

Andrei Vasilev

Comparison of React components
testing patterns

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

1 November 2021

Abstract

Author: Andrei Vasilev
Title: Comparison of React components testing patterns
Number of Pages: 38 pages
Date: 1 November 2021

Degree: Bachelor of Engineering
Degree Programme: Information Technology
Professional Major: Mobile Solution
Supervisors: Hannu Markkanen, Researching Lecturer

There is an enormous amount of various testing patterns, and tools for testing React
applications. Each of them is intended for specific purposes and has its concept and
philosophy beyond. Such abundance gives good flexibility for developers; however, it
also shifts the responsibility for the right decision for themself. A mistakenly picked
testing pattern can cause harm down the road.

The purpose of this study is to provide a comprehensive comparison of different
approaches to testing React components, analyse the advantages and
disadvantages of each and try to find the balanced testing recipe for medium and
large size React applications. Moreover, based on the research and development
experience, identify the deficiencies in the testing patterns of the study case React
application and provide options for improving it.

The study results show the importance of choosing the correct testing tools and
pattern for a specific React application and business needs and describe the wrong
choice's consequences.

Keywords: Software testing, component testing, unit testing, React,
quality improvement

Contents

List of Abbreviations

1 Introduction 6

2 Software testing 8

2.1 Testing levels 8
2.2 Unit testing 9

2.2.1 Bad and good unit test 10
2.2.2 Code coverage 12
2.2.3 AAA pattern 13
2.2.4 Classical and London approach 14
2.2.5 Test doubles 14

2.3 Integration testing 15
2.4 System testing 15

3 ReactJS library 17

3.1 Pros of using React 17
3.2 Cons of using React 18
3.3 Virtual DOM 18
3.4 Components 19
3.5 JSX 19
3.6 Props and state 19

4 Testing React components 21

4.1 Test Runners 21
4.2 Basic React component testing 21
4.3 Shallow mount vs mount 22
4.4 React testing libraries 24
4.5 Components testing principles 24

4.5.1 Shallow mount and mount comparison 25

5 Analysing and improving test patterns of case study React application 30

5.1 Background 30
5.2 Drawbacks of using React Testing Library on scale 30

6 Conclusion 36

References 38

List of Abbreviations

QA Quality Assurance

AST Automated Software Testing

E2E End to End testing

AAA Arrange, Act and Assert

RTL React Testing Library

MVP Minimum viable product

6

1 Introduction

Building software is a complex process that requires great effort and time to

build a robust, high-quality product that would satisfy all business and user

needs. To become competitive and satisfy the rapidly changing business

requirements, big and medium-size IT companies introduce software

development processes such as requirements analysis, software design,

implementation, and testing.

One of the crucial parts of software development processes is software

automation testing. The word automation means that software is being tested

using automation tools rather than doing it manually.

Automation testing aims to recognise many potential bugs and errors before

delivering a product to the customer and ensure system operability at different

levels. In addition to that, automation testing gives developers immediate

feedback about the correctness of their work and meeting business

requirements.

Thereby all stakeholders may verify that the new or modified part of the project

works as expected and does not adversely impact other program parts.

Furthermore, continuous test writing increases the developers' productivity,

reduces debugging time, eradicates fear of change, and improves code quality

and project architecture.

As any other software, web applications need to be appropriately tested to

guarantee good performance and usability. Nowadays, single-page applications

(SPA) have become more and more popular. With such popularity, competition

and complexity of applications are also growing. Modern web has nothing in

common with websites that took place a decade ago.

There is a huge variety of open-source technologies on the market for building

web applications of any complexity. However, more popular, and stable for

7

2021 are Angular, React and Vue. All these technologies have their advantages

and disadvantages and have been created to solve specific problems.

The main goal of this paper is to research and understand the intricacies of

existing approaches and tools for testing React components, get their

advantages and disadvantages, and define their scope of usage. Examine

which testing patterns provide maximum value with minimum development

costs and maintenance efforts, demonstrate their relevance and influence on

the end product. This is quite a controversial topic, because there is not the only

proper way to accomplish it. Different libraries have different testing concepts

underneath and they are pushing their own ideas and concepts, which they

believe are the only ones.

To fully understand the problem and existing solutions, as an example will be

considered and improved some component tests in the project where the author

of this work is one of the main contributors and maintainers.

The project is a part of an enterprise-level advertisement SaaS platform written

using the popular modern React library. It uses the various testing libraries and

patterns, which makes it a good subject for analysing.

Chapter 2 contains an overview of the software automation testing process and

gives the primary understanding of core testing principles and its importance

and influence on the development and end product. Chapter 3 briefly introduces

the React framework and describes its main concepts and problems it solves.

Chapter 4 describes and compares various React components testing

approaches, techniques, appropriate tools, and libraries. Chapter 6 assesses

the current state of the study case test code and provides the steps to improve

the tests patterns and, consequently, the overall application quality.

