

 Son Bui

Micro frontend :
Microservice implementation on
Web Development

Metropolia University of Applied Sciences

Bachelor of Engineering

Name of the Degree Programme

Bachelor’s Thesis

1 November 2021

Abstract

Author: Son Bui

Title: Title of the Thesis

Number of Pages: 52 pages

Date: 1 November 2021

Degree: Bachelor of Engineering

Degree Programme: Degree Programme in Information Technology

Professional Major: Mobile Solutions

Instructors: Janne Salonen, Supervisor (e.g. Project Manager)

With the increasing relevancy of microservice architecture style in software
development, this paper aims to examine the applicability of utilizing microservice
architecture style for frontend development, or micro frontend. Through going over an
array of literature concerning frontend development and microservice architecture,
this paper aims to document the definitions along with various advantages and
disadvantages of micro frontend against monolithic architecture style, thereby trying
to establish a best practice concerning when to adopt micro frontend architecture and
when to migrate a monolithic to micro frontend.
Moreover, this paper is also accompanied by an example project, which is a pseudo
social media page, with the aim of demonstrating the migration process using the
single-spa package, migrating from React framework to micro frontend system
utilizing both React and Framework for its multiple micro applications.
Conclusively, the paper is able to draw out the differences between the two
architectures with the micro frontend proving to be significantly beneficial when
applications growing into later development cycles. The example project also
succeeds in documenting and demonstrating the migration process, albeit the final
micro frontend system not a complete replica of the original due to limitation of
documentation availability.
Overall, micro frontend is still a relatively new concept and should be explored further
since it advantages are of meaningful significance for large scale application.

Keywords: Frontend Architecture, micro frontend, Microservice

Contents

1 Introduction 1

2 Cloud Application Architecture Overview 2

2.1 Definition of Monolithic Architecture 2

2.2 Monolithic: The traditional way 3

2.3 Microservice: Definition 6

2.4 Hallmarks of a microservice system 7

3 Frontend development Background in relevancy to Microservice 8

3.1 Frontend development: An overview 8

3.2 Concepts and definitions 10

3.3 Single Page Application 12

3.4 Micro frontend: The adoption of microservice for Frontend
Development 14

3.5 Reasoning for Microservice Adoption and Migration 15

3.6 Micro frontend implementation approach 16

4 Micro frontend migration implementation 18

4.1 Original application details, characteristics 18

4.2 Requirements for the micro frontend application 21

4.3 Requirements for the micro frontend application 22

4.4 Implementation of the shared common component library 24

4.5 The micro frontend solution and the setup process of the single-spa
root config repository 28

4.6 Initiation of the micro frontend applications 30

4.7 Migrating the upload component to React micro frontend 32

4.8 Migrating the content components to micro frontend using Vue
framework 34

4.9 Assembling the final root-config repository 38

4.10 Final result 42

5 Conclusion 44

References 45

List of Abbreviations

AJAX: Asynchronous JavaScript and XML

API: Application Programming Interface

CSS: Cascading Style Sheet.

HTML: Hyper Text Markup Language.

HTTP: Hypertext Transfer Protocol

HTTPS: Hypertext Transfer Protocol Secure

MA : Monolithic Application

MSA : Microservice Application

npm: Node Package Manager

SEO: Search engine optimization

SPA: Single Page Application

W3C: World Wide Web Consortium

XHTML: Extensible Hyper Text Markup Language

XML: Extensible Markup Language

1 Introduction

In recent years, there has been a growing trend moving towards replacing

monolithic model with new microservice architecture among considerable sized

tech corporations, which include Netflix (Mauro, 2015), LinkedIn (Ihde and Parikh,

2015), and Amazon (Kramer, 2011). This is understandable considering the

diverse benefits provided to companies who possess large scale operations that

require highly flexible and easily maintained solutions (Nadareishvili et al., 2015).

Following the emergence of microservice design principles, the term micro

frontend starts to develop as an alternative structure for web application on the

client side.

Micro frontend, or the adaptation of microservice for frontend development,

emerges with the aim of taking advantage of the strengths of microservice. In this

method, typical monolithic application is segmented into separate components

that can be programmed and deployed almost independently by

decompartmentalized teams (Jackson, 2019). With the current high number of

cloud application which still employs the more traditional model, there is a

growing demand for migrating from the monolithic to micro frontend architecture

design pattern.

