

Increasing Full Stack Development
Productivity via Technology Selection

 Mike Koder

Master’s thesis
November 2021
Information and communication technologies
Master’s Degree Programme in Information and communication
technologies
Full Stack Software Development

 Description

Koder, Mike

Increasing Full Stack Development Productivity via Technology Selection

Jyväskylä: JAMK University of Applied Sciences, November 2021, 78 pages.

Information and communication technologies. Master’s Degree Programme in Information Technology, Full
Stack Software Development. Master’s Thesis.

Permission for web publication: Yes

Language of publication: English

Abstract

Building web application prototypes is a common project type for consulting companies. Developers can
have hard time selecting the best technologies from dozens of options. The primary objective was to find
backend and frontend technologies to improve the productivity of full stack development. The secondary
goals were determining the extent of features available in modern frontend and backend technologies and
studying which are the most significant features for technology evaluation.

Research papers on software development productivity were analyzed to find factors suitable for guiding
the technology selection process. The most popular programming languages and their web frameworks and
libraries were collected for comparative analysis. Technologies’ features were gathered from official
documentation websites to gain a good understanding of the spectrum of features. Finally, technologies
were compared by how well each feature was supported.

Reuse, adequate documentation, automatization and community support were identified to be the few
productivity factors relevant for technology selection process. JavaScript, TypeScript, Python, C#, Java and
PHP were found to be the most popular programming languages for web development. Feature
comparison revealed backend technologies having great differences in the available features. Especially
request binding and the ability to automatically infer OpenAPI documentation were detected to reduce
manual repetitive work. ASP.NET Core, NestJS, Laravel, FastAPI and Spring were found to be the most
feature rich frameworks for different programming languages. Frontend technologies were found to have
only minor differences.

Comparison results can be used to evaluate technologies for new full stack development projects today.
The feature evaluation process can also be utilized in the future to compare how well new technologies
measure up with prior ones.

Keywords/tags (subjects)

Web development, Full stack development, Backend development, Frontend development, Productivity,
RESTful API, SPA, Single page application, OpenAPI

Miscellaneous (Confidential information)

n/a

1

Contents
Terms .. 6

1 Introduction ... 7

1.1 Background .. 7

1.2 Research objectives and questions ... 7

1.3 Scope ... 8

2 Research setting ... 9

3 Technical factors in software development productivity .. 9

4 Full stack development .. 11

4.1 HTTP... 12

4.2 RESTful API... 14

4.3 Single page applications .. 16

4.4 OpenAPI ... 17

5 Existing full stack technology comparisons ... 19

6 Backend technologies .. 21

6.1 Programming languages .. 21

6.2 Frameworks & libraries ... 23

7 Backend features ... 23

7.1 Introduction ... 23

7.2 Routing .. 24

7.3 Middleware ... 27

7.4 Handler .. 31

7.5 Authentication & Authorization .. 33

7.6 Logging... 35

7.7 OpenAPI ... 35

7.8 Messaging .. 36

7.9 Tasks .. 37

2

8 Frontend frameworks & libraries ... 37

9 Frontend features .. 38

9.1 Components .. 38

9.2 Templates .. 41

9.3 Routing .. 45

9.4 State management .. 48

9.5 Localization .. 49

9.6 UI components .. 50

10 Technology evaluation ... 51

10.1 Methodology ... 51

10.2 Backend.. 51

10.3 Frontend .. 56

11 Retrospective ... 60

12 Conclusion .. 63

References.. 66

Appendices ... 70

3

Figures

Figure 1. Example of HTTP request handling pipeline. .. 24

Figure 2. Example of Material Design form. .. 50

Figure 3. Selecting additional features in Vue CLI. .. 56

Tables

Table 1. Productivity factors suitable for technology selection .. 11

Table 2. Common HTTP request headers .. 13

Table 3. Common HTTP status codes ... 13

Table 4. Common HTTP response headers .. 14

Table 5. Common RESTful routing conventions... 16

Table 6. Most mentioned backend frameworks in comparison web articles 19

Table 7. Most mentioned advantages of frontend frameworks ... 20

Table 8. Popular programming languages having at least one popular web framework 21

Table 9. Most popular development tools .. 22

Table 10. WebAssembly frameworks. ... 38

Table 11. Feature effort scoring criterion .. 51

Table 12. Backend routing features availability ... 52

Table 13. Middleware features availability .. 52

Table 14. Handler features availability .. 53

Table 15. Authentication features availability ... 54

Table 16. OpenAPI features availability ... 54

Table 17. Logging, messaging and task scheduling features availability ... 55

Table 18. Top frameworks for each language. .. 56

Table 19. Routing features availability ... 57

Table 20. Component features availability .. 57

Table 21. Template features availability. ... 58

Table 22. State management features availability. ... 59

Table 23. Frontend technology feature availability summary. .. 60

Table 24. Tiobe and PyPL ranking October 2020 and November 2021. .. 61

Table 25. Backend technology community metrics comparison. .. 62

4

Code Blocks

Code Block 1. OpenAPI document example. ... 18

Code Block 2. Laravel routing features .. 25

Code Block 3. ASP.NET Core routing features ... 25

Code Block 4. Subdomain routing in CodeIgniter. ... 26

Code Block 5. Reverse routing in Laravel and ASP.NET Core ... 26

Code Block 6. Semantic routing in Restify. .. 26

Code Block 7. Static file provider in ASP.NET Core. ... 26

Code Block 8. Rate limiting in Laravel. ... 27

Code Block 9. Redirect and fallback routing in Laravel. ... 27

Code Block 10. Enabling CORS in NestJS. ... 27

Code Block 11. Middleware functions in Express. ... 28

Code Block 12. Middleware in ASP.NET Core. ... 29

Code Block 13. Middleware parameterization in Slim. ... 29

Code Block 14. Middleware applying conventions in Slim and NestJS. ... 29

Code Block 15. Defining middleware order in CakePHP. ... 30

Code Block 16. Defining content types in Dropwizard. ... 30

Code Block 17. Registering error handler in Flask. .. 30

Code Block 18. Dependency injection in ASP.NET Core. ... 31

Code Block 19. Request binding and validation in FastAPI. ... 31

Code Block 20. Request binding and validation in NestJS. .. 32

Code Block 21. Output cache in Django and key-value cache in Symfony .. 32

Code Block 22. Cache dependencies in Laravel. .. 32

Code Block 23. Google login flow in Laravel. ... 33

Code Block 24. Creating JWT in Vert.x. .. 33

Code Block 25. Custom policy in ASP.NET Core. .. 34

Code Block 26. Middleware conventions in ASP.NET Core. .. 34

Code Block 27. Setting log level in FastAPI. ... 35

Code Block 28. OpenAPI configuration in NestJS. ... 36

Code Block 29. Message broadcasting in ASP.NET Core. .. 36

Code Block 30. Events in Flask. .. 37

Code Block 31. Scheduled tasks in Spring. ... 37

5

Code Block 32. Example of Vue.js component. ... 39

Code Block 33. Using components in various frameworks.. 39

Code Block 34. Passing data deep down in Blazor... 40

Code Block 35. DOM reference in Vue.js ... 40

Code Block 36. Dynamic component selection in Blazor. .. 41

Code Block 37. Angular template example. ... 42

Code Block 38. Attribute binding in Angular and Blazor ... 42

Code Block 39. Value and event binding in React, Svelte and Vue.js .. 42

Code Block 40. Class bindings in Angular and Vue.js ... 42

Code Block 41. Data binding in Blazor. .. 43

Code Block 42. Transclusion in React... 43

Code Block 43. Multi transclusion in Blazor. .. 44

Code Block 44. Input validation in Quasar Framework. .. 44

Code Block 45. Pipe and directive in Angular. ... 45

Code Block 46. Route definitions in Svelte. ... 45

Code Block 47. Generating links in Svelte. ... 46

Code Block 48. Using routing metadata and hooks in Vue.js. ... 46

Code Block 49. Nested routes. ... 47

Code Block 50. Route placeholders. .. 48

Code Block 51. State management in Vue.js using vuex. .. 49

Code Block 52. Localization in Vue.js. .. 50

6

Terms

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

CORS Cross-Origin Resource Sharing

CRUD Create, read, update and delete operations

DOM Document Object Model

DSL Domain Specific Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

JWT JSON Web Token

OpenAPI Specification for describing RESTful APIs

PAAS Platform as a Service

REST Representational State Transfer

SPA Single-page application

URL Uniform Resource Locator

XML Extensible Markup Language

7

1 Introduction

1.1 Background

Shortage of software developers has appeared frequently in the Finnish news headlines for the

last couple of years. Educating more developers has often been seen as the solution, but that’s not

the only option. In addition to increasing the number of developers, enabling them to complete

more tasks in the same time would equally ease the shortage.

During my career I’ve worked on dozens of web development projects. In my experience building

small 1-18 man-month web application prototypes have been quite common projects for

consulting companies in Finland. These prototypes could have often been described as “glorified

CRUD applications”, a term commonly used in web and social media for applications consisting of

mostly basic data manipulation operations (Hacker news, 2020; Reddit, 2013; Team blind, 2020).

Given that dozens of technologies are available for web development, developers can have hard

time deciding which ones to use. Time constraints limit the depth of the evaluation and web

articles provide only shallow comparisons. Technologies are advertised as having been used in

popular web applications having millions of users. It’s possible that small teams in Finnish software

development industry building applications for vastly smaller audience could be more productive

using other technologies.

1.2 Research objectives and questions

The objective of this thesis is to research how the selection of technologies could increase

productivity in full stack development. In order to gain both immediate and future benefits, the

objective is split into three concrete goals:

1. Find the best frontend and backend technologies currently in terms of productivity.

2. Gain knowledge on the spectrum of features available in frontend and backend

technologies.

3. Determine which characteristics are the most crucial when evaluating capabilities of

frontend and backend technologies in terms of productivity.

8

This study builds upon four research questions:

RQ1. What software development productivity factors could be used to guide the technology

selection process?

RQ2. What are the programming languages, frameworks and libraries commonly used for web

development?

RQ3. What are the characteristics and features of modern backend and frontend (SPA)

technologies?

RQ4. What are the best technologies productivity-wise currently?

1.3 Scope

Technologies like low-code/no-code tools and code generators are left out from the scope of this

thesis. Although they are claimed to increase productivity (Alpha Software, 2021; Hackernoon,

2021; Long, T. 2021; Spendel, T. 2020; Stangarone, J. 2019; Tay, N. 2021;) they also have the

possible drawbacks of limited customization (Alpha Software, 2021; Hackernoon, 2021; Long, T.

2021; Spendel, T. 2020; Stangarone, J. 2019; Tay, N. 2021; Tozzi, C. 2019) and vendor lock-in

(Alpha Software, 2021; Hackernoon, 2021; Long, T. 2021; Stangarone, J. 2019; Tay, N. 2021; Tozzi,

C. 2019). They are also marketed to enable building software without coding experience by non-

technical business users (Alpha Software, 2021; Long, T. 2021; Spendel, T. 2020; Tay, N. 2021;

Tozzi, C. 2019) which conflicts with the idea of selling coding work.

Desired technologies should also be general purpose, i.e. enable developing a wide range of web

applications and/or APIs for mobile applications and be deployable to any major cloud provider. In

detail, criterion used to define general purpose technologies in this thesis are:

● Frontend and backend must be independent of each other.

● Backend must be database independent.

● Technologies must be vendor and platform independent.

● Technologies must be free and open source.

Focus is on developing prototypes with a small team or even by a sole developer. Productivity

factors related to teamwork, process and other non-technical factors are not in the scope of this

research.