8

2 Software testing

Software testing is a risk management strategy that helps to verify that the

software meets all functional software requirements, is defect-free, and has

enough reliability to deliver it to the end-users. [1.] There are two ways of testing

software applications:

• Manual testing

• Automation testing

In manual testing, a QA analyst performs software testing step by step to

ensure that the end-product does not contain any critical bugs. However, testing

of tremendous and complex systems can be a human-intensive or sometimes

even impossible task.

To ensure the application works correctly, in some cases a thousand tests need

to be executed, which is physically impossible for the human. For this purpose,

a special software written by developers and which automatically runs the test

cases and generates the test results has been created [2,3].

2.1 Testing levels

Many diverse testing levels help to check the behaviour and performance of the

system. This study considers only the most used, such as unit, integration, and

system testing. [5.]

Testing levels:

• Unit testing checks that the isolated unit's functionality matches the
business specifications.

• Integration testing checks how the units work in integration with each
other, and the data flow from one unit to another

• System testing (E2E) check the whole system efficiency from the
user perspective of view

9

Figure 1. Create by Mike Cohn software testing pyramid.

Figure1 shows the testing pyramid. It is the concept which Mike Cohn

introduced in his book "Succeeding with Agile". It describes the different layers

of software testing and the required number of tests for each of them. The low

level contains many small and fast unit tests, middle some more coarse-grained

tests and very few high-level tests that test an application from end to end. The

provided concept is quite simplistic, and modern testing frameworks have much

more testing layers. However, it gives a solid rule of test organising and

granularity [6.]

2.2 Unit testing

Unit testing is the first level of testing, where individual components or software

units are tested independently from other parts [7]. Unit testing isolates a piece

such as a separate function, class, component of the codebase. It verifies its

correctness, which can help find and fix low-level bugs in the early development

stage. Usually, unit tests serve as project documentation or requirements that

eventually help the developers understand the purpose of a particular unit and

make changes quickly. [8.] Furthermore, unit testing ensures sustainable growth

of the software project [9]. A software project without unit tests becomes

10

unmaintainable in the long term and requires enormous effort and cost, leading

to total project failure.

Figure 2. Relationship between amount of work hours and progress with and
without tests with time.

Figure 2 demonstrates the development speed with and without unit tests in the

long term. Extra time spent at the beginning of the project allows a company to

maintain and develop it for years.

Usually, the ratio between production code and test code is between 1:1 and

1:3 (there are one to three lines of test code for each production line code). If

production code is hard to unit test, it is the first symptom of badly designed

code that requires some improvements. Usually, the reason for that is a tight

coupling, which means units are coupled with each other, so it is not easy to

test them in isolation. Nevertheless, the ability to unit test a module cannot

indicate good code quality. The project can contain terrible code even with

loose coupling. [9.]

2.2.1 Bad and good unit test

A unit test can be either good or bad. Good unit tests are valuable and

contribute to overall software quality. Poor tests raise false alarms, do not catch

11

bugs, are slow and difficult to maintain. Projects with a vast number of low-

quality tests, which value is close to zero, can slow down code deterioration

initially, but in the long term, stagnation is still inevitable [9].

It is crucial to consider both the test's value and its upkeep cost to provide good

quality unit tests. - The cost part is determined by the amount of spending time

on various activities:

• Updating the test after changing the underlying component

• Test execution time on each code change

• Reading tests to understand how tested component behaves

Figure 3. Relationship between amount of work hours and progress with good
and bad tests with time.

Figure 3 demonstrates the difference between projects with a good and bad

test. The project with poorly written tests exhibits the properties of a project with

good tests at the beginning, but it eventually falls into the stagnation phase. [9]

12

2.2.2 Code coverage

Code coverage or test coverage is a significant and frequently used metric in

unit testing, which shows the ratio of the number of code lines executed during

the test and the total number of lines in the source code [9].

𝑇𝑒𝑠𝑡	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = !"#$%	'()'*$	$+$),-$*
.'-/0	#,12$3	'(0"#$%

 (1)

Formula 1 shows how the test coverage calculation is performed, the number of

executed lines of code divided by the total number of lines. For instance, if the

number of lines of code in a project is 100 and the number of lines executed

across all existing test cases is 10, then the test coverage is (10 / 100) * 100 =

10%.

The branch coverage gives more precise results because instead of using raw

code lines, this metric concentrates on control structures such as if and switch

statements. It provides an amount of traversed control structures by at least one

test in the suit [9].

𝐵𝑟𝑎𝑛𝑐ℎ	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 43/#)5	-3/6$3%$*
.'-/0	#,12$3	'(23/#)5$%

 (2)

Formula 2 shows the calculation of test branch coverage. It is a relationship of

traversed branches to the total amount of branches.