This thesis paper’s aim is to explore the concept of microservice, micro frontend,

and the implementation of microservice on frontend development. The paper is

also accompanied by a project which demonstrates the method of Micro frontend

migration and make comparisons on these architecture model based on the

development process. Through the outcome of the comparison, this paper will

strive to determine the best practices when deciding on initialize a micro frontend

migration or start the process of building a micro frontend application.

2 Cloud Application Architecture Overview

This chapter will elaborate on the concepts of microservices and its counterparts

as monolithic, their distinguished attributes, and advantages and disadvantages

within the context of software development. Thereafter, the adopt of these

concepts onto frontend development will be further expanded upon, whereas its

architecture design pattern will be fully elaborated, and its array of beneficial and

potentially detrimental aspects will be analysed.

2.1 Definition of Monolithic Architecture

By definition, a monolithic software application is one wherein all its functional

codes are confined within a single application, code base, repository, or

combinations thereof (Villamizar et al., 2015). It is the typical architecture that

almost all programs start out as. Even though components within the monolithic

may be compartmentalized in a modular fashion, they are still regarded as a

single program where they are packaged, tested, or deployed as a single entity.

The purposes of these components are diverse and specific to each application,

be it authorization, presentation on the web frontend, business logic of the

application, database for accessing and writing data, or application integration

with other services. (Introduction to Monolithic Architecture and MicroServices

Architecture | by Siraj ul Haq | KoderLabs | Medium)

Figure 1. Example architecture of a monolithic application. (Introduction to
Monolithic Architecture and MicroServices Architecture | by Siraj ul Haq |
KoderLabs | Medium)

Figure 1 shows an example of a monolithic application. Despite the fact that

multiple services, components, and modules are utilized, the application is

deployed as one single entity providing services to multiple platforms - desktop

browsers and mobile devices in this case - using one single RDBMS database.

2.2 Monolithic: The traditional way

In a general term, monolithic architecture is the more traditional design pattern

for building application. When a monolithic application is still small; development,

testing, deployment, and scaling are all relatively straightforward (Bogner et al.,

2019). There are a few beneficial characteristics of the monolithic architecture

that renders it still a viable option as a design pattern, with most of these are

derived from the fact that the codes are all contained in a single code base

(Monolithic & Microservices Architecture | by Henrique Siebert Domareski |

Medium, no date):

• Simplicity: All the codes of the application are contained within a
single repository. This renders the process of locally running the
application or changing the code simple, which allows for fast and
comfortable development experience.

• Easy to deploy: Since all the codes are confined within a single
project, it can be deployed in a simplistic manner. This is also quite
convenient with each of the added features or fixed bugs only require
a single deployment.

• Familiarity: Because almost all developers have already substantial
experience working in a monolith environment, the onboarding
process is more straightforward, and it is relatively quicker to get
started contributing to the project, provided that the size of the code
base is still small.

• Easy for monitoring: Since there is only one project, there is only the
need to monitor the single application. Should undesirable errors
occur, there is only one repository for the error to exist in.

• Easy to debug: With all the codes already enclosed within the scope
of one single monolithic solution, there is only the need to run the
application locally and focus on identifying the faulty code without
any further configurations.

• Easy to test: With the whole monolithic application in one single
location, it’s easy to perform tests without any need to set up the
communication applications or perform checks on the operating
status of any other applications, inter alia. Implementation of end-to-

end testing in this design pattern is also effortless without testing
tools like Selenium or Cypress.

• The upsides of the monolithic design pattern allow for quick and
seamless development experience.

Unfortunately, the benefits of the monolithic will gradually subside as these

applications grow larger and complicated; this is a direct result of the sheer size

of the application impeding and slowing down development due to longer start up

time, longer testing time, longer deploy time, inter alia. Code incomprehensibility

and redundant sophistication put forth a stranglehold on bug patching and feature

implementations (Chen, Li and Li, 2018).

Figure 2. Monolithic architecture Benefits and Drawbacks. (J. Lewis and M.
Fowler, 2014)

Figure 2 as above listed some of the benefits and drawbacks of the monolith

application. Within the context of this paper, some of the most outstanding

disadvantages with such a large and complex monolithic application are to be

accentuated on:

• Centralized code base: Since there is only one centralized
application, the technology choses is primarily focused a one-size-
fit-all situation instead of the best solution for the requirements, which
means unoptimized codes and underperformed efficiency. Different
teams are also enforced with the same technology, rendering API
and system integration challenging.