9

2 Research setting

In order to research the main objective of finding the best technologies in terms of productivity, it

is first needed to answer the first research question (RQ1) of finding the factors affecting software

development productivity. Literature review on prior studies is done to find productivity factors

suitable for the technology selection process. Studies are searched from online databases Google

Scholar (https://scholar.google.com) and IEEE Xplore Digital Library (https://ieeexplore.ieee.org).
In software development new technologies emerge frequently. In order to answer the second

research question (RQ2) viable technologies are collected from online resources. As this phase

only involves collecting the names of the technologies, all sources found with web searches are

considered credible. Further details on technologies are collected from various online sources to

evaluate their vitality and suitability for the feature level analysis.
Web searches “backend features” or “frontend features” don’t return any relevant results for

forming lists of features to be used in the technology evaluation. Comprehensive literature

reviews on backend and frontend technologies` features are done to find the answer to research

question 3 (RQ3) of determining the spectrum of available features. Technologies’ official

documentation websites are used as sources as they are considered having most up to date and

correct information.
Lastly, technologies are evaluated on the extent of features they have available. Analyzing the

evaluation results answers the most important research question (RQ4) of naming the best full

stack technologies today in terms of productivity.
3 Technical factors in software development productivity

Wagner and Ruhe (2008) reviewed literature on software development productivity made in years

1970-2007 and identified various technical and soft factors affecting development productivity. Of

those factors only product complexity, reuse, use of tools, programming language and

documentation quality could guide the selection of technologies while others were more related

to project management, process, business requirements and other non-technical matters. Study

didn’t clearly state whether those factors had a positive or negative impact on productivity.

10

Various other studies also mentioned similar factors including their impacts and found decreasing

complexity (de Barros Sampaio et al., 2010; Maxwell & Forselius, 2000; Mota et al., 2021),

increasing reuse (de Barros Sampaio et al., 2010; Murphy-Hill et al., 2021; Melo et al, 2011), use of

suitable tools (de Barros Sampaio et al., 2010; Maxwell & Forselius, 2000; Mota et al., 2021;

Murphy-Hill et al., 2021), higher level programming language (de Barros Sampaio et al., 2010;

Mota et al., 2021; Jiang & Comstock, 2007) and adequate documentation (Mota et al., 2021;

Tomaszewski & Lundberg, 2005) having positive impacts on productivity. Competence with used

technologies was also observed increasing productivity in various studies (Canedo & Santos, 2019;

de Barros Sampaio et al., 2010; Maxwell & Forselius, 2000).

Pano et al. (2018) studied the factors leading to the adaption of JavaScript frameworks and found

automatization, learnability, complexity and understandability having impact on the effort needed

to achieve programming tasks. Precise documentation with good examples was found to be

important for understandability.

It’s notable that many of the studies have collected productivity factors from quite old sources and

software development has been evolving rapidly. Programming languages commonly used for web

development are high level and have a broad range of tools available. The concept of reuse has

also expanded from reusing code within a company to using open source libraries available from

package managers such as NPM, which was released in 2010 (GitHub 2021).

In addition to effort expectancy factors, Pano et al. (2018) also found social influence and

facilitating condition factors affecting the adoption of JavaScript frameworks. Of these factors

community size, community responsiveness, updates, and extensibility can also be considered

affecting productivity by increasing reuse and reducing the time needed to find help.

Given that learnability and understandability are highly subjective, getting meaningful results for

them would require gathering experience from a wide range of developers which is not in the

scope of this thesis. It seems selecting technologies having a wide range of features, adequate

documentation and good community support and then sticking to them would result in increased

productivity. Table 1 describes those factors, their implications and how they are evaluated in

more detail.

11

Table 1. Productivity factors suitable for technology selection

 Factor Implication Evaluation method

Reuse Less time writing code Available features built-in
Available features as extensions

Adequate
documentation

Less time finding example code Feature examples in
documentation

Automatization Less time doing repetitive work Eliminating repetitive code

Community size More help available
More contributors adding new
features

Popularity
Stack Overflow questions
Github contributors

Community
responsiveness

Questions are answered faster
New features are added more
frequently

Stack overflow questions
Feature examples by community

Updates New features are added more
frequently

Recently updated

Extensibility 3rd party extensions increase reuse Features available as extensions

In addition to increasing productivity these factors also make technologies more appealing to

developers (Pano et al., 2018), thus making them more likely relevant also in the future. By

reducing the need to change technologies developers are more likely able to use longer those

technologies they are competent with. While technology’s vitality might not affect productivity

today, it’s an important factor to consider for future productivity.

4 Full stack development

Full stack development definition varies and has evolved during the years. In its most narrow

definition full stack development includes only backend and frontend development. Broader

definitions contain a wide variety of technologies and practices including different kinds of

databases, cloud services, mobile apps and continuous integration/deployment among others

(roadmap.sh, 2021a; roadmap.sh, 2021b).

12

This chapter describes the essential technologies used in full stack development in the scope of

this thesis. More specifically, what are RESTful APIs and single page applications (SPA), how they

communicate using HTTP, and how OpenAPI can be used to reduce manual work.

4.1 HTTP

Hypertext Transfer Protocol (HTTP) is a protocol used for communication between client (e.g.

browser or mobile application) and server. Messaging consists of requests sent by the client and

server responses. The main elements of request are method, URL, headers and body. (Gaitatzis,

2019)

Method describes the action. GET method is intended for retrieving data and should not have side

effects. POST, PUT, PATCH and DELETE are commonly used for creating, replacing, updating and

deleting data respectively. HEAD is used to fetch the headers only. (Gaitatzis, 2019)

Other methods CONNECT, OPTIONS and TRACE are used for establishing a tunnel to the server,

describing the communication options and loop-back testing respectively (MDN Web Docs,

2021a).

URLs are addresses for resources on the web. URL itself consists of many parts. E.g. URL

https://example.com/products/123/reviews?start=2020-01-01 contains the following information

Protocol https

Host example.com

Path /products/123/reviews

Query ?start=2020-01-01

Headers consist of name-value pairs. Dozens of standard header fields exist to describe

authentication, caching and message body among others (MDN Web Docs, 2021b). Table 2 lists

common request headers.

13

Table 2. Common HTTP request headers (Gaitatzis, 2019; MDN Web Docs, 2021b)

 HTTP Header Purpose

Accept Acceptable response types

Accept-Charset Acceptable character sets

Accept-Language Acceptable languages

Authorization Authentication credentials

Content-Length Length of the data

Content-Type Content type of the body

In addition to standard headers, clients and servers can send custom headers. E.g. clients could

use an Accept-Version header to indicate the desired version of an API. Request body can contain

text and data in various formats. JSON is commonly used for objects and binary data for uploaded

files (Gaitatzis, 2019). HTTP responses contain version, status, headers and body. Status has a 3-

digit response code and textual description (MDN Web Docs, 2021c). Table 3 lists some common

response codes.

Table 3. Common HTTP status codes (Gaitatzis, 2019)

HTTP status code Message Description

200 OK Request succeeded

201 Created Resource was created

204 No Content Request succeeded, but no data is returned

301 Moved Permanently Resources has moved to another location

400 Bad Request Request cannot be processed

401 Unauthorized Client doesn’t have sufficient access rights

404 Not Found Resource is not found

500 Internal Server Error Server encountered unexpected error

14

Headers are similar to those of request’s with some exceptions such as caching which are only

relevant to responses (MDN Web Docs, 2021b). Table 4 lists some common response headers.

Table 4. Common HTTP response headers (Gaitatzis, 2019)

HTTP Header Purpose

Content-Disposition Indicates whether the data should be displayed inline in the browser
or downloaded. File name for downloaded content.

Content-Language Language of the content

Content-Length Length of the data

Content-Type Content type of the body

Expires Data expiration time

Response bodies can be textual or binary data. As in responses, JSON is a common format for

objects (Gaitatzis, 2019).

4.2 RESTful API

Representational State Transfer (REST) defines a set of constraints for the architecture of web

services. Fielding (2000) lists the following principles for REST

Client-Server

Separating data and UI improves portability and scalability allowing client and server to evolve

independently of each other.

Stateless

No client information is stored on the server. All data required for an operation is included in the

request.

Cache

Response data can be marked cacheable or non-cacheable. Cacheable data can be reused later in

place of an equivalent request.

Uniform Interface

Information is exchanged in a standardized form allowing components to evolve independently

and decoupling provided services from their implementation.

15

Layered System

Components can’t tell whether they are communicating with the end system or some

intermediate component such as proxy.

Code-on-Demand

Client functionality can be extended with code, such as JavaScript, sent from the server.

Uniform interface further has the following set of constraints of its own

Resources and Resource Identifiers

Resources can be practically any information that can be named, e.g. document or image.

Individual resources are identified e.g. by URI.

Representations

Representations can contain the current or intended state of a resource. E.g. server can send the

current state of a resource as a response to the client and the client can perform an action by

sending the intended state back to the server.

Self-descriptive message

Messages should contain enough information for the other end to be able to process it. E.g. media

type is used to tell whether the data should be rendered as an image or an HTML document.

Hypermedia as the engine of application state (HATEOAS)

Clients can discover other resources by following links provided in the message.

Web APIs are commonly called REST APIs although often they don’t fulfill the constraints defined

for REST (Fielding, 2008). Web APIs use HTTP as a communication protocol. HTTP methods and

paths to describe resources and their operations (Gaitatzis, 2019). Table 5 shows some common

RESTful routing conventions.

16

Table 5. Common RESTful routing conventions

HTTP Method Path pattern Operation

GET /{resource}/ Get list of all resources

GET /{resource}/{id}/ Get a single resource by id

POST /{resource}/ Create a new resource

PUT /{resource}/{id}/ Replace a resource

PATCH /{resource}/{id}/ Update a resource (partially)

DELETE /{resource}/{id}/ Delete a resource

Representation in modern APIs usually means JSON and less often XML for objects and various

media types for binary data such as images. Content-Type headers are used to describe the kind of

data. Statelessness is achieved by passing all the data in the request. Client information is encoded

as JSON Web Token (JWT) and sent in the request headers. Cookies are also used but using bearer

tokens eliminate CSRF (Cross-Site Request Forgery) attacks.

Web applications in the past used to be more server driven, meaning that business logic was

mostly in the backend. Servers built the HTML for browsers to display for example. That way a

generic client (browser) had all the information needed to navigate between resources

(hyperlinks) and invoke actions (e.g. send forms). Web APIs today provide mostly just data.

Business logic has moved more to the client. Generic clients can no longer navigate between

resources as data often doesn’t contain links. Data also doesn’t contain enough metadata for

clients to invoke actions. Clients today are built for specific purposes and need to know URIs to the

resources and the data schema in advance in order to work.

4.3 Single page applications

Web frontends in the past were mostly server-built HTML with CSS for styling and JavaScript for

improved interactivity. Following a link or sending a form made the browser navigate to another

page or reload the current page. As the web evolved from fairly static websites to the direction of

applications with more interactivity the processing needs on the server increased. E.g. more

database queries were made to populate all the dropdown fields in a form. As every action in the

17

client caused a new page load, all processing was done again in the server even if only a small part

of the page changed as a result.

AJAX (Asynchronous JavaScript and XML) is a web development technique that allows interacting

with the server in the background. Applications with rich interactions started to utilize background

communication to decrease the load on the server. E.g. if dropdown options were dependent on

another field it was possible to load only the values for that particular dropdown and update it in

place instead of reloading the whole page.

Single page applications (SPA) push page loads to the bare minimum. Frontend is loaded once in

the beginning and the rest of the communication with the server happens in the background. Even

navigating to another URL is handled by the client by showing and hiding visible elements in the

page.

4.4 OpenAPI

OpenAPI specification defines a standard to describe RESTful APIs. OpenAPI definition can be used

by tools to generate human readable documentation, client libraries, server code and testing

tools. OpenAPI documents are defined in JSON or YAML format, but requests and responses can

be of any type. Code Block 1 shows an example of an OpenAPI document which describes an

endpoint used to create a product.

{
 "openapi":"3.0.0",
 "paths":{
 "/products":{
 "post":{
 "operationId":"createProduct",
 "parameters":[],
 "requestBody":{
 "required":true,
 "content":{
 "application/json":{
 "schema":{
 "$ref":"#/components/schemas/CreateProductModel"
 }
 }
 }
 },

18

 "responses":{
 "201":{
 "description":"Product created successfully"
 }
 }
 }
 }
 },
 "info":{
 "title":"Products example",
 "version":"1.0"
 },
 "components":{
 "schemas":{
 "CreateProductModel":{
 "type":"object",
 "properties":{
 "name":{
 "type":"string"
 }
 },
 "required":[
 "name"
]
 }
 }
 }
 }

Code Block 1. OpenAPI document example

At a minimum OpenAPI document contains the version number indicated by the openapi element,

generic description in the info element and paths describing the endpoints. Schemas describe

request and response payloads and can be referenced from the endpoint definitions. Various

other elements exist to describe HTTP elements like query strings, headers and content types. In

addition, metadata like contacts, servers and licenses among others are available. (Swagger 2021)

Given that just the basic CRUD operations consist of 5 endpoints (list, get one, create, update,

delete) per entity and any real-world application has multiple entities, the number of endpoints

would be dozens even in a relatively trivial application. Being able to create the client library and

all the data models used in response and request bodies would reduce the amount of manual

work tremendously.

