

Bachelor’s thesis

Degree Programme in Information and Communications Technology

2021

Alarik Näykki

UNITY DOTS IN PRODUCTION

DOTS pathfinding implementation in VR & AR.

Bachelor’s | Abstract

Turku University of Applied Sciences

Degree Programme in Information and Communications Technology

2021 | Number of pages 68

Alarik Näykki

Unity DOTS in production

 DOTS pathfinding implementation in VR & AR.

Unity’s Data-oriented technology stack (DOTS) is Unity’s approach to Data-oriented

design in Unity. DOTS promises great performance gains compared to the current

object-oriented Unity game development. DOTS is still in preview, which gives reason

to research its current capabilities. This thesis aimed to find out if DOTS was ready to

be used in production. The secondary goal of the thesis was to test the combability of

VR and AR with DOTS.

The primary method used in this thesis was the implementation of pathfinding using

DOTS. This pathfinding was benchmarked on two computers to compare the difference

hardware makes in DOTS development. The pathfinding was also implemented into

VR and AR environments to find any combability problems with DOTS. The pathfinding

method was also implemented using the object-oriented Unity tools to compare the

performance difference between it and the DOTS approach.

The pathfinding implementation was successful and ran up to 13 times faster

compared to the object-oriented approach. Moreover, no combability issues with VR or

AR with DOTS were found during the development. Still, it was concluded that DOTS is

not ready to be used in production as its usage was deemed too arduous in its current

state.

Keywords:

Unity, game development, data-oriented design, DOTS, C#, multithreading, VR, AR

Opinnäytetyö (AMK) | Tiivistelmä

Turun ammattikorkeakoulu

Tieto- ja viestintätekniikka

2021| 68 sivua

Alarik Näykki

Unity DOTS tuotannossa

 DOTS polunetsinnän toteuttaminen VR:ssä ja AR:ssä.

Unityn datasuuntautunut teknologiapino (DOTS) on Unityn lähestymistapa

datasuuntautuneeseen suunnitteluun Unityssä. Unity lupaa suuria suorituskykyhyötyjä

DOTS-kehityksessä nykyiseen oliosuuntautuneeseen Unity-pelikehitykseen verrattuna.

DOTS on vielä esikatseluvaiheessa, joka tarkoittaa ettei se ole vielä valmis. Tämä

antaa syyn tutkia sen nykyisiä ominaisuuksia. Tämän työn tavoitteena oli selvittää,

onko DOTS valmis käytettäväksi tuotannossa. Tutkimuksen toissijainen tavoite oli

testata VR:n ja AR:n yhteensopivuutta DOTSin kanssa.

Tärkein tutkimuksessa käytetty menetelmä oli polunetsinnän toteuttaminen DOTSin

avulla. Tätä polunetsintää vertailtiin kahdella tietokoneella, jotta voitiin verrata

laitteiston aiheuttamaa suorituseroa DOTS-kehityksessä. Polunetsintä toteutettiin myös

VR- ja AR-ympäristöissä. Näin pyrittiin löytämään mahdolliset

yhteensopivuusongelmat, joita DOTSilla saattaa olla VR:n tai AR:n kanssa.

Polunetsintä toteutettiin myös oliosuuntautuneilla Unity-työkaluilla, jotta voitiin verrata

sen ja DOTS-lähestymistavan välistä suorituskykyeroa.

Polunetsintätoteutus onnistui hyvin, ja se oli jopa 13 kertaa suorituskykyisempi

verrattuna oliosuuntautuneeseen lähestymistapaan. Kehityksen aikana ei havaittu

yhteensopivuusongelmia DOTS-kehityksessä VR:n tai AR:n kanssa. Silti pääteltiin, että

DOTS ei ole valmis käytettäväksi tuotannossa, koska sen käyttöä pidettiin

nykytilassaan liian hankalana.

Asiasanat:

Unity, pelin kehitys, data orientoitunut malli, DOTS, C#, monisäkeisyys, virtuaalinen

todellisuus, lisätty todellisuus

CONTENTS

LIST OF ABBREVIATIONS 9

1 INTRODUCTION 10

1.1 Structure of the thesis 11

2 DATA-ORIENTED DESIGN 12

2.1 Motives behind Data-oriented design 13

2.1.1 Cache Utilization 13

2.1.2 Parallelization & multithreading 14

2.1.3 Modularity 14

2.2 Differences between OOP and DOD 15

2.2.1 OOP Problem example 15

2.2.2 OOP problem solved using DOD 18

3 UNITY DOTS 21

3.1 Entity Component System 21

3.1.1 Conversion Workflow 22

3.1.2 Command Buffers & Update Groups 24

3.1.3 Dynamic buffers 25

3.2 Hybrid renderer 25

3.3 C# Job system 26

3.4 Burst Compiler 26

3.5 Unity Physics 28

3.6 Unity Animation 28

3.7 DOTS relevant C# 28

3.7.1 Parameter Modifiers 29

3.7.2 Unsafe C# code 29

3.7.3 Pointers in DOTS 29

4 RELATED WORK AND HYPOTHESIS 31

4.1 DOTS in production 31

4.2 Job Scheduling & burst in DOTS 32

4.3 Visualization of performance tests 32

4.4 Pathfinding 33

4.5 Virtual Reality 33

4.6 Mobile Augmented Reality 34

4.7 Research questions 34

4.7.1 Is the current version of DOTS production-ready? 34

4.7.2 Can DOTS performance data be visualized inside Unity Editor? 35

4.7.3 Can complex simulation pathfinding be created in DOTS, and how

well does it perform? 35

4.7.4 Is DOTS compatible with VR, and how well does it perform? 36

4.7.5 Is DOTS compatible with mobile AR, and how well does it perform?

 36

4.8 Conclusion of hypothesis 36

5 METHODS 38

5.1 Pathfinding benchmark environment 38

5.2 VR environment 41

5.3 AR environment 42

5.4 Pathfinding implementation 44

5.4.1 Pathfinding using experimental AI components 44

5.4.2 Destination & movement systems 48

5.4.3 Regular Unity pathfinding 51

5.4.4 Animations 52

5.5 VR with DOTS 54

5.6 AR with DOTS 54

6 BENCHMARK RESULTS 56

6.1 Pathfinding benchmark 56

6.1.1 Scheduling 56

6.1.2 Comparison to object-oriented 58

6.1.3 Animation 58

6.2 VR 59

6.3 AR 59

7 DISCUSSION & FUTURE WORK 61

7.1 Data visualization 61

7.2 Scheduling & burst 62

7.3 Pathfinding 62

7.4 VR 63

7.5 AR 63

7.6 DOTS in production 64

7.6.1 Animation 65

8 CONCLUSION 66

REFERENCES 67

FIGURES

Figure 1 – OOP class example 1. 16

Figure 2 – OOP Class example 2. 17

Figure 3 – Class diagram for OOP example in figure 2. 17

Figure 4 – Sizes of classes in memory (Visual studio memory diagnostics). 18

Figure 5 – 2 instances of SpecialEnemyUnit class visualized on a 64-byte

memory line. 18

Figure 6 – DOD data on the left is organized sequentially in groups. The OOP

data on the right is in a hierarchy tree with dependencies to its class

inheritance. 19

Figure 7 – two instances of int visualized on a 64-byte memory line. 19

Figure 8 – Convert to entity check box and conversion mode. 23

Figure 9 – Spawner Author authoring component has values that can be

changed in the inspector. 23

Figure 10 – Entity ForEach Query looks for entities with EnemyData and

Translation components. 24

Figure 11 – Pathfinding benchmark environment. 41

Figure 12 – VR testing environment with tower defence mechanics. 42

Figure 13 – AR testing environment with units spawning on an AR plane. 43

Figure 14 – Script (Schultz 2021) for creating pointers that can be used to

access the queries. 46

Figure 15 – Code validates the map location. 47

Figure 16 – Code used for finding the straight path from the start location to the

end location. 48

Figure 17 – Destination system for random destinations scheduled in parallel. 49

Figure 18 – Movement system script for units, scheduled in parallel. 50

Figure 19 – Pathfinding system activity diagram Blue = A system, Green = A

variable or a function of a system, Grey = The start or end of an update cycle,

Yellow = A Condition node. 51

Figure 20 – MonoBehaviour script used for regular pathfinding. 52

Figure 21 – OnUpdate method of HumanoidAnimPlayerSystem. 53

Figure 22 – Mono Animation animator parameters and states. 54

Figure 23 – OverlapSphere finds units in the tower’s range. 54

Figure 24 – Script bakes new NavMesh when planes are changed. 55

Figure 25 – Desktop scheduling benchmarks. 57

Figure 26 – Laptop scheduling benchmarks. 57

Figure 27 – Comparison between Parallel and mono benchmarking. 58

Figure 28 – Animation benchmarks. 59

Figure 29 – AR benchmarks. 60

Figure 30 – Example of a pathfinding benchmark run on the desktop where

265 000 units (green shapes) were rendered on the screen. 61

TABLES

Table 1 – Size and latency for typical desktop PC’s CPU and RAM. 13

Table 2 – Specifications of PCs benchmarked in the pathfinding environment. 40

Table 3 – Specification of phones used in the AR environment. 43

Table 4 – Unity and package versions. 44

LIST OF ABBREVIATIONS

AI Artificial Intelligence

AR Augmented Reality

CPU Central Processing Unit

DOD Data-oriented Design

DOTS Data-oriented Technology Stack

ECS Entity Component System

FPS Frames Per Second

GPU Graphics Processing Unit

OO Object-oriented

OOP Object-oriented Programming

OS Operating System

PC Personal Computer

RAM Random Access Memory

VR Virtual Reality

10

Turku University of Applied Sciences Thesis | Alarik Näykki

1 INTRODUCTION

The data-oriented technology stack (DOTS) is Unity’s approach to data-oriented

design (DOD) for Unity development. Unity markets this new technology as a

solution with significant performance benefits compared to the current

development model. Their tagline is “Performance by default”, which means that

the developer can have excellent performance by default by following their data-

oriented design patterns. However, DOTS has not been declared production-

ready by Unity (Unity 2021b). Production-ready, in this case, means that the

software is capable of fully meeting the requirements of developing

videogames. Therefore, it is unknown when or if game developers will start

using DOTS or what their opinion on it is. The author of this thesis considers the

current situation of interest since it seems possible to investigate the readiness

of the product before it is deemed officially ready by Unity and other developers.

Therefore, the purpose of this thesis was to find out if DOTS was production-

ready. Production readiness is evaluated by developing a pathfinding method in

DOTS and comparing it to a similar method created using conventional Unity

tools. This way, the production readiness can be discerned from performance

measurements and experience gained during the development.

In addition, the AR and VR combability with DOTS are also a subject of the

research, as the research done expressly on these combinations was limited.

