.



1

1 Introduction

Internet of Things (IoT) stand for small sized, networking, electronic devices with

specific purpose, for example telemetry, surveillance or remote control. They are

key components in smart technologies. Various technologies have been

developed to create reliable communication between IoT devices. One of the

most popular technologies is Long Range (LoRa). It is a wireless, secure, low

energy, low data rate networking technology with long range coverage. The

protocol can provide roaming and localization services. [1] [2]

IoT and smart technologies are rapidly developing Information Technology fields.

Home automation has been increasing in popularity and smart home appliances

can be found in growing numbers in households. Industrial IoT devices have been

increasing in numbers as companies employ energy and resource saving smart

technologies and factories implement more effective manufacturing processes. [3]

The fast growing IoT industry has an increasing demand for qualified technical

personnel. This thesis has been conducted for Helsinki Metropolia University of

Applied Sciences to support wireless communication technology education. The

end-device software library has been developed to provide a foundation for

students with beginner and intermediate knowledge.

This thesis explores the LoRa based communication and presents a reference

Long Range Wide Area Network (LoRaWAN) network. The application server was

configured with Message Queuing Telemetry Transport (MQTT) integration. The

LoRaWAN server infrastructure was implemented in docker environment. A

LoRaWAN gateway was configured and connected to the internal network. An

end-device hardware was constructed and a LoRaWAN handler library was

developed in MicroPython language for easy end-user development and

application.

In the next chapter the project’s starting specification is explained. In chapter 3,



2

the research and development methods are described. Afterwards the operational

principles of the LoRa and other project related technologies are presented and

the used hardware and software assets are further explained. In chapter 5, the

resulting hardware system and the software library are presented.



3

2 Project Specifications

As mentioned in the previous chapter, the industry has an increasing demand for

IoT technologies. To increase the students’ professional experience the Helsinki

Metropolia University of Applied Sciences creates new wireless communication

based projects. The LoRa and LoRaWAN based communication network is an

industry standard, and a widely used technology. It has a broad application area

and it provides a good foundation for many interesting experiments. It is an ideal

choice because the long distance coverage makes it available anywhere inside

the building and the campus premises (compared to other indoor technologies,

such as Wifi). The drawback is that it needs a supporting back-end network and

centralized server hierarchy. The LoRaWAN server infrastructure should be

properly installed and secured and it demands periodical administration and

maintenance.

To mitigate these maintenance and security challenges the server is planned to

run in a virtual environment. In docker the operating system and applications are

running in separated, maintained containers. The server components run in

individual containers and they are communicating in a virtual network. The server

hierarchy has only the necessary access to the host computer and the physical

network. Therefore the internal communication is secured against threat from the

external network.

The containers are read-only file system images, the persistent configuration files

are stored on the host machine. This approach makes the configuration and future

migration tasks easier. To increase the resiliency of the server hierarchy all

inter-server communication is performed through Transport Layer Security (TLS)

connection.

The LORIX One LoRaWAN gateway provide the connection between the

end-devices and the local network. A device with outdoor antenna was provided

at the project launch meeting. Altough, as the device was used earlier, it was in an



4

unknown state.

For cost-efficiency and component availability reasons the Raspberry Pi Pico

board was selected. Combined with the Lambda62-8S radio module they provide

a basis for the end-device. The MicroPython is simple, user-friendly language

ideal choice for beginners. The MicroPython command line provides a convenient

way to program the board and experiment with the language. The hardware

components for the end-device were not available at the project launch meeting.

The components were purchased at a later time.

In the next chapter the development process is explained and a short description

of the available technical manuals is presented.



5

3 Material and Methods

3.1 Initial briefing

The product was developed for Helsinki Metropolia University of Applied

Sciences. The development was started with a meeting, where the instructors

outlined the project goal. During this meeting the requirements were discussed

and the end-device hardware composition was decided upon. At the end of the

meeting the currently available devices were provided. This hardware package

consisted of the aforementioned LoRaWAN gateway and an STM32 LoRa

discovery kit. The STM32 microcontroller was provided for development and

testing purposes, but it is not part of the agreed project goal.

3.2 Researching and Planning

After the initial briefing a research on the possible technologies started. First

research target was the LoRaWAN network, how does LoRa based

communication work, what component are required and how do they interoperate.

Out of the available LoRaWAN servers the Chirpstack server package was

choosen. It is a user-friendly, open-source and modular server stack, available as

downloadable docker image. It seemed to be a good fit for the project, and it

provided a reliable foundation.