19

5 Existing full stack technology comparisons

The Web is bulging with full stack technology comparison articles. Yet, searching “most productive

backend/frontend framework” only finds articles listing the “best” or “top” frameworks. Based on

the first 50 comparison articles (Appendix 1) of the backend search, articles are highly focused on

certain technologies. 34 frameworks were mentioned in total, but only eight of them were

mentioned at least ten times. Table 6 shows the most mentioned frameworks. Productivity was

one of the mentioned advantages for many frameworks.

Table 6. Most mentioned backend frameworks in comparison web articles

Framework Proportion of articles Most common mentioned advantages

Django 92% Feature rich 46%
Security 43%
Scalable 43%
Productivity 39%

Laravel 80% Documentation 28%
Feature rich 23%
Templates 20%

Ruby on Rails 80% Productivity 45%
Community 33%
Extensible 23%

Express 70% Performance 40%
Extensible 20%

Spring (Boot) 64% Easy to set up 41%
Feature rich 25%

Flask 54% Flexible 33%
Documentation 22%

ASP.NET Core 34% Productivity 47%
Performance 41%
Maintenance 29%
Tools 24%

CakePHP 22% CRUD development 27%
Productivity 27%

20

Articles were really shallow. Most had only 5-10 sentences describing each framework. One third

had also around five bullet points for advantages, disadvantages and/or key features. Only one

fifth had more information which was most often listing companies and products using the

technology.

Articles didn’t explain how productivity or other advantages were determined. Some claims were

undoubtedly wrong. E.g. good performance was often mentioned as an advantage for Express

(Clark, 2020; JumpGrowth, n.d.; RaftLabs, 2021; Safonov, 2021) although TechEmpower

benchmark (TechEmpower, 2021) ranks it in 94th place (of 122) far behind many other

frameworks mentioned in the articles like ASP.NET Core (8th) and Spring (51st).

Frontend comparisons had much less variety. Frontend comparison article search also produced

millions of results. Based on the first 30 comparison articles (Appendix 2) comparisons were

mostly between Angular, React and Vue.js. Svelte was included half of the time along with some

older frameworks occasionally. Structure of the articles was similar to backend articles with short

descriptions and bullet points for advantages and disadvantages. Most mentioned advantages are

listed in Table 7.

Table 7. Most mentioned advantages of frontend frameworks

Framework / Library Most common mentioned advantages

Angular 2-way data binding 33%
Community 30%
Feature rich 20%
Reusable components 20%

React Virtual DOM 47%
Reusable components 43%
Browser development tools 20%
1-way data binding 20%

Vue.js Documentation 53%
Simplicity 40%
Small 23%
2-way data binding 20%

21

Frontend articles didn’t describe the reasoning behind advantages either. Angular, React and

Vue.js are all able to reuse components which makes it a non-distinguishing feature in this set of

technologies. Still, it wasn’t seen as an advantage equally for each framework. Same could be said

for many features available in most of the compared technologies, like 2-way data binding and

TypeScript support. As existing technology comparisons are shallow and don’t provide reasoning

behind the claims they make, the data isn’t considered high enough quality to be used in this

thesis.

6 Backend technologies

6.1 Programming languages

Programming language popularity ranking websites Tiobe (2020) and PYPL PopularitY of

Programming Language (2020a) were used to compare popularity in general. Number of packages

for each platform were retrieved from Modulecounts (2020). Stackshare, a website where

companies and individuals share technologies they are using, was used to determine the most

popular frameworks by inspecting technologies in categories Frameworks (Full Stack) (Stackshare

2020a) and Microframeworks (Backend) (Stackshare 2020b). Frameworks were then paired with

corresponding programming languages to get a list of programming languages commonly used for

backend development as presented in Table 8.

Table 8. Popular programming languages having at least one popular web framework

Language TIOBE PYPL Packages Most popular Stackshare framework

Python 3 1 273k 1 Django

JavaScript 7 3 1.4M 4 Express

Java 2 2 366k 6 Spring

C# 5 4 232k 2 ASP.NET

PHP 8 5 290k 3 Laravel

TypeScript 46 10 1.4M 4 Express

Ruby 13 14 163k 5 Ruby on Rails

Elixir 50+ - 11k 14 Phoenix

Groovy 12 23 366k 22 Grails

22

For further investigation, programming languages being in top 10 in either Tiobe ranking or PYPL

index and having a framework listed in Stackshare were selected. Python, JavaScript/TypeScript,

Java, C# and PHP fulfilled those criteria.

Development tool availability for selected languages was determined by inspecting Stackshare

Build/Test/Deploy (Stackshare 2020c) and PyPL IDE (PyPL, 2020b) indices. Stackshare stack count

and PyPL rankings can be seen in Table 9 among the primary languages and operating system

support advertised by the tools.

Table 9. Most popular development tools

IDE SH stacks
PYPL
ranking Primary Language Windows Linux Mac

VS code 57200 4 JavaScript/TypeScript Yes Yes Yes

Visual Studio 20800 1 C# Yes No Yes

IntelliJ IDEA 20400 6 Java Yes Yes Yes

PyCharm 11800 5 Python Yes Yes Yes

PhpStorm 7670 13 PHP Yes Yes Yes

WebStorm 7000 JavaScript/TypeScript Yes Yes Yes

Eclipse 1840 2 Java Yes Yes Yes

NetBeans 550 7 Java Yes Yes Yes

Rider 221 C# Yes Yes Yes

All languages had similar tools available. Each had an extension available for VS Code. IntelliJ IDEA,

PyCharm, PhpStorm, WebStorm and Rider are developed by the same company, JetBrains, which

would give a reason to believe they provide similar development experience.

Support on cloud platforms was determined by inspecting three largest cloud providers; AWS,

Azure and Google Cloud Platform. All cloud providers advertised supporting all selected languages

in their PAAS offerings (AWS, 2020; Azure, 2020; Google Cloud, 2020).

23

6.2 Frameworks & libraries

List of frameworks were collected from Stackshare top lists Frameworks (Full Stack) (Stackshare

2020a) and Microframeworks (Backend) (Stackshare 2020b), “awesome lists” for each

language/platform (see Appendix 3) and making web searches with patterns “language rest api”

and “language web framework”.

Total of 87 frameworks were found. Vitality of the frameworks were evaluated based on the latest

release date, the number of contributors in their Github (https://github.com) repositories,

Stackshare (https://stackshare.io) stack count and Stack Overflow (https://stackoverflow.com)

question count. Relative ranking within this set of technologies was determined for contributor

count, Stackshare stack count and Stack Overflow question count. Technologies having latest

release within six months and being in the top 50 in all of the relative rankings were considered

having a vital community and adequate for further inspection. Lastly, code generators and similar

technologies were filtered out as not being enough general purpose. Full list of technologies and

vitality evaluation results are presented in Appendix 4. 29 frameworks and libraries fulfilled all

criterion and were selected for the feature analysis.

7 Backend features

7.1 Introduction

Frameworks and libraries were analyzed starting with the most popular for each language and

platform. ASP.NET repository was found to be archived and the successor ASP.NET Core was used

for C# instead. Official documentation pages were browsed through and mentioned features were

collected. A total of 46 features were identified in categories routing, middleware, handlers,

authentication/authorization, logging, OpenAPI, messaging and tasks. Figure 1 shows where

various features could appear in the HTTP request processing pipeline.

24

Figure 1. Example of HTTP request handling pipeline

Features non relevant for RESTful API development such as cookies (authorization headers

preferred), form handling (client’s responsibility), session handling (REST is stateless) and GraphQL

(alternative to RESTful APIs), were left out from the list.

7.2 Routing

Routing is the process of mapping HTTP request to handling code. Common pattern was adapting

RESTful routing conventions of using HTTP method and path to describe operations. One common

form of routing was mapping paths with parameter placeholders to functions and using regular

expressions to constrain parameter values. Regular expressions were also used for wildcard

parameters. Code Block 2 demonstrates how mapping routes to functions and using regular

expression constraints and wildcards can be used in Laravel.

Route::prefix('api')->group(function () {
 Route::get('products/{id}', function ($id) {
 // return single product
 })->where('id', '[0-9]+')->name('product-details');

 Route::get('files/{path}', function ($path) {
 // ...
 })->where('path', '.*');
});

Route::domain('{client}.example.com')->group(function () {
 Route::get('products', function ($client) {

25

 // ...
 });
});

Code Block 2. Laravel routing features

Another common routing method was using classes (often called controllers or resources) and

annotating their methods with route patterns. Using statically typed language also often allowed

using types to constrain parameter values. Code Block 3 demonstrates these characteristics.

app.UseRouting();

app.UseEndpoints(endpoints =>
{
 endpoints.MapGet("/products", async context =>
 {
 // get products
 });
 endpoints.MapControllerRoute(

"default route",
"api/{controller}/{action}",
new { controller = "Home", action = "GetAll" });

 endpoints.MapFallbackToFile("/index.html");
});

[Route("api/products")]
[ApiController]
public class ProductsController : ControllerBase
{
 [HttpGet("{id}", Name = "product-details")]
 public Product GetDetails(Guid id)
 {
 // ...
 }

 [HttpGet("files/{*path}")]
 public FileResult GetFile(string path)
 {
 // ...
 }
}

Code Block 3. ASP.NET Core routing features

Routes could often have prefixes (Code Block 2) for easier segregation e.g. from frontend paths.

Subdomain routing might become valuable in multi tenant applications. Code Block 2

26

demonstrates how subdomain is captured to a variable. In Code Block 4 subdomain is used to

route to different handlers.

$routes->add('products', 'Products::list_client1', ['subdomain' =>
'client1']);
$routes->add('products', 'Products::list_client2', ['subdomain' =>
'client2']);

Code Block 4. Subdomain routing in CodeIgniter

Naming routes (Code Block 2 & Code Block 3) allows generating URLs (reverse routing) by name

and parameter values (Code Block 5) instead of building them manually. This improves

maintainability as configuration is in one place.

// Laravel
$url = route('product-details', ['id' => 123]);

// ASP.NET Core
var url = Url.Link("product-details", new { id = 123 });

Code Block 5. Reverse routing in Laravel and ASP.NET Core

Semantic versioning is an important feature when all client application (such as mobile

applications) updates cannot be controlled and multiple versions of an API must be live at the

same time. Code Block 6 shows how handlers could be versioned.

server.get('/products/:id', restify.plugins.conditionalHandler([
 { version: '1.0.0', handler: getProductByIdV1 },
 { version: '2.0.0', handler: getProductByIdV2 }
]));

Code Block 6. Semantic routing in Restify

Static file routing (Code Block 7) is used to provide files from filesystem. When the backend is also

serving SPA client files, static files would include scripts and stylesheets.

app.UseStaticFiles(new StaticFileOptions
{
 FileProvider = new PhysicalFileProvider("path/to/files"),
 RequestPath = "/assets"
});
Code Block 7. Static file provider in ASP.NET Core.

27

To prevent a single client making too many calls, rate limiting (Code Block 8) can be applied.

RateLimiter::for('global', function (Request $request) {
 return Limit::perMinute(1000);
});
Route::middleware(['throttle:global'])->group(function () {
 Route::get('/example, function () {
 //
 });
});
Code Block 8. Rate limiting in Laravel

Redirect at router level (Code Block 9) removes the need to create handlers for such simple tasks.

Fallback route can be used to forward frontend paths to the client application (Code Block 3 &

Code Block 9) or handle 404 (Not Found) errors.

Route::redirect('/old', '/new');

Route::fallback(function () {
 // ...
});
Code Block 9. Redirect and fallback routing in Laravel

7.3 Middleware

Middlewares process requests before they are passed to the handlers and also responses before

they are returned to the caller. Various features like authentication and content negotiation can

be considered to be just predefined specialized middlewares. Cross-Origin Resource Sharing

(CORS) is a mechanism to whitelist origins that are permitted to access resources (MDN Web Docs

2021d). Only simple configuration was often needed to enable CORS (Code Block 10).

app.enableCors(/* configuration */);

Code Block 10. Enabling CORS in NestJS

Middlewares commonly had the ability to execute code before and after executing the handler.