Both VR & AR are also greatly dependant on the hardware they run on, which

gave the author more reason to research optimizations directly.

For the sake of conciseness, this thesis does not dive deep into conventional

object-oriented Unity development topics but does compare some object-

oriented topics to their data-oriented counterparts. Therefore, to best

understand this thesis, the reader would need to have some existing

understanding of object-oriented programming and Unity development

11

Turku University of Applied Sciences Thesis | Alarik Näykki

1.1 Structure of the thesis

The structure of the thesis is as follows. Chapter 2 introduces Data-oriented

design and its motives. Chapter 3 explains Unity DOTS in detail. Chapter 4

explores past work on the topic and explains the hypothesis of this work.

Chapter 5 goes through the methods used for the research. Chapter 6 presents

the results of the methods. Chapter 7 discusses the findings, and finally,

Chapter 8 concludes the research.

12

Turku University of Applied Sciences Thesis | Alarik Näykki

2 DATA-ORIENTED DESIGN

The term Data-oriented design was coined for game development by Llopis

(2009) but has been around previously in various forms (Cardelli 1988; Joshi

2007). Llopis identified problems with how hard it was to obtain optimal

performance using OOP, which led them to explore parallelization and cache

utilization with DOD. Additionally, their article compares the advantages and

drawbacks of DOD to OOP (Object-oriented programming) in game

development.

Programming paradigms classify programming languages based on their

features. Data-oriented design, or DOD for short, is an optimization technique

(Fabian 2018). DOD is not defined as a paradigm, but it is helpful to discuss it in

the context of paradigms. Common paradigms include object-oriented,

procedural, and functional programming. A coding language can use multiple

paradigms like C++ or focus on one like C# with object-oriented programming

(Microsoft 2021b). Unity and Unreal are the most popular game engines

(Doucet et al., 2021), and object-oriented programming has been the default

paradigm for them (Unreal 2021; Unity 2021d). This is one of the reasons why

DOD is often compared to object-oriented programming in a game development

context.

Programs are about transforming data from one form to another (Acton 2014). A

game, in essence, is a program that manipulates data to serve the interests of

the player. So, it makes sense that in game development, we need to think

about the data and its characteristics before designing the code that executes

the transformation. First, the data needs to be understood to understand its

problems. If the problem is understood, the cost of the problem is also

understood. The cost of the problem can be reasoned with if the hardware can

be understood. With this foundation, DOD aims to solve problems case-by-case

rather than being as general as possible. Instead of solving the most generic

problems, it solves the most common problems first. In the coming parts, the

ways that DOD adheres to these principles are discussed.

13

Turku University of Applied Sciences Thesis | Alarik Näykki

2.1 Motives behind Data-oriented design

This section discusses the motives behind data-oriented design. Performance is

the most significant motive behind DOD, which it tackles with cache utilization

and parallelization. The secondary motive is the ability to create modular and

easier to read code.

2.1.1 Cache Utilization

CPUs have outpaced RAM when it comes to speed over the years (Hennessy

et al., 2017). If the memory cannot feed data to the CPU fast enough, it can

create a performance bottleneck. A tool to combat this is the cache memory

located on the CPU or close to it. The cache is faster than the main memory

(i.e., RAM) but smaller in size. The cache’s job is to handle data that needs to

be processed frequently. Modern CPUs utilize three levels (i.e., L1, L2, L3) of

cache memory.

Table 1 – Size and latency for typical desktop PC’s CPU and RAM.

 L1 L2 L3 Main Memory

Size 64 KB 256-512 KB 8-64 MB 4-64 GB

Latency 1 ns 3-10 ns 10-20 ns 50-100 ns

Table 1 lists the size and latency of memory in typical desktop PCs (Hennessy

et al., 2017). L1 cache is up to 100 times faster than the main memory.

Likewise, the L2 is up to 33 times faster and the L3 up to 10 times. Thus, we

can infer that using the cache memory to its fullest can bring significant

performance gains.

DOD Organizes the data in sequential blocks. With these blocks, the data can

be processed in chunks. Cache’s job is to process the same data fast and

frequently, and by organizing the data, it can do this. Examples of caches

utilization are discussed in the upcoming parts.

14

Turku University of Applied Sciences Thesis | Alarik Näykki

2.1.2 Parallelization & multithreading

Parallelization of code means that multiple tasks can be processed

concurrently. With multicore processors, this means processing the tasks on

multiple cores at the same time. This way, the code becomes multithreaded. As

a result, the developer can access all the cores equally with multithreading

instead of loading most of the work onto the main thread.

The number of CPU cores available to the average PC gamer increases over

time (Steam 2021). Following are some relevant statistics enforcing this from

the Steam hardware surveys from April to August of 2021:

• 6-core CPU usage had risen by 2.98% to 34.09% of total usage

• 8-core CPU usage had risen by 0.44% to 14.04% of total usage

• 4-core CPU usage had dropped by 1.77% to 36.99% of total usage

• 2-core CPU usage had dropped by 1.63% to 11.96% of total usage

We can convey from these statistics that CPUs with more than four cores are

becoming more popular over time. The popularity is most likely due to midrange

CPUs getting more cores on average. For example, the new & popular

(PassMark Software 2021a) midrange AMD Ryzen 5 5600X series of CPUs

have six cores. When the consumers have access to more cores, it will also be

useful for the developer to know how they can utilize them in the future.

2.1.3 Modularity

DOD also has advantages when it comes to code readability and usability.

Modularity is the major one. In DOD, the data is independent of its function.

This means that functions do not depend on other parts of code. As a result, the

code is easier to reuse as it is less reliant on its environment, making future

development faster.

15

Turku University of Applied Sciences Thesis | Alarik Näykki

2.2 Differences between OOP and DOD

With DOD, data comes first. In DOD, data is handled as it is needed. In OOP, it

is typical to try and create classes that are as generic and abstract as possible

so that they can be used in as many situations as possible. Creating generics

might sound like a good idea, but it can easily create bloated classes in

practice. In DOD, only the data that is needed is created and used. The data is

created to account for the most common occurrences instead of the most

generic ones.

2.2.1 OOP Problem example

In order to illustrate the type of problems that OOP brings when used in games,

a typical C# OOP class is presented next, see Figure 1. These classes use

inheritance, allowing the class to inherit the features and variables of the class it

inherits. First, the base class Unit has two variables, named position and

alive. These two variables are something that any of the following units should

have. After that, the EnemyUnit class is created with variables and methods

that it can use to interact within a typical combat scenario. In this case, the

specialized EnemyUnits can attack at range or fly. RangerEnemy and

FlyingEnemy are created for that purpose.

16

Turku University of Applied Sciences Thesis | Alarik Näykki

class Unit
{
 Vector3 position;
 bool alive;
}
class EnemyUnit : Unit
{
 int maxHp;
 int currentHp;
 int attackPower;
 void Attack() { }
 void TakeDamage() { }
 void Move(Vector3 direction) { }
}
class RangerEnemy : EnemyUnit
{
 int attackRange;
}
class FlyingEnemy : EnemyUnit {}

Figure 1 – OOP class example 1.

This hierarchy of code has created several problems, which are covered next.

What would happen if we wanted to have a destroyable tree unit? The tree does

not need to attack or move. We conclude that we need to have a smaller jump

in complexity between Unit and EnemyUnit. So we create the CombatUnit

class with only the needed variables and methods for the tree.

Our next problem is that we want an enemy that can attack at range and fly. We

have RangedEnemy and FlyingEnemy. We cannot create a class that inherits

them both as they both already inherit EnemyUnit. Should we add these values

to the EnemyUnit? Should we create a new class called FlyingRangerEnemy

with both variables? For the sake of example, we create a new class,

SpecialEnemyUnit, to hold variables that a specialized enemy might have.

Figure 2 shows the classes with the changes and figure 3 visualizes the

hierarchy of their inheritance with a class diagram.

17

Turku University of Applied Sciences Thesis | Alarik Näykki

class Unit
{
 Vector3 position;
 bool alive;
}
class CombatUnit: Unit
{
 int maxHp;
 int currentHp;
 void TakeDamage() { }
}
class EnemyUnit : CombatUnit
{
 int attackPower;
 void Attack() { }
 void Move(Vector3 direction) { }
}
class SpecialEnemyUnit: EnemyUnit
{
 bool canFly;
 bool isRanged;
 int attackRange;
}

Figure 2 – OOP Class example 2.

Figure 3 – Class diagram for OOP example in figure 2.

These inheritance problems could go on. For example, we might want a rolling

stone unit that cannot be attacked but can move. We would need to use the

EnemyUnit class even though it contains several useless variables and

methods (i.e., alive, maxHp, currentHp, TakeDamage).

In OOP, the functionality and the data are tied together in the class. Thus, the

class can act upon its data. In this way, OOP mimics the real world. For

instance, if we create a dog class, we expect the dog to act independently and

not need outside influence to function.

18

Turku University of Applied Sciences Thesis | Alarik Näykki

Continuing from the previous example, the SpecialEnemyUnit is 56 bytes in

heap memory as exposed by Visual studio memory diagnostics (Figure 4).

Figure 4 – Sizes of classes in memory (Visual studio memory diagnostics).

A typical desktop processor's cache memory line (or block) is 64 bytes

(Hennessy et al., 2017). If we want to change the attackRange of the

SpecialEnemyUnit instance, we use 56 bytes of the 64-byte memory line

(Figure 5). This is wasteful as only the int value that takes 4 bytes of memory

was needed.

Figure 5 – 2 instances of SpecialEnemyUnit class visualized on a 64-byte

memory line.

2.2.2 OOP problem solved using DOD

In OOP, each object is self-contained and can act on its data. In DOD, the data

is not coupled with functionality. Therefore, it cannot act upon itself. This way,

the data can be organized in groups and acted on in chunks (Figure 6).

19

Turku University of Applied Sciences Thesis | Alarik Näykki

Figure 6 – DOD data on the left is organized sequentially in groups. The OOP

data on the right is in a hierarchy tree with dependencies to its class

inheritance.

From the previous OOP example, if we wanted to transform the attackRange

value with DOD, the range would be made into a separate data structure that

can then be transformed in chunks. The code has become more cache-friendly

as we only use the data needed for the transformation (Figure 7).

Figure 7 – two instances of int visualized on a 64-byte memory line.

With OOP, parallelization can be cumbersome as each object can act upon

itself and might affect the other objects simultaneously. With DOD, the data is

processed sequentially in groups. The grouping means that the order of the

processes is known, and parallelization becomes simpler than ungrouped data.

20

Turku University of Applied Sciences Thesis | Alarik Näykki

This chapter has explained what the motives for using data-oriented design are.

The next chapter discusses Unity’s approach to data-oriented design.

21

Turku University of Applied Sciences Thesis | Alarik Näykki

3 UNITY DOTS

Unity is a real-time 3D development platform developed by Unity technologies.