Next, the Chirpstack server components were studied. Its key features were

examined, and the required dependencies gathered.

Finally, notes were taken and a draft network hierarchy drawn with all the

necessary components included.



6

3.3 Network implementation

The installation process was performed in an agile manner, in other words first a

minimal set up was created. When the services were running adequately,

additional components were added.

The network service installation started with Chirpstack server’s Docker Compose

based set up. This install contains the necessary PostgreSQL, Redis and

Mosquitto MQTT broker services. During the installation the component’s

configuration folder was moved from the default docker folder to a user specified

folder. This allowed an easier project archiving later on. Next, the server

component configurations were adjusted to the local network’s requirements. To

evaluate the outcome of the basic installation the server logging output was

examined and affirmed that no severe errors were present.

In the next development cycle, the LORIX One LoRaWAN gateway was set up. As

it was mentioned in the previous chapter, the gateway device was in an unknown

state. Therefore a new operating system had to be installed. The Chirpstack

server’s Gateway OS software seemed to be a proper candidate. After the

installation, the packet-forwarder was configured between the Gateway OS and

Chirpstack Gateway Bridge. The gateway device addition-process was concluded

by acknowledging succesful gateway status updates in the Chirpstack Network

Server logging output.

The last cycle in server stack implementation secured the inter-server

communication channels. The Chirpstack server suite supports this through the

TLS protocol. The server software automatically enforce TLS based

communication when certificates are generated and included in the configuration

files. The certificates generation scripts were downloaded and the generator’s

configuration files were adjusted to the local network parameters. After the

installation of the required softwares the certificates were generated.

Subsequently the certifications were copied into the server configuration folders.

Finally the certificates were enabled in the Chirpstack server configurations.



7

In relation to securing the servers the Mosquitto MQTT broker had to be secured.

During the unsecured way of connection the user is authenticated with a

username and password pair. These credentials may come from two different

sources. The first group of credentials belong to the internal servers, that is the

Chirpstack Network Server, Chirpstack Application Server and the Chirpstack

Gateway Bridge. These are persistent user names. Their password and Access

Control List (ACL) are verified from local files. The second group of credentials

belong to the Chirpstack Application Server users. Their username and password

are verified from the Structured Query Language (SQL) database. The Mosquitto

MQTT broker does not support authentication from SQL database. To make this

feature available an additional authentication plugin is required. For the project the

Mosquitto Go Auth plugin was selected. As the Mosquitto Go Auth plugin is

available with Mosquitto MQTT broker as a docker image, integration is performed

by replacing the default docker image.

The network implementation process concluded with the testing of the whole

system. During these tests, the STM32 LoRa discovery kit was programmed to

connect to the network and periodically send messages. These tests highlighted

errors in the network communication. Further investigation traced back the error to

packet-forwarder related problems. To correct the problem the operating system

on the LORIX One LoRaWAN gateway was replaced. The new operating system,

the LORIX OS was a superior choice to the previous one. It is an intuitive, stable

and secure software. [4] Following tests proved that the operating system

replacement solved the network communication problems.

3.4 End-device Development

Research continued with the internals of LoRa radio communication. Early tests

and experiments were conducted on the STM32 LoRa discovery kit. When the

hardware components for the end-device had been received, the electronic

development has started. Connector headers were soldered onto the

microcontroller and the radio module. Then a prototype device was built on a

solderless prototyping board. This way the pin connections between the controller



8

and radio module could be reconfigured easily.

Next, the radio module driver developments was started. The Lambda62-8S radio

module driver is based on an open-source, freely available software. Because

there are differences in MicroPython implementations on different platforms,

adjustments were added to fit the software to this particular prototype device. The

driver is written exclusively in MicroPython. During the driver development, the

Serial Peripheral Interface (SPI) communication was monitored with a logic

analyzer.

The STM32 LoRa discovery kit was used as a debugging tool during driver

development. It was programmed to send or receive LoRa frames. The radio

waves could not be inspected in a similar way as the logic analyzer can monitor an

electronic channel. When the prototype device and the STM32 device were

directly communicating, mistakes could be logically deducted and the proper radio

operation could be confirmed.