• Prone to crash and expensive to repair: One small error in the
application can impede the working of the application or even crash
it. This cascading effect is typically due to the interconnectedness of
components within the application. Though it is possible to pinpoint
the error to the latest update or patch, it usually takes a considerable
amount of time to identify and fix these bugs due to the size and
entanglement of the monolithic code base.

• Susceptible to external attacks: Since the services within the
monolithic applications are not fully decompartmentalized from each
other, it is possible for external attacks to gain access to the whole
system from a data leak.

• Low scalability and lack of flexibility to changes: These are ones of
the major shortcomings of monolithic architecture and those rigidities
are a decisive factor for microservice migration. Since the many
elements within the monolithic application system is deeply
interwoven and integrated into each other, it is of insurmountable
difficulty to switch one part of the system to a new technology due to
the fact that figuring out all dependencies and changing them can be
time-consuming. Scaling with the application is also harder since the
whole monolith needs to scale at the same time, even though each
of the service within the monolith may need to scale differently due
to high deviations in uses.

• Slow deploying time and slow onboarding time: Another problem with
such large code base is long deployment time. Even with minimal
changes confided within one or two files in the repository, the whole
monolith deployment needs to be re-enacted and all the tests need
the be run again, taking away development time. In addition, another
issue might rise is large code base will slow down onboarding time
for new developers to join and contribute to the project since it takes
substantial amount of time and effort to gain in-depth understanding
of the code base.

• Low customization: Since the monolithic is one single application
entity, once it scales up all of its components are duplicated across
the many servers thereby impeding the application capacity to adapt

to each of the server’s need. With microservice, since the services
are separated, they can be adopted based on the demands of each
of the servers, thus increasing customizability.

Conclusively, monolithic architecture is appropriate for certain situations, which

can be smaller applications, development is still the early stage, requirements are

not yet clearly defined, or development speed is of a higher priority than scaling.

For larger and more complex application, where its size and complexity reach a

point where the disadvantages of maintaining a monolith outgrow its benefits,

microservice becomes a more applicable option for application architecture.

(Monoliths vs. microservices — benefits and drawbacks [a comparison] | by

Transparent Data | Blog Transparent Data ENG | Medium, no date)

2.3 Microservice: Definition

Even though there has not been a consensus on definition for microservice

(Nadareishvili et al., 2015), one of the most referenced definition for microservice

is to imply the design pattern whereas an application is developed through an

array of smaller scale services. Each of these services has their own business

capability, logic, message-based communication mechanism, and is entirely

capable of independent deployment; together, these services become the basic

components that form the entirety of the microservice architecture (Nadareishvili

et al., 2015). These microservices can even utilize different languages,

frameworks, database technology as long as they are proven sufficient for the

requirements (J. Lewis and M. Fowler, 2014).

Figure 3. Monoliths and Microservices. (J. Lewis and M. Fowler, 2014)

Figure 3 showcases some of the basic differences between monolithic and

microservice design pattern. While monolithic application has all its functions

contained within one single unit, microservice segregate each of its functions into

separate units (services) and distribute these services as per requirements. The

figure also implies the shortcomings that monolithic structures might encounter

with upscaling (cf. subchapter 2.2).

2.4 Hallmarks of a microservice system

There are quite a considerable number of characteristics which may have

contributed to microservice system’s popularity. Due to the structural design of

microservice, these advantages are attained at a higher degree (Newman,

2015). This section will list out some of the key aspects of microservice:

• Diversity of technologies: Due to the segregation of the functions of
the services, it is easier to utilize different technology solutions for
different problems in microservices (Newman, 2015). The size of
these services is also considerably small, which allows for smooth
replacement or even depletion should the need arises (De Lauretis,
2019). Microservice design pattern allows teams to adopt new
technology stack with more desirable performance or higher
efficiency. This is not without risk when multiple technologies are
involved, but in a microservice system, mitigating and limit the
potential the damage to the entire system is more manageable
(Newman, 2015).