More specific examples were seen to filter, terminate and decorate HTTP requests. Various

approaches were used to achieve these behaviors. Middleware functions as seen in Code Block 11

were common.

28

var exampleMiddleware = function (req, res, next) {
 // before / filter / decorate / terminate
 next()
 // after
}

app.use(exampleMiddleware)

Code Block 11. Middleware functions in Express

Middleware classes (often called filters) with certain methods were also common. Third approach

was using lifecycle hooks. Some technologies supported more than one way to define middleware-

like functionality. All three approaches are demonstrated in Code Block 12.

// Middleware function
app.Use((context, next) =>
{
 // before / filter / decorate / terminate
 next.Invoke();
 // after
});

// Middleware class
public class ExampleFilter : ActionFilterAttribute
{
 public override void OnActionExecuting(ActionExecutingContext context)
 {
 base.OnActionExecuting(context);
 // before / filter / decorate / terminate
 }
 public override void OnResultExecuting(ResultExecutingContext context)
 {
 base.OnResultExecuting(context);
 // after
 }
}

// Lifecycle hooks
public abstract class ExampleControllerBase : Controller
{
 public override void OnActionExecuting(ActionExecutingContext context)
 {
 base.OnActionExecuting(context);
 // before / filter / decorate / terminate
 }
 public override void OnActionExecuted(ActionExecutedContext context)
 {
 base.OnActionExecuted(context);

29

 // after
 }
}

Code Block 12. Middleware in ASP.NET Core

Middlewares could also have parameters (Code Block 13) for better reusability.

$app->add(new AuthorizeMiddleware('admin'));

Code Block 13. Middleware parameterization in Slim

Various ways were used to define conventions which routes should middlewares be applied to.

Most common was applying middleware globally as seen in Code Block 13. Applying middleware

to paths by prefix was also common along with lesser common exclusion as seen in Code Block 14.

// Slim
$app->group('/api', function (RouteCollectorProxy $group) {
 // ...
})->add($middleware);

// NestJS
export class AppModule implements NestModule {
 configure(consumer: MiddlewareConsumer) {
 consumer
 .apply(MyMiddleware)
 .exclude(
 { path: 'products', method: RequestMethod.PUT },
)
 .forRoutes('products');
 }
}
Code Block 14. Middleware applying conventions in Slim and NestJS

Most technologies applied middlewares in the order they were defined, but also very granular

control was seen like the most powerful example seen in Code Block 15.

$middleware = new \App\Middleware\ExampleMiddleware;
$middlewareQueue->add($middleware); // last
$middlewareQueue->prepend($middleware); // first
$middlewareQueue->insertAt(2, $middleware);
$middlewareQueue->insertBefore(
 'App\Middleware\OtherMiddleware',
 $middleware

30

);
$middlewareQueue->insertAfter(
 'App\Middleware\OtherMiddleware',
 $middleware
);

Code Block 15. Defining middleware order in CakePHP

Content negotiation allows using the same handler for various media types such as JSON and

XML. Request body is deserialized to an object based on Content-Type header and the handler

result object is serialized to the response body based on the Accept header. Some technologies

had this feature enabled by default and didn’t require any additional work. Some required

annotating supported content types (Code Block 16).

@Produces(MediaType.APPLICATION_JSON)
@Produces(MediaType.APPLICATION_XML)
@Consumes(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_XML)
public class ExampleResource {

 @GET
 public ExampleResponse fetch() {
 return new ExampleResponse();
 }

 @POST
 public Response add(ExampleRequest example) {
 // ...
 }
}

Code Block 16. Defining content types in Dropwizard

Displaying detailed error messages in the response could reveal sensitive information. Hostile

users could use information like library versions to search for known vulnerabilities and target

their attack better leading to a possible security breach. Global and automatic error handling is

used to hide sensitive information when an error happens. Code Block 17 shows how the error

handler is registered in Flask.

@app.errorhandler(HTTPException)
def handle_exception(e):
 # ...

Code Block 17. Registering error handler in Flask

31

7.4 Handler

Handler is code taking requests as input and producing responses. The following features were

identified in the handler category although many technologies had them implemented as

middleware functionalities.

Dependency injection is a design pattern where services are injected into components instead of

them creating instances by themselves (Wikipedia, 2021). Decreased coupling improves

reusability, testability and maintainability. Services can be injected into constructors, functions

and properties. First two are demonstrated in Code Block 18.

services.AddTransient<IExampleService, ExampleService>();
services.AddSingleton<AnotherService>();

public class ExampleController : Controller
{
 private readonly IExampleService service;
 public ExampleController(IExampleService service)
 {
 this.service = service;
 }

 public ExampleModel GetData([FromService]AnotherService service)
 {
 // ...
 }
}

Code Block 18. Dependency injection in ASP.NET Core

Schema based request binding allows converting request values to specific types. This was often

paired with automatization by specifying types for handler function parameters (Code Block 19).

class Product(BaseModel):
 name: str
 description: str
 price: float

@app.post("/products/")
async def create_product(product: Product):
 # ...

Code Block 19. Request binding and validation in FastAPI

32

Request binding could often be paired with schema-based validation and to minimize manual

work the whole validation process could be automated (Code Block 20).

export class ProductModel {
 @IsNotEmpty()
 name: string;
 // ...
}

// add validation pipe globally
app.useGlobalPipes(new ValidationPipe());

@Put(':id')
updateProduct(@Param('id') id: string, @Body() product: ProductModel) {
 // ...
}

Code Block 20. Request binding and validation in NestJS

Output cache stores the result of the handler for efficient access. Output cache was most often

enabled by annotating the handler. For more granular caching key-value caches were used. Both

cache types are demonstrated in Code Block 21.

Django
@cache_page(5 * 60)
def most_read_news(request):
 # ...

// Symfony
$value = $cache->get('key', function (ItemInterface $item) {
 $item->expiresAfter(5*60);
 $computedValue = '';
 return $computedValue;
});

Code Block 21. Output cache in Django and key-value cache in Symfony

Cache invalidation is a common problem. Marking cache dependencies with e.g. tags (Code Block

22) was one way to invalidate related cache values.

Cache::tags(['example-tag'])->put('key', $value, $seconds);

Cache::tags(['example-tag'])->flush();

Code Block 22. Cache dependencies in Laravel

33

7.5 Authentication & Authorization

Authentication is the process of identifying the user and authorization the process of determining

whether they have rights to perform operations. Technologies supported various login methods

like username+password, social media accounts and Azure AD. Code Block 23 shows Google login

flow in Laravel.

'google' => [
 'client_id' => '...',
 'client_secret' => '...',
 'redirect' => 'http://example.com/callback-url',
],

// …

Route::get('/auth/redirect', function () {
 return Socialite::driver('google')->redirect();
});

Route::get('/auth/callback', function () {
 $user = Socialite::driver('google')->user();
 $email = $user->getEmail();
 // ...
});

Code Block 23. Google login flow in Laravel

JSON Web Token (JWT) is a standard way of securely sharing user information between client and

server. JWT payload contains encoded claims which can be used to grant access to resources.

(JWT, 2021). Code Block 24 show how JWT is created in Vert.x.

JWTAuthOptions config = new JWTAuthOptions()
 .setKeyStore(new KeyStoreOptions()
 .setPath("keystore.jceks")
 .setPassword("secret"));

AuthenticationProvider provider = JWTAuth.create(vertx, config);

String token = provider.generateToken(new JsonObject().put("key", "value"),
new JWTOptions());

Code Block 24. Creating JWT in Vert.x

34

Policies are a way to control access by defining rules. Rules could contain inspecting claims in the

JWT data for example. Code Block 25 shows how email claim is checked in an ASP.NET Core

custom policy.

services.AddAuthorization(options =>
{
 options.AddPolicy("OnlyExampleDotCom", policy =>
 policy.RequireAssertion(ctx =>
 ctx.User.Claims.First(c => c.Type ==
ClaimTypes.Email).Value.EndsWith("@example.com")));
});

[Authorize(Policy = "OnlyExampleDotCom")]
public class ProductController : ControllerBase { }

Code Block 25. Custom policy in ASP.NET Core

Roles are used to grant access to resources to groups of users. Conventions allow applying

authentication and authorization rules to a variety of endpoints with ease. This removes repetitive

work as not every endpoint needs to be handled separately. Code Block 26 shows how role-based

authorization can be applied granularly in ASP.NET Core.

[Authorize(Roles = "reader")] // apply to all subclasses
public abstract class ExampleControllerBase : ControllerBase {}

[Authorize(Roles = "contributor")] // apply to all actions in this class
public class ExampleController : ControllerBase
{
 [Authorize(Roles = "admin")] // apply to single action
 [HttpGet("")]
 public IActionResult SomeAction() {}
}

// apply globally
services.AddControllers(options =>
{
 options.Filters.Add(typeof(AuthorizeFilter));
});

//
[AllowAnonymous]
public IActionResult Login(string username, string password)
{
 // ...
}

Code Block 26. Middleware conventions in ASP.NET Core

35

7.6 Logging

Logging is a crucial part of problem solving in any application. While developing it might be useful

to log all the details. In a production environment the amount of data could be reduced by logging

only the errors. Logging levels control how much information is logged. Code Block 27 shows how

logging level is set in FastAPI.

logger.setLevel(logging.DEBUG)

Code Block 27. Setting log level in FastAPI

7.7 OpenAPI

OpenAPI schemas can be inferred from the endpoints or explicitly defined. Inferring decreases the

manual work and can be one of the biggest time savers when the number of endpoints is large. As

with schemas, also the document API can be automatically generated or explicitly defined. Code

Block 28 demonstrates how annotations are used to infer the schema and automatically generate

the document API in NestJS.

@Controller({ path: 'products' })
@ApiTags('products')
export class ProductController {

 @Get()
 @ApiOkResponse({
 type: [ProductModel]
 })
 async listProducts(): Promise<ProductModel[]> {
 // ...
 }
}

export class ProductModel {

 @ApiProperty()
 id: string;

 @ApiProperty()
 name: string;

 // ...
}

const options = new DocumentBuilder()

36

 .setTitle('My API')
 .setVersion('1.0')
 .build();

const document = SwaggerModule.createDocument(app, options);
SwaggerModule.setup('api', app, document);

Code Block 28. OpenAPI configuration in NestJS

7.8 Messaging

Technologies had two kinds of messaging. Push-based methods like WebSocket or SSE (Server-

Sent Events) were used to send messages from server to client. This removes the need for clients

to constantly poll the server for new information. Code Block 29 demonstrates how messages are

broadcasted to multiple clients in ASP.NET Core.

public class ExampleHub : Hub
{
 public async Task SendMessage(string message)
 {
 await Clients.All.SendAsync("ReceiveMessage", message);
 }
}

services.AddSignalR();

app.UseEndpoints(endpoints =>
{
 endpoints.MapHub<ExampleHub>("/example");
});

Code Block 29. Message broadcasting in ASP.NET Core

For messaging happening within the server application events were used. Although events are

available as language features and libraries, some technologies had their own event system. Code

Block 30 shows an example of event emitting and subscribing in Flask.

my_signals = Namespace()
example_signal = my_signals.signal('example')

subscribe
def handle_signal(sender, template, context, **extra):
 # ...

example_signal.connect(handle_signal, app)

37

emit
def save(self):
 example_signal.send(self)
Code Block 30. Events in Flask

7.9 Tasks

Background tasks could be scheduled either with cron-like expressions to happen at certain times

or by certain intervals. Code Block 31 demonstrates both ways as they are used in Spring.

public class ScheduledFixedRateExample {
 @Scheduled(fixedDelay = 1000)
 public void handleFixedDelayTask() {
 // ...
 }

 @Scheduled(fixedRate = 1000)
 public void scheduleFixedRateTask() {
 // ...
 }

 @Scheduled(cron = "0 */5 * * * *")
 public void handleCronTask() {
 // ...
 }
}

Code Block 31. Scheduled tasks in Spring

8 Frontend frameworks & libraries

In addition to well-known popular JavaScript/TypeScript SPA technologies Angular, React, Svelte

and Vue.js (State of js, 2020) Vue.js based frameworks Vuetify and Quasar Framework were

studied. WebAssembly frameworks and libraries were also searched using phrases “WebAssembly

SPA” and “WebAssembly framework”. Many programming languages had compilers to

WebAssembly. E.g.