The LoRa software library contains utility classes for creating and processing

LoRa packets and frames, processing payload, generating and verifying

Cipher-based Message Authentication Code (CMAC). The library development

was started from an open-source project. However, the available implementation

is written in Python. There are differences between Python and MicroPython,

most importantly in the available packages. The cryptography library is not

available in MicroPython. Therefore an open-source Advanced Encryption

Standard (AES) implementation was inserted into the project.

The LoRa software library provides only elemental LoRa frame generation. For

the LoRaWAN functionality an additional module had to be developed. The design

process had started with a thoroughful study of the LoRaWAN standard

specification. Afterwards, a flowchart was planned, which follows the description

in the specification. The flowchart is presented in Chapter 5. Proposed solution.

Based on the design a LoRaWAN handler class was implemented. During the

development the necessary changes were updated in the design.



9

3.5 Testing

The development concluded with a thorough testing phase. As the MicroPython is

not interpreted language, the only way to fully test the LoRaWAN library is to run

every possibly code path. On the other hand Chirpstack Network Server does not

support simple way of packet forging. The test packet creation requires additional

software technologies. Because the extent and the time requirement of the test

packet creation, the detailed software testing is put out of the project’s scope.

Based on the field test it can be concluded that errors are unlikely.

The end-device and LoRaWAN communication is tested by performing

measurements and transmitting the results. The received measurements were

logged on the server computer. The measurements were running for more than 24

hours. The end-device was tested both on wall charger power source and on

battery power source.

3.6 Software installation on target computer

When the project was finished, the whole system was demonstrated to the

instructors. As a final step the server suite had to be installed on a Helsinki

Metropolia University of Applied Sciences’ computer. First the installation was

simulated in a virtual environment. This had revealed problems, possibly bugs, in

the latest software images. Some components stopped working properly. To solve

the problem, the software components had been bound to specific versions and

releases. This is further explained in the last section of Solution chapter.



10

4 Theoretical background

LoRaWAN based networks employ various technologies on multiple layers to

create a reliable communication media. It consists of numerous software

protocols and hardware components developed and maintained independently.

The LoRa and LoRaWAN specification describes the requirements the final

product must conform to, but the actual implementation is left to the manufacturer.

In the next section the theoretical specification is presented, while the later

sections of the chapter describe actual hardware and software elements.

4.1 LoRa and LoRaWAN

LoRa is a proprietary, royalty free, wireless communication technique. It is based

on spread spectrum modulation to transmit elemental data fragments called chips.

Each chip is transmitted over constantly increasing frequency. LoRa is the

physical layer of LoRaWAN communication. During transmission the frequency

continuously increases within a specified bandwidth around the central frequency.

The central frequency in the EU region is from 863 MHz to 870 MHz, which is in

the unlicensed Industrial, Scientific and Medical band. The available bandwith in

the SX1262 modem is from 7.81 kHz to 500 kHz. [5]

Chips are transmitted multiple times to increase robustness and reliability. The

Spreading Factor parameter means the number of chips that represent a single

bit. The value of the Spreading Factor can be selected between 6 and 12. Higher

number means more repetition, therefore the speed of data transmission

decrease, but robustness improve. [5]

The frequency and the Spreading Factor together specify the speed of data

transmission, called Data Rate. Accrding to the standard the minimal, mandatory

set is from DR0 to DR5. The actual bitrate at DR0 is 250 bit/s, at DR5 is 5470

bit/s. [6]



11

LoRa modems use Forward Error Correction (FEC) algorithms to improve the

link’s resilience to interferences. Before transmission additional bits are calculated

and added to the data stream. The price of better noise immunity is longer

transmission time. The LoRaWAN standard uses the Coding Rate 1, which means

1 additional bit for every 4 bits of data, therefore the data payloads are 25 precent

longer. [5] [2]

Key features of LoRa is energy efficiency and long range. Battery operated

devices using LoRa based communication can possibly operate for years. The

typical communication distance is more than 10 kilometers. [3]

LoRaWAN specification is a networking protocol based on LoRa. It specifies the

end-device operational principles and requirements to connect IoT devices to the

Internet. It provides key features required for reliable IoT operation such as

bi-directional communication and encrypted messages. Additional features are

available such as multi-cast address groups, roaming (between networks) and

geolocation. [1]

The LoRaWAN network topology is a star-of-stars layout. The network servers

communicate with numerous end-devices through multiple gateways. LoRa

gateways convert between wireless LoRa frames and wired User Datagram

Protocol (UDP) packets transparently. The gateways communicate with

end-devices directly on a bi-directional, half-duplex channel. [1]

There are 3 classes of end-device communication to satisfy different requirements

in the wide range of applications. These classes provide options to balance

between communication latency and energy-efficiency.