An amount of unit tests in the project does not tell anything about its quality. It is

easy to reach high numbers of test coverage even with low-quality testing. [10.]

even 100% test coverage cannot always guarantee that the test verifies all the

possible outcomes of the executed code under a test. Nevertheless, a low

percentage of test coverage can indicate that there are not enough unit tests in

the project. [9.]

13

2.2.3 AAA pattern

The AAA pattern is one of the popular unit testing patterns. It helps to arrange

and organise test code to make it more readable and understandable by

separating each unit test into three parts: Arrange, Act and Assert. [4;16.]

// Arrange
const mailService = new MailService();

// Act
mailService.sendEmail(emailData);

// Assert
expect(sendEmail).hasBeenCalledTimes(1);

Listing 1. Example AAA testing pattern

Listing 1 demonstrates the usage of the AAA pattern. The first arrangement

step is preparation for the test, where a mailService instance of the tested class.

In the actual stage, the method to be checked is called. And in the final

assertion stage, the assertion happens. The test verifies that the tested

sendEmail method has been called once.

Arrange is the preparation section of the unit test, where all initialisations,

mocks, inputs, environment setups, and other things that help arrange the test

should be done. [4.]

Act is the section where the test acts to the tested unit and performs desired

interaction, such as clicking the button, calling method, entering text to the input

field. [4.]

Assert is the third part where the test asserts that the interaction, performed in

the act section, gave the expected outcome, such as verifying that the correct

method has been called or the error message displayed. [4.]

14

2.2.4 Classical and London approach

There are two different schools of the unit testing Classical and London. People

who prefer the Classical school are known as classicists and the others as

mockists. The root cause of the dispute between London and Classical schools

is the unit's isolation manner and definition of the unit term itself.

London school advocates that all unit's dependencies should be replaced with

test doubles, which provides an opportunity for separating behaviour of tested

units from any external influence.

In the Classical approach, the code should not be tested in an isolated manner,

but unit tests themselves should be run in isolation; therefore, executed in

parallel unit tests should not affect each other via shared dependencies. A

typical example of such dependency is a database updated by different tests

simultaneously and deterministically affecting the different tests [9.]

2.2.5 Test doubles

The test doubles are a simplified version of the original unit that reduces the

complexity and facilitates testing [9]. It helps isolate the tested code from the

surroundings and get from its expected behaviour [11]. There are much more

benefits of using doubles in the unit test:

• Isolate the code under test

• Speed up test execution

• Make execution deterministic
• Simulate special conditions

• Gain access to hidden information

There are multiple types of test doubles:

15

• Dummy objects usually are used to fill a parameter list. For example,
it can be passed as a fake config to the function or class constructor.

• Fake object has some simple working implementation that does not
suit the production usage but perfectly works under the test suite. For
example, a fake database can be an in-memory implementation of
the actual heavy database.

• Stub is an object used to fake a method that has pre-programmed
behaviour. It can be used instead of an existing real method in order
to avoid unwanted side-effects. (e.g make fake http requests and get
defined in advance data).

• Spy is an enhanced stub that also collects some meta-information
based on how it was called. In a simple case, it tracks the numbers
of calls or provided arguments.

• Mock - is an object used to fake a method that has pre-programmed
behavior as well as pre-programmed expectations. if given
expectations are not met the requirements the mock will cause the
test to fail. (I.e., if a mock of the function has been called with an
unexpected argument, it can throw an exception.)

2.3 Integration testing

Integration testing is software testing where individual units are integrated

logically and tested as a group [6]. Another definition of integration test is a test

that verifies that a unit or units work correctly with shared dependencies, such

as a database or microservice developed by other teams’ code [9]. Integration

testing is necessary because even if all separate units were tested well with unit

tests, there would be no guarantee that they will work together as a system or a

part of a system. Therefore, this level of testing aims to expose defects between

software units when they are integrated.

2.4 System testing

System or end-to-end testing (E2E) is a software testing level that involves

testing an application workflow from start to end and integrating with external

interfaces. System testing aims to test the whole application for dependencies,

data integrity, and communication with other systems such as third-party

services, interfaces, and databases. [9.] For example, a simple user login end-

16

to-end testing workflow implies going through the login page and checking the

username and password validation, password strength, and error messages.

Usually, system testing simulates the system usage of the end-user.

17

3 ReactJS library

React is a declarative and component-based library for building user interfaces

across different platforms such as web, mobile, desktop. That means everything

in React application is build using components. React render system, in turn,

manages these components and keep the application up to date according to

the current state. Components are a building block of React applications. It

should be easy to think about and integrate with other React components. Each

component follows the predictable lifecycle and can have its inner state.

Component with own internal state called stateful and without it stateless

component. [12.] React application is a composition of hundreds, or thousands

of components nested inside each other. It has a robust and diverse community

and an enormous number of third-party libraries, which can help to solve almost

every problem.