 Emscripten (C, C++)

 Rust WebAssembly (Rust)

 AssemblyScript (TypeScript)

 Kotlin Native (Kotlin)

38

 SwiftWasm (Swift)

Only a few had SPA capabilities such as components and routing. For these vitality was determined

by Stackshare (https://stackshare.io) stack count and Stack Overflow (https://stackoverflow.com)

question count. Results are shown in Table 10.

Table 10. WebAssembly frameworks.

Framework Language Stackshare stacks Stack overflow questions

Blazor C# 233 6239

Yew Rust 8 18

Seed Rust 0 1

Vugu Go 0 0

Bolero F# 0 7

Vecty Go 0 0

Only Blazor was considered having a vital community and was selected for comparison along with

mentioned JavaScript/TypeScript technologies.

9 Frontend features

9.1 Components

Current SPA technologies are component based. Components can have state (internal data) and

take values as input parameters from parent components (often called props). Passing data to

the parent component can be done in an event-like manner. Values can be derived from other

values to make reactive computed properties. Various lifecycle events are used to handle

component creation, update and destroyal. Code Block 32 shows an example of a component in

Vue.js.

<template>
 Markup
</template>

39

<script lang="ts">
export default {
 setup (props, { emit }) {
 // data from parent
 const number = props.data;

 // data to parent
 const valueChanged = (newVal: string) => {
 emit('change', newVal)
 }

 // state
 const firstName = ref('');
 const lastName = ref('');

 // computed state
 const name = computed(() =>`${firstName.value} ${lastName.value}`);

 // lifecycle event
 onMounted(() => {
 // dom ready
 })

 }
}
</script>

Code Block 32. Example of Vue.js component

Components can be reused like custom html elements. Ingoing data and events are defined as

attributes with special syntax to separate them from normal HTML attributes. Code Block 33

shows how components are used in various frameworks.

// Angular
<MyComponent [data]="123" (change)="handleChange" />

// Blazor
<MyComponent Data="123" OnValueChanged="@HandleChange" />

// React
<MyComponent data={123} onchange={handleChange} />

// Svelte
<MyComponent data={123} on:change={handleChange} />

// Vue
<MyComponent :data="123" @change="handleChange" />

Code Block 33. Using components in various frameworks

40

Data can also be passed to another component deep down in the component hierarchy. This

removes the need to define input parameters in the components between which increases

decoupling and reusability. Code Block 34 shows how data is passed deep down the component

hierarchy in Blazor.

// pass value
<CascadingValue Value="@ExampleValue" Name="someData">
 // ...
</CascadingValue>

// read value
@code {
 [CascadingParameter(Name = "someData")]
 protected ExampleType ExampleParameter { get; set; }
}

Code Block 34. Passing data deep down in Blazor

DOM reference is used when component needs access to an element in the template. Element

can then be manipulated like any other HTML node. Common use cases would include rendering

UI widgets such as maps or charts. Code Block 35 shows how DOM reference is used in Vue.js

<template>
 <div ref="map"></div>
</template>
<script>
 import { ref, onMounted } from 'vue'

 export default {
 setup() {
 const map = ref(null)
 onMounted(() => {
 // render map
 })

 return {
 map
 }
 }
 }
</script>

Code Block 35. DOM reference in Vue.j

41

Sometimes the desired component cannot be determined in the development time. Dynamic

component selection can be used to select rendered component at runtime. Code Block 36 shows

how component is dynamically rendered in Blazor.

@componentToDisplay

@code {
 var componentToDisplay = someCondition ? ComponentA : ComponentB;

 static readonly RenderFragment ComponentA = _ =>
 {
 <ComponentA />
 };

 static readonly RenderFragment ComponentB = _ =>
 {
 <ComponentB />
 };
}
Code Block 36. Dynamic component selection in Blazor

9.2 Templates

Technologies had two ways to handle templating. In Angular, Svelte and Vue.js HTML was

decorated with special attributes and similar DSL. Blazor and React had it the other way around

and HTML was placed inside the code.

Interpolation is the process of evaluating and replacing expressions with their values within string

literals. To prevent XSS (cross site scripting) attacks, strings within templates are encoded by

default. Special methods are used to render raw HTML. Conditionals are used to change the

rendered elements based on some condition. Loops are used to render elements for collection

items. Basic templating features are shown in Code Block 37.

Today is {{ formatDate(today) }}
<div [innerHTML]="text"></div>
<div>
 This is rendered when
condition is true
 <ng-template #else_content>This is rendered when condition is false</ng-
template>
</div>

42

 <li *ngFor="let item of items">{{ item.text }}

Code Block 37. Angular template example

Templates can have dynamic attributes. Various ways are used to make attributes evaluable. Code

Block 38 shows how attribute bindings are used in Angular and Blazor.

<!-- Angular -->

<!-- Blazor -->

Code Block 38. Attribute binding in Angular and Blazor

Binding input values and events work the same way. Event modifiers can restrict the conditions

when events are fired. Code Block 39 shows value and event binding in React, Svelte and Vue.js.

<!-- React -->
<input type="text" value={this.state.name} onChange={this.nameChanged} />

<!-- Svelte -->
<input bind:value={name} on:change={nameChanged} >

<!-- Vue.js -->
<input type="text" :value="name" @keydown.enter="nameChanged" />

Code Block 39. Value and event binding in React, Svelte and Vue.js

Class bindings have special processing as many values could be desired. Object notation is used to

define conditions when classes should be applied. Array notation is used to define multiple classes

which are always applied. Code Block 40 shows both ways.

<!-- Angular -->
<div [ngClass]="{ active: selected === 'first', another: foo === 'bar' }"></div>

<!-- Vue.js -->
<div :class="['first', 'second']"></div>

Code Block 40. Class bindings in Angular and Vue.js

43

Two-way data binding is a pattern where the value is synchronized between state and editable UI

controls. It can be thought as combining value and change event binding as seen in Code Block 39.

It reduces boilerplate code as event handling code isn’t needed. Code Block 41 shows how two-

way data binding is used in Blazor.

<input type="text" @bind="name" />

@code {
 private string name;
}

Code Block 41. Data binding in Blazor

Transclusion is a feature where a component can define an area in the template where inner

content is placed. E.g. layout component can define the area where the main content is placed.

Code Block 42 shows how transclusion is handled in React.

const Layout = (props) => {
 return (
 <div>
 <div class="menu">
 </div>
 <div class="main">
 {props.children}
 </div>
 </div>
)
}

<Layout>
 <div>Main content</div>
</Layout>

Code Block 42. Transclusion in React

Multi transclusion allows defining multiple child content areas. E.g. layout component can define

areas for sidebar and main content. Code Block 43 shows how multi transclusion is handled in

Blazor.

<div class="menu">
 @Sidebar
</div>

44

<div class="main">
 @Content
</div>

@code {
 [Parameter]
 public RenderFragment Sidebar { get; set; }

 [Parameter]
 public RenderFragment Content { get; set; }
}

<ExampleComponent>
 <Sidebar>
 Sidebar content
 </Sidebar>
 <Content>
 Main content
 </Content>
</ExampleComponent>

Code Block 43. Multi transclusion in Blazor

Showing validation errors right after a component has lost focus improves user experience. Code

Block 44 shows how minimal code is needed to validate an input in Quasar Framework.

<q-input v-model="name" :rules="[val => !!val || 'Field is required']" />

Code Block 44. Input validation in Quasar Framework

Pipes provide reusable formatting capabilities. Directives are used to attach functionality to

elements having a certain attribute. Code Block 45 shows how pipes and directives are defined

and used in Angular.

import {formatDate} from './utils'

@Pipe({name: 'formatDate'})
export class FormatDatePipe implements PipeTransform {
 transform(value: Date, format: string): string {
 return formatDate(value, format);
 }
}

@Directive({
 selector: '[exampleDirective]'
})

45

export class ExampleDirective {
 @Input('exampleDirective') arg: number;

 constructor(el: ElementRef) {
 // do something with the element
 el.focus();
 }

 @HostListener('mouseenter')
 onMouseEnter() {
 // react to mouse enter event
 }
}

{{ published | formatDate:'dd.MM.yyyy' }}
<div [exampleDirective]="123">...</div>

Code Block 45. Pipe and directive in Angular

9.3 Routing

Routing maps paths to components. Routes were defined either in a separate file or as part of the

component. Paths could contain parameters which could then be captured in components. Code

Block 46 shows how routes are defined in Svelte.

routes: [
{
 path: '/products/:id(\\d+)',
 name: 'PRODUCT_DETAILS',
 component: ProductDetails,
 props: (route) => {
 return {
 id: route.params.id,
 }
 }
 },
 { path: '/old', redirect: '/new' },
 { path: '*', component: NotFound } // wildcard
 // ...
]

Code Block 46. Route definitions in Svelte

If a route has a name defined (Code Block 46), paths can be generated from route definitions by

providing the name and possible parameters. This provides better maintainability than manually

46

building paths as the configuration is in one place. Code Block 47 shows how URL is generated

from route definition in Svelte.

<RouterLink to={{name: 'PRODUCT_DETAILS', params:{id: 123}}>
 Product details
</RouterLink>

Code Block 47. Generating links in Svelte

Routes can have metadata to provide values that are not part of the URL. Route hooks can be

used to check whether a user has permissions to access a certain route for example. Code Block 48

shows how metadata is defined in Vue.js and how it handles events before and after routing.

const router = new VueRouter({
 routes: [
 {
 path: '/bugs',
 component: IssueList,
 meta: { issueType: 'bug' }
 },
 {
 path: '/stories',
 component: IssueList,
 meta: { issueType: 'story', adminOnly: true }
 }
]
})
router.beforeEach((to, from, next) => {
 if (to.matched.some(r => r.meta.adminOnly)) {
 // check role
 } else {
 next()
 }
})
router.afterEach((to, from) => {
 // ...
})

Code Block 48. Using routing metadata and hooks in Vue.js

Nested routes define a hierarchy of paths and components. It’s useful when components use the

same layout components. Layout can be defined in the parent route and content components as

child routes. Code Block 49 shows how nested routes are defined in Angular and React.

47

// Angular
const routes: Routes = [
 {
 path: 'products/:id',
 component: ProductLayout,
 children: [
 {
 path: '',
 component: ProductDetails
 },
 {
 path: 'reviews',
 component: ProductReviews
 },
],
 },
];

<!-- React -->
<Switch>
 <Route path="/products/:id">
 <ProductLayout />
 </Route>
</Switch>
<!-- ProductLayout -->
<Switch>
 <Route exact path="/">
 <ProductDetails />
 </Route>
 <Route path="/reviews">
 <ProductReviews />
 </Route>
</Switch>

Code Block 49. Nested routes

Route placeholders can be used to define multiple components for the same route. Templates

define areas (outlets or slots) where components can be placed and routes define which

component goes to which area. Code Block 50 shows how route placeholders are used in React

and Vue.js.

// React
const routes = [
 {
 path: "/products",
 sidebar: () => <ProductMenu />,
 main: () => <ProductList />
 }
];

48

...
<Switch>
{routes.map(route => (
 <Route
 path={route.path}
 exact={route.exact}
 children={<route.sidebar />}
 />
 <Route
 path={route.path}
 exact={route.exact}
 children={<route.main />}
 />
))}
</Switch>

// Vue.js
<router-view name="sidebar"></router-view>
<router-view></router-view>
...
const router = new VueRouter({
 routes: [
 {
 path: '/products',
 components: {
 default: ProductList, // router-view without name
 sidebar: ProductMenu // router-view named "sidebar"
 }
 }
]
})

Code Block 50. Route placeholders

9.4 State management

State management is used to store state in a location accessible anywhere in the application. E.g.

when user logs in their settings could be stored in a central location. Then the same data would be

available in any component like header bar showing profile picture and profile page showing user

information in an edit form. State management keeps data synchronized and reduces the need to

load data separately in every component. Code Block 51 shows how state management is

configured and used in Vue.js with vuex extension.