Class A - All is the default communication method. It must be implemented in all

LoRaWAN devices. During class A communication transfer is always initiated by

the IoT device, allowing it to follow an energy efficient scheme. The end-device

can go into sleep mode between transmissions for an indefinite time. After

transmission the device must open two receive windows to check for possible

downlink frames. The application server must enqueue and send downlink frames



12

Figure 1: LoRa and LoRaWAN packet structure [5] [6] [7]

after reception.

The Class B - Beacon communication method enhances the end-device

availability. The devices are synchorized to the network and they open downlink

windows at scheduled times. This way the communication becomes well

determined, with increased energy consumption although still viable for battery

operated devices.

As an alternative for Class B, Class C - Continuously listening devices keep

downlink windows open all times between transmissions. Therefore the network

server can send downlink frames without latency. Because the higher power

consumption involved this method is viable for devices with continuous power

source. [1]

There are many parameters regarding the transmission. The frequency, and the

bandwith were already mentioned in the LoRa and LoRaWAN section. The data

rate which consists of the frequency and the Spreading Factor, and the Transmit

Power defines the transmission further. As many transmitting device can quickly

fill up the available band, these parameters are controlled by the LoRaWAN

Network Server. Consequently the transmissions are distributed over the band.

This process is called Adaptive Data Rate (ADR).

AES algorithms with 128-bit keys are used in two layers during LoRaWAN



13

Figure 2: LoRaWAN protocol layout [1]

communication. The Network Session Key is used to authenticate and ensure

integrity of messages between end-device and network server. The Application

Session Key is used to encrypt payload exchanged with the application server.

The two session keys are marked in Figure 1. In the Activated By Personalisation

(ABP) method the keys are pre-set during production consequently they remain

constant throughout the device lifetime. Alternatively, in the Over-The-Air

Activated (OTAA) the two keys are generated and shared with a constant and

pre-defined Application Key. [1] [7]

To increase resilience against replay attack and to eliminate message repetitions

every frame has a counter number. Identical frames are sent with the same

counter number. If the network server receives multiple frames from gateways

sent by the same end-device, the frames with same counter number are filtered

and forwarded only once. [7]

Figure 2 shows the application and network communication layers along with the

underlying hardware layer. [1]

Figure 1 illustrates the LoRa packet layered structure with the fields used. Packets

are created and processed in an embedded fashion, similar to the Open Systems

Interconnection model. Data from application layer is encapsulated on the



14

Medium Access Control (MAC) layer into a frame which, in turn embedded in the

packet on the physical layer. The LoRa modem handles the physical layer. The

fields of this level are needed for transmission synchronization and error detection

and correction. The LoRa gateway decides the forward direction based on the

MAC header. Uplink packets are forwarded to the Network server on the wired

network. Downlink packets transmitted to the end-devices on the radio. The

Network Server verifies the Message Integrity Code (MIC) field. This field provides

cryptography based message integrity check. The purpose of the field is to protect

LoRa packets from tampering. Only frames with valid MIC are forwarded. The

application layer is visible for both Network Server and Application Server

depending on the content. Frames where port number is zero are intended for the

Network Server and it contains LoRaWAN network management commands and

answers. If the frame port number is a non-zero value the payload contains

application data. These payloads are decrypted and processed by the Application

Server. [5] [6] [7]

4.2 Chirpstack LoRaWAN Network Server Stack

Chirpstack project is an open-source network server suite. Together the software

components provide complete LoRaWAN network server solution. As the

components are created in an independent, modular fashion, they can be

integrated into existing infrastructures. The Chirpstack server has a user-friendly

graphical user interface for configuration, management and integration. [8] In the

next subsections the server components and their internal communication are

introduced.

4.2.1 LoRa Gateway

LoRa gateways listen on multiple channels and data rates simultaneously. Then,

as mentioned in the previous section, they convert the received packets to wired

protocol format and forward it toward the network server. The software handling

the gateway’s communication on the wired network is called Packet Forwarder.

The Semtech UDP Packet Forwarder and the Semtech Basic Station Packet



15

Forwarder are two commonly used implementations.