In this work, the focus is on Unity’s capabilities as a game engine. DOTS is

Unity’s approach to data-oriented design for game development in Unity (Unity

2021b). DOTS aims to utilize multithreading and cache optimization better than

the current object-oriented approach. Unity also indicates that with their Data-

oriented design, reusing code would be more straightforward.

DOTS is still in preview at the time of this project and has not been declared

production-ready. This chapter explains the components of DOTS that are

relevant to this work. DOTS also includes NetCode and DSPGraph, but they

were not used or explored in this work. The NetCode preview package is used

for DOTS net code and was not utilized as networks were not a part of the

experiments. DSPGraph experimental package allows for audio systems to be

used with DOTS. It was not used, as audio was not needed for the experiments.

3.1 Entity Component System

Entity Component System (ECS) is the core of Unity DOTS (Unity 2020c). As

the name indicates, it has three primary elements:

• Entities replace game objects of the conventional Unity object-oriented

system. They are the general things that populate the game world and

have game logic.

• Components hold the data of the entities. They are organized

separately from their entities. This is one of the major factors

differentiating the data-oriented approach from the object-oriented one.

• Systems handle the game logic. In the object-oriented approach, it is

typical to let each object handle its logic. However, with the data-oriented

method, one system can handle the game logic of all the queried entities.

For instance, a system could handle the movement logic of all the

entities with the MoverTag data component.

22

Turku University of Applied Sciences Thesis | Alarik Näykki

Usage of these elements is what distinguishes the usual Unity object-oriented

approach from DOTS. Some essential practical differences that they bring in

development include:

• Entities and components cannot be changed in the inspector in runtime

like conventional MonoBehaviour game objects.

• Entities need to be created in the code and not manually in the

inspector. Entities are usually created in runtime rather than while editing

the scene in the editor. Though, the conversion workflow approach

makes this more intuitive.

• Systems are not MonoBehaviour type game objects in the world. Unity

automatically finds and instantiates systems from the project.

• Systems control game logic with ForEach (or job chunk) entity

functionality. These require queries to get the wanted data components

and entities to manage. Even if there is only one entity to be controlled

in a system, it is done using these functions.

3.1.1 Conversion Workflow

The conversion workflow converts GameObjects into entities (Unity 2021d).

The GameObjects are given authoring components that the conversion system

then converts into data components. The GameObject itself is converted into

the entity that holds these components. This workflow allows a more friendly

approach for developers coming from conventional Unity object-oriented

programming than pure code-based component creation.

The following example clarifies the steps of authoring components for entities. A

developer creates a primitive cube type GameObject and checks the

ConvertToEntity box in the inspector. The cube is then converted to an

entity when the game starts. The new entity looks identical to the game object

that it was converted from. However, as the cube entity does not connect to the

original object, the original cube can safely be destroyed when the entity is

created. See Figure 8 for the check box and conversion mode that destroys the

object after conversion.

23

Turku University of Applied Sciences Thesis | Alarik Näykki

Figure 8 – Convert to entity check box and conversion mode.

Authoring components, which are MonoBehaviour scripts, could also be added

to the GameObject, which would convert into data components. Authoring

components can expose values in the inspector that will be converted to values

for the data component (Figure 9). Systems can then query for these data

components to add game logic to the entity and components (Figure 10).

Figure 9 – Spawner Author authoring component has values that can be

changed in the inspector.

24

Turku University of Applied Sciences Thesis | Alarik Näykki

Entities.ForEach((Entity entity, ref EnemyData data, ref Translation translation) =>
{
 data.value = translation.Value.x;
}).ScheduleParallel();

Figure 10 – Entity ForEach Query looks for entities with EnemyData and

Translation components.

Unity (2021d) has stated that the conversion workflow is not temporary and is a

fundamental part of ECS development. They also advocate that it is the

preferred way of authoring data for entities when using ECS.

3.1.2 Command Buffers & Update Groups

EntityManager can make structural changes to entities. These changes

include adding or removing components from entities. However,

EntityManager cannot be accessed inside jobs (Unity 2021d). Instead, ECBs

(entity command buffer) are used to create structural changes at set sync points

after the job is complete.

For instance, component MoverTag needs to be removed from the entity after

its movement has been calculated. However, the component cannot be

removed while the movement calculation job is running. So instead, the

component removal is queued to an ECB which executes the removal after the

job is complete.

The sync points for the ECBs are mainly used in combination with the update

groups. The update groups create sync points where multiple ECBs can

execute in the order of their creation. However, too many sync points can slow

down the code, as jobs need to wait for their execution to ensure safety. With

update groups, the sync points are consistent and easy to keep in check. The

most prominent update groups used in this work include the following groups:

• InitializationSystemGroup - updated at the end of the Initialization

phase of the player loop.

25

Turku University of Applied Sciences Thesis | Alarik Näykki

• SimulationSystemGroup - updated at the end of the Update phase of

the player loop.

• FixedStepSimulationSystemGroup – updated according to the fixed-

step interval of the simulation group. Same usage case as FixedUpdate

in MonoBehaviour scripts.

Using ECBs and update groups is a major part of the effective usage of ECS.

Though, structural changes and sync points can have a considerable negative

performance impact if overused.

3.1.3 Dynamic buffers

A dynamic buffer is a type of data component an entity can have. It can hold a

number of variables like an array. The buffer data can be managed inside jobs

(Unity 2021d). Dynamic buffers behave similarly to other entity data

components and can be referenced in an entity query. This gives them a similar

usage case to arrays and lists in C#.

The memory allocation of dynamic buffers is managed automatically by the

entity manager. The internal capacity of the buffers can be declared in code by

the developer. If the internal capacity of the buffer exceeds the set capacity, the

data is moved onto the heap by the entity manager. Dynamic buffers are used

in the pathfinding implementation to maintain path data for the moving units.

3.2 Hybrid renderer

Hybrid renderer handles date for rendering entities of ECS (Unity 2020a). It is

not a rendering pipeline like URP (Universal Render Pipeline) or HDRP (High-

Definition Render Pipeline). Instead, it gathers necessary entity data to send to

the actual pipelines. The hybrid renderer does not require any additional

changes or steps to use when creating entities. The developer only needs to

install the package, and the renderer works in the background.

Two versions (i.e., V1, V2) of the hybrid renderer are available. V1 renderer

supports the built-in pipeline in addition to URP and HDRP. V2 Supports only

26

Turku University of Applied Sciences Thesis | Alarik Näykki

URP and HDRP but has many features not available in V1 (e.g., Shader graph,

Skinning, Sunlight, Lightmaps). V2 was used for the implementation as shader

graphs and skinning were needed for the animations.

3.3 C# Job system

The job system allows the writing of multithreaded C# code (Unity 2021b). It

exposes Unity’s internal C++ job system, allowing C# scripts to run as jobs

parallel to Unity components. Jobs are small workloads with specific tasks that

can wait for other jobs to complete or run parallel to them. Multithreaded code

can provide high-performance benefits in specific tasks.

The following example showcases how multithreading could be utilized. A CPU

has eight cores and eight worker threads to work with. The game has a single

character controller and multiple enemy AIs. Typically, in Unity, all game logic

would be called from the main thread. However, we could offload some of this

from the main thread with the job system and create jobs for the enemy AI.

These jobs could then run parallel on the worker threads to alleviate the stress

on the main thread. As a result, the code became easier to run and more

efficient (Unity 2021b). This is advantageous, especially if factors like battery

saving on mobile devices are taken into consideration.

3.4 Burst Compiler

Machine code is a numerical (e.g., Binary, Hexadecimal) programming

language that a CPU can understand directly. CPUs have varied architectures

(e.g., x86-64, ARM 64) with their native machine code. Optimizing machine

code has considerable potential for performance gains as it is the direct way to

control the CPU.

The burst compiler translates .NET bytecode into highly-optimized native

machine code using LLVM (not an acronym) (Unity 2021b). LLVM is a library for

programmatically creating machine native code (Yegulalp 2020). IL and IR are

27

Turku University of Applied Sciences Thesis | Alarik Näykki

intermediates that .NET applications can create to be translated into machine

code. Burst translates C# code from IL (Intermediate Language) to IR

(Intermediate Representation) (Mutel 2018). LLVM handles the heavy lifting, so

to say and compiles the IR to native machine code.

Burst uses a subset of .NET that Unity calls HPC# (High-Performance C#)

(Mutel 2018). This subset removes most usage of managed types. It supports

the following primitive types of C# (Unity 2020d):

• bool

• sbyte/byte

• short/ushort

• int/uint

• long/ulong

• float

• double

The commonly used type string is not supported as it is a managed type.

However, Unity (2021f) informs that future releases will support the char type.

Unity Mathematics is a C# library that provides burst with vector types and math

functions. Burst translates Unity Mathematics’ vector types to native SIMD

(Single Instruction Multiple Data) vector types. For example, the types float3

and int3 are used in place of Vector3.

Burst requires the usage of structs instead of classes. Structs are a value type

stored on the stack and do not need to be managed. Classes are a reference

type that needs to be managed on the heap, making them incompatible with

burst. These limitations are one of the major differences to conventional object-

oriented Unity programming.

28

Turku University of Applied Sciences Thesis | Alarik Näykki

3.5 Unity Physics

Unity Physics package, not to be confused with the built-in physics in Unity, is a

physics solution built to work with DOTS (Unity 2021c). The package was

created in collaboration with Havok, who are behind the Havok Physics engine.

The build-in physics is not compatible with DOTS, so the Unity physics package

(or Havok Physics for Unity) must be used for physics with DOTS. Unity Physics

package covers many of the same functions as the build-in physics (e.g.,

Collision, Gravity, Ray casting, Collider cast, Point Distance, Overlap Queries).

Unity Physics is stateless (Unity 2021c). Statelessness implies that it does not

cache data, which other physics engines use to attain high performance and

simulation robustness. Caching can complicate some use cases, such as

networking. Unity Physics leaves caching out to be simpler and more

controllable for the developer.

3.6 Unity Animation

The Unity Animation package is Unity’s solution for DOTS compatible

animations (Unity 2021b). While it is still experimental and lacks many features,

it supports the essential animation features (i.e., animation blending, IK, root

motion, layers, and masking). There is not much info on the package’s inner

workings or design philosophy from Unity, which is expected from an

experimental package. It is not production-ready, and only the core features are

currently supported.

3.7 DOTS relevant C#

DOTS makes use of some C# code that is not usually seen in object-oriented

Unity code. The reason is that they are simply not needed in it. This part

describes and explains the reasons behind these features.

29

Turku University of Applied Sciences Thesis | Alarik Näykki

3.7.1 Parameter Modifiers

There are two parameter modifier keywords (i.e., ref, in) that get considerable

usage in DOTS. The keyword ref passes variable by reference with read and

write access. The keyword in also passes the variable by reference but with

only read access.