@Module({ namespaced: true, dynamic: true, store, name: 'user' })
export default class UserModule extends VuexModule {
 currentUser: UserProfile;

49

 @Action
 async updateProfile(profile: UserProfile) {
 // send to api
 // mutate state
 this.setProfile(profile);
 }
 @Mutation
 private setProfile(profile: UserProfile): void {
 this.currentUser = profile;
 }
}

export default class UserEditComponent extends Vue {
 // load module
 userStore = getModule(UserModule);
 // use getter to return value from store state
 get currentUser() {
 return this.userStore.currentUser;
 }

 async save() {
 // call store action
 await this.userStore.updateProfile({/* ... */ });
 }
}

Code Block 51. State management in Vue.js using vuex

9.5 Localization

In addition to simple key-value translations, parameter interpolation and pluralization were

identified. Also, more advanced features date and currency formatting were seen. Code Block 52

shows how localization is handled in Vue.js with vue-i18n extension.

const messages = {
 simple: 'text',
 withNamedParameter: 'text {name}',
 withIndexedParameter: 'text {0}',
 simplePluralized: 'one item | many items',
 pluralizedWithNumber: 'no items | one item | {count} items',
}

$t('simple')
$t('withNamedParameter', { name: 'value' })
$t('withIndexedParameter', ['value'])
$tc('simplePluralized', 1)
$tc('pluralizedWithNumber', 5, { count: 5 })

50

$d(new Date(), 'long', 'fi-FI')
$n(100, 'currency', 'fi-FI')

Code Block 52. Localization in Vue.js using vue-i18n

9.6 UI components

UI component libraries provide prebuilt components with various aspects, like responsiveness,

accessibility and styling, already taken into consideration (Figure 2). Various UI component

libraries like Material Design (https://material.io) and Bootstrap (https://getbootstrap.com) had

implementations and wrappers in studied technologies.

Figure 2. Example of Material Design form (Material Design, 2021)

51

10 Technology evaluation

10.1 Methodology

Each technology-feature combination was evaluated by first checking whether the official

documentation had the feature described. If technology didn’t have the feature described in the

official documentation Google (https://google.com) searches were made in a format “technology

feature” to find extensions and web articles. Searches were made in incognito mode to minimize

bias from search history. Only the first page of search results was examined. Based on the search

effort and clarity of the solution the effort score was determined for each feature and technology

using the criterion presented in Table 11.

Table 11. Feature effort scoring criterion

Effort score Definition

1 ● Solution in the official documentation
● Obvious implementation using built-in concept

2 ● Obvious solution using an extension
● Simple copy-paste solution from web search

3 ● Partial solution from web search
● Complex implementation using built-in concepts

4 ● No obvious solution found from web search
● Combining multiple extensions or built-in concepts

10.2 Backend

Full backend evaluation results are shown in Appendix 5. With a couple of exceptions routing

features were quite well available. 41% of the technologies didn’t have subdomain routing which

could mean extra work in a multi-tenant application. 66% didn’t have semantic versioning making

those bad choices for APIs used by multiple client applications and versions. Routing feature

summary is shown in Table 12.

52

Table 12. Backend routing features availability

Feature / Effort score 1 2 3 4

Method 90% 7% 0% 3%

Path 93% 7% 0% 0%

Parameters 93% 7% 0% 0%

Wildcard 93% 7% 0% 0%

Constraints 86% 7% 0% 7%

Prefix 52% 28% 14% 7%

Reversing 52% 28% 0% 21%

Subdomain 14% 28% 17% 41%

Semantic versioning 3% 17% 14% 66%

Static files 38% 48% 14% 0%

Rate limit 10% 72% 3 % 14%

Redirect 3% 93% 3% 0%

Fallback 52% 48% 0% 0%

Middleware features were quite widely available. Content-negotiation was the most dividing

feature in this group. 48% of technologies didn’t support it. Content negotiation would be a crucial

feature if API is used by systems supporting varying content types. Middleware feature summary is

shown in Table 13.

Table 13. Middleware features availability

Feature / Effort score 1 2 3 4

CORS 52% 48% 0% 0%

Before hook 86% 10% 3% 0%

After hook 86% 7% 3% 3%

Terminating 86% 10% 3% 0%

Parameters 34% 28% 10% 28%

Filters 86% 10% 3% 0%

Decorators 86% 10% 3% 0%

53

Table 13 (continued)

Feature / Effort score 1 2 3 4

Conventions 52% 21% 14% 14%

Order 72% 10% 3% 14%

Content negotiation 21% 10% 21% 48%

Error handling 66% 28% 7% 0%

Handler features had quite a lot of dispersion. Many of the features were not available at all in

many of the technologies. 66% of the technologies didn’t support request binding and 69%

couldn’t do it automatically. These groups had the same technologies with one exception

supporting request binding, but not doing it automatically. 55% didn’t support automatic

validation. As request binding and validation are likely requirements for the majority of endpoints

and APIs can contain vast amounts of endpoints, the manual work could be quite substantial in

these technologies. 41% of technologies had tedious ways to handle response caches and 55%

didn’t support cache dependencies. These technologies might be a bad fit if caching is essential.

Handler feature summary is shown in Table 14.

Table 14. Handler features availability

Feature / Effort score 1 2 3 4

Dependency injection 41% 34% 14% 10%

Schema based request binding 34% 0% 0% 66%

Automatic request binding 31% 0% 0% 69%

Schema based validation 48% 21% 21% 10%

Automatic validation 14% 21% 10% 55%

Response cache 28% 31% 41% 0%

In-memory cache 34% 66% 0% 0%

Cache dependencies 21% 28% 0% 52%

54

Authentication and authorization were well supported. Finding example code was a bigger

problem in this group. Authentication and authorization feature summary is shown in Table 15.

Table 15. Authentication features availability

Feature / Effort score 1 2 3 4

Username + password login 31% 45% 24% 0%

Social media login 14% 41% 31% 14%

Azure AD login 3% 62% 17% 17%

Roles/groups 24% 48% 24% 3%

JWT 17% 59% 21% 3%

Policies 14% 48% 31% 7%

Conventions 21% 48% 31% 0%

OpenAPI support was poor in many technologies. 41% couldn’t infer schemas from endpoints and

28% couldn’t build documentation automatically. As with request binding and validation, manual

work increases with every endpoint if OpenAPI creation cannot be automated. OpenAPI feature

summary is shown in Table 16.

Table 16. OpenAPI features availability

Feature / Effort score 1 2 3 4

Schema creation 10% 28% 21% 41%

Documentation API 10% 48% 14% 28%

Logging was one of the best supported features. Messaging and task scheduling features were also

well supported. These are summarized in Table 17.

55

Table 17. Logging, messaging and task scheduling features availability

Feature / Effort score 1 2 3 4

Automatic logging 62% 34% 3% 0%

Logging levels/Environments 76% 24% 0% 0%

Push-based messaging 38% 45% 10% 7%

Events 41% 59% 0% 0%

Task scheduling 24% 55% 17% 3%

Conclusion

Routing, middleware, authentication/authorization, logging, messaging and task features were

generally well supported with either built-in functionality or as extensions. Quite a few features

appeared to be unavailable in many technologies:

● route semantic versioning

● content-negotiation

● schema based request binding

● automatic request validation

● inferred OpenAPI documentation.

Static typing and schema-based request binding seemed to correlate with lower effort in

validation and OpenAPI documentation. In the worst-case schema logic would have to be defined

three times: request parsing, validation and OpenAPI endpoint definition.

Using familiar language has positive impact on productivity. Different languages and ecosystems

also have their own advantages. Therefore, no single technology can be designated the best. Table

18 shows frameworks having the most of features per language.

56

Table 18. Top frameworks for each language.

 Features / Effort score

Language Framework 1 2 3 4 Sum

C# ASP.NET Core 40 10 0 0 60

TypeScript NestJS 31 17 1 1 72

PHP Laravel 32 9 6 3 82

Python FastAPI 24 17 7 2 87

Java Spring 14 31 5 0 91

10.3 Frontend

Full frontend evaluation results are shown in Appendix 6. Frontend technologies had many

different approaches. Angular, Blazor, Vuetify and Quasar Framework are considered frameworks.

React and Vue.js are libraries. Svelte is advertised as a compiler. Frameworks had CLIs or similar

ways to create projects with common features bundled. Vue.js also had CLI which offered features

to include while creating a project (Figure 3). React and Svelte also had templates, but they didn’t

include additional libraries.

Figure 3. Selecting additional features in Vue CLI

Routing features were quite well available. Frameworks had routing built-in whereas libraries had

it as an extension. Full routing results are shown in Table 19. Blazor defines routes in components

which makes some routing scenarios more challenging.

57

Table 19. Routing features availability

Feature / Effort score 1 2 3 4

Path 71% 29% 0% 0%

Parameters 71% 29% 0% 0%

Meta 57% 29% 0% 14%

Hooks / Guards 71% 29% 0% 0%

URL generation 43% 57% 0% 0%

Nesting 57% 29% 0% 14%

Placeholders 57% 14% 14% 14%

Wildcards 71% 29% 0% 0%

Redirect 57% 29% 0% 14%

No substantial differences were found in the component features. All the features were either

available out of the box or an easy workaround was found from web articles. Component feature

summary is shown in Table 20.

Table 20. Component features availability

Feature / Effort score 1 2 3 4

Reusable components 100% 0% 0% 0%

State 100% 0% 0% 0%

Computed state 86% 14% 0% 0%

Change detection 71% 29% 0% 0%

Created / Mount hook 100% 0% 0% 0%

Destroy hook 100% 0% 0% 0%

Parent-child communication 100% 0% 0% 0%

Child-parent communication 100% 0% 0% 0%

Descendant communication 86% 14% 0% 0%

58

Table 20 (continued)

Feature / Effort score 1 2 3 4

Child/DOM reference 100% 0% 0% 0%

Dynamic component
selection

71% 29% 0% 0%

Almost all template features were available in all technologies. React and Blazor didn’t have

directives or event modifiers. Template feature summary is shown in Table 21.

Table 21. Template features availability.

Feature / Effort score 1 2 3 4

Interpolation 100% 0% 0% 0%

Raw HTML 100% 0% 0% 0%

Conditionals 100% 0% 0% 0%

Loops 100% 0% 0% 0%

Value binding 100% 0% 0% 0%

Two-way data binding 86% 14% 0% 0%

Transclusion 100% 0% 0% 0%

Multi transclusion 100% 0% 0% 0%

Input validation 57% 43% 0% 0%

Pipes 57% 43% 0% 0%

Directives 71% 0% 0% 29%

Attributes 100% 0% 0% 0%

Class 100% 0% 0% 0%

Events 100% 0% 0% 0%

Event modifiers 57% 0% 14% 29%

Scoped styles 86% 14% 0% 0%

59

State management, localization, UI components and utils were also available for all technologies

as summarized in Table 22.

Table 22. State management features availability.

Feature / Effort score 1 2 3 4

State management

State 86% 14% 0% 0%

Modules 71% 29% 0% 0%

Localization

Key-value 71% 29% 0% 0%

Parameters 71% 29% 0% 0%

Pluralization 57% 43% 0% 0%

Date time 71% 29% 0% 0%

UI / Utils

Material Design / Bootstrap 29% 71% 0% 0%

Touch gestures 29% 57% 14% 0%

Session Storage / Local Storage 86% 14% 0% 0%

Meta 29% 71% 0% 0%

Tooling

All technologies had CLI or template to get started quickly. Technologies also supported hot reload

which enables fast experimentation cycles. All compared technologies had extensions for VS Code

enabling basic productivity features like autocomplete, refactoring and type checking. In addition,

WebStorm had extensions for TypeScript technologies except Svelte (WebStorm, 2021). Blazor

could also be developed with Rider and Visual Studio.

TypeScript technologies had browser developer tools which enable inspecting component

hierarchy and state. Modifying state is possible to quickly test components with different data.

60

React and Vue.js developer tools also enabled inspecting, modifying and exporting state

management data. Blazor didn’t yet have browser developer tools.