The LORIX One LoRa gateway is a commercially available, industrial grade

device. It has its on Linux based operating system called Lorix OS. The system is

configured and monitored through a Web User Interface. [9]

4.2.2 Chirpstack Gateway Bridge

The Chirpstack Gateway Bridge is running on a network server machine. It is the

communication channel between the servers and the network. It transforms data

between the Packet Forwarder’s format and the format used by the Chirpstack

servers internally. The bridge is communicating with the Network server through

the MQTT broker.

4.2.3 Chirpstack Network Server

The Chirpstack Network Server is an open-source implementation of the

LoRaWAN Network Server specification. The software is performing LoRaWAN

frame related tasks, such as de-duplication, authentication and scheduling of

downlink frames. The Server is relaying the processed frames between the

Gateway Bridge and the Application Server. The Network Server is capable to

regulate end-device communication. With the MAC commands the network load

can be distributed among frequencies and bandwidths. This way the LoRa

network always performs optimally.[8]

4.2.4 Chirpstack Application Server

The Chirpstack Application Server is an open-source combined implementation of

the LoRaWAN Application Server and the LoRaWAN Join Server specification.

The server is responsible for LoRa device bookkeeping, presenting the device

status, handling the end-device activation processes and performing application

payload encryption and forwarding. The end-devices and LoRa gateways are

grouped under services and application profiles. Information access is restricted



16

on organization and user basis. The Application Server provides a web-based

User Interface, where profiles and devices are managed, the integration of

external services can be performed and access control tokens may be generated.

Moreover, the Application Server periodically checks and records gateway and

end-device availability and activity, thus providing a performance history. For

developers it allows LoRa frame inspection for debugging purposes. [8] In the

next section, the MQTT protocol is presented, which provides the internal

communication channel for Chirpstack Network Server Stack.

4.3 Message Queuing Telemetry Transport

The MQTT is a light-weight, simple, open, publish-subscribe messaging transport

protocol with strong security. It is ideal to use in environment with limited

resources such as IoT and Wireless Sensor Network. The protocol typically used

over TCP/IP protocol. The MQTT protocol is used as application layer protocol.

The publish/subscribe message pattern provides reliable one-to-many message

distribution, even when the devices and applications decouple frequently. Another

characteristic feature of MQTT is the transport being independent from the

payload content. This means that any information can be sent in any format, it will

not have effect on the delivery. The quality of service describes three different

options. In case of ”At most once” the message is sent only once and messages

are allowed to be lost. In ”At least once” scenario the message deliveries are

guaranteed, but they may arrive multiple times. Finally, in ”Exactly once” case the

messages are assured to be delivered exactly once. This order of quality marks

the necessary effort from simple to complex. [10]

4.4 Transport Layer Security

The TLS protocol allows applications communicating over networks or the Internet

in a secure way to prevent eavesdropping, tampering and message forgery. The

protocol achieve this by creating a secure channel between the two

communicating parties. The underlying transport must be a reliable, in-order,

bi-directional connection. The secure channel provides authentication,



17

confidentiality and integrity to the delivered messages. The authentication secures

that the communication is not diverted and messages are delivered to the intended

recipient. The server is always authenticated, while the client authentication is

optional. Confidentiality means that, the message can be read only by the

intended recipient. Integrity ensures the message cannot be altered by attackers

without the recipient noticing it. According to the specification these properties

hold even if the attacker has complete control of the communication medium. [11]

4.5 End-devices

An end-device in the LoRaWAN network is usually a battery operated

microcontroller with scarce resources. They perform a simple task such as

measurement or actuation. Applied in vast number they can control complex

systems occupying large area.

4.5.1 Raspberry Pi Pico

Raspberry Pi Pico is a low cost and flexible development board. It has 26 general

purpose Input/Output channel. Its power supply is flexible, it can be easily

operated from micro-USB port, external power supply or batteries. The hardware

platform is high quality cost-effective and available in large numbers. The software

development environment is comprehensive, well documented. It has sufficient

calculation capabilities and enough memory to reliably support the MicroPython

environment and run the necessary drivers for the LoRa radio module. These

properties make the board ideal for study purposes. [12]

4.5.2 LoRa Radio module

The Lambda62-8S LoRa radio module from RF Solutions is a cost effective radio

module featuring the Semtech SX1262 chip modem. It is capable of ultra-long

distance communication employing spread spectrum modulation based

transmission and it has good interference immunity and minimal energy

consumption. [13] The module support preamble detection, the packet engine has



18

buffer for message up to 256 bytes with Cyclic Redundancy Check (CRC). It

communicates on 868 MHz EU band. The modem offers a large amount of

configuration parameters to meet the requirements of the applications based on

the LoRaWAN standard. The radio module communicates with the microcontroller

through SPI line. [5]