3.1 Pros of using React

React is one of the most popular and loved JavaScript frameworks nowadays,

and there are a few reasons for that. The most apparent benefits of using React

are:

• Performance - React is high-speed technology because of the virtual
DOM and internal comparison algorithms, which first apply DOM
changes to the virtual DOM and update only affected elements in the
real DOM. This mechanism guarantees a minimum update time to
the real DOM and provides higher performance and a smooth user
experience. [13.]

• Learning curve - React is easy to learn and easy to use. Every
developer with a JavaScript background can start to write React
application after reading through the official documentation.

• Cross-platform - React can be used for developing cross-platform
applications such as mobile, native and desktop [13]. Thereby
reducing development time and saving money on hiring platform-
specific developers.

• Excellent developer tools - React provides the extension for most
popular browsers, allowing developers to inspect component

18

hierarchies in the virtual DOM, check component data flow, and
easily debug the logical and performance issues [13].

3.2 Cons of using React

There is no silver bullet for all problems and despite React is a great tool, it also

has some drawbacks. React is positioning itself as a UI library, which means it

is not designed to do many things out of the box in comparison, with more

comprehensive frameworks such as Angular.

React does not provide opinionated solutions for various development aspects

such as HTTP, routing, data modelling.

One of the main downsides of choosing to react is the freedom that it gives to

developers, as opposite to Angular, with already predefined architecture and

development patterns, React developers should find their own custom solution

for different areas of the application. With this approach, the end product result

increasingly depends on developer experience and qualification because the

responsibility of design and architecture of application entirely lies with them.

[12.]

3.3 Virtual DOM

The reason for the high-speed performance of React is a virtual DOM. Virtual

DOM is the collection of data structures that represent the browser DOM. Direct

browser DOM manipulations are an expensive operation that significantly

reduces the application performance. To prevent it, React keeps the virtual

DOM in memory and performs internal diffing to determine what element has

been changed and makes an intelligent update of the real DOM. This process is

called reconciliation. [12;14.]

It is easy to imagine virtual DOM as an intermediate layer between the

application and the browser DOM. It encapsulates the complexity of diffing and

management from the developers to a specific layer of abstraction.

19

3.4 Components

Components are the building blocks of everything in React. They are well

encapsulated, reusable and composable. These traits give the ability to form the

new complex composite component through a composition of smaller ones.

Component composition is one of the most potent aspects of React. Each

component can be easily reused for the rest of the application. [12.]

3.5 JSX

JSX is XML / HTML like syntax extension to ECMAScript which allows HTML

like text co-exist with JavaScript / React code. JSX facilitates React component

creation, which significantly reduces React learning curve. The syntax is

intended to be used by pre-processors (i.e., transpilers like Babel) to convert

HTML-like text into standard JavaScript objects that a JavaScript engine will

parse. [15;14.]

<div className="sidebar" />

Listing 2. Snippet of code using JSX syntax.

React.createElement('div', {className: 'sidebar'})

Listing 3. JSX code from Listing 2 compiled to pure JavaScript.

JSX code shown in Listing 2 compiles into React element demonstrated Listing

3, which is pure JavaScript.

3.6 Props and state

To pass the data into a component from outside, React uses a mechanism

called props. Props are the primary way to pass the immutable data into the

component. They can be provided to the component from the parent component

or via the "defaultProps" static method in the component itself. [12.]

20

const Parent = () => <Child name='child'/>

const Child = ({name}) => <div>{name}</div>

Listing 4. Usage of React props

In the listing 4 Parent component passes the name prop with string value ‘child’

to Child component. Child component, in turn, receives the name prop and can

perform any manipulations with it.

In addition to the ability to receive props, each component can contain its state.

The state is a mutable data structure that preserves the component local data

over the component's lifetime. The internal state allows making the component

more complex and interactive. To sync component with its state, React re-

renders the component after each state change. [12;14.]

const ReactComponent = () => {
 const [state, setState] = React.useState(0);
 const handleButtonClick = () => void setState(prev => prev + 1);
 return (
 <div>
 <p>Current state is {state}</p>
 <button onClick={handleButtonClick}>Increment</button>
 </div>
)
}

Listing 5. Shows the usage of React component state.

Listing 5 demonstrates the React component with internal state, which has been

defined using a special function (hook) useState(0). useState hook receives the

initial value of the state and returns the state (state) and setter function

(useState). To update the state setState must be called with a new state in this

case it is the previous state + 1.

21

4 Testing React components

4.1 Test Runners

A test runner is a tool for creating, running, and executing unit tests in an

appropriate environment and providing a comprehensive report with test details

such as execution time, amount of completed and failed tests, and test

coverage. The most popular JavaScript test runner (test framework) is Jest.

Jest is the default test runner in CRA (tool for bootstrapping React application).

Jest provides a straightforward test structure. The basic test structure is shown

in Listing 6. Each test suit contains one or more describe blocks that group

several related tests. Function test is an actual test block, where usually

happens expected outcomes assertions. [16.]

describe("Data transformation function", () => {
 test("should transform input data from one shape to another", () => {
 // actual test
 });
});

Listing 6. Demonstrates the basic structure of the test using Jest test runner.

