

Using AWS Secrets Manager with

Kubernetes

Karl-Juhan Jurvanen

BACHELOR’S / THESIS
December 2021

Degree Programme in ICT Engineering
Software Engineering

TIIVISTELMÄ

Tampereen ammattikorkeakoulu
Tieto- ja viestintätekniikka
Ohjelmistotekniikka

JURVANEN, KARL-JUHAN:
AWS Secrets Manager -palvelun käyttö Kubernetes-ympäristössä

Opinnäytetyö 28 sivua, joista liitteitä 6 sivua
Joulukuu 2021

Nykyaikaisissa ohjelmistoissa on useimmiten joitakin salassa pidettäviä tietoja,
kuten salausavaimia ja käyttäjien tunnistetietoja. Näiden salaisuuksien turvallinen
säilytys ja käsittely ovat tärkeä osa ohjelmiston tietoturvaa. Markkinoilla on useita
kaupallisia ja ilmaisia tuotteita helpottamaan salaisuuksien käsittelyä.
Opinnäytetyön tavoitteena oli tutustua Amazon Web Servicen tarjoamiin
palveluihin, joita voidaan käyttää salaisuuksien säilyttämiseen. Erityisesti työssä
keskityttiin AWS Secrets Manager -palveluun ja sen käyttämiseen.

Opinnäytetyössä tutkittiin AWS Secrets Manager -palvelun soveltuvuutta
olemassa olevaan ohjelmistoprojektiin, joka on asennettu Kubernetes-klusteriin
Amazonin Kubernetes -alustalla. Opinnäytetyössä tehtiin testitoteutus Secrets
Managerin integroinnista Kubernetes-alustaan. Testitoteutus sisältää tarvittavat
AWS-resurssit ja Kubernetes-konfiguraatiot, joilla integraatio saatiin tehtyä.
Resurssien luonnin automatisointiin käytettiin AWS CloudFormationia.

Työn tutkimusvaiheessa selvisi, että Amazon ei tarjoa työkaluja Secrets
Managerin käyttöön Kubernetes-klusterista. Projektissa päätettiin käyttää
avoimen lähdekoodin Kubernetes External Secrets -projektia, jolla integraatio
onnistui suoraviivaisesti. External Secrets on tarkoitettu Kubernetes-
ympäristöön, mutta sitä voidaan käyttää monien salaisuuksien hallintaohjelmien
kanssa.

Työssä tehty testitoteutus onnistui hyvin ja sen perusteella Secrets Manager
todettiin soveltuvaksi toimeksiantajan vaatimuksiin. Se päätettiin ottaa käyttöön
varsinaiseen projektiin.

Avainsanat: AWS, Secrets Manager, Kubernetes, IAM, CloudFormation

ABSTRACT

Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences
Degree Programme in ICT Engineering
Software Engineering

JURVANEN, KARL-JUHAN:
Using AWS Secrets Manager with Kubernetes

Bachelor's thesis 28 pages, appendices 6 pages
December 2021

Many modern software projects contain some information that needs to be kept
private. These can be credentials to databases, cryptographic keys, or user
credentials. Keeping these secrets secure is an important part of the project’s
security. This includes storing the secrets, access management and possibility
to change the secrets if they are compromised. There are multiple commercial
and open-source products meant for managing secrets.

The goal of this bachelor’s thesis was to evaluate available secret management
tools available on Amazon Web Services. The thesis focused on using AWS
Secrets Manager as part of an existing software project running on Kubernetes.
A proof-of-concept integration of AWS Secrets Manager and the Kubernetes
application was created. The thesis explored creating required AWS resources
and Kubernetes configuration to use Secrets Manager. AWS CloudFormation
was used to automate resource creation.

Amazon does not offer a native tool for accessing Secrets Manager from a
Kubernetes application, so part of the research was to find a suitable
alternative. The Kubernetes External Secrets open-source project was selected.
External Secrets is meant for Kubernetes, but it can be used with different
secret management services. The implementation with Secrets Manager and
Kubernetes External Secrets was found to work well. The commissioner
decided to use it in the customer project.