4.5.3 MicroPython

MicroPython is a Python 3 programming language implementation targeted to

microcontrollers and constrained environments. It includes small portion of the

Python standard library. Additionally it contains hardware specific modules for low

level hardware access. The simplified, script-style approach makes the Python

language ideal for learning purposes. [14]



19

Figure 3: Component hierarchy

5 Proposed solution

5.1 LoRaWAN network hierarchy

Figure 3 illustrates the information flow path, from the user application to the

Chirpstack Application Server. The message starts from the user application,

encapsulated in a LoRaWAN frame, and the frame is encrypted. Afterwards the

packet is sent through the SPI line to the LoRa radio, which, in turn transmits it.

The LORIX One LoRaWAN gateway receives the packet and forwards it towards

the Chirpstack Gateway Bridge. The Gateway Bridge converts the UDP packet to

MQTT message. The Chirpstack Network Server receives the message and

based on the packet’s content either process it or forwards to the Chirpstack

Application Server.

The LoRaWAN handler library has been written as part of the thesis work. Other

software modules have come from open-source Github projects. They are

modified and improved to fit the microcontroller and the project’s objectives.

5.2 Chirpstack Server Suite

The Chirpstack Application Server has a Graphical User Interface (GUI) for

configuration and device management. The interface is organized as user

companies, network devices and applications. As shown in Figure 4 the operation



20

Figure 4: Chirpstack Application Server Graphical User Interface

of the devices can be monitored. New devices can be added and configured on

the applications page.

Figure 5 shows the Chirpstack Server Suite running in terminal in separate docker

containers. The server components provide log for monitoring the network traffic.

The MQTT broker is installed along with the LoRaWAN servers inside a Docker

container. In case of the unsecured way of connection the user is authenticated

with a username and password pair. The first group of credentials belong to the

internal servers, that is the Chirpstack Network Server, Chirpstack Application

Server and the Chirpstack Gateway Bridge. These are persistent user names.

Their password and ACL is verified from local files. The second group of

credentials belong to the Chirpstack Application Server users. Their username

and password is verified from the SQL database. The application related

connection is performed in secured way with certificates. These certificates are

generated in Chirpstack Application Server’s web-based user interface, under the

applications/integrations page.



21

Figure 5: Chirpstack Application Server Terminal Logging

The PostgreSQL database stores all data of the Application Server. It might be

cleared by deleting the content of the database folder. During the next start the

database server detects the empty folder and automatically initializes a new

database from scripts. This way the Chirpstack Application Server starts anew.

After the initialization the Chirpstack Network Server and the Gateway has to be

reconnected, as described in the post-install instructions.

5.3 IoT end-device implementation

Figure 6 shows the end-device prototype used during development for testing the

network communication. The device is created on a solderless prototyping board.

This allowed quick reconfiguration and debugging during the early developments

when the radio module was set up on the SPI line. The schematic of the prototype

device can be found in Appendix 1.



22

Figure 6: Prototype end-device

5.4 IoT end-device software library

The LoRaWAN handler class is built upon the LoRa library and the LoRa radio

driver. It extends the communication libraries with the LoRaWAN functionalities,

such as device activation, message retransmission, incremental frame counter

handling, frequency hop, and MAC command processing. After instantiating the

LoRaWAN handler class, the ’otaa’ method should be called. This initiates the

device activation mechanism. The method sends the OTAA join request and waits

for the answer. When the OTAA join accept has received, the method saves the

device address, the network session key and the application session key. The

application key and the Device Extended Unique Identifier (DevEUI) is saved in a

Python class in a separate file. If no join accept received, the method continuously

retries sending the join request message.

After the sucessful activation a message can be sent. The ’send’ method can

construct both confirmed and unconfirmed uplink frames. If the success of the



23

Figure 7: LoRaWAN Handler class send method’s flowchart



24

send can be deducted, the method returns ’True’ value, otherwise ’False’ value.