• Resilience: Since each of the services is confined, the failure of one
unit should not affect the whole system. This is one apparent benefit
of microservice over monolithic structure; one deficit in one function
can collapse the integrity of the monolithic system. (Newman, 2015)

• Scalability: In monolithic architecture, all components in the
application needs to be scaled together. In smaller sized service, it
is possible to scale each of these services on machines appropriate
for the performance and demands of each service. (Newman, 2015)

• Deployment ease: With the architecture design of microservice, each
microservice is deployed individually, which is inherently faster and
more lightweight than typical monolithic structure, where each
deployment requires the whole application to be redeployed. Should
problems arise, it is also less burdensome to isolate and rollback the
faulty changes in a microservice design. (Newman, 2015)

• Replaceability: One of the most important aspects of microservice
architecture design lies within its capacity to adapt to changes

(Nadareishvili et al., 2015). With each service unit deployed
independently, replacing them with better and appropriate tools and
designs are more streamlined. It is easier for companies to adopt
technologies in faster and more modular ways.

In short, microservice is an architecture design pattern that incentivizes small

changes. Apparently, with all these advantages that microservice provides,

there exist a wide array of disadvantages which companies and organizations

need to account in when making architecture decision.

• Architecture complexity: While monolithic testing, continuous
integration/continuous deployment, and deployment can be
streamlined, it is not so with microservice. With services segmented
down in sizes and scales, the architecture structure of the application
tends to grow up in complexity, where each of these service units
needs different testing and deploying handling.

• Overhead cost: In addition to the daunting application complexity, the
diverged code base, diverse frameworks, multiple languages, and
multitude of repository adds extra layers of burden upon
maintenance. This renders microservice architecture style quite an
considerably expensive system due to elevated maintenance cost
(Nadareishvili et al., 2015). This is something companies might need
to take into consideration when adopting microservice architecture
as the benefits may not be worth the cost imposed on the companies.

3 Frontend development Background in relevancy to
Microservice

Since this paper primarily concerns adopting microservice into frontend

development, this section will briefly cover some basics of frontend development

and some frequently used concepts. Moreover, some of the basic concepts will

be elaborated upon

3.1 Frontend development: An overview

As a concept, frontend development refers to the development of websites and

applications on modern web platform where users can view and interact with,

utilizing pure Hyperlink Text Markup Language (HTML), Cascading Style

Sheets (CSS), and JavaScript or web application frameworks such as React,

Vue, or Angular (What Is a Front-End Developer? · Front-End Developer

Handbook 2018, 2018).

Figure 4. Simplified web application process (What Is a Front-End Developer? ·

Front-End Developer Handbook 2018, 2018)

As illustrated in figure 4, the process of modern web applications’ working with

the frontend (the client-side scripts) and the backend (server-side scripts). The

process starts with users browsing through the application contents and

interacting with its graphical interfaces via mouse actions (clicking, scrolling, etc)

or keyboard actions (typing, pressing certain keyboard buttons, and so on). The

web application then takes in the inputs from the users, packages those inputs

into data, renders the data into requests and send those requests to the server

backend(s) through the internet. The backend server then processes these

requests, either running some queries to the database or run some logics with

the request, and then send responses to the client-side frontend with the

requested data. The frontend then receives these responses, consumes the data

packages, and thereafter, update the users’ interface in accordance with the

server responses.

Frontend development revolves primarily around HTML, CSS, and JavaScript. It

typically employs different frameworks, such as React, Vue, or Angular, for ease

of development. These concepts and frameworks that are employed in this paper

are to be explored in the next sections.

3.2 Concepts and definitions

Listed below are some of the fundamental concepts required for the

understanding of the frontend development and software development process

in general:

• HTML, acronymized for Hyper Text Markup Language, is the
standardized markup language used for composing webpages and
displayed on a web browser. HTML composes of various elements,
called tags, which form the structure of the web page, the content to
displays, and instruct the web browser to render the page.
(Introduction to HTML)

Figure 5. A simple HTML file with the title element of “Title Page”, a heading
element with “Some Heading”, and a paragraph with content “This is a

paragraph element”. The resulted rendered can be seen on the right image.

• CSS, short for Cascading Style Sheet, is considered as the most
essential style languages used in modern web development and one
of the three technologies contributing to the modern web
development. CSS’s role is to dictate the visual facet of the HTML
elements, including but not limited to background colors, font styles,
font sizes, or positions within the web page.

Figure 6. A simple CSS file and its effect on previous HTML example.