The thesis is aimed at specialists with basic understanding of Amazon Web
Services and Kubernetes. It is not meant to be used as a guide or walkthrough
of using Secrets Manager, but as a proof-of-concept implementation.

Key words: AWS, Secrets Manager, Kubernetes, IAM, CloudFormation

4

CONTENTS

1 INTRODUCTION .. 6

2 TECHNOLOGIES ... 8

2.1 Kubernetes ... 8

2.1.1 Kubernetes pods .. 8

2.1.2 Kubernetes secrets ... 9

2.1.3 Kubernetes role-based authorization 9

2.1.4 Helm releases... 10

2.2 Amazon Web Services ... 10

2.2.1 CloudFormation .. 10

2.2.2 AWS Secrets Manager ... 11

2.2.3 AWS Identity and Access manager (IAM) 11

2.2.4 IAM roles for service accounts ... 12

2.3 Kubernetes External Secrets ... 12

3 PROJECT ... 14

3.1 Creating Kubernetes cluster on AWS EKS 14

3.1.1 Cluster IAM provider ... 15

3.2 Creating Secrets on AWS .. 16

3.3 IAM Role to access secrets .. 17

3.4 Installing External Secrets controller .. 17

3.5 Creating External Secret .. 18

3.6 Using the secret in an application .. 19

4 DISCUSSION ... 21

REFERENCES .. 22

APPENDICES .. 23

Appendix 1. Cloudformation template to create EKS cluster 23

Appendix 2. CloudFormation template for pod IAM Role and Policy .. 26

Appendix 3. Kubernetes RBAC example manifest YAML file 28

5

ABBREVIATIONS AND TERMS

Kubernetes Container orchestration tool for scalable systems

AWS Amazon Web Services

ARN Amazon Resource Name

 Unique identifier for resources in AWS

IAM AWS Identity and access management

 Provides access control to AWS resources

EKS AWS Elastic Kubernetes Service

 Managed Kubernetes service provided by Amazon

YAML Markup language used for providing configuration for

systems like Kubernetes

API Application Programming Interface

 Interface to access an application programmatically

AWS CLI Amazon Command-line interface

 Tool used to access AWS APIs via command line

interface

OIDC OpenID Connect

 Authentication tool using OAuth 2.0 authorization

framework

RBAC Role-based access control

 Method of regulating user access to Kubernetes

resources based on roles

6

1 INTRODUCTION

Secret management is an important aspect of modern software development.

Most applications have sensitive data such as database credentials, API keys or

cryptographic keys. Managing these secrets involves storing them securely,

restricting users and applications that can access them and rotating them if they

are compromised.

There are multiple commercial and open-source products available to make

secret management easier to do securely. This Bachelor’s thesis focuses on

using the Amazon Secrets Manager service, which offers secure storage and

access to different types of secrets in the cloud. The goal of the thesis project is

to test Secrets Manager and evaluate the service in combination with an

application running on Amazon Elastic Kubernetes Service (EKS).

This report will introduce technologies used and outline a proof-of-concept

project to test integration between Secrets Manager and the application using

secrets. AWS does not provide a native integration between Secrets Manager

and EKS, which prompted the need for this thesis.

This thesis is made as part of research for a larger software project for LAAVAT

OY. The company offers security solutions for customers producing Internet of

Things (IoT) devices. IoT devices, or devices connected to internet are becoming

more and more common for many industries. Reliability and security of the

devices is vital for the customers. (LAAVAT, n.d.)

Our goal is to make it easy for our customers to build secure IoT

devices without a need to invest considerably in embedded security

and cryptography expertise. We help our customers to achieve

accelerated time to market with reduced implementation costs and,

at the same time, compliance with various IoT security standards and

regulations. (LAAVAT, n.d.)

7

The LAAVAT signing service is a cloud-based solution offering secure execution

of cryptographic operations for IoT devices. The product is built using

microservice architecture based on Kubernetes. The primary platform used is

Amazon Web Services (AWS), so the thesis also focuses on AWS technologies.

The thesis will not describe the signing service, instead a separate proof-of-

concept project is used as an example.