4.2 Basic React component testing

The simplest way to test React component is to render the component itself

using “render” method from “react-dom” library, the same method is used for the

production application, and then check that render output contains required

data. [14.]

test('should render component with name prop', () => {
container = document.createElement("div");
document.body.appendChild(container);
act(() => { render(<Component name="Hello world!" />, container)});
expect(container.textContent).toBe("Hello world!"); }

)

Listing 7. Shows the simplest way of testing React components via rendering it
using “react-dom” library.

22

Shown in Listing 7 global function "test" from Jest framework is used for running

the test. It contains the test name and test body, where the main logic is

defined.

The code presented in Listing 2 is a working example of basic component

testing. However, it contains much boilerplate code, slowing down the

development. The third-party React testing libraries encapsulate recurring logic

and provide a simple interface for a more convenient testing experience.

Efficient test writing requires additional testing tools such as a test runner, which

executes unit tests and gathers the required information to provide a resulting

report and testing util libraries such as Enzyme or React testing library. These

libraries encapsulate the test's arrange stage and provide an easy way to test

React component output.

4.3 Shallow mount vs mount

Shallow mount or shallow rendering (shallow rendering and shallow mount are

interchangeable conceptions) renders the component in complete isolation and

one level deep, which means it allows assertions about what its render method

returns without worrying about the behaviour of child components. Shallow

rendering does not require a DOM because the output of it is a plain JavaScript

object. [9.]

23

const Children = ({title}) => <div>{title}</div>
const Parent = (props) => <Children title={props.title}/>

/** Shallow rendering output */

{ "nodeType": "component",

"props": {
 "title": "child"
},
"instance": null,
"rendered": {
 "nodeType": "component",

"props": {
 "title": "child"
},
"instance": null,

 "rendered": {
 "nodeType": "host",
 "type": "div",
 "props": {
 "children": "child"
 },
 "instance": null,
 "rendered": [
 "child"
]

 }
 }
}

Listing 8. Output of Shallow rendering using the “react-test-renderer” library.

Listing 8 illustrates the shallow mount output of React component with one

child. Output is a pure JavaScript object.

Mount or full rendering renders an application tree in a browser-like

environment, using the “jsdom” library, a headless browser implementation in

pure JavaScript. As shown in Figure 9 it renders the whole component tree with

all nested children and executes all component lifecycle methods. The output of

the mount is pure HTML. The deep rendering is suitable for testing interactions

between components and DOM.

24

const Children = ({title}) => <div>{title}</div>
const Parent = (props) => <Children title={props.title}/>

/** Mount output */

<body>
 <div id="container">
 <div>child</div>
 </div>
</body>

Listing 9. Output of mounted component.

4.4 React testing libraries

Before considering third party libraries, it is worth noting the testing tool

provided by React team itself, “react-test-renderer”. This small util package

renders React components to pure JavaScript objects, using shallow mount,

irrespective of DOM or other environments. This approach allows to unit test the

component in isolation from the external systems (DOM) or its children

implementation details. [14.]

Another increasingly popular and officially recommended by React team library

is “React Testing Library”. It is a lightweight testing library built on top of

“react/dom” and “react-dom/test-utils” packages and provides only a full tree

rendering to the DOM. The main philosophy of this library is to allow testing

components from the user perspective via interacting with DOM. [14;17.] The

simple test case algorithm is:

• Find the button by its text
• Click the button

• Check the DOM changes according to the button handler

4.5 Components testing principles

According to testing pyramids to build a robust and well-tested application, it

should contain unit, integration, and system (E2E) tests in a different proportion.

System testing does not contradict its definition. It walks through the whole

application from the user perspective and verifies the efficiency and

25

performance of the tested system. Usually, React system tests runs in the

browser environment where special testing tools clicks to application elements

to simulate user interaction.

Interpretation of the unit and integration tests for React components can, for the

most part, depend on the definition of the unit.

4.5.1 Shallow mount and mount comparison

Tests written with a shallow mount allows verifying component behaviour in

isolation from its children. Thereby, tests become faster and more succinctly

than with the mount approach.

Another important benefit of using shallow mount is the ability to specify the

contract of the tested component. A component's contract defines the expected

behaviour of the component and what assumptions are reasonable to have

about its usage. React component contract should include:

• Information about obtaining props
• Information about rendering output and passing down props

A well-tested component's contract allows safely refactoring components

without harm to related components.

Despite all the advantages, the shallow mount also has some disadvantages.

One of those disadvantages is an inability to test components from the user

perspective. Since shallow mount returns just a plain JavaScript object, there is

no way to verify some interactions between the user and the actual DOM.