Structs are used extensively in DOTS in place of classes. Structs are value

types and usable inside jobs. The ref keyword is used when a struct needs to

be referenced because assigning a struct variable creates a copy rather than a

reference (Microsoft 2021a). For example, querying for an entity ForEach job

requires the usage of the ref or in keywords.

The out keyword passes variable by reference with only write access, which

can return multiple values from a method. The out keyword is helpful for DOTS

applications but not as relevant as ref and in, as entity ForEach jobs do not

require the usage of out.

3.7.2 Unsafe C# code

Generally, when writing C# code, managed objects are created (Microsoft

2021b). With managed types, memory is not directly accessed or allocated,

making code verifiably safe, meaning the .NET tools can verify the safety of the

code. Unsafe code means unverifiable code. Unsafe code is not inherently

dangerous; it just is not verifiably by the .NET tools. With the unsafe keyword in

C#, a developer can access pointers, allocation of memory blocks and the

calling of methods using function pointers.

3.7.3 Pointers in DOTS

Pointer is a variable that holds the address of a variable in memory (Microsoft

2021). In other words, the pointer's value is the address and not the value of the

variable itself. Pointers are helpful in DOTS because memory blocks used for

30

Turku University of Applied Sciences Thesis | Alarik Näykki

the pointer variables can be manually allocated, making them unmanaged by

the garbage collector, allowing them to be used inside jobs. The implementation

of the DOTS pathfinding showcases one example of pointers in use.

31

Turku University of Applied Sciences Thesis | Alarik Näykki

4 RELATED WORK AND HYPOTHESIS

A decent amount of recent work on DOTS has been done (Männistö 2020;

Borufka 2020; Turpeinen 2020; Codemonkey 2020; Bad Graphix 2020).

However, not a great amount, as its packages are still in preview or

experimental. Furthermore, Unity has been quiet on DOTS updates since the

end of 2020, which most likely has not been encouraging for anyone trying to

get into the topic.

This chapter compiles some recent and relevant work on DOTS. It also

discusses the research questions and hypotheses relating to them.

4.1 DOTS in production

Männistö (2020) created two game demos. The first demo used conventional

Unity tools, and the second applied DOTS tools. The test aimed to research the

difference between planning and creating these demos. Both approaches

spawned enemy units until 20 000 units were reached. Männistö used CPU

response times as their measurement for the performance test. The response

time was noted at set amounts of units spawned (i.e., 1000, 5000, 10 000, 15

000 and 20 000) to observe the difference the amount of the units make to the

CPU response time.

The test results were that DOTS performed up to 3 times better in the test

scenario. Männistö considered that the performance of DOTS was promising

but did not recommend DOTS to be used for production. Männistö identified

several problems that would limit its applicability in game development. The

major problems were the lack of documentation from Unity and the complex

code syntax. Männistö concludes that more testing needs to be done, especially

with any newer version of DOTS.

32

Turku University of Applied Sciences Thesis | Alarik Näykki

4.2 Job Scheduling & burst in DOTS

Multithreading code with the job system is a major part when creating DOTS

systems. When using the recommended SystemBase extension for systems in

DOTS, there are three ways to schedule a job; parallel (i.e.,

ScheduleParallel), single (i.e., Schedule) and the main thread (i.e., Run)

(Unity 2020b). Parallel schedules the job for concurrent execution on available

worker threads. Single schedules the job on a single available worker thread,

but not concurrently with other jobs. The main thread performs the job on the

main thread immediately. DOTS can also enable burst compilation. Burst limits

the data types that can be used and, in return, produces highly optimized

machine code.

Borufka (2020) tested the performance of DOTS relevant datatypes and

settings. They created a performance test suite that could run different types of

tests with given parameters. One of the tests sets Borufka ran included the Job

Type test set. They compared six different job types (i.e., No Job, Job, Parallel

Job, Burst Job, Burst Parallel Job, Burst 5 Jobs). The results of the test were

that burst compiled jobs were faster than their non-burst counterparts. Based on

the tests results, Borufka concluded that single job scheduling can be faster

than parallel scheduling in smaller datasets of 1000 and below. However, the

parallel jobs were the fastest in the larger datasets of 10 000 and above.

4.3 Visualization of performance tests

Since Borufka’s (2020) tests were not visualized inside Unity, it was also

concluded that it would be beneficial to create benchmarks that visualize the

data directly inside the Unity Editor or a standalone build. This would decrease

the time to analyze and visualize the data.

33

Turku University of Applied Sciences Thesis | Alarik Näykki

4.4 Pathfinding

Code Monkey (2020) implemented A DOTS pathfinding system using the grid-

based A* algorithm with DOTS (Code Monkey 2020). A* star is popular as it

tries to find the most promising path to the target location, skipping over some

unpromising tiles in the process (Hybesis 2020). This makes it useful for

videogames when efficient pathfinding for an AI is needed. The A* algorithm

has been compared to other pathfinding algorithms in several studies and was

concluded to be more efficient in comparison (Zeng et al., 2009; Permana et al.,

2018). Furthermore, a DOTS Flocking system using the Boids algorithm has

been implemented (Bad Graphix 2020).

These references (Code Monkey 2020; Bad Graphix 2020) prove that creating

pathfinding applications with DOTS is possible. However, they did not perform

systematic analysis on their testing, giving a reason for a move systematic

approach on the topic.

4.5 Virtual Reality

Framerate is vital to get the best experience in virtual reality and achieving the

target framerate for new high refresh-rate VR headsets is not trivial. VR requires

every frame to be drawn twice for each eye (Oculus 2021) which is the primary

reason that makes VR heavy to run, and thus it requires powerful hardware and

excellent optimization from the developer.

Tcha-Tokey et al. (2017) tested five factors (i.e., interaction level, framerate,

field of view, 3D content feedback, previous experience) influencing subjective

user experience components and objective usability. They had 152 participants

in their testing. The tests were run in VR applications specifically. On average,

the testers rated higher framerate for better usability. Therefore, they concluded

that VR applications should use higher framerates for better usability. Which, in

turn, enforces the pursue to optimize VR applications for higher framerates.

34

Turku University of Applied Sciences Thesis | Alarik Näykki

4.6 Mobile Augmented Reality

Turpeinen (2020) ran tests on two iPhone models. These tests measured the

difference in the performance of object-oriented (OO) and DOTS approaches on

a mobile platform. Turpeinen spawned the same number of units using both

methods and compared CPU response times.

In the 10% original mesh test on the iPhone XR, at 1000 characters, DOTS held

the 30 FPS target frame rate while OO was at 19 FPS. They also mention that

OO can perform better with small amounts of units. In their animation testing,

the OO approach was better with the variance of animation, which meant that

the OO performance would be more consistent as the animations of the

characters became more varied. Turpeinen concludes that DOTS performance

benefits become more apparent as the number of units increases.

4.7 Research questions

Based on the previous discussion in this chapter, the following research

questions were gathered:

1. Is the current version of DOTS production-ready?

2. Can DOTS performance data be visualized inside Unity Editor?

3. What scheduling type is the fastest in visualized performance tests?

4. Can complex simulation pathfinding be created in DOTS, and how well

will it perform?

5. Is DOTS compatible with VR, and how well does it perform?

6. Is DOTS compatible with mobile AR, and well does it perform?

4.7.1 Is the current version of DOTS production-ready?

Männistö (2020) did not conclude DOTS to be production-ready as the

documentation on DOTS was lacking at the time.

From the time of Männistö’s work, Unity’s DOTS documentation and example

projects have been updated, making creating DOTS applications more

35

Turku University of Applied Sciences Thesis | Alarik Näykki

accessible in general. The prediction on the production-readiness of DOTS is

that since Unity has not yet declared it production-ready, the research is unlikely

to change that fact. However, if the performance gains are significant enough

compared to the conventional object-oriented Unity, DOTS could be declared

production-ready in certain usage cases.

4.7.2 Can DOTS performance data be visualized inside Unity Editor?

Borufka (2020) concluded that performance tests with visualized data inside

Unity should be run. Their performance tests were comprehensive but did not

include visuals.

There should be no issues with the visualization of data inside the editor.

Rendering units is not anticipated to be an issue because Unity has created the

hybrid renderer for this task. Additionally, DOTS should be compatible with

Unity’s UI components as previous DOTS projects have used it (Codemonkey

2020).

4.7.3 Can complex simulation pathfinding be created in DOTS, and how well

does it perform?

Pathfinding and flocking have been a topic of research for a long time (Dijkstra

1959; Reynolds 1987), and as such, they have been researched extensively

(Zeng et al. 2009; Permana et al. 2018; Krishnaswamy 2009). Though work

done for Unity DOTS pathfinding explicitly is limited, it would be worthwhile to

have more data on this.

The hypothesis for the pathfinding tests is that DOTS pathfinding should be

more efficient than conventional Unity tools, in this case, the non-experimental

navigation tools in Unity. The prediction comes from Unity’s promise for

performance and previous work showing promising results (Turpeinen 2020).

The tools used for this will be discussed more in-depth in the implementation.

36

Turku University of Applied Sciences Thesis | Alarik Näykki

4.7.4 Is DOTS compatible with VR, and how well does it perform?

Tcha-Tokey et al. (2017) concluded that a higher framerate contributes to better

objective usability in VR applications. One way to optimize for a greater

framerate is to limit time spent in scripts (Oculus 2021).

The hypothesis is that using DOTS in Unity will significantly reduce time spent

in scripts compared to similar operations done with conventional object-oriented

Unity tools. In addition, there should be no combability issues with DOTS and

VR because VR should not interfere with the code. However, the rendering

might have issues as DOTS uses the hybrid renderer, and it is not clear if the

hybrid renderer supports VR rendering.

4.7.5 Is DOTS compatible with mobile AR, and how well does it perform?

Turpeinen (2020) displayed that DOTS is compatible with mobile platforms, but

DOTS combined with AR has limited research.

The prediction is that there should not be any compilations because the AR and

the DOTS systems should work separately. This research explores any

unwanted interactions AR and DOTS might have.

4.8 Conclusion of hypothesis

This chapter highlighted some research questions from previous work on the

topic of DOTS. The main research question of the work is the following: Is the

current version of DOTS production-ready? The other questions offer research

topics that are used to get a better understanding of this. VR and AR

compatibility are the secondary topic of this research and are researched using

similar methods.

The author did not have previous experience with Data-oriented design before

conducting this research but had experience with object-oriented Unity

37

Turku University of Applied Sciences Thesis | Alarik Näykki

development. This experience difference might skew the results towards DOTS

not being production-ready as more experience gained with DOTS might make

it more usable for the developer.