8

2 TECHNOLOGIES

2.1 Kubernetes

Kubernetes is an open-source software platform to run containerized

applications. It allows orchestrating large numbers of containers spread over

multiple worker machines. (Kubernetes documentation n.d.)

Kubernetes was originally developed by Google and first released in 2014. The

ownership of Kubernetes project was later moved to the Cloud Native

Computing Foundation. (Kubernetes documentation n.d.)

The name Kubernetes originates from Greek language, meaning helmsman or

pilot. Nautical themes repeat in the Kubernetes ecosystem in naming of projects

and tools. The word Kubernetes is often abbreviated to k8s. (Kubernetes

documentation n.d.)

The primary units of Kubernetes cluster are pods and nodes. Nodes are the

worker machines that to the cluster. Each cluster has at least one worker node.

The cluster also has several control nodes that form the clusters control plane.

The control plane handles cluster operations like networking and pod

scheduling. When using a managed Kubernetes service like Amazon’s Elastic

Kubernetes Service (EKS), the cloud provider manages the control plane.

Kubernetes is a complex system with many components that are outside the

scope of this thesis. The following chapters discuss the important parts of

Kubernetes.

2.1.1 Kubernetes pods

The primary unit in a Kubernetes cluster is a pod. The pod encapsulates one or

more containers and their configuration. When a pod is created, the control

plane assigns it to an available node in the cluster. Pods are typically deployed

9

as part of a Deployment, which takes care of the pod lifecycle. With

deployments the pod can be replicated for scalability and failure tolerance. If a

pod in deployment fails, Kubernetes will replace it with a new one.

2.1.2 Kubernetes secrets

Pods sometimes need some confidential information to work. This can for

example be credentials to a database or a cryptographic private key. A secret is

object in Kubernetes to store these sensitive items separate from the pod. The

secret data can be passed to a pod as container environment variables or as a

file mounted to the container. (Kubernetes documentation n.d.)

Secrets in Kubernetes are stored in the cluster’s underlying data storage. By

default, Secrets are stored unencrypted, so it is up to the cluster operator to make

sure secrets are encrypted at rest. Amazon EKS offers possibility to add

additional layer of encryption for secrets using customer managed encryption

keys. (Kubernetes documentation n.d.)

2.1.3 Kubernetes role-based authorization

Role-based access control (RBAC) is a way to restrict users’ or applications’

access to Kubernetes resources based on the role of the user. For example, it

can be used to deny users access to read secrets in a specific namespace.

Using RBAC requires Role and RoleBinding resources. The role specifies

resources and actions permitted, and role binding is used to attach the role to a

user or application service account. Role and role binding can be tied to a

specific namespace or made cluster-wide by using ClusterRole and

ClusterRoleBinding instead.

Appendix 3 is an example Kubernetes manifest that creates a role and role

binding for our sample application.

10

2.1.4 Helm releases

Helm is a package manager for Kubernetes. The Helm project is part of the

Cloud Native Computing Foundation. Helm has become a popular way to

manage and deliver software aimed for Kubernetes.

A program intended to be installed with helm is packaged into a helm chart. The

chart contains any Kubernetes objects created in the installation like

deployments, pods, networking configuration, etc. It also contains configuration

parameters that can be changed when installing or updating.

In this thesis project helm is mainly used to install required external programs

that suggest using helm for installation.

2.2 Amazon Web Services

Amazon Web Services (AWS) is a leading Cloud computing platform. Amazon

advertises that AWS Cloud runs in 25 different geographical regions around the

world. AWS offers hundreds of different services starting with computing and

related services such as storage, monitoring, networking, and access control.

AWS also offers many other more exotic services involving for example A.I. and

Machine Learning that are outside the scope of this thesis. (Amazon AWS

overview)

Relevant AWS resources that are referenced in the thesis are Elastic

Kubernetes Service (EKS), CloudFormation, Secrets Manager and Identity and

Access Management (IAM). LAAVAT product utilizes other services in the

background such as databases and storage through S3, but these are not the

focus for this thesis.