Conclusion

All in all, differences weren’t substantial between frontend technologies. TypeScript frameworks

Angular, Vuetify and Quasar Framework had more features bundled than C# framework Blazor. UI

libraries React and Svelte only had basic component and templating features built in. Vue.js,

although being an UI library, had a CLI to bundle the most common libraries in the project

template. By installing extensions for just routing, localization and state management libraries

were on par with the frameworks. Feature availability is summarized in Table 23.

Table 23. Frontend technology feature availability summary.

 Features / Effort score

Language Framework 1 2 3 4 Sum

ES / TS Quasar Framework 46 0 0 0 46

ES / TS Vuetify 45 1 0 0 47

ES / TS Vue.js 42 4 0 0 50

ES / TS Angular 37 8 1 0 56

ES / TS Svelte 27 18 1 0 66

C# Blazor 32 7 1 6 73

ES / TS React 22 22 0 2 74

11 Retrospective

Initial selection of compared technologies happened a year ago. When looking at the Tiobe

(https://www.tiobe.com/tiobe-index/) and PyPL (https://pypl.github.io/PYPL.html) rankings again

(Table 24) it can be seen that PHP’s ranking has dropped on both indices, Ruby’s in PyPL and Java’s

in Tiobe. Kotlin’s ranking has risen in PyPL which could mean Kotlin is replacing Java in JVM

development. Whether it’s web development or something else is impossible to tell as neither of

these indices measures web development popularity specifically. Python has risen to the top on

Tiobe also. It could be that Python is replacing PHP and Ruby.

61

Table 24. Tiobe and PyPL ranking October 2020 and November 2021.

 Tiobe ranking PyPL ranking

Language Oct 2020 Nov 2021 Oct 2020 Nov 2021

Python 3 1 1 1

JavaScript 7 7 3 3

Java 2 3 2 2

C# 5 5 4 4

PHP 8 10 5 6

TypeScript 46 46 10 10

Ruby 13 13 14 16

Kotlin 33 33 12 11

When comparing community metrics Github (https://github.com) repository contributors,

Stackshare (https://stackshare.io) stack count and Stack overflow (https://stackoverflow.com)

question count between October 2020 and November 2021 it can be seen that some technologies

have increased popularity remarkable (Table 25). FastAPI has seen 52% increase in contributors,

900% in Stackshare users and 300% in Stack overflow questions. NestJS has had the biggest

growth of Node.js technologies increasing contributors by 49%, Stackshare stacks 77% and Stack

overflow questions 82%. ASP.NET Core also shows significant growth in contributors and

Stackshare stacks with 58% and 63% respectively. Laravel’s Stackshare stacks increased by 57%

being the only significant increase in PHP technologies. Biggest riser in Java technologies has been

Quarkus with 47% increase in contributors, 106% in Stackshare stacks and 108% in Stack overflow

questions.

62

Table 25. Backend technology community metrics comparison.

 Contributors Stackshare stacks
Stack overflow

questions

Language Framework 2020 2021 Change 2020 2021 Change 2020 2021 Change

C# ASP.NET Core 622 981 58% 920 1500 63% 52486 64481 23%

C# ServiceStack 254 259 2% 34 46 35% 4981 5115 3%

Java Akka HTTP 292 310 6% 21 34 62% 1292 1398 8%

Java Dropwizard 352 375 7% 251 284 13% 1891 1916 1%

Java Micronaut 265 322 22% 67 119 78% 774 1218 57%

Java Play framework 760 775 2% 641 688 7% 16944 17123 1%

Java Quarkus 373 550 47% 77 159 106% 992 2064 108%

Java Spring 763 576 -25% 2770 3300 19% 177301 190803 8%

Java Vert.x 187 217 16% 164 214 30% 2029 2255 11%

JS / TS Express 262 269 3% 14000 19300 38% 69765 80887 16%

JS / TS Feathers.js 172 178 3% 126 146 16% 782 829 6%

JS / TS hapi 206 209 1% 371 388 5% 1247 362 -71%

JS / TS koa 218 225 3% 405 457 13% 1082 1159 7%

JS / TS NestJS 182 272 49% 620 1100 77% 3204 5874 83%

JS / TS restify 199 200 1% 60 65 8% 612 612 0%

JS / TS Sails.js 226 235 4% 290 304 5% 6488 6541 1%

PHP CakePHP 558 576 3% 560 594 6% 31109 31469 1%

PHP CodeIgniter 481 483 0% 2860 3000 5% 68315 69546 2%

PHP Laravel 589 573 -3% 12700 19900 57% 159126 183139 15%

PHP Phalcon 249 259 4% 213 225 6% 1933 1961 1%

PHP Slim 206 211 2% 228 245 7% 2676 2749 3%

PHP Symfony 2210 2494 13% 4220 5500 30% 67137 69888 4%

Python AIOHTTP 497 577 16% 88 109 24% 1057 1335 26%

Python Django 2048 2130 4% 18400 26100 42% 248041 277810 12%

Python
Django REST
Framework 1023 1098 7% 1320 1600 21% 20438 25549 25%

Python Falcon 157 168 7% 65 76 17% 183 68 -63%

Python FastAPI 184 279 52% 21 210 900% 473 1911 304%

Python Flask 621 634 2% 10400 13900 34% 41449 47619 15%

Python Tornado 339 351 4% 280 310 11% 3590 3681 3%

63

Except for Spring, the biggest risers are the technologies getting also the best feature evaluation

scores. Even in Java technologies the difference between Spring and Quarkus was small. It’s

impossible to tell whether there’s causality, but correlation is clear.

This proves technology doesn’t have to be the most popular to be full of features. FastAPI barely

made it to the list of evaluated technologies as it had so little Stackshare stacks and Stack overflow

questions a year ago. This also raises the questions whether some of the dropped-out

technologies would’ve been worth deeper inspection. Community vitality metrics may still play a

role in predicting technologies’ longevity.

12 Conclusion

Results

Examining prior research revealed many factors affecting software development productivity, but

only few were technical. Reuse, documentation quality and automatization were found to be

suitable for the technology selection process. In addition, vital community was found to contribute

to those factors by providing reuse and documentation in the form of extensions and web articles.

Python, JavaScript/TypeScript, Java, C# and PHP were found to be the most used programming

languages for backend development. Almost 90 backend frameworks and libraries were

discovered for these languages, of which 29 were considered vital and enough general purpose.

Frontend development had smaller set of technologies available after considering SPA capabilities.

Of these 6 were JavaScript/TypeScript based and only one C#/WebAssembly based.

46 features were gathered for both backend and frontend by examining technologies’ official

documentation websites. Evaluating technologies revealed great differences between feature

availability in the backend technologies. Lack of schema-based request binding and inferred

OpenAPI documentation were found to result in more repetitive code thus being the most crucial

individual features when evaluating productivity. Frontend technologies were more on par and

such crucial difference in features couldn’t be determined.

ASP.NET Core, NestJS, Laravel, FastAPI and Spring were found to be the most feature rich backend

technologies to be used with C#, TypeScript, PHP, Python and Java respectively. In the frontend

64

technologies Vue.js based frameworks Quasar Framework and Vuetify had the most features built

in.

Ethics

This thesis has aimed to be as objective as possible. Research has been done purely for the

interest in the studied subject without any affiliation to companies or individuals involved in the

development of the studied technologies.

Although technology evaluation was done as if the author hadn’t had any prior experience with

them, it’s impossible to repeal all the knowledge gained from working in the industry over a

decade. There's a possibility the terminology used for web searches has been biased towards

technologies familiar to the author. Features had various terms in different technologies. E.g.

middleware features were also called hooks, interceptors, decorators and filters. It’s possible that

some features were not discovered due to abnormal naming causing the technology in question

having worse score than it actually is.

Discussion

One interesting observation is that TypeScript and C# are the only languages having considerable

frameworks available for both backend and frontend. TypeScript has a slight edge in the frontend

and C# in the backend. Further studies could be made to research whether using the same

language for backend and frontend would have any significant effect on productivity.

This thesis also focused only on developing new application prototypes and theoretical evaluation

of technologies. Future studies could be done to compare technologies in practice and evaluate

the effects on productivity in the longer term by including maintenance and testing effort.

Summary

This thesis studied how full stack development productivity could be increased via technology

selection. Prior studies on software development productivity were reviewed to find factors viable

for guiding technology selection. Backend and frontend features were discovered by inspecting

65

online documentations of selected technologies. Finally, technologies were evaluated on quality of

documentation and availability of features.

Backend technologies had quite remarkable differences between feature availability. The biggest

deficiencies were found from the request binding capabilities which also resulted in more manual

work for validation and OpenAPI documentation. Used programming language may not play a

significant role in productivity. Except for JavaScript all languages had good frameworks available.

In the frontend no significant differences were found between technologies’ features. Each had

only a few minor weaknesses and most of them were easily overcome with extensions. Frontend

development productivity is likely more affected by personal preferences with the development

style of each technology than the features they provide.

66

References

Alpha Software. (2021). The Pros and Cons of Low Code Development. Accessed on 28 October
2021. Retrieved from https://www.alphasoftware.com/pros-and-cons-of-low-code-development

AWS. (2020). AWS Elastic Beanstalk. Accessed on 23 October 2020. Retrieved from
https://aws.amazon.com/elasticbeanstalk/

Azure. (2020). Web Apps. Accessed on 23 October 2020. Retrieved from
https://azure.microsoft.com/en-us/services/app-service/web/

Canedo, E. D., & Santos G. A. (2019). Proceedings of the XXXIII Brazilian Symposium on Software
Engineering, 307-316. https://doi.org/10.1145/3350768.3352491

Clark, J. (2020). Top 10 backend frameworks. Accessed on 6 November 2021. Retrieved from
https://blog.back4app.com/backend-frameworks/

de Barros Sampaio, S. C., Barros, E. A., de Aquino, G. S. , e Silva, M. J. C., & de Lemos Meira, S. R.
(2010). A Review of Productivity Factors and Strategies on Software Development. Fifth
International Conference on Software Engineering Advances, 196–204.
https://doi.org/10.1109/ICSEA.2010.37

Fielding, R. (2000). Representational State Transfer (REST). Accessed on 1 November 2021.
Retrieved from https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Fielding, R. (20 October 2008). REST APIs must be hypertext-driven. Retrieved from
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Gaitatzis, T. (2019). Learn REST APIs. BackupBrain Publishing.

Github. (2021). Release v0.0.1 · npm/npm · GitHub. Accessed on 22 October 2021. Retrieved from
https://github.com/npm/npm/releases/tag/v0.0.1

Google Cloud. (2020). App Engine. Accessed on 20 October 2020. Retrieved from
https://cloud.google.com/appengine

Hacker news. (2020). The Prestige Trap: finance, big tech, and consulting. Accessed on 22 October
2021. Retrieved from https://news.ycombinator.com/item?id=25093349

Hackernoon. (6 March 2021). The Pros and Cons of Low-Code Development.
https://hackernoon.com/the-pros-and-cons-of-low-code-development-4y2p33g9

Jiang, Z., & Comstock, C. (2007). The Factors Significant to Software Development Productivity.
World Academy of Science, Engineering and Technology, Open Science Index 1, International

67

Journal of Computer and Information Engineering, 1(1), 68-72.
https://doi.org/10.5281/zenodo.1083495

JWT. (2021). JSON Web Tokens. Accessed on 26 October 2021. Retrieved from https://jwt.io/

Long, T. (2021). Low-code development platforms: Pros and cons. JDLT. Accessed on 28 October
2021. Retrieved from https://jdlt.co.uk/blog/low-code-development-platforms-pros-and-cons/

Material Design. (2021). Material Design Text fields. Accessed on 29 October 2021. Retrieved from
https://material.io/components/text-fields

Maxwell, K. D., & Forselius, P., (2000). Benchmarking Software Development Productivity. IEEE
Software 17(1), 80-88. https://doi.org/10.1109/52.820015

MDN Web Docs. (2021a). HTTP request methods. Accessed on 4 November 2021. Retrieved from
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

MDN Web Docs. (2021b). HTTP request headers. Accessed on 4 November 2021. Retrieved from
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

MDN Web Docs. (2021c). HTTP Messages. Accessed on 4 November 2021. Retrieved from
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

MDN Web Docs. (2021d). Cross-Origin Resource Sharing (CORS). Accessed on 25 October 2021.
Retrieved from https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Melo, C., Cruzes, D. S., Kon, F., & Conradi, R. (2011). Agile Team Perceptions of Productivity
Factors. 2011 Agile Conference, 57-66. https://doi.org/10.1109/AGILE.2011.35