38

Turku University of Applied Sciences Thesis | Alarik Näykki

5 METHODS

The primary method of testing was pathfinding using DOTS and conventional

object-oriented Unity tools. Pathfinding was chosen as it has many applications

in games. A common one is the movement of units from place A to B. Moving

units are also a good way to visualize the tests.

The DOTS pathfinding was run as a benchmark to compare scheduling types

and the DOTS approach to the object-oriented approach. In addition,

animations with both approaches were run to compare the impact of blending

animations on their performance. Finally, the same pathfinding was applied in

AR and VR to determine compatibility and performance.

5.1 Pathfinding benchmark environment

The pathfinding benchmark environment spawns new units until the FPS hits

under 10 FPS. These units find paths to randomized destinations in the set

area. 1250 Units are spawned every 0.1 seconds for most of the benchmarks.

The Parallel Animated and Mono Benchmarks had different spawning cycles as

they could not handle this number of spawning units without dipping to under 10

FPS in the first spawns. The time to reach 10 FPS was the primary

measurement for the benchmarks. More time spent in the benchmark equals

better results.

As the Parallel Animated and Mono benchmarks had different spawning cycles,

the number of units spawned was measured for them instead. In addition, all

the benchmarks in this environment were run in the Unity Editor because the

standalone build did not support the BlopAssetStore code used for the

animations.

Each benchmark was run multiple times during development to ensure

consistency. Final results were taken from an average of 3 benchmark runs on

each device.

39

Turku University of Applied Sciences Thesis | Alarik Näykki

The following nine tests were run in the pathfinding benchmark environment:

1. Parallel Burst – Pathfinding is scheduled in parallel with burst enabled.

2. Parallel No Burst – Pathfinding is scheduled in parallel with burst

disabled.

3. Single Burst – Pathfinding is scheduled on single worker threads with

burst enabled.

4. Single No Burst – Pathfinding is scheduled on single worker threads

with burst disabled.

5. Run Burst – Pathfinding runs on the main thread with burst enabled.

6. Run No Burst – Pathfinding runs on the main thread with burst disabled.

7. Parallel Animated – Pathfinding is scheduled in parallel with burst

enabled. Spawned units have blending animations (10 units spawned

every 0.25 seconds).

8. Mono – Pathfinding using conventional object-oriented Unity tools (500

units spawned every 0.5 seconds).

9. Mono Animated – Same as mono with the addition of animations for

units.

The first seven benchmarks represent DOTS approaches, and the last two the

object-oriented approaches. The results of the first six benchmarks were used

to compare the scheduling types and burst. The best result of the first six was

compared to the Mono pathfinding to measure pathfinding performance

difference. Finally, parallel animated and Mono animated were compared to

measure which approach performed better with animations.

40

Turku University of Applied Sciences Thesis | Alarik Näykki

Table 2 – Specifications of PCs benchmarked in the pathfinding environment.

PC Desktop Laptop

OS Windows 10 Home Windows 10 Home

CPU AMD Ryzen 7 3800X 8-core (16

threads) 3.9 GHz (Boost 4.5

GHz)

Intel Core i5-7300HQ 4-core

(4 threads) 2.5 GHz (Boost 3.5

GHz)

GPU NVIDIA GeForce RTX 3070 8GB

GDDR6

NVIDIA GeForce GTX 1050 2GB

GDDR5

RAM 16 GB DDR4 3200 MHz (Dual

Channel)

8 GB DDR4 2400 MHz (Single

Channel)

The benchmarks were run on two PCs (Table 2). Hypothetically the desktop

should outperform the laptop in all benchmarks because the desktop’s

components are much newer and more performant. The main factor for the

performance should be the CPU. Using the job system allows for the usage of

all the threads of the CPU. Therefore, a processor with good multithreaded

performance should perform well in the benchmark, compared to a CPU with

fewer threads but better single-threaded performance. Unfortunately, such a

less threaded CPU was not available within the limitations of the work.

Figure 11 shows the benchmarking environment with options for the different

benchmarks on the right side. The measurement for the unit count and elapsed

time can be found above the buttons for running the benchmarks. The left side

includes the specifications of the current device and FPS metrics. The

specifications include from top to bottom: Orange for GPU and VRAM, blue for

CPU and RAM and yellow for the operating system. Below the specifications, in

the FPS metrics, green is current FPS, orange FPS lows, blue FPS highs and

41

Turku University of Applied Sciences Thesis | Alarik Näykki

yellow FPS change range.

Figure 11 – Pathfinding benchmark environment.

5.2 VR environment

The VR tests were run on the same desktop as the pathfinding. VR headset

used for the tests was the Oculus Rift S. VR was tested in both Unity editor and

standalone build. The VR environment was built as a tower defence type game

(Figure 12) to test the hybrid development approach with DOTS and Steam VR

Unity packages.

The enemy units use the same pathfinding as in the pathfinding environment.

Instead of randomized destinations, the tower defence enemy units have a set

destination. Enemies spawn from 2 different spawns and have the same set

destination for pathfinding. The towers try to find enemies in their range to

attack and destroy. The player can place towers and obstacles to destroy the

enemies more efficiently. No resource system was implemented in this

environment, which meant the environment was practically a sandbox with no

challenge.

42

Turku University of Applied Sciences Thesis | Alarik Näykki

Figure 12 – VR testing environment with tower defence mechanics.

5.3 AR environment

In the AR environment (Figure 13), a plane was detected in the real world.

When the plane was of a suitable size, a navigation mesh was baked on it.

Units were spawned in intervals of 500 per spawn. Units have the same

pathfinding as in the pathfinding environment. More units were spawned, and

the framerate was observed. The tests were run until 20 000 units had been

spawned.

43

Turku University of Applied Sciences Thesis | Alarik Näykki

Figure 13 – AR testing environment with units spawning on an AR plane.

Table 3 – Specification of phones used in the AR environment.

Phone Google Pixel 3A LG Nexus 5X

OS Android 12 (beta 4) Android 8

CPU Qualcomm Snapdragon 670 8-

core

Qualcomm Snapdragon 808 6-

core

The tests were run on two devices (Table 3) to understand the performance

difference between an older and a newer device. The Pixel is an average phone

by 2021 standards (PassMark Software 2021b), making it a worthwhile

candidate to test if DOTS is worthwhile to use in AR on mobile. The Nexus was

released in 2015, making it an obsolete phone compared to new models.

However, if DOTS performs well, it could be important for how DOTS could be

utilized for older devices. Both phones are from the same Google line of

44

Turku University of Applied Sciences Thesis | Alarik Näykki

phones, with the Pixel being a newer model. The Pixel should outperform the

Nexus as it has a more powerful processor with more cores.

5.4 Pathfinding implementation

The most prominent part of the implementation was pathfinding. The

implementation of the VR and AR environments will also be discussed. The

versions of Unity and the packages are found in Table 4. Unity version 2020.3

was required as DOTS was not supported on 2021 versions at the time.

Table 4 – Unity and package versions.

Editor/Package Version

Unity Editor 2020.3.10f1

Entities 0.17.0-preview.42

Hybrid Renderer 0.11.0-preview.44

Burst 1.4.1

Jobs 0.8.0-preview.23

Mathematics 1.2.1

Physics 0.6.0-preview.3

Animation 0.9.0-preview.6

Steam VR 2.7.3

AR Foundation 4.1.7

5.4.1 Pathfinding using experimental AI components

The chosen system for the pathfinding was Unity’s experimental AI components

package because it is compatible with the job system (Unity 2021e). The non-

experimental Unity AI is not compatible with the job system. The main

components of it are NavMeshLocation, NavMeshQuery and NavMeshWorld.

The experimental AI was chosen as the research on its performance is limited,

45

Turku University of Applied Sciences Thesis | Alarik Näykki

and other algorithms such as A*, Dijkstra and D* have already been proven to

be efficient (Krishnaswamy 2009).

In addition to the Experimental AI, the NavMesh component package by Unity

was used. It allows baking the navigation mesh in runtime with the

NavMeshSurface component. This was important for the AR because the Nav

Mesh had to be baked in runtime according to the found AR plane in the real

world. This will be discussed in more detail later in the section on the AR

implementation. NavUtils script by Unity is used to find the straight path after

the pathfinding is ready. It was created for Unity’s Austin 2017 demo (Unity

2017).

Several references for the usage of NavMeshQuery have been taken from

Reese's DOTS Navigation (Schultz 2021), which is an extensive Unity package

for DOTS based navigation.

NavMeshQuery is used to query data from the NavMeshWorld. NavMeshWorld

contains the needed data to create pathfinding, such as the current available

NavMeshSurfaces. It can operate inside the job system, which the normal

NavMesh operations cannot, making it crucial for best performance results with

DOTS.

For it to be accessible through parallel jobs, the queries must be accessed

through pointers because creating new queries is not allowed while running a

parallel job. This is one limitation of the experimental package, resulting in

unsafe code needed to accomplish the desired result (Figure 14).

46

Turku University of Applied Sciences Thesis | Alarik Näykki

unsafe public class NavQueryPointerSystem : SystemBase
{
 unsafe public struct NavMeshQueryPointer
 {
 [NativeDisableUnsafePtrRestriction]
 public void* query;
 }

 public NativeArray<NavMeshQueryPointer> QueryPointers { get; private set; }
 List<NavMeshQuery> queryList = new List<NavMeshQuery>();

 protected override void OnCreate()
 {
 var queryPointers = new NavMeshQueryPointer[JobsUtility.MaxJobThreadCount];
 for (int i = 0; i < queryPointers.Length; i++)
 {
 queryPointers[i] = new NavMeshQueryPointer
 {
 query = UnsafeUtility.Malloc(
 UnsafeUtility.SizeOf<NavMeshQuery>(),
 UnsafeUtility.AlignOf<NavMeshQuery>(),
 Allocator.Persistent
)
 };
 var query = new NavMeshQuery(
 NavMeshWorld.GetDefaultWorld(),
 Allocator.Persistent,
 NavConst.PathNodePoolSize
);
 queryList.Add(query);
 UnsafeUtility.CopyStructureToPtr(ref query, queryPointers[i].query);
 }

 QueryPointers = new NativeArray<NavMeshQueryPointer>(queryPointers,
Allocator.Persistent);
 }
 …
}

Figure 14 – Script (Schultz 2021) for creating pointers that can be used to

access the queries.

NavQueryPointerSystem creates a query for each available worker thread,

as that is the maximum number of queries that can be used in parallel at any

given time. These pointers can then be used whenever a NavMeshQuery

operation needs to be executed. As they are pointers, they need to be manually

disposed of when the application is stopped.

The destination must first be confirmed to be on the NavMesh to find a path

using NavMeshQuery. Points not on the NavMesh are not valid for pathfinding.

To do this, NavMeshQuery methods IsValid and MapLocation are used.