2.2.1 CloudFormation

11

CloudFormation is a tool to automate the creation of AWS resources. When first

testing a service, it is typical to use the Amazon console to create resources

manually. However, when using the service as part of a product, automation is

important. CloudFormation is a tool that allows deploying different resources

with specific configuration.

When using CloudFormation, the user creates a template file that contains AWS

resources to be created by CloudFormation. This file can be in JSON or YAML

format. YAML is used to demonstrate here. The template can also contain

things like parameters, conditions, and output values to help automate resource

creation.

The template can be deployed with possible parameters. When deployed,

CloudFormation creates a stack that contains resources specified in the

template.

2.2.2 AWS Secrets Manager

Secrets Manager is a managed service for protecting secrets used by

applications. It stores the secrets in an encrypted state, and customer can use

their own cryptographic keys for extra security. Secrets Manager provides

programmatic way to create, access and update the secrets through the

Amazon API.

2.2.3 AWS Identity and Access manager (IAM)

IAM is the main way to grant users and programs access to resources on AWS.

Typically, access is granted by creating a role and attaching a policy to the role.

A user who can assume this role is granted access to permissions in the policy.

For a user accessing AWS resources, username and password are often used.

Machine credentials are needed to grant machine resource like a kubernetes pod

12

access to AWS. These can be simple access key and secret or more complex

dynamic credentials.

Static credentials can be used for granting access to the kubernetes pod. This

would mean creating an IAM user for the application and generating an access

key. Then the key id and secret can be passed to the pod using a kubernetes

secret.

Access can also be granted using machine credentials of the kubernetes node

when running on EKS. AWS automatically creates a machine user for virtual

machines running on AWS, this also applies to kubernetes nodes. A policy can

be added to the machine role. A limitation with this approach is that granting

access to the node means that every pod running on the node gets the same

access. This can be a problem when trying to secure the environment.

Third way to grant access to pods running on EKS is to use IAM roles for service

accounts. This allows granting permissions only to the applications that need

them.

2.2.4 IAM roles for service accounts

IAM roles for service accounts is a way to tie a kubernetes service account to

AWS IAM role. This allows granting access to AWS resources to specific pods

that have a specific service account. On EKS configuring pod IAM access is

straightforward, because EKS automatically creates an IAM identity provider for

pods. (Amazon, n.d.)

AWS allows using OpenID connect (OIDC) to grant access to federated identities.

IAM roles for service accounts uses OIDC to allow authenticating pods to AWS

APIs. AWS EKS hosts an OIDC discovery endpoint for clusters that can be added

to AWS IAM as a provider. (Amazon n.d.)

2.3 Kubernetes External Secrets

13

Kubernetes External Secrets is an open-source project that allows using external

secret managers from a kubernetes cluster. It supports many of commonly used

secret manager products, such as AWS secrets manager, Azure Key Vault and

Hashicorp Vault. Here we will focus on AWS Secrets Manager. (Kubernetes

External Secrets n.d.)

Kubernetes External Secrets project was started as an open-source project by

GoDaddy. It was later combined with other similar projects and moved to the

external-secrets Github organization. After this it has become a popular way to

access external secret management backends from Kubernetes. (Kubernetes

External Secrets n.d.)

Installing the External Secrets Helm chart creates a deployment that runs the

External Secrets controller, and it also extends the kubernetes API with a new

ExternalSecret resource. Secrets stored in AWS Secrets Manager can be used

by creating an ExternalSecret resource with Secrets Manager as the backend.

The controller uses this new ExternalSecret to create a kubernetes secret with

data from Secrets Manager. Figure 1 shows steps to fetch secret data from AWS

Secrets Manager. External Secrets can also be setup to poll Secrets Manager for

changes. This way the kubernetes secret can be synced with any changes made

in AWS end.

FIGURE 1. External Secrets creation sequence (Kubernetes External Secrets

n.d.)

14

3 PROJECT

The goal of the project is to create a proof of concept for using AWS Secrets

Manager to store secrets used in Kubernetes cluster. This chapter will go

through creating a cluster on AWS Elastic Kubernetes Service, creating a secret

in Secrets Manager and steps needed to use the secret from the cluster. IAM

role and policy is used to grant the application access to secret.