Modulecounts. (2020). Module Counts. Accessed on 20 November 2020. Retrieved from
http://www.modulecounts.com

Mota, J. S., Tives, H. A., & Canedo, E. D. (2021). Tool for Measuring Productivity in Software
Development Teams. Information, 12(10), 396. https://doi.org/10.3390/info12100396

Murphy-Hill, E., Jaspan, C., Sadowski, C., Shepherd, D., Phillips, M., Winter, C., Knight, A., Smith, E.,
& Jorde, M. (2021). What Predicts Software Developers’ Productivity?. IEEE Transactions on
Software Engineering 47(3), 582-594. https://doi.org/10.1109/TSE.2019.2900308

Swagger. (2021). OpenAPI Specification. Accessed on 25 October 2021. Retrieved from
https://swagger.io/specification/

Pano, A., Graziotin, D., & Abrahamsson, P. (2018). Factors and actors leading to the adoption of a
JavaScript framework. Empirical Software Engineering, 23(6), 3503-3534.
https://doi.org/10.1007/s10664-018-9613-x

68

PYPL PopularitY of Programming Language. (2020a). PYPL PopularitY of Programming Language
Oct 2020. https://pypl.github.io/PYPL.htm

PYPL PopularitY of Programming Language. (2020b). Top IDE index Oct 2020.
https://pypl.github.io/IDE.html

Reddit. (2013). After CRUD, What's next? Accessed on 22 October 2021. Retrieved from
https://www.reddit.com/r/learnprogramming/comments/1fspj0/after_crud_whats_next/

roadmap.sh. (2021a). Backend Developer. Accessed on 1 November 2021. Retrieved from
https://roadmap.sh/backend

roadmap.sh. (2021b). Frontend Developer. Accessed on 1 November 2021. Retrieved from
https://roadmap.sh/frontend

Spendel, T. (25 May 2020). Low-code development platforms. Pros, cons, use cases. skyrise.tech.
https://blog.skyrise.tech/low-code-development-platforms

Stackshare. (2020a) What are the best Frameworks (Full Stack) Tools? Accessed on 13 October
2020. Retrieved from https://stackshare.io/frameworks

Stackshare. (2020b). What are the best Microframeworks (Backend) Tools? Accessed on 13
October 2020. Retrieved from https://stackshare.io/microframeworks

Stackshare. (2020c). Build, Test, Deploy Index. Accessed on 23 October 2020. Retrieved from
https://stackshare.io/index/build-test-deploy

State of JS. (2020). Frontend Frameworks. https://2020.stateofjs.com/en-US/technologies/front-
end-frameworks/

Stangarone, J. (28 February 2019). Pros and cons of low-code development platforms. mrc's Cup of
Joe Blog. https://www.mrc-productivity.com/blog/2019/03/pros-and-cons-of-low-code-
development -platforms/

Tay, N. (5 April 2021). 7 Pros and Cons of Low-Code/No-Code. Major Online Business and
Marketing. https://blog.hslu.ch/majorobm/2021/04/05/7-pros-and-cons-of-low-code-no-code-
ntsy-2-ua-192667621-1/

TechEmpower. (2021). Web Framework Benchmarks. Accessed on 6 November 2021. Retrieved
from https://www.techempower.com/benchmarks/#section=data-r20&hw=ph&test=composite

Team blind. (2020). Career Path and Growth : How to rise above glorified CRUD applications?
Accessed on 22 October 2021. Retrieved from https://www.teamblind.com/post/Career-Path-and-
Growth-How-to-rise-above-glorified-CRUD-applications-ewfv2QbR

69

TIOBE Index. (2020). TIOBE Index for October 2020. https://www.tiobe.com/tiobe-index/

Tomaszewski, P., & Lundberg, L. (2005). Software development productivity on a new platform: an
industrial case study. Information and Software Technology 47(4), 257–269.
https://doi.org/10.1016/j.infsof.2004.08.007

Tozzi, C. (1 January 2019). Low-Code Development Is Awesome--Here’s When Not to Use It. ITPro
Today. https://www.itprotoday.com/devops-and-software-development/low-code-development-
awesome-here-s-when-not-use-it

Wagner, S., & Ruhe, M. (2008). A Systematic Review of Productivity Factors in Software
Development. Proc. 2nd International Workshop on Software Productivity Analysis and Cost
Estimation (SPACE 2008), 1-6.

WebStorm. (2021). Languages and frameworks. Accessed on 4 November 2021. Retrieved from
https://www.jetbrains.com/help/webstorm/application-development-guidelines.html

Wikipedia. (2021). Dependency injection. Accessed on 5 November 2021. Retrieved from
https://en.wikipedia.org/wiki/Dependency_injection

70

Appendices

Appendix 1. List of inspected backend framework comparison sites

https://www.monocubed.com/best-backend-frameworks/

https://blog.back4app.com/backend-frameworks/

https://statisticsanddata.org/data/most-popular-backend-frameworks-2012-2021/

https://medium.com/javarevisited/10-best-frontend-and-backend-frameworks-for-java-python-ruby-and-
javascript-developers-cce3c951787a

https://hackr.io/blog/web-development-frameworks

https://www.keycdn.com/blog/best-backend-frameworks

https://merehead.com/blog/development-trends-best-backend-frameworks-in-2022/

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks

https://www.globalmediainsight.com/blog/web-development-frameworks/

https://jumpgrowth.com/top-10-web-development-frameworks/

https://www.intagleo.com/blog/most-popular-backend-frameworks-for-web-development-in-2019/

https://morioh.com/p/d024b656ccc2

https://www.parrolabs.com/blog/2021-07-29-top-5-popular-backend-frameworks-in-2021

https://www.simform.com/blog/best-nodejs-frameworks/

https://www.codesnail.com/backend-web-development-frameworks/

https://acropolium.com/blog/most-popular-backend-frameworks-in-2021-2022-pros-and-cons-what-to-
choose/

https://www.technotification.com/2021/07/backend-web-development-frameworks.html

https://www.kelltontech.com/kellton-tech-blog/top-7-backend-web-development-frameworks-in-2021

https://cadabra.studio/blog/best-backend-technologies-list-comparison-examples

https://www.techomoro.com/what-are-the-best-frontend-and-backend-frameworks-to-build-web-apps/

https://the-tech-trend.com/software-development/top-10-backend-frameworks-for-web-development/

https://saamarketing.co.uk/top-10-backend-web-development-frameworks-2021/

https://www.fortunesoftit.com/top-5-backend-frameworks-in-2021/

https://impressit.io/blog/best-backend-frameworks

https://www.developerupdates.com/blog/best-backend-frameworks-for-web-development

https://www.thirdrocktechkno.com/blog/top-5-picks-for-backend-development-in-2021/

https://codete.com/blog/top-web-backend-frameworks-in-2021

https://www.crowdbotics.com/blog/most-compatible-frontend-backend-framework-pairings

https://exceed-team.com/tech/best-frontend-and-backend-frameworks-for-developers

71

https://monovm.com/blog/backend-development-how-to-choose-the-right-framework/

https://www.asynclabs.co/blog/software-development/how-to-choose-the-right-backend-technology-for-
your-app/

https://idego-group.com/best-backend-for-react/

https://www.ateamsoftsolutions.com/top-5-backend-technologies-for-web-application-development/

https://innovature.ai/top-backend-frameworks-2021/

https://chudovo.com/backend-development-how-to-choose-the-best-framework-for-your-project/

https://isoftlab.com.my/10-best-web-development-framework-backend-and-frontend/

https://hackerkernel.com/blog/best-top-backend-frameworks/

https://www.decipherzone.com/blog-detail/top-10-backend-development-frameworks

https://www.sam-solutions.com/blog/web-development-frameworks/

https://www.geeksforgeeks.org/which-one-is-most-demanding-back-end-web-framework-between-laravel-
node-js-and-django/

https://masteringbackend.com/posts/top-5-backend-frameworks/

https://www.stackoftuts.com/web-development/best-web-development-frameworks-2019-backend-frontend/

https://www.aalpha.net/articles/top-backend-frameworks-for-web-development/

https://teqnation.com/top-7-backend-web-frameworks-to-use-in-2019/

https://healthgradespro.com/best-backend-frameworks/

https://www.unicodesolutions.com/top-backend-frameworks-to-build-your-web-application/

https://moodup.team/blog/which-backend-framework-is-right-for-your-project/

https://www.slideshare.net/markwilston1/top-12-backend-frameworks-for-web-development-in-2021

https://novateus.com/blog/7-best-backend-framework-in-2021/

https://www.merixstudio.com/blog/backend-development/

72

Appendix 2. List of inspected frontend framework comparison sites

https://www.monocubed.com/best-front-end-frameworks/

https://www.simform.com/blog/best-frontend-frameworks/

https://www.ideamotive.co/blog/best-frontend-frameworks

https://technostacks.com/blog/best-frontend-frameworks/

https://medium.com/geekculture/best-front-end-frameworks-for-web-development-of-2021-the-complete-
guide-ec30098fd1d0

https://medium.com/javarevisited/10-best-frontend-and-backend-frameworks-for-java-python-ruby-and-
javascript-developers-cce3c951787a

https://cult.honeypot.io/reads/best-frontend-javascript-frameworks-learn-2021/

https://www.mindbowser.com/best-frontend-frameworks/

https://blog.devgenius.io/best-frontend-frameworks-of-2021-for-web-development-7a183652d81b

https://jumpgrowth.com/top-10-web-development-frameworks/

https://www.communicationcrafts.com/frontend-frameworks-for-web-development-in-2021/

https://www.sitepoint.com/most-popular-frontend-frameworks-compared/

https://www.uptech.team/blog/frontend-frameworks-for-web-product

https://existek.com/blog/top-front-end-frameworks-2021/

https://www.gurutechnolabs.com/top-front-end-frameworks/

https://blog.learncodeonline.in/top-3-frontend-frameworks

https://www.techgeekbuzz.com/front-end-frameworks/

https://www.konstantinfo.com/blog/frontend-frameworks/

https://www.clariontech.com/blog/top-5-frontend-frameworks-to-work-with-in-2019

https://logap.com.br/en/blog/best-frontend-framework/

https://fabrity.com/blog/technical/4-frontend-frameworks-you-should-know-about-in-2021/

https://graffersid.com/best-frontend-frameworks-for-web-development/

https://www.keycdn.com/blog/frontend-frameworks

https://whdb.com/blog/front-end-frameworks-making-best-choice/

https://www.lambdatest.com/blog/best-web-development-frameworks/

https://www.globalmediainsight.com/blog/web-development-frameworks/

https://hackernoon.com/top-7-best-frontend-development-frameworks-and-when-to-use-them-4v3a3wwa

https://enlear.academy/the-5-best-frontend-frameworks-to-learn-in-2021-74b049ed98f1

https://www.vervelogic.com/blog/best-front-end-frameworks/

https://www.ateamsoftsolutions.com/which-is-the-best-javascript-frontend-framework-angular-react-or-vue/

73

Appendix 3. List of “awesome” websites

Url Retrieval date

https://github.com/vinta/awesome-python 2020-10-15

https://github.com/trananhkma/fucking-awesome-python 2020-10-15

https://github.com/akullpp/awesome-java 2020-10-15

https://github.com/uhub/awesome-java 2020-10-15

https://github.com/pditommaso/awesome-java 2020-10-15

https://github.com/sindresorhus/awesome-nodejs 2020-10-15

https://github.com/bnb/awesome-awesome-nodejs 2020-10-15

https://github.com/tejasrsuthar/Awesome-NodeJS 2020-10-15

https://github.com/quozd/awesome-dotnet 2020-10-15

https://github.com/thangchung/awesome-dotnet-core 2020-10-15

https://github.com/NajiElKotob/Awesome-DotNET 2020-10-15

https://github.com/danperor/awesome-csharp 2020-10-16

https://github.com/ziadoz/awesome-php 2020-10-16

 https://github.com/uhub/awesome-php 2020-10-16

74

Appendix 4. Studied backend frameworks & libraries

75

Appendix 5. Backend technology evaluation results

76

Appendix 6. Frontend technology evaluation results