Shallow mount pros:

• Specify the contract of the component

• Test component behaviour in isolation from children

• Fast execution

26

• Easy to write

Shallow mount cons:

• Cannot test component from the user perspective. Since shallow
mount returns just a plain JavaScript object, there is no way to verify
some interactions between the user and the actual DOM.

• Challenging to keep children component stubs up to date. In case if
a component was updated without updating the corresponding test.
Stub does not match the component contract.

• Some lifecycle methods and hooks do not work with the shallow
mount.

Written with mount tests are closer to the users' behaviour. They allow verifying

a component's behaviour from the user perspective. Test all UI interactions and

DOM events because it executes all component life cycles. To verify the

system’s efficiency fewer tests are needed because the mounted component

also renders all its children.

This is advantage and disadvantage at the same time If the tested component

has a large three of subcomponents, the mount renders the whole tree from the

tested component to the bottom and it can become a problem to define which

component caused the test failure.

Mount pros

• Verify the system's efficiency with fewer tests

• Execute all component lifecycles

• Test the application components in the way the user would use it

Mount cons:

• Tests are more fragile.

• It is challenging to simulate failing test paths. Sometimes it can be
not trivial to simulate a failing test path because it can require
additional work in the arranging stage.

• Tests' arrange stage can contain not related to the tested
components data and grow up quickly.

27

• Slow execution because it renders everything and calls all
component's lifecycles.

Figure 4. A broken child component causes the parent component to fail.

In figure 4 is shown the case when failure in one of the child components brings

the failure of the tested component itself. Such a test is fragile, and it is difficult

to debug in a test failure.

Figure 5.Tested component depends on the dependencies of the child
components.

28

const Consumer1 = () => {
 const contextValue = useContext(Context1);
 return <div>{contextValue}</div>
};

const Consumer2 = () => {
 const contextValue = useContext(Context2);
 return <div>{contextValue}</div>
};

const TestedComponent = (props) => {
 return (
 <>
 <Consumer1 />
 <Consumer2 />
 </>
);
};

const setup = () => {
 return render(
 <Context1.Provider value={contextValue}>
 <Context2.Provider value={contextValue2}>
 <TestedComponent {...props} />
 </Context2.Provider>
 </Context1.Provider>
);
};

it('renders Tested component', () => {
 const element = setup();
 // Perform act and assertions
});

Listing 10. Test setup with unrelated to the target test preparations.

As shown in figure 5 and listing 10 setup function contains non-related to tested

component preparations. The TestedComponent is wrapped into multiple

Context.Provider components, which have nothing to do with

TestedComponent, but are needed for its child components' operability.

There is no clear border between the component unit and integration testing.

The definition of these terms is blurry and entirely depend on the developer's

views and preferences. Classicists promote the notion that the unit is one

specific functional behaviour, and even if it consists of multiple components, it

should be tested as one unit. The mockists, in turn, considers one component

as one tested unit, which should be isolated from its collaborators, such as the

component's children and side effects.

To summarize, the mount and shallow mount are both great tools, but they are

used for different purposes. The shallow mount matches all definitions of unit

29

(See Unit testing on page 9) testing and is perfectly suitable for component unit

testing. It verifies the component's behaviour in isolation and specifies its

contract. Using shallow mount tests is fast because they do not render the

whole underlying component tree and do not translate React elements into

DOM representation, which is time-consuming and is the implementation detail.

Component full rendering is more suitable for testing a user's interaction with

DOM and components testing in integration, giving more confidence in the

general operability of the system.

30

5 Analysing and improving test patterns of case study React
application

5.1 Background

A case study is a part (micro frontend) of an enterprise-level Finnish SaaS

platform that automates digital ads production and ad buying at scale. The

technical stack is React, Redux, Apollo client (most popular library for working

with GraphQL technology), and many lesser-known third-party libraries. The

project in total consists of hundreds of components of different complexity and

size. To verify that the application works well in different circumstances, it

contains hundreds of component tests and few system tests that go through the

application and simulate user interactions.

For component testing is mostly used, recommended by React, “React testing

library”, which propagates component testing from the end-users’ point of view

or via direct interaction with DOM.

After a while of using this approach, the testing execution time, test's

sustainability, and developers’ satisfaction have significantly decreased. Test

writing for non-trivial components became a daunting task, and sometimes

developers just skipped them because it could take even more time than the

writing component itself.

During the session where the whole product development team discussed the

situation, it became clear that the developers' satisfaction with the test writing

process was 4 points from 10. Such a low score meant that some changes were

needed in the testing approach.

5.2 Drawbacks of using React Testing Library on scale

The main issue of "React testing library" is that it renders the whole component

tree from a root to the bottom, which means it tests the integration between

components instead of unit testing. According to the software testing pyramid,

31

ideally, a project should contain approximately 20% of integration tests because

they are slower, more brittle and expensive than unit tests. The case study

contained more than 80% of integration tests and only 20% of unit tests.