3.1 Creating Kubernetes cluster on AWS EKS

AWS EKS clusters can be created and managed in multiple ways, either using

Amazon web console, CloudFormation, AWS CLI or eksctl, a purpose-built

command-line interface for EKS. For this project CloudFormation was chosen to

manage all resources on AWS.

A sample CloudFormation template for deploying a Kubernetes cluster on EKS

can be found in Appendix 1. Using the template assumes that a VPC and

subnets for the cluster are created beforehand. The template can be used via

AWS CLI with following command:

aws cloudformation deploy

 --template-file ./cluster.yml

 --stack-name <STACK_NAME>

 --parameter-overrides VpcId=<VPC_ID>

 SubnetsPrivate=<PRIVATE_SUBNETS>

 SubnetsPublic=<PUBLIC_SUBNETS>

 --capabilities CAPABILITY_IAM

When the stack is created, Cluster OpenID Connect issuer URL is stored in the

stack outputs. This is needed when pods in the cluster need to be given access

to Amazon resources. The issuer URL looks like example https://oidc.eks.us-

west-2.amazonaws.com/id/EXAMPLED539D4633E53DE1B716D3041E. This

value is used in next step.

15

3.1.1 Cluster IAM provider

After Kubernetes cluster is created on EKS, it needs to be configured as a trusted

identity provider for the AWS account. This makes it possible for workloads in the

cluster to access resources in the AWS account. In this project we configure

Kubernetes pods to access secrets in AWS Secrets Manager, but the same

method can be used for other resources.

AWS IAM allows different types of external identity providers to be added. EKS

uses an OpenID Connect provider. The provider can be added using AWS

console or CLI. The cluster provider cannot be created via CloudFormation. Here

we use the command-line interface.

aws iam create-open-id-connect-provider

--url https://oidc.eks.us-west-

2.amazonaws.com/id/EXAMPLED539D4633E53DE1B716D3041E

 --thumbprint-list 9e99a48a9960b14926bb7f3b02e22da2b0ab7280

 --client-id-list "sts.amazonaws.com"

The command takes three parameters: “--url” the provider URL we got when

creating the cluster, this is unique for our cluster. --client-id-list List of client IDs.

sts.amazonaws.com is expected client value for this use case. “--thumbprint-list”

list of server certificate thumbprints for the OpenID Connect (OIDC) identity

provider's server certificates. The server certificate thumbprint used is the hex-

encoded SHA-1 hash value of the X.509 certificate used by the domain where

the OpenID Connect provider makes its keys available. It is always a 40-character

string. (Amazon, n.d.) For OIDC provider the certificate thumbprint here needs to

be the Amazon root certificate authority, whose SHA-1 thumbprint is

9e99a48a9960b14926bb7f3b02e22da2b0ab7280. This is not unique for each

cluster.

After this step the workloads inside our cluster can authenticate to access AWS

resources through IAM. Right now, we have not created any roles for our

workloads, so they do not have any permissions. The next steps are to create a

sample secret to AWS Secrets manager and a role that has permissions to

retrieve the secret value. Then we can create an External Secret to the cluster

that will access the Secrets Manager secret and sync it inside the cluster.

https://oidc.eks.us-west-/
https://oidc.eks.us-west-/

16

3.2 Creating Secrets on AWS

Amazon Secrets Manager allows creating secrets via the console,

CloudFormation or the command line interface. Here CloudFormation is used

as an example. Below sample CloudFormation template creates a secret with

fields username and password. Using GenerateSecretString-property allows

Secrets Manager to generate a random password value for us using the

restrictions set with PasswordLength and ExcludeCharacters fields. The

ExcludeCharacters field is useful if the target application does not allow certain

characters in the generated password.

AWSTemplateFormatVersion: "2010-09-09"

Resources:

 RDSInstanceApplicationSecret:

 Type: AWS::SecretsManager::Secret

 Properties:

 Description: 'Application user credentials to RDS database'

 Name: 'TestAppSecret'

 GenerateSecretString:

 SecretStringTemplate: '{"username": "admin"}'

 GenerateStringKey: 'password'

 PasswordLength: 16

 ExcludeCharacters: '"@''/\^$'

This creates a secret with a value like below with a randomly generated

password. This secret can now be used by the application.