Figure 7 presents the operation mechanism of the send method. The send

method implements the recommended message transmission mechanism set by

the LoRaWAN standard. First the device activation and the validity of the message

checked. Then a frame is created and repeatedly sent. The current repetition time

specifies how many times the packet should be sent. The resending stops when a

confirmation received, or a time-out occurs. This phase depends on the frame

type (either a confirmed or an unconfirmed frame). Finally the frequency changed

and the counters are incremented. In case of MAC command answer is in queue,

waiting for send, but if no uplink frame is waiting for transmission, a new empty

uplink frame is created. As a result the MAC commands are answered without

delay and the requirements stated in the specification are fulfilled.

If any received downlink frame contains MAC commands, the commands are

extracted and processed. The MAC command processing is implemented in the

’ProcessMACCommands’ sub-function. The possible commands and effect is

illustrated in Figure 8. According to the LoRaWAN Link Layer specification v1.0.4

[7], the unknown commands are ignored.

5.5 Deviations from the specification

Altough the effort to create a full implementation of LoRaWAN, which is viable in

production environment, available time frame is limited. As a consequence, there

are a few missing features in the project. After the update on the Chirpstack

Server modules the Secure connection between the Network Server and Join

Server does not work over the TLS channel. This error has occured during

installation onto the Metropolia provided computer, therefore it could not be further

investigated. As a quick solution, the TLS is disabled.

Another error occured during the final install. The Mosquitto Go Auth plugin does

not authenticate from files in the latest image. To fix this problem, the Mosquitto

MQTT broker has fixed version and digest. During install the downloaded docker



25

Figure 8: Received frame processing



26

image is replaced with a local copy.

The following are missing features, the network operates without them, but they

could be implemented to further increase the usability of the network. Downlink

communication with application is not possible. The end-device can send

messages and process MAC commands. To make downlink message reception

available, the Proprietary frame type has to be implemented. Consequently

firmware update over-the-air does not work either.

No roaming is implemented. As only one gateway was provided, there was no

possibility to experiment with roaming, altough possibly the required work hours

exceeds the project’s allocated time frame. Similarly no support for Class B and

Class C end-devices has been implemented. This requires a separate packet

receiving and processing mechanism.

From the aforementioned MQTT broker problem comes the question: Is Mosquitto

Go Auth necessary? If the Go-Auth plugin is removed, there is no username

based authentication. The Mosquitto MQTT broker can handle internal server

connections from file. For all other connections the certification based connection

is recommended. The certifications are provided on per application basis. As a

result the username based authentication is removed. It depends on the usage

methods whether this is an unused feature. This functionality was included to

increase the number of possible use cases.

The tests are performed with one end-device. In production environment with

hundreds of devices, unnoticed errors might show up stemming from saturated

band. More end-device software library tests might be necessary in a network with

a large number of end-devices.



27

6 Conclusions

The aim of the thesis was to develop a LoRaWAN network for experimenting

purposes. The server stack is running in docker environment on a personal

computer. The LoRaWAN gateway is connected to the network and it is reliably

communicating with the server and the end-devices. The second aim was to

create a prototype end-device and develop an examplary software to demonstrate

the proper operation. The work is based on the available LoRaWAN specifications

and hardware component datasheets.

As presented in the Solution chapter, the goals set for this study were achieved.

The server stack is running and logging events. Through the user interface the

Chirpstack server can be configured and monitored. The end-device was tested

and it is working adequately. The schematics and the software library were

provided for reproduction. Along with the server installation, additional

documentation is provided to help later reinstall and configuration tasks. The

resulting network provides a reliable foundation for further tests and

developments.

There are still many unimplemented features left, as discussed in the specification

section. Developing those features would increase the available tasks the IoT

device can perform. However, the network is fully functional without those

features.



28

References

1 Alliance®, LoRa. 2021. What is LoRaWAN®Specification. Online.
<https://lora-alliance.org/about-lorawan/>. Visited on 04/16/2021.

2 Corporation, Semtech. 2021a. What is LoRa®? Online.
<https://www.semtech.com/lora/what-is-lora/>. Visited on 04/16/2021.

3 — 2021b. Why LoRa®? Online.
<https://www.semtech.com/lora/why-lora/>. Visited on 04/16/2021.

4 What is LORIX OS? 2021. Online.
<https://iot.wifx.net/docs/lorix-os/latest/what-is-lorix-os>. Visited on
10/17/2021.

5 Corporation, Semtech. 2017. SX1261/2 Long Range, Low Power,
sub-GHz RF Transceiver. Semtech Corporation.
<https://semtech.my.salesforce.com/sfc/p/E0000000JelG/a/
2R000000HT7B/4cQ1B3JG0iKRo9DGRkjVuxclfwB.3tfSUcGr.S_dPd4>.
Visited on 10/14/2021.