The author of the given work considers this fact as the main culprit. Instead of

testing each component (unit) in isolation, hundreds of unwieldy and heavy

integration tests were implemented. With the project's growth, the writing of

integration tests is getting more complicated because dependencies are also

increasing.

To understand the problem, consider the one particular case, a PostForm

component consisting of a hundred smaller components such as inputs, labels,

text areas and others. The PostForm component is used in two different page

components CreatePostPage and EditPostPage. First is the main page, where

a new post can be created by filling in all form inputs. The second is the page

where the user can edit already existing posts.

const CreatePostPage = (props) => {
 ...

const handleCreatePost = {
// call 'POST' '/post'
}

 return(
 <PostForm onSubmit={handleCreatePost} />
)
}

Listing 11. CreatePostPage component.

Listing 11 shows the simplified version of CreatePostPage component which

renders PostForm form component as a child.

32

const EditPostModal = (props) => {
 ...
 const initialValues = {
 // call 'GET' '/post/:id'
 }

 return(
 <>

<PostForm onSubmit={handleCreatePost}
 initialValues={initialValues} />

 </>
)
}

Listing 12. EditPostModal component.

Listing 12 shows the simplified version of EditPostModal page component which

renders PostForm form component as a child.

const PostForm = ({onSubmit, initialValue = {}}) =>
{
...
return (

<Form>
<TitleFormSection title={initialValue.title} />
<PostContentFormSection content={initialValue.title} />
...
<SubmitPostButton onClick={onSubmit} />

</Form>
)

}

Listing 13. PostForm component.

In Listing 13 is shown the PostForm component, which consists of smaller

subcomponents, which in composition represents a message form.

Testing this example using React testing library (mount approach) mounts all

these components, which means it will render and test the PostForm

component three times, which is entirely redundant. It is easy to imagine how

slow can be tests if PostForm would consist of thousands of components and

be used in ten different places.

33

it('test CreatePost component using React Testing Library', () => {
 const element = render(<CreatePost />);
 …
 expect(element.findByPlaceholderText('Add new message')).not.toBeNull();
 expect(element.findByText('Submit message')).not.toBeNull();
});

Listing 14. CreatePost component testing using React Testing Library

Listing 14 shows the simplified version of the CreatePost component test using

React Testing Library. As shown in the listing to find and check needed

elements the developer needs to know about input field placeholder text and

submit button label, although they have nothing to do with tested component. If

someone will change the placeholder or labels texts, CreatePost test will also

fail.

The next colossal flaw is the increasing arrange stage. If the PostForm

component uses React context (a way to pass data through the component tree

without having to pass props down manually at every level [6].) and

Context.Provider component is higher on the tree, then in the test arrange stage

PostForm should be wrapped into all provider components that its children use.

Enzyme testing library gives another approach to component testing. It provides

the “shallow” function, which performs component shallow rendering. Shallow

rendering does not render the child components of a component being tested.

The developer does not need to know how the child components have been

implemented, only knowledge of these contracts (props they receive) is

necessary.

34

it('renders PostForm component', () => {
 const initialValue = {};
 const wrapper = shallow(
 <PostForm onSubmit={onSubmitMock} initialValue={initialValue} />
);
 expect(wrapper.find(TitleFormSection)).toHaveLength(1);
 expect(wrapper.find(TitleFormSection).props().title).toEqual(
 initialValue.title
);

 expect(wrapper.find(PostContentFormSection)).toHaveLength(1);
 expect(wrapper.find(TitleFormSection).props().content).toEqual(
 initialValue.content
);
 expect(wrapper.find(SubmitPostButton)).toHaveLength(1);

expect(wrapper.find(TitleFormSection).props().onClick).toEqual(onSubmitMock);
});

Listing 15. Unit test for PostForm component using Enzyme library and shallow
mount.

Listing 15 demonstrates the test case, written using the shallow function from

the Enzyme library. It verifies that the tested component in this case PostForm

renders three other components and checks that correct props are passed

down to its children. Meanwhile, the developer should not be aware of the

implementation details of lower elements in the tree hierarchy; this makes the

test writing process faster and simpler.

Using shallow mount rendering it's easy to test each component in isolation the

listing y demonstrates how can be tested each of the above components.

Because shallow mount does not render child components there is a confidence

that tests aren't indirectly asserting on behaviour of child components.

it('renders CreatePost component', () => {
 const wrapper = shallow(<CreatePost createPost={createPostMock} />);

 expect(wrapper.find(PostForm)).toHaveLength(1);
 expect(wrapper.find(PostForm).props().onSubmit).toEqual(createPostMock);
});

Listing 16. Unit test for CreatePost component using shallow mount.

35

it('renders EditPostModal component', () => {
 const props = { ..., createPost: createPostMock, initialValues: {} };
 const wrapper = shallow(<CreatePost {...props} />);

 expect(wrapper.find(PostForm)).toHaveLength(1);
 expect(wrapper.find(PostForm).props()).toEqual({
 onSubmit: props.createPost,
 initialValues: props.initialValues,
 ...
 });
});

Listing 17. Unit test for EditPostModal component using shallow mount.