MapLocation finds the closest point in the NavMesh given a maximum search

47

Turku University of Applied Sciences Thesis | Alarik Näykki

extent. IsValid checks if the point is active on the NavMesh. The code in

Figure 15 demonstrates an example of this operation.

NavMeshLocation location = query.MapLocation(searchPosition, searchExtent,
areaMask);

if (query.IsValid(location))
{
 foundLocation = location;
 return true;
}

Figure 15 – Code validates the map location.

When the destination location has been successfully validated, finding a path to

it can be started. The start and end locations need to be inputted into the

BeginFindPath method to find the path. The path is then iterated as many

times as is needed for the wanted accuracy. After the path has been iterated

on, the pathfinding can be ended. Finally, the FindStraightPath finds the

straightest path to the destination. These parts of the code have been

highlighted in Figure 16.

48

Turku University of Applied Sciences Thesis | Alarik Näykki

var status = query.BeginFindPath(startLocation, endLocation);

while (status == PathQueryStatus.InProgress)
 status = query.UpdateFindPath(updateIterations, out _);

if (status == PathQueryStatus.Success)
{
 query.EndFindPath(out int pathSize);
 int pathMax = pathSize + 1;

 path = new NativeArray<NavMeshLocation>(pathMax, Allocator.Temp);
 int straightPathCount = 0;
 NativeArray<float> vertexSide = new NativeArray<float>(pathMax, Allocator.Temp);
 NativeArray<StraightPathFlags> straightPathFlags =
 new NativeArray<StraightPathFlags>(pathMax, Allocator.Temp);

 NativeArray<PolygonId> polgygonPath =
 new NativeArray<PolygonId>(pathSize, Allocator.Temp);
 query.GetPathResult(polgygonPath);

 PathQueryStatus straightStatus = PathUtils.FindStraightPath(
 query,
 startLocation.position,
 endLocation.position,
 polgygonPath,
 pathSize,
 ref path,
 ref straightPathFlags,
 ref vertexSide,
 ref straightPathCount,
 pathMax
);
}

Figure 16 – Code used for finding the straight path from the start location to the

end location.

5.4.2 Destination & movement systems

To utilize the created pathfinding, a system to give destinations for the units had

to be created. First, the system finds a random valid point on the NavMesh. With

the valid point found, pathfinding can be started. If it is successful, the system

gives the path to the dynamic buffer component of the entity. The movement

system then handles the movement of the entity. These steps are highlighted in

Figure 17.

49

Turku University of Applied Sciences Thesis | Alarik Näykki

[UpdateInGroup(typeof(SimulationSystemGroup))]
public class NavQueryRandomParallelSystem : SystemBase
{
 protected unsafe override void OnUpdate()
 {
 var surfaceSystem = World.GetExistingSystem<NavSurfaceSystem>();

 if (surfaceSystem.surface == null)
 return;

 var surfaceExtent = surfaceSystem.surfaceExtent;
 var surfaceCenter = surfaceSystem.surfaceCenter;

var navMeshQueryPointers = World.GetExistingSystem<NavQueryPointerSystem>().QueryPointers;

 Entities
 .WithNativeDisableParallelForRestriction(navMeshQueryPointers)
 .WithAll<NavAgentRandomTagParallel>()
 .ForEach((Entity entity, int entityInQueryIndex, int nativeThreadIndex,

ref DynamicBuffer<QueryPosition> positionBuffer, ref SeedIndex seedIndex,
 in Translation translation) =>
 {
 if (positionBuffer.Length == 0)
 {
 var navMeshQueryPointer = navMeshQueryPointers[nativeThreadIndex];
 UnsafeUtility.CopyPtrToStructure(navMeshQueryPointer.query,
 out NavMeshQuery query);

 if (NavUtility.RandomLocationOnSurface(surfaceExtent, surfaceCenter,

NavConst.SearchExtent,(uint)entityInQueryIndex + seedIndex.index, query
 out NavMeshLocation endLocation)
 && NavUtility.FindPath(translation.Value,

endLocation.position, query,
 out var path))
 {
 positionBuffer.Clear();
 for (int i = 0; i < path.Length; i++)

positionBuffer.Add(
new QueryPosition { position = path[i].position });

 seedIndex.index++;
 }
 else
 Debug.Log($"Invalid location at {entityInQueryIndex}");
 }
 }).ScheduleParallel();
 }
}

Figure 17 – Destination system for random destinations scheduled in parallel.

The movement system transforms the translation component of the entity to

move it in the world. This movement does not have any collision checks and

only follows the path given by the destination system. The movement system

moves the entity until it is close enough to the destination point of the path. After

this, the destination point is removed from the dynamic buffer component of the

50

Turku University of Applied Sciences Thesis | Alarik Näykki

entity. This continues until the buffer is empty and the destination system can

give a new path for the entity. These steps are highlighted in Figure 18.

[UpdateInGroup(typeof(FixedStepSimulationSystemGroup))]
public class NavQueryMoveSystem : SystemBase
{
 protected override void OnUpdate()
 {
 Entities
 .WithAll<QueryMoverTag>()
 .ForEach((ref DynamicBuffer<QueryPosition> positionBuffer,
 ref Translation translation) =>
 {
 // Sometimes mover can get a NaN position
 // Clear the buffer to try find a new position

if (float.IsNaN(translation.Value.x) && positionBuffer.Length >= 1)

 {
 translation.Value = positionBuffer[0].position;
 positionBuffer.Clear();
 }

else if (positionBuffer.Length > 1 && !float.IsNaN(translation.Value.x))

 {
 float speed = 10f;

 var currentPosition = positionBuffer[0].position;
 var destination = positionBuffer[1].position;
 float distance = math.distancesq(translation.Value, destination);
 // Stop movement when close enough to destination
 if (distance < 0.35f)
 {
 positionBuffer.RemoveAt(0);
 }
 var direction = math.normalize(destination - currentPosition);
 translation.Value += direction * 0.02f * speed;
 }
 else if (positionBuffer.Length == 1)
 positionBuffer.Clear();
 }).ScheduleParallel();
 }
}

Figure 18 – Movement system script for units, scheduled in parallel.

The activity diagram in Figure 19 visualizes the workflow of the systems. The

Destination system and the movement system work independently of each

other. The destination system only cares about the entities that do not have a

path and the movement system only about those with a path.

51

Turku University of Applied Sciences Thesis | Alarik Näykki

Figure 19 – Pathfinding system activity diagram

Blue = A system, Green = A variable or a function of a system,

Grey = The start or end of an update cycle, Yellow = A Condition node.

5.4.3 Regular Unity pathfinding

As a counterpart to the DOTS pathfinding, an object-oriented pathfinding

method was implemented to observe the difference in performance. The

method was done using the conventional Unity navigation system. The

approach was developed to behave similarly to the DOTS systems, with the

52

Turku University of Applied Sciences Thesis | Alarik Näykki

primary difference being that each agent handles their own destination and

pathfinding. Figure 20 shows the update (FixedUpdate) function of the

agents.

public class RandomFinderAgent : MonoBehaviour
{
 private NavMeshAgent agent;
 private NavMeshSurface surface;

 private void Start()
 {
 surface = NavMeshSurface.activeSurfaces[0];
 agent = GetComponent<NavMeshAgent>();
 }
 private void FixedUpdate()
 {
 if (agent.remainingDistance < 0.1f)
 {
 agent.SetDestination(RandomDestination());
 }
 }
 …
}

Figure 20 – MonoBehaviour script used for regular pathfinding.

5.4.4 Animations

DOTS animations were implemented using the sample projects by Unity for the

experimental animation package. As the package is experimental, the

implementation was not smooth. For example, the animation blending and

changing required structural changes, which meant that it could not be run with

burst enabled or in parallel. This was a crucial weakness of the experimental

package. In addition, some code for the animations was not supported in a

standalone build. Specifically, the BlopAssetStore class, which was used to

get the animation clips for the blending, was not supported.

The animation system first creates an animation graph for the animations.

Values of the graph can then be changed to manipulate blending and animation

speeds for the units. Units have three animations (i.e., Idle, Walk, Run) that they

can change. They also change their animation speed depending on their

movement speed. Figure 21 shows the OnUpdate method of the

HumanoidAnimPlayerSystem script with the previous points highlighted.

53

Turku University of Applied Sciences Thesis | Alarik Näykki

protected override void OnUpdate()
{
 CompleteDependency();

 var ecb = ecbSystem.CreateCommandBuffer();

 Entities
.WithName("CreateGraph")
.WithNone<HumanoidAnimClipStateData>()
.WithoutBurst()
.WithStructuralChanges()
.ForEach((Entity e, ref Rig rig, ref HumanoidAnimPlayerData
animData) =>
{
var state = CreateMixerGraph(e, graphSystem, ref rig, animData); ecb.AddComponent(e, state);
}).Run();

 Entities
.WithoutBurst()
.WithStructuralChanges()
.WithChangeFilter<HumanoidAnimPlayerData>()
.ForEach
((Entity e, ref HumanoidAnimClipStateData stateData, ref HumanoidAnimPlayerData animData) =>
{

 var set = graphSystem.Set;
 if (animData.animState > 1)
 {

set.SendMessage(stateData.WalkNode, ClipPlayerNode.SimulationPorts.Clip, animData.ClipIdle);
set.SendMessage(stateData.RunNode,ClipPlayerNode.SimulationPorts.Clip, animData.ClipIdle);

 }
 else
 {

set.SendMessage(stateData.WalkNode,ClipPlayerNode.SimulationPorts.Clip, animData.ClipWalk);
set.SendMessage(stateData.RunNode, ClipPlayerNode.SimulationPorts.Clip, animData.ClipRun);

 }
set.SetData(stateData.MixerNode, MixerNode.KernelPorts.Weight, animData.mixValue);
set.SetData(stateData.WalkNode, ClipPlayerNode.KernelPorts.Speed, animData.animSpeed);
set.SetData(stateData.RunNode, ClipPlayerNode.KernelPorts.Speed, animData.animSpeed);

}).Run();
}

Figure 21 – OnUpdate method of HumanoidAnimPlayerSystem.

Animations for the mono animation benchmark were implemented using the

conventional Unity tools for animations. The animator had a blend tree blending

54

Turku University of Applied Sciences Thesis | Alarik Näykki

between the animations depending on the speed value (Figure 22).

Figure 22 – Mono Animation animator parameters and states.

5.5 VR with DOTS

For VR, the SteamVR plugin for Unity was used. It was chosen as it has vast

sample assets and compatibility with the Rift S headset. Same pathfinding as in

the pathfinding environment was used except for static destinations instead of

randomized.

For the tower defence, a system was created to handle the tower logic. The

system used the physics package to find enemy units near the towers.

OverlapSphere was used to look for physic objects (i.e., enemy units) in the

tower range (Figure 23). The system could then apply damage logic onto the

found enemy entities.