{

 "password": "7NL|K3d(9sfxlnJV",

 "username": "admin"

}

Secrets Manager allows more specific configuration of the secret if necessary.

This includes adding custom encryption keys and replicating the secret to

multiple regions.

17

3.3 IAM Role to access secrets

To access the secret from our cluster using a pod identity we must create an IAM

Role associated with the pod. This can again be done though console, CLI or

CloudFormation. Appendix 2 shows a CloudFormation template that creates

IAM Role and Policy for a pod in the cluster to access the secret.

The role is tied to the OIDC provider and additionally uses condition to only allow

pods from a specific cluster namespace and service account. This can be used

to ensure that only specific pods in the cluster can access the AWS resources.

The policy tied to the role specifies what the role is allowed to do. In this case the

policy allows read-only access to the listed secrets in AWS Secrets Manager.

3.4 Installing External Secrets controller

Before we can create an external secret, we must deploy the Kubernetes External

Secrets application to the cluster. The application is provided with a Helm chart,

so we use it for installation. The helm chart can be installed with the following

commands.

helm repo add external-secrets https://external-

secrets.github.io/kubernetes-external-secrets/

helm install <RELEASE_NAME> external-secrets/kubernetes-external-secrets

The first command adds the external-secrets helm repository from the internet

and second command installs it. The chart provides additional configuration, but

it is not necessary for this proof-of-concept installation. (Kubernetes External

Secrets n.d.)

After running the commands, the installation can be verified with following

command. This should show external-secrets pod running.

18

kubectl get pods

3.5 Creating External Secret

The external secrets controller can now be used to create external secret – type

resources to the cluster. Below is a YAML template for an external secret from

AWS secrets manager.

apiVersion: "kubernetes-client.io/v1"

kind: ExternalSecret

metadata:

 name: db-secret

 namespace: app

spec:

 backendType: secretsManager

 roleArn: arn:aws:iam::123456789012:role/appExternalSecrets

 region: eu-west-1

 data:

 - key: TestAppSecret

 name: password

 - key: TestAppSecret

 name: username

The resource can be created with kubectl command:

kubectl apply -f external-secret.yaml

 In the template the resource type is ExternalSecret, a custom type created by

the Kubernetes External Secrets helm deployment. Metadata fields specify the

resource name and destination namespace. Field roleArn specifies the AWS

IAM role to use when attempting to read the secret from AWS Secrets Manager.

This must match the role ARN created in chapter 4.3. The data array values

specify which secrets to access from AWS. The keys must match the secret

name created in chapter 4.2 and the name specifies which field to read from the

secret. Since we want both username and password, we have two fields.

When the ExternalSecret is created, the Kubernetes External Secrets controller

attempts to read the secret value from the backend. In the AWS Secrets

19

Manager case, it uses the AWS IAM role specified by roleArn to access Secrets

Manager.

If the controller has the correct access rights to read the secret from Secrets

Manager is synced into a Kubernetes Secret in the namespace of the External

Secret. The controller also watches for changes in the backend secret values.

This means the secret can be updated externally and the controller updates it in

the cluster. The External Secret can be checked with kubectl. The kubectl

output shows that the secret was created successfully, and the value was

synced eight seconds ago.

$ kubectl get externalsecret -n app

NAME LAST SYNC STATUS AGE

db-secret 8s SUCCESS 2d

3.6 Using the secret in an application

The application using the secret in the same way as if it was a traditional

kubernetes secret object. The application does not know that the secret is from

AWS Secrets Manager. Following sample YAML snippet shows a simple

application that uses a secret.

apiVersion: v1

kind: Pod

metadata:

 name: test-application

spec:

 containers:

 - name: test

 image: alpine

 volumeMounts:

 - name: db-secret

 mountPath: "/data"

 readOnly: true

 volumes:

 - name: secret

20

 secret:

 secretName: db-secret

A volume is added to the pod specification for the secret, which is mounted to

data folder. The application can use the secret by reading the file created inside

the volume. The Kubernetes External Secrets controller will update the volume if

the secret is changed in AWS. This means that the secret can be rotated without

needing to make manual updates inside the cluster. The application will

automatically get the new secret value from Secrets Manager.