• DOM, or Document Object Model, is a programming interface for
representing and interacting with objects in web documents, which
include HTML, XML (extensible markup language), or XHTML
(extensible hypertext markup language). It is designed to be cross-
platform and language-independent, rendering the representation of
the web document as an application programming interface (API).
The web page document and its elements are defined within a tree
structured called the DOM trees, wherein the objects can be
addressed and manipulated through different methods. (Introduction
to the DOM - Web APIs | MDN)

• JavaScript, one of the most used programming languages, is the
main language used for web development and allows for some of the
more dynamic functionalities within the web. Originally created by
Brendan Eich as server-side language and then employed for
running dynamic client-side script on the web pages. There exist
some downsides to JavaScript as programming language such as
the lack of typing, its being performant and easy to learns deem it a
good language for web development. One particular use for
JavaScript is to access and manipulate elements within the DOM of
the web pages, allowing them to have more dynamic functionalities.
(JavaScript - MDN Web Docs Glossary: Definitions of Web-related
terms | MDN)

• SEO, short for Search Engine Optimization, is a process of
enhancing a web page to better its visibility on search engines such
as Google, Bing, Duck Duck Go. This is based upon the working
mechanism of search engine, wherein a crawler bot will visit web
pages one after another, sequentially index and rank them in
accordance with the engine internal algorithms. Better rank and
index lead to a page appearing more on search engine and thereby
attracts more users. Though these engines are constantly changing,
there are common denominators shared amongst them that
developers can optimize them for better results. (What Is SEO /
Search Engine Optimization?)

• AJAX is the acronym for Asynchronous JavaScript and XML, is one
important web development technique that utilizes browser built-in
XMLHttpRequest objects to send request to servers and JavaScript
in conjunction with HTML DOM to display the response XML data. In
more modern implementation, JSON has replaced XML for
standardised usage. AJAX allows for asynchronous loading of
contents on web application as the script is run in the background
without disrupting the flow of the web application. Despite popular
misconception, AJAX is not a programming language. (What is
AJAX)

• Node: Node is an asynchronous event-driven JavaScript runtime
environment. It is used mostly for server-side application for
constructing scalable applications ranging from JSON API server to
Single Page Application(Node.js - Introduction, no date).

• NPM (or node package manager) is a library system for sharing,
downloading, and managing packages.(About npm | npm Docs, no
date)

Figure 7. How AJAX works. (What is AJAX)

3.3 Single Page Application

Single Page Application, or SPA for short, is one the modern type of web

application. In SPA, the web app loads the web document only once and the web

application content will be dynamically loaded with through the use of the

JavaScript code. Therefore, there is never a need for page reloads and the web

application users can enjoy a multitude of benefits that the SPA model provides.

(SPA (Single-page application) - MDN Web Docs Glossary: Definitions of Web-

related terms | MDN)

Listed below are some of the advantages of Single Page Application: (Single-

page application vs. multiple-page application | by Neoteric | Medium)

• Speed: Since most of the resources (HTM/CSS/Scripts) used for the
web application are only loaded once when the application is started,
it is relatively fast.

• Simplified and streamlined development: It is significantly
straightforward to develop the application since the developers are
not required to write code for the web page to be rendered server-

side anymore. Development can be initiated through a single without
the need of setting a running server.

• Debugging ease: SPAs are easy to debug with modern web
browsers. It is possible to monitor network activities, inspect page
elements and all associated data.

• Easier transition to mobile application: this is due to the fact that the
server-side code can be reused for both web and native mobile
applications.

• Effective local storage caching: The web application only needs to
send one request, store the respond data, and then will be able to
use the data for running the application even without internet access.

Though it comes with a diverse array of benefits, SPA does come with a certain

number of drawbacks, even though some of them have been addressed and

improved upon: (Single-page application vs. multiple-page application | by

Neoteric | Medium)

• Single Page Applications, by their nature, are not optimized for SEO-
Since SPA utilizes AJAX to asynchronously populate its web content,
the page is not yet fully loaded when search engine bots crawl into
the SPA pages. This results in the bots not being able to read the
content in the pages on start-up and this can detrimentally influence
the SEO scoring process. This used to be an issue in the past but of
this writing, this is largely irrelevant since there are different methods
to optimize SPA for SEO such as rendering the page on the server
side. In addition thereto, Google has engineered their search engine
to be able to browse through AJAX pages, thus making this point
irrelevant, at least in the context of Google search engine
(Deprecating our AJAX crawling scheme | Google Search Central
Blog, 2015).