NativeList<DistanceHit> outHits = new NativeList<DistanceHit>(Allocator.Temp);
if (world.OverlapSphere(towerTranslation.Value, tower.range, ref outHits,
 filter))
{
 tower.target = outHits[0];
}

Figure 23 – OverlapSphere finds units in the tower’s range.

5.6 AR with DOTS

Unity’s AR Foundation was used for the AR implementation. AR Foundation

was developed by Unity to support multiplatform AR development with Unity

(Unity 2021a). Same pathfinding as in the pathfinding environment was used for

the units. As the units needed a surface to do the pathfinding on, AR foundation

55

Turku University of Applied Sciences Thesis | Alarik Näykki

was used to find a plane in the real world using the phone’s camera. When the

plane was found, a NavMesh could be baked on it (Figure 24). Only the plane

with the largest area was kept active to make the baking more straightforward.

After the baking was complete, the Units did similar pathfinding behaviour as in

the pathfinding benchmark environment.

private void PlaneManager_planesChanged(ARPlanesChangedEventArgs obj)
{
 foreach (var plane in FindObjectsOfType<ARPlane>(true))
 {
 if (mainPlane == null)
 mainPlane = plane;

 if (mainPlane == plane)
 plane.gameObject.SetActive(true);
 else if (Vector2.SqrMagnitude(mainPlane.extents)

 <= Vector2.SqrMagnitude(plane.extents))
 {
 mainPlane = plane;
 plane.gameObject.SetActive(true);
 }
 else
 plane.gameObject.SetActive(false);
 }
 surface.BuildNavMesh();
}

Figure 24 – Script bakes new NavMesh when planes are changed.

56

Turku University of Applied Sciences Thesis | Alarik Näykki

6 BENCHMARK RESULTS

This chapter runs through the results of the benchmarks. The next chapter

discusses the findings in detail.

6.1 Pathfinding benchmark

Pathfinding benchmarks were run on a desktop and a laptop. Scheduling types

were measured to find out the performance difference between parallelized and

non-parallelized scheduling types. The highest result of scheduling was

compared to the object-oriented results to figure out the performance difference

between them. Animated parallel and animated mono were compared to find

out the performance difference between animation approaches. The AR

benchmark ran on the phones were compared to each other to understand the

performance gap between pc and mobile.

6.1.1 Scheduling

In the scheduling benchmark amount of time until fps drops to 10 or below was

measured. More time equals better results. Figure 25 (desktop) and Figure 26

(laptop) show the results of the scheduling benchmarks.

57

Turku University of Applied Sciences Thesis | Alarik Näykki

Figure 25 – Desktop scheduling benchmarks.

Figure 26 – Laptop scheduling benchmarks.

The desktop was two to three times faster in all benchmarks compared to the

laptop. For both devices, the parallel benchmark with burst was the most

performant. The burst benchmarks were, on average, 2.5 times faster than their

non-burst counterparts. Results for Single and Run benchmarks were close to

each other. Run was 3% faster compared to Single on the desktop but 12%

Parallel Single Run

Burst 24,72 14,52 14,99

No Burst 10,03 6,24 6,58

0

5

10

15

20

25

30

T
im

e
 (

s
)

Desktop scheduling

Parallel Single Run

Burst 8,94 7,29 6,41

No burst 3,41 3,12 2,47

0

5

10

15

20

25

30

T
im

e
 (

s
)

Laptop scheduling

58

Turku University of Applied Sciences Thesis | Alarik Näykki

slower on the laptop. The parallel burst benchmark was 68% faster on the

desktop compared to single and run. This difference was only 20% on the

laptop.

6.1.2 Comparison to object-oriented

The number of units was measured for the comparison as the time

measurement was not comparable for these benchmarks. Parallel results are

from the pathfinding parallel with burst benchmark, and the mono results

represent the object-oriented approach. More units equal better results. Figure

27 shows the results of these benchmarks.

Figure 27 – Comparison between Parallel and mono benchmarking.

Parallel was 13 times faster on the desktop and nine times faster on the laptop.

6.1.3 Animation

Parallel results are from the parallel animated benchmark. Mono results are

from the mono animated benchmark. More units equal better results. Figure 28

shows the results of the animation benchmarks.

Parallel Mono

Desktop 263 750 19 500

Laptop 82 917 9 000

0

50 000

100 000

150 000

200 000

250 000

300 000

N
u
m

b
e
r

o
f

U
n
it
s

Comparison

59

Turku University of Applied Sciences Thesis | Alarik Näykki

Figure 28 – Animation benchmarks.

The object-oriented approach was 3.5 times faster than the DOTS approach.

6.2 VR

No VR benchmarks were run, but a difference between the performance of the

standalone build and the editor was observed. The build performed better than

the editor. The build held 40 FPS at 30 000 units while the editor was at 20 FPS

with the same number of units.

As the VR was run on the desktop, the previous PC results generally apply to

the VR as well.

6.3 AR

In the AR benchmark, the FPS was observed as the number of units increased.

The target framerate was 30. More FPS equal better results. Figure 29 shows

the results of the AR benchmarks.

Parallel Mono

Desktop 713 2 560

0

500

1 000

1 500

2 000

2 500

3 000

N
u
m

b
e
r

o
f

U
n
it
s

Animation

60

Turku University of Applied Sciences Thesis | Alarik Näykki

Figure 29 – AR benchmarks.

The Nexus started dropping frames at the 1000-unit mark. The Pixel held 30

FPS until 5000 units. At 10 000 units, the pixel performed 6.7 times better, and

at 20 000 units 2.7 times better than the Nexus.

0 1000 2500 5000 10 000 20 000

Pixel 30 30 30 26 20 8

Nexus 30 22 13 6 3 3

0

5

10

15

20

25

30

35

F
P

S

Number of Units

AR

61

Turku University of Applied Sciences Thesis | Alarik Näykki

7 DISCUSSION & FUTURE WORK

This chapter discusses the results of the research by going through the topics of

the research questions. The methods were criticized when it was deemed

necessary. Each part provides recommendations and suggestions for future

work on their topics.

7.1 Data visualization

There were no problems with visualizing the units and performance data inside

the Unity Editor using DOTS. Each unit was rendered and could be observed

while running the benchmarks. In addition, the number of units on the screen

provided a consistent measurement that could be compared to the other

benchmarks. Figure 30 shows an example of the units and the data.

This implementation lacked depth and should be built upon in the future.

Outputs such as detailed graphs and data columns should be implemented

inside the editor or standalone builds for future work.

Figure 30 – Example of a pathfinding benchmark run on the desktop where

265 000 units (green shapes) were rendered on the screen.

62

Turku University of Applied Sciences Thesis | Alarik Näykki

7.2 Scheduling & burst

As expected, running the benchmarks in parallel with burst was the best

performing approach. Compared to single and run scheduling, the performance

gains were high (68%) on the 8-core processor but lower (20%) on the 4-core

processor. This was expected as the more cores are present, the more the

parallel job system can take advantage of them. As the consumers' average

processor core count is going up each year (Steam 2021a), these results are

promising for the future.

Single scheduling was expected to be faster than run as it takes advantage of

the job system, which was the case in the laptop benchmark but not in the

desktop benchmark. Run scheduling was 3% faster on the desktop but 12%

slower on the laptop. With these results, it is inconclusive which one of them is

faster. More devices would need to be tested to get a more conclusive answer.

Research with more processors with more than 8-cores should be concluded,

as it would be interesting to see the possible diminishing returns of the added

core counts.

7.3 Pathfinding

There were no issues in implementing the pathfinding using DOTS. The DOTS

pathfinding performed up to 13 times better when compared to the object-

oriented Unity approach. Criticism for the pathfinding methods is the

comparability of the implementations. The implementations did not strictly use

the same systems, and the DOTS implementations had more time and

optimization put into them.

This topic warrants much research in the future. Not just with Unity, but other

game engines as well. Research on the performance of different pathfinding

algorithms (e.g., A*, Dijkstra, Flow fields) when using data-oriented and object-

oriented approaches should be compared inside game engines.

63

Turku University of Applied Sciences Thesis | Alarik Näykki

7.4 VR

There were no issues with DOTS compatibility with VR. Its performance was no

different to the other performance tests on the same machine. DOTS for VR

could be considered for any task applicable in any other PC Unity project.

The methods for testing the VR application were not deep enough as there

were no benchmarks run due to weak planning. The object-oriented pathfinding

should have been tested with VR as well. This way, the DOTS approach could

have been compared to it.

Future work with different VR platforms and plugins should be concluded to

confirm the compatibility and performance findings. In addition, it would also be

interesting to see if creating a data-oriented plugin to use for VR would be

worthwhile.

7.5 AR

As expected, no issues with AR and DOTS compatibility were found. The DOTS

pathfinding on the Pixel device performed around as well as the mono

pathfinding on the much more powerful desktop machine. This is promising for

DOTS as it allows for similar performance on mobile devices as would

otherwise only be possible with powerful desktop processors. The slower nexus

phone had 37% of the performance of the Pixel, which is still impressive

considering the Nexus was released in 2015.

The real-time building of the navigation mesh onto AR planes was an interesting

side product of the research. It would be interesting to see if other pathfinding

methods can get similar or better results in a dynamically changing area.

64

Turku University of Applied Sciences Thesis | Alarik Näykki

7.6 DOTS in production

It was expected that DOTS is not production-ready because Unity themselves

had not declared it production-ready yet. Generally speaking, the author agrees

with this. The current way of development is not intuitive for someone from the

object-oriented world and requires much adjustment. The main factors

contributing to this are the usage of data components, limited datatypes, job

scheduling and querying entity ForEach job. Additionally, the developer will

need some knowledge on memory allocation, which is not required in object-

oriented Unity development. It was too easy to create memory leaks in DOTS

accidentally.

With these points, the author would not recommend relying on DOTS for the

most critical features of the project. Some more minor features, such as moving

background characters, could be implemented with DOTS. Even then, the time

required for learning DOTS needs to be considered when starting production.

The author could recommend DOTS for some mobile tasks as battery savings

are a prominent topic in that field and would warrant more time taken for the

development.

The more time is invested into learning DOTS; the results would undoubtedly

also get better. However, as the time for this research was limited, the author’s

results should be taken from the angle of an object-oriented Unity developer

with no previous DOTS experience.

An example of DOTS in action is Vedelem: The Golden Horde by Breda

University of Applied Sciences (Steam 2021b). It is a real-time strategy game

set in 13th century Europe. The game uses Reese’s DOTS navigation (Schultz

2021) for the movement of its units. The game works well with DOTS and

should be considered a showcase of what can be created using the current

DOTS version.