21

4 DISCUSSION

When starting the project, the goal was to see if the LAAVAT product could use

AWS Secrets Manager without adding too much complexity. The upsides were

clear, the product was already on the AWS platform and Secrets Manager

provides secure storage for secrets with access control. However, the difficulty

was that EKS did not have native tools for integrating with Secrets Manager.

Key technologies that made the project usable were Kubernetes External

Secrets -project and IAM roles for service account by Amazon. Kubernetes

External Secrets proved to be very flexible and easy to use integration for AWS

Secrets Manager. A large upside was that secrets are mounted as native

Kubernetes secrets. This meant that no changes were needed to the application

itself. It also synchronizes the secrets between Secrets Manager and the

cluster. This means that they can be updated in Secrets Manager, and they

automatically update in the cluster.

The possibility of adding IAM roles to pod service accounts makes secrets

accessible without static AWS credentials.

Moving forward, Kubernetes External Secrets has been included in LAAVAT

Kubernetes clusters running on AWS. All runtime secrets needed by the

application have been moved to AWS Secrets Manager, which makes

managing them easier.

22

REFERENCES

LAAVAT. 2021. LAAVAT Whitepaper. Read on 01.12.2021.

https://www.laavat.com

Kubernetes documentation. N.d. Read on 24.10.2021.

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

Amazon AWS overview. Released on 05.08.2021. Read on 18.10.2021.

https://docs.aws.amazon.com/whitepapers/latest/aws-overview/introduction.html

Amazon. IAM Roles for Service Accounts. User guide. N.d. Read on 02.08.2021.

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html

Kubernetes External Secrets. N.d. Read on 10.11.2021

https://github.com/external-secrets/kubernetes-external-secrets

23

APPENDICES

Appendix 1. Cloudformation template to create EKS cluster

AWSTemplateFormatVersion: "2010-09-09"

Description: "Sample EKS cluster"

Parameters:

 VpcId:

 Type: String

 SubnetsPrivate:

 Type: CommaDelimitedList

 SubnetsPublic:

 Type: CommaDelimitedList

 ClusterName:

 Type: String

 Description: EKS Kubernetes cluster name.

 Default: Test cluster 01

Resources:

 ClusterServiceRole:

 Type: AWS::IAM::Role

 Properties:

 AssumeRolePolicyDocument:

 Statement:

 - Action:

 - sts:AssumeRole

 Effect: Allow

 Principal:

 Service:

 - eks.amazonaws.com

 Version: "2012-10-17"

 ManagedPolicyArns:

 - Fn::Sub:

arn:${AWS::Partition}:iam::aws:policy/AmazonEKSClusterPolicy

 - Fn::Sub:

arn:${AWS::Partition}:iam::aws:policy/AmazonEKSVPCResourceController

 Tags:

 - Key: Name

 Value:

 Fn::Sub: ${AWS::StackName}/ServiceRole

 ControlPlaneSecurityGroup:

 Type: AWS::EC2::SecurityGroup

 Properties:

24

 GroupDescription: Communication between the control plane and

worker nodegroups

 Tags:

 - Key: Name

 Value:

 Fn::Sub: ${AWS::StackName}/ControlPlaneSecurityGroup

 SecurityGroupEgress:

 - IpProtocol: "-1" # all

 FromPort: -1 # all

 ToPort: -1 # all

 CidrIp: 0.0.0.0/0

 Description: "Allow outbound traffic"

 VpcId:

 Ref: VpcId

 EKSCluster:

 Type: 'AWS::EKS::Cluster'

 Properties:

 Name:

 Ref: ClusterName

 RoleArn:

 GetAtt: ClusterServiceRole.Arn

 ResourcesVpcConfig:

 SecurityGroupIds:

 - Ref: ControlPlaneSecurityGroup

 SubnetIds:

 # Join public and private subnets to one list

 Fn::Split:

 - ","

 - !Join

 - ","

 - [!Join [",",!Ref SubnetsPrivate], !Join [",",!Ref

SubnetsPublic]]

Outputs:

 CertificateAuthorityData:

 Value:

 Fn::GetAtt:

 - EKSCluster

 - CertificateAuthorityData

 ClusterOidcProvider:

 Value:

 Fn::Select:

 - "1"

 - Fn::Split:

 - "//"

 - Fn::GetAtt:

 - EKSCluster

 - OpenIdConnectIssuerUrl

 Endpoint:

25

 Value:

 Fn::GetAtt:

 - EKSCluster

 - Endpoint

 Export:

 Name:

 Fn::Sub: ${AWS::StackName}::Endpoint

26

Appendix 2. CloudFormation template for pod IAM Role and Policy

AWSTemplateFormatVersion: "2010-09-09"

Description: "Iam role and policy for Kubernetes service account"

Parameters:

 ClusterOidcProvider:

 Type: String

 Description: "Cluster OpenID Connect provider URL"

 NameSpace:

 Type: String

 Description: "Namespace of the service that will use this IAM Role"

 ServiceAccountName:

 Type: String

 Description: "Name of the service account that will use this IAM

Role"

 SecretArns:

 Type: CommaDelimitedList

 Description: "Comma separated list of secret ARNs that external

secrets service can read"

 SecretEncryptionKMSKeyARN:

 Type: String

 Description: "ARN for KMS key used to encrypt kubernetes secrets"

Resources:

 IamRole:

 Type: AWS::IAM::Role

 Properties:

 AssumeRolePolicyDocument:

 Fn::Sub: |

 {

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "Federated": "arn:aws:iam::${ AWS::AccountId }:oidc-

provider/${ ClusterOidcProvider }"

 },

 "Action": "sts:AssumeRoleWithWebIdentity",

 "Condition": {

 "StringEquals": {

 "${ ClusterOidcProvider }:sub":

"system:serviceaccount:${ NameSpace }:${ ServiceAccountName }"

 }

27

 }

 }

]

 }

 RoleName:

 Fn::Sub: "${AWS::StackName}-iam-service-account"

 Tags:

 - Key: Name

 Value:

 Fn::Sub: ${AWS::StackName}-iam-service-account

 IamPolicy:

 Type: AWS::IAM::Policy

 Properties:

 PolicyDocument:

 Statement:

 - Action:

 - "secretsmanager:GetResourcePolicy"

 - "secretsmanager:GetSecretValue"

 - "secretsmanager:DescribeSecret"

 - "secretsmanager:ListSecretVersionIds"

 Effect: Allow

 Resource:

 Ref: SecretArns

 - Action:

 - kms:DescribeKey

 - kms:Encrypt

 - kms:Decrypt

 - kms:ReEncrypt*

 - kms:GenerateDataKey

 - kms:GenerateDataKeyWithoutPlaintext

 Effect: Allow

 Resource:

 - Ref: SecretEncryptionKMSKeyARN

 - Fn::Sub:

arn:${AWS::Partition}:kms:${AWS::Region}:${AWS::AccountId}:key/*

 Version: "2012-10-17"

 PolicyName:

 Fn::Sub: ${AWS::StackName}-Policy

 Roles:

 - Ref: IamRole

Outputs:

 ExternalSecretsRoleArn:

 Value:

 Fn::GetAtt:

 - IamRole

 - Arn

28

Appendix 3. Kubernetes RBAC example manifest YAML file

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace: app

 name: secret-read-only

rules:

- apiGroups: [""] # "" indicates the core API group

 resources: ["secrets"]

 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1

This role binding allows "sample-app" service account

to read secrets in the "app" namespace.

kind: RoleBinding

metadata:

 name: read-secrets

 namespace: app

subjects:

- kind: ServiceAccount

 name: sample-app

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: Role

 name: secret-read-only

 apiGroup: rbac.authorization.k8s.io