In listings 16 and 17 are test suites for CreatePost and EditPostModal

components. At this moment, <PostForm /> has been already tested, so there is

no needs to do it again. In the above listings, tests verify that the tested

components render PostForm component with correct props.

Summarize mount and shallow mount comparison, It is possible to conclude

that tests written using shallow mount concept are more succinct, robust and

honest. The execution time is much faster because there is no need to render

whole component three from the tested component to the bottom. Furthermore,

such tests are easy to write and read because developers do not have to

understand the whole project hierarchy and dependencies of all child

components.

36

6 Conclusion

Comparing different approaches to testing React applications demonstrates that

mainstream and overhyped solutions are not always better than old time-tested

ones. Sometimes incorrect usage of testing tools can even lead to development

stagnation when application maintenance and adding a new feature become

impossible.

This work has been compared the two most popular React component testing

approaches, mount and shallow mount. The RTL (mount rendering) can be

used for testing MVP and small applications where the fast development time is

essential, and the main functionality of the software should be tested with

minimum effort.

Another usage of RTL is testing integration between two or more components

or interactions with DOM from the user perspective. Using RTL as the only

component testing library in medium and large projects can do more harm than

good.

A shallow rendering, provided by Enzyme and React Test Renderer libraries, is

suitable for unit testing in total isolation from its collaborators. Written with

shallow mount tests should be approximately 80% of all tests. Unit tests should

be easy to write and understand. They are fast and completely independent

from each other. As mentioned in the previous chapter, shallow rendering works

well to verify components' contracts and describe their behaviour.

In this thesis work, there was no mention of system testing because of the

apparent boundary between system testing and unit/integration testing. It has a

precise definition, and usually, it is difficult to do it in the wrong way. Besides,

there are excellent tools and frameworks for implementing system testing, such

as Cypress, Puppeteer, Selenium.

This thesis focused on exploring the difference of React testing approaches

from the developer’s point of view with a practical example.

37

Furthermore, the benefits of shallow rendering used for unit testing were

discussed (or illustrated). It is not feasible to rewrite everything that exists in a

project test by using a different approach. Still, it is possible to develop new

rules and habits inside the team to follow them in the future. The concrete

action point can be a discussion with a development team, or a small workshop

based on this work with a detailed explanation of all cons and pros of each

approach with its subsequent application in practice.

38

References

1 Lewis W; Dobbs D; Veerapillai G. 2009. Software testing and continuous
quality improvement. Boca Raton: CRC Press.

2 Mitchell JL; Black R. 2015. Advanced software testing. Santa Barbara:
Rocky Nook.

3 Software testing - definition, types, methods, approaches. 2021.
https://www.softwaretestingmaterial.com/software-testing. Accessed 5
August 2021.

4 Spillner; Slinz T. 2021. Software testing foundations. S.l.: ROCKY NOOK.

5 Shen, J. J. 2019. Software Testing: Techniques, Principles, and Practices.
Independently published.

6 Fowler M. The practical test pyramid. Online. martinfowler.com.
https://martinfowler.com/articles/practical-test-pyramid.html. Accessed 7
August 2021.

7 Rajkumar. 2019. Unit testing guide. Online.

https://www.softwaretestingmaterial.com/unit-testing/. Accessed 7 August
2021.

8 Unit testing tutorial: What is types, tools & test example. Online.
https://www.guru99.com/unit-testing-guide.html. Accessed 7 August 2021.

9 Khorikov V. 2020. Unit testing: Principles, practices and patterns. Shelter
Island, NY: Manning Publications.

10 Fowler M. 2012. Test coverage. Online. martinfowler.com.
https://martinfowler.com/bliki/TestCoverage.html. Accessed 21 August
2021.

11 Koskela L. 2013. Effective unit testing: A guide for java developers.
Shelter Island, NY: Manning Publications Co.

12 Thomas MT. 2018. React in action. Shelter Island, NY: Manning
Publications.

13 Willoughby J. 2021. The top 5 benefits of react that make life better.
Online. Telerik. Online. https://www.telerik.com/blogs/5-benefits-of-reactjs-
to-brighten-a-cloudy-day. Accessed 7 August 2021.

14 React docs. Online. https://reactjs.org/docs/getting-started.html. Accessed
14 August 2021.

39

15 Software testing - definition, types, methods, approaches. 2021. Online.
https://www.softwaretestingmaterial.com/software-testing. Accessed 8
August 2021.

16 Jest official web page. Online. Jest Blog RSS. https://jestjs.io/. Accessed 9
August 2021.

17 React testing Library. Online. Testing Library Blog RSS. https://testing-
library.com/docs/react-testing-library/intro/. Accessed 17 August 2021.

Appendix 2

1 (1)