• The web page application can be slow in its downloading process
due to the required client framework being demanding.

• JavaScript being functional in the web browser is mandatory for SPA
to work. Should the users disable JavaScript in their browser, these
applications will not be able to load or operate correctly. There exist
workarounds for this issue, but they are unnecessarily complex to
orchestrate, especially just with HTML and CSS components.

• SPA is less secure than traditional web application since they are
more prone to Cross-Site Scripting attacks where client-side scripts
can be injected into web application. There are methods to prevent
this, but they can extra time and effort to implement instead of new
features during development.

Some good examples of single page application include Facebook, Instagram,

Gmail, Google Maps, et cetera. They also typically employ different frameworks

to achieve the end result application, the most frequently used of which include

React, Angular, and Vue.

3.4 Micro frontend: The adoption of microservice for Frontend
Development

Like any other software development process, frontend development often

utilizes monolithic architecture for the early stages. This typically translates to the

web application development will be contained within one single repository. This

is convenient in the early phases of development as the code base is still

relatively small, features are fast to develop and deploy.

As these applications grow, the many problems of monolithic architecture also

affect their development process. With Microservice architecture becoming a

growing trend among many SaaS companies such as Amazon (Kramer, 2011) or

Netflix (Mauro, 2015), the adopting of microservice for frontend development

emerges. Coined micro frontend, Cam Jackson defined this as:

An architecture style where independently deliverable frontend
applications are composed into a greater whole. (Jackson, 2019)

Inheriting the same core architecture philosophy from microservice, micro

frontend shares many of its characteristics such as (Jackson, 2019):

• Smaller fragmented codebases instead of one single large
monolithic structure

• Better scalability with more self-contained teams

• Independent deployment of micro frontend unit

• Improved replaceability, be it upgrade, remove, or replace, in a more
incremental fashion.

Micro frontend also comes with the increased repository complexity and

overhead cost, not to mentioned the increased number of data bytes that needs

to be downloaded for applications to work on the client side (Jackson, 2019).

3.5 Reasoning for Microservice Adoption and Migration

One of the common strategies involving microservice is to segregate a monolithic

application into microservice design instead of building a microservice

immediately from the onset. Despite there being records of microservice

application which are built from scratch, a majority of applications are initially built

using monolithic style where quick development, deployment, and creation of

new essentials feature are compulsory for the success of early start-up or new

founded business (J. Lewis and M. Fowler, 2014). As business grows and scales

up in size, the code monolith reaches its eventual size where the code becomes

excessively complex for any one single individual to comprehend and all

development, bug fixing, deployment slow down considerably. There are certain

breakpoints that push business to lean towards decision of microservice

migration which includes insufficient maintainability, problematic operability,

inadequate performance, deprecated technologies, outdated design structure,

long time to market, or combination thereof (Fritzsch et al., 2019). Microservice

is an appropriate solution for these issues due to a variety of its advantages,

including but not limited to scalability, manageability, maintainability, quality

attributes interoperability, reliability, swift time to market, and faster decision-

making (Fritzsch et al., 2019).

Since there are no solidified guidelines and codified rulesets for when a service

should swap their existing monolithic to the microservice, the architecture switch

decision is unique to each case and business requirements. There are some of

the points that may help with the decision that project architect and product

manager should consider, which include but not limited to: long deployment time,

long feature development time, frequency of system crashes caused by hard to

identified errors, performance decrease after each feature update, or low

productivity of project developers (Microservices architecture: Moving to

microservices | Lightstep blog, no date). There are also other elements that can

contribute to the requirements such new feature demands from clients,

dependency and technology updates for security reason or development quality

of life, or the application is nearing its limit and needs scaling. In the end, it’s a

case-by-case problem and each company should take their business strategy

into account, investigate whether the pecuniary and effort investment is worth the

potential return value.

3.6 Micro frontend implementation approach

Listed below are five different approaches to Micro frontends in real life scenarios

(Jackson, 2019).