Unity is still updating DOTS, and the author would advise waiting for the

production-ready version to come out before creating important features using

65

Turku University of Applied Sciences Thesis | Alarik Näykki

it. Unfortunately, there is no clear roadmap from Unity for when this might be

coming out. As it stands, DOTS is worth trying out but not production-ready yet.

In the future, when Unity releases a new version of the DOTS packages, a new

test should be concluded to test if the newer iteration has gotten better usability

for the developer, which might make it deemed production-ready.

7.6.1 Animation

The usage of the animation is rough compared to the conventional Unity

animation tools. The package is in an experimental stage, so this was to be

expected. Documentation for the package is close to non-existent, with the

sample project being the only resource from Unity to help development. The

object-oriented animations run 3.5 times faster than the DOTS animations, even

with DOTS having up to 13 times the performance in the non-animated

benchmarks. These results might be because of a lacklustre implementation of

the animations on the authors part or because the package is not mature

enough. As it is, the author does not recommend using the animation package.

66

Turku University of Applied Sciences Thesis | Alarik Näykki

8 CONCLUSION

In this thesis, the primary question of discussion was whether DOTS is

production-ready. The secondary question was to find out whether DOTS was

compatible with VR and AR.

The differences of DOTS to conventional object-oriented Unity development

were reviewed and compared through discussion and benchmarks. These

benchmarks were realized using pathfinding methods to visualize the data for

the DOTS and the object-oriented approaches. The pathfinding was also

applied in VR and AR to find out if they were compatible with DOTS. Finally,

recommendations on the production readiness of DOTS were given based on

the results and findings of these methods. Some points for possible future work

on the topics were provided as well.

The discussion concluded that DOTS is not production-ready yet, because the

author considered the current DOTS development model too arduous to use.

The predominant factor to this was the unfamiliar and complex code syntax that

DOTS requires. However, the performance of the DOTS approach compared to

the object-oriented approach was deemed promising for the future. Moreover,

VR and AR did not have any combability issues with DOTS. The author remarks

that DOTS should be researched again when Unity updates and moves it closer

to official production readiness.

67

Turku University of Applied Sciences Thesis | Alarik Näykki

REFERENCES

Acton, M., 2014. CppCon 2014: Mike Acton "Data-Oriented Design and C++".

[online] Available at: <https://www.youtube.com/watch?v=rX0ItVEVjHc>

[Accessed 1 September 2021].

Bad Graphix, 2020. How many Boids can Unity handle? (ECS & DOTS).

[online] Available at: <https://www.youtube.com/watch?v=mNZq0RhM-98>

[Accessed 1 August 2021].

Borufka, R. 2020, "Performance testing suite for Unity DOTS", Master thesis,

Charles University, Prague.

Cardelli, L., 1988, March. Types for data-oriented languages. In International

Conference on Extending Database Technology (pp. 1-15). Springer, Berlin,

Heidelberg.

Codemonkey, 2021. Pathfinding in Unity ECS! (Epic Performance!). [online]

Available at: <https://www.youtube.com/watch?v=ubUPVu_DeVk> [Accessed 1

August 2021].

Dijkstra, E.W. 1959, "A note on two problems in connexion with graphs",

Numerische mathematik, vol. 1, no. 1, pp. 269-271.

Doucet, L., 2021. Game engines on Steam: The definitive breakdown. [online]

Game Developer. Available at:

<https://www.gamedeveloper.com/business/game-engines-on-steam-the-

definitive-breakdown> [Accessed 1 October 2021].

Fabian, R. 2018, Data-oriented design, R. Fabian.

Hennessy, J. L., & Patterson, D. A. (2017). Computer architecture: a

quantitative approach. Cambridge, MA, Morgan Kaufmann.

Hybesis, 2020. Pathfinding algorithms : the four Pillars.. [online] Medium.

Available at: <https://medium.com/@urna.hybesis/pathfinding-algorithms-the-

four-pillars-1ebad85d4c6b> [Accessed 1 August 2021].

Joshi, R., 2007. Data-oriented architecture: A loosely-coupled real-time

soa. whitepaper, Aug.

68

Turku University of Applied Sciences Thesis | Alarik Näykki

Krishnaswamy, N. 2009, "Comparison of efficiency in pathfinding algorithms in

game development", Honors Senior Thesis, DePaul University, Chigaco.

Llopis, N., 2009. Data-Oriented Design (Or Why You Might Be Shooting

Yourself in The Foot With OOP) – Games from Within. [online]

Gamesfromwithin.com. Available at: <https://gamesfromwithin.com/data-

oriented-design> [Accessed 1 September 2021].

Männistö, T. 2020, "Data-oriented technology in Unity game engine ",

Bachelor’s thesis, JAMK University of Applied Sciences, Jyväskylä.

Microsoft, 2021a. Structs - C# language specification. [online]

Docs.microsoft.com. Available at: <https://docs.microsoft.com/en-

us/dotnet/csharp/language-reference/language-specification/structs> [Accessed

1 September 2021].

Microsoft, 2021b. Unsafe code, pointers to data, and function pointers. [online]

Docs.microsoft.com. Available at: <https://docs.microsoft.com/en-

us/dotnet/csharp/language-reference/unsafe-code> [Accessed 1 September

2021].

Microsoft, 2021c. Object-Oriented Programming (C#). [online]

Docs.microsoft.com. Available at: <https://docs.microsoft.com/en-

us/dotnet/csharp/fundamentals/tutorials/oop> [Accessed 1 October 2021].

Mutel, A., 2018. Alexandre Mutel — Behind the burst compiler, converting .NET

IL to highly optimized native code. [online] Available at:

<https://www.youtube.com/watch?v=LKpyaVrby04> [Accessed 1 October

2021].

Oculus, 2021. VR Performance Optimization Guide | Oculus Developers.

[online] Developer.oculus.com. Available at:

<https://developer.oculus.com/documentation/native/pc/dg-performance-opt-

guide/> [Accessed 1 October 2021].

PassMark Software, 2021. PassMark Android Benchmark Charts. [online]

Androidbenchmark.net. Available at: <https://www.androidbenchmark.net/>

[Accessed 1 September 2021].

69

Turku University of Applied Sciences Thesis | Alarik Näykki

PassMark Software, 2021a. PassMark Software - CPU Benchmarks - CPU

Popularity in the Last 90 Days. [online] Cpubenchmark.net. Available at:

<https://www.cpubenchmark.net/share30.html> [Accessed 1 September 2021].

Permana, S.H., Bintoro, K.Y., Arifitama, B. & Syahputra, A. 2018, "Comparative

analysis of pathfinding algorithms a*, dijkstra, and bfs on maze runner game",

IJISTECH (International J.Inf.Syst.Technol., vol.1, no.2, p.1).

Reynolds, C.W. 1987, "Flocks, herds and schools: A distributed behavioral

model", Proceedings of the 14th annual conference on Computer graphics and

interactive techniques, pp. 25.

Schultz, R., 2021. Reese’s DOTS Navigation. [online] Available at:

<https://openupm.com/packages/com.reese.nav/> [Accessed 1 August 2021].

Steam, 2021a. Steam Hardware & Software Survey. [online]

Store.steampowered.com. Available at:

<https://store.steampowered.com/hwsurvey/cpus/> [Accessed 20 August 2021].

Steam, 2021b. Vedelem: The Golden Horde on Steam. [online]

Store.steampowered.com. Available at:

<https://store.steampowered.com/app/1517150/Vedelem_The_Golden_Horde/>

[Accessed 1 August 2021].

Tcha-Tokey, K., Loup-Escande, E., Christmann, O. & Richir, S. 2017, "Effects of

interaction level, framerate, field of view, 3D content feedback, previous

experience on subjective user experience and objective usability in immersive

virtual environment", International Journal of Virtual Reality, vol. 17, no. 3, pp.

27-51.

Unity, 2017. [online] Unite Austin 2017 - Massive Battle in the Spellsouls

Universe. Available at: <https://www.youtube.com/watch?v=GEuT5-oCu_I>

[Accessed 1 September 2021].

Unity, 2020a. Hybrid Renderer | Hybrid Renderer | 0.11.0-preview.44. [online]

Docs.unity3d.com. Available at:

<https://docs.unity3d.com/Packages/com.unity.rendering.hybrid@0.11/manual/i

ndex.html> [Accessed 1 September 2021].

Unity, 2020b. Using Entities.ForEach | Entities | 0.9.1-preview.15. [online]

Docs.unity3d.com. Available at:

70

Turku University of Applied Sciences Thesis | Alarik Näykki

<https://docs.unity3d.com/Packages/com.unity.entities@0.9/manual/ecs_entitie

s_foreach.html> [Accessed 1 September 2020].

Unity, 2020c. Entity Component System | Entities | 0.17.0-preview.42. [online]

Docs.unity3d.com. Available at:

<https://docs.unity3d.com/Packages/com.unity.entities@0.17/manual/index.html

> [Accessed 1 August 2021].

Unity, 2020d. Burst User Guide | Burst | 1.4.11. [online] Docs.unity3d.com.

Available at:

<https://docs.unity3d.com/Packages/com.unity.burst@1.4/manual/index.html>

[Accessed 1 August 2021].

Unity, 2021a. About AR Foundation | AR Foundation | 4.1.7. [online]

Docs.unity3d.com. Available at:

<https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.1/manual/ind

ex.html> [Accessed 1 August 2021].

Unity, 2021b. DOTS packages| Unity. [online] Unity. Available at:

<https://unity.com/dots/packages> [Accessed 1 August 2021].

Unity, 2021c. Unity and Havok Physics for DOTS-based projects | Unity. [online]

Unity. Available at: <https://unity.com/unity/physics> [Accessed 1 October

2021].

Unity, 2021d. What is DOTS and why is it important? - Unity Learn. [online]

Unity Learn. Available at: <https://learn.unity.com/tutorial/what-is-dots-and-why-

is-it-important?uv=2021.1> [Accessed 1 October 2021].

Unity, 2021e. NavMeshQuery. [online] Available at:

<https://docs.unity.cn/2021.2/Documentation/ScriptReference/Experimental.AI.

NavMeshQuery.html> [Accessed 1 August 2021].

Unreal, 2021. Unreal Engine 4 Terminology. [online] Docs.unrealengine.com.

Available at: <https://docs.unrealengine.com/4.27/en-

US/Basics/UnrealEngineTerminology/> [Accessed 1 September 2021].

Yegulalp, S., 2021. What is LLVM? The power behind Swift, Rust, Clang, and

more. [online] InfoWorld. Available at:

<https://www.infoworld.com/article/3247799/what-is-llvm-the-power-behind-

swift-rust-clang-and-more.html> [Accessed 1 August 2021].

71

Turku University of Applied Sciences Thesis | Alarik Näykki

Zeng, W. & Church, RL 2009, "Finding shortest paths on real road networks: the

case for A", International Journal of Geographical Information Science, vol. 23,

no. 4, pp. 531-543.