6 Committee, LoRa Alliance Technical. 2020a. LoRaWAN Regional
Parameters (RP002-1.0.2). LoRa Alliance. <https://lora-
alliance.org/resource_hub/rp2-102-lorawan-regional-parameters/>.
Visited on 10/14/2021.

7 — 2020b. LoRaWAN L2 1.0.4 Specification (TS001-1.0.4). LoRa
Alliance. <https://lora-alliance.org/resource_hub/lorawan-104-
specification-package/>. Visited on 10/14/2021.

8 Broocar, Orne. 2021. ChirpStack open-source LoRaWAN®Network
Server. Online. <https://www.chirpstack.io>. Visited on 06/01/2021.

9 Discover the LORIX One 2021. Online. <https://www.lorixone.io>. Visited
on 10/16/2021.

10 Andrew Banks Ed Briggs, Ken Borgendale & Gupta, Rahul. 2019. MQTT
Version 5.0 Specification. Online.
<https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf>. Visited on
03/04/2021.

11 Rescorla, E. 2018. The Transport Layer Security (TLS) Protocol Version
1.3. Online. <https://datatracker.ietf.org/doc/html/rfc8446>. Visited on
09/12/2021.

12 Ltd., Raspberry Pi (Trading). 2021. Raspberry Pi Pico Datasheet. An
RP2040-based microcontroller board. Version 000dcb1-clean.
<https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf>. Visited on
10/14/2021.

https://lora-alliance.org/about-lorawan/
https://www.semtech.com/lora/what-is-lora/
https://www.semtech.com/lora/why-lora/
https://iot.wifx.net/docs/lorix-os/latest/what-is-lorix-os
https://semtech.my.salesforce.com/sfc/p/E0000000JelG/a/2R000000HT7B/4cQ1B3JG0iKRo9DGRkjVuxclfwB.3tfSUcGr.S_dPd4
https://semtech.my.salesforce.com/sfc/p/E0000000JelG/a/2R000000HT7B/4cQ1B3JG0iKRo9DGRkjVuxclfwB.3tfSUcGr.S_dPd4
https://lora-alliance.org/resource_hub/rp2-102-lorawan-regional-parameters/
https://lora-alliance.org/resource_hub/rp2-102-lorawan-regional-parameters/
https://lora-alliance.org/resource_hub/lorawan-104-specification-package/
https://lora-alliance.org/resource_hub/lorawan-104-specification-package/
https://www.chirpstack.io
https://www.lorixone.io
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://datatracker.ietf.org/doc/html/rfc8446
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf


29

13 Solutions, RF. 2021. Lambda62. +22dBm LoRa 868/918MHz Transceiver.
RF Solutions. <https://www.rfsolutions.co.uk/downloads/1623420782DS-
LAMBDA62-6.pdf>. Visited on 10/14/2021.

14 George, Damien. 2021. MicroPython. <https://micropython.org>. Visited
on 10/14/2021.

https://www.rfsolutions.co.uk/downloads/1623420782DS-LAMBDA62-6.pdf
https://www.rfsolutions.co.uk/downloads/1623420782DS-LAMBDA62-6.pdf
https://micropython.org


Appendix 1
1 (2)

1 Schematic drawing of the end-device

The electronic connection of the end-device is presented in figure 9.



Appendix 1
2 (2)

Figure 9: Schematic drawing of the end-device


	List of Abbreviations
	Glossary
	Introduction
	Project Specifications
	Material and Methods
	Initial briefing
	Researching and Planning
	Network implementation
	End-device Development
	Testing
	Software installation on target computer

	Theoretical background
	LoRa and LoRaWAN
	Chirpstack LoRaWAN Network Server Stack
	LoRa Gateway
	Chirpstack Gateway Bridge
	Chirpstack Network Server
	Chirpstack Application Server

	Message Queuing Telemetry Transport
	Transport Layer Security
	End-devices
	Raspberry Pi Pico
	LoRa Radio module
	MicroPython


	Proposed solution
	LoRaWAN network hierarchy
	Chirpstack Server Suite
	IoT end-device implementation
	IoT end-device software library
	Deviations from the specification

	Conclusions
	References
	Appendices
	Schematic drawing of the end-device