• Server-side composition: this approach is achieved through
assembling the different micro-frontend application as fragments into
one container HTML page during the generation of the HTML on the
server. This method is lightweight, performant, and simplistic, though
it comes at the cost of losing all the advantages of Single Page
Applications since the HTML page is regenerated after each of the
user’s request

• The build-time integration: in this approach, each micro-frontend
application is bundled into separate JavaScript package and
included in the main container application’s dependency library. The
process renders a single deployable JavaScript bundle without any
duplication of any same dependency among the micro-frontend
application. The major downside of this method derives from the
lockstep release process, where each time one of the micro-frontend
packages is updated, the entire application needs to be recompiled
and each of the packages need to be released. This in turns creates
undesirable coupling, which voids one of the main reasons why
microservice infrastructure was selected in the first place.

• Run-time integration via iframes: this method takes advantage of the
iframe tag to orchestrate the isolated micro frontend applications into
the final built container application. Integration via iframes gains the
benefits of simple implementation and complete separation of each
of the micro frontends and the container, disallowing global variables
or stylings bleeding from one application to another. Utilizing iframes
also means that sharing common dependencies between micro
frontends is virtually impossible, integrating different micro frontend
becomes a challenging task, and page history, routing, and linking
add more complexity to the application. In the end, despite iframe
being a good candidate for micro frontend, inflexibility remains its
major drawback in term of micro frontend implementation.

• Run-time integration via JavaScript: this is the more flexible and
commonly used solution amongst all the implementation methods,
this is achieved through each application is separately bundled and
then loaded and mounted on demand through the main container
application rendering logic. There are a wide variety of upside in this
approach: (i). The capability to pre-load shared styles,
dependencies, or libraries help minimalize the application size; (ii).

Separately deployed bundle allows teams to update functionalities
independently from each other. One noteworthy variation of this
approach is the Run-time integration via Web Component, which is
enabled through the new HTML standards issued by W3C, which
permits developers to create customized HTML elements, determine
their characteristics, and dynamically instantiate them. In this
approach, the browser keeps the isolation in a similar fashion to the
iframe approach while allowing communication between
components. As good as it may sound, the new standards are not
yet supported by all browsers, so the functionalities are not
guaranteed to operate as intended all the time. There is the option to
utilize polyfills to allow new JavaScript features to work older
browsers, but this will render the content size of the package.

• There is another approach utilizing webserver to distribute micro
frontend application, but this makes the page reloading whenever the
user opens a new application so will not be further discussed in this
paper.

4 Micro frontend migration implementation

The aim of this chapter is to present a sample migration project, wherein the

original web application project is a monolithic React application with multiple

functionalities. The first step of the project is to conduct an analysis of the different

components and functionalities of the application, wherefrom the micro frontends

are to be decided and abstracted based on logical reasonings. Subsequently, a

migration strategy is to be appropriated from the requirements of the original

application and the new micro frontends. A posteriori, each of the micro frontends

is to build using different frameworks, e.g., Vue, Angular, or React, to

demonstrate the capacity to tolerate various technologies of microservice

architecture. In addition, a container application will be built to serve the

microservices, thereupon finalizing the form of the microservice. The whole

migration process will also be documented along with the provided code snippets.

After the migration is complete, performance tests will be conduct for the purpose

of discerning a variety of performance statistics between the monolithic and newly

migrated microservice application, whereupon a comparison will be drawn.

As a sidenote, the project in this thesis is not on the same scale as typical large

corporate monolithic code base since it aims to demonstrate the migration

process, so a simpler project might provide a more comprehensible and easier to

follow example. Realistically, each case of monolithic to microservice migration

needs to be examined on a case-by-case basis and the solution provided in this

paper might not be a universal application for many different situations.

4.1 Original application details, characteristics

The original frontend application used as a sample in this thesis is a create-react-

app single page application which is a pseudo social media page which allows

the user to update their status and see other people’s posts. The data that the

users put on the application are to be stored in a backend and will be fetched by

the application on start up. Since the project is only for demonstration purpose,

the backend and the authentication process are out of scope of this thesis so they

are simplified using rudimentary development version so the frontend migration

can remain the focus. It should be borne in mind that backend microservice

migration and authentication on micro frontend application are complex topics on

their own, and hence, they would not be apt to the scope of this thesis.

The contents of the application consist of multiple pages and components, which

are all built using React, which can be detailed as below:

Figure 8. The Home page with the Upload Component and Content Component

• The Home Page: This page will display the content that all the other
users have posted, which include both texts and images. The user
can browse through these as they are synchronously organized. The
user can upload their images and upload their contents in this page.
They can also delete posts so long the posts belong to them. On top
of the home page is the navigation bar which allows the user to log
out.

Figure 9. Authentication Page

• Authentication Page: This is the first page the user will see when they
open the web application. For simplified reason, it will only ask for
the name of the user. Once the user have entered their name and
press Enter, they will be taken to the Home page.

The flow of the application is as followed: When the user starts up the application,

it will check in local storage in the web browser whether the user is logged in or

not. If not, the user is redirected to the authenticate page, for simplifying in this

example, the user only needs to enter a name to log in. Otherwise, they will be

taken to the Home Page, wherein the user can upload new content or view the

contents posted by all the users, which are fetched from the database backend.

Though straightforward in nature, the application does utilize a number of

dependencies and packages to accomplish a variety of it tasks:

• json-server: this is a REST API package which simulates a working
database server for prototyping and mocking purposes, which comes
with all the capacities of a functional REST API including GET,
POST, UPDATE, and DELETE. It is lightweight and easy to set up,
which only requires a db.json file so it is perfect for the purpose of
this example project. (json-server - npm)

• Reactjs: React is popular modern JavaScript library developed by
Facebook for developing web application. It is component-based,
declarative, and has state management. Being predictable, easy to
learn, straightforward to set up, and have a good array of
dependency supports mean it is efficient to use React to build new
application with. React was chosen for this application due the
aforementioned purposes. (React – A JavaScript library for building
user interfaces)

• Axios: axios is a promise based HTTP client, in the case the current
application project, is employed to communicate with the json-server
backend. It is fast, lightweight and easy to employ. (axios - npm)

• Emotion: Emotion, or Styled Emotion is a library that enables
composing CSS styles with JavaScript with its advantages being
accessibility and predictability. There are other features such as
source maps, labels, and utilities for testing capacities. It supports
both string and object styles so it is up to the developers to choose
which styles for the application (Emotion - Introduction). String style
is to be utilized within this project due to its ease of transition from
normal css styling.

4.2 Requirements for the micro frontend application

In the scenario of this project, the original monolithic application is to be dissected

into three applications where three different teams will work on them separately.

Assuming the original monolith application is a prototype application, and the

management wants to form different teams to handle the separate functionalities

of the application:

• Team Core will work on the container application, where it will
contain the other applications and handle the authentication process.

• Team Content will work on the Content component of the Home
page, where the user sees the posts of other users, using the fetched
data from the server. Since the team is proficient with Vuejs, the
Content application is going be using Vuejs as its framework.

• Team Upload will work on the Upload component of the Home page,
which is where the user uploads their content. The idea behind this
segregation is for Team Upload to synergise between what the user
can upload and the team can manage the storage on the backend.

Aside from the team separation, the post-migrated application should work

identically to how it was working before. Since the scope of this paper is only

limited to the process of micro frontend migration, details on how these

applications will be developed, such as how actual authentication will be handled

or how improvements on content uploads and displays, are not to be discussed.

4.3 Requirements for the micro frontend application

When examining the file structure of original monolithic application, different

components are created on the basis of single responsibility, wherein each

component is responsible for one single functionality within the application. It is

possible to inspect the components in Figure 10:

Figure 10. File structure and the nesting of components with the original
monolithic application

With the current tessellation of the components within the application, it is

straightforward to migrate them to their designated Microfrontend: Upload will

be migrated to the Upload application, the Post component will be migrated to

the Content application, whereas the rest will be converted to the Container

application, where the Authenticate component will stay relatively the same and

it will be modified to house the content from the other micro frontend. The final

architecture can be seen in figure 11 as below.

Figure 11. An architectural overlook of the segregated micro frontend
applications.

There is also matter of the shared common component and function library

used in the application, which consists of a variety of some shared components

such as Color for the different colors used in the application, Container for the

different configured containers, and Typography for setting up the stylings of

typogragraphy. The purpose of the shared components is dictate and

superimpose a singular styles within the application due to the importance of

maintaining a conformity of styles across the array of micro frontend

applications. For this purpose, a shared component library is to be created to

house the shared components and serve them to the other micro frontend

applications.

4.4 Implementation of the shared common component library

Even though this is not mandatory but can be a common issue occurring during

the micro frontend migration process. This is due to the fact that typical frontend

application usually has a shared in-app library for common small components

such as buttons, containers, or typographies that are used by other components.

Within the context of the example application in this thesis, the common

components include different variations of containers and typographies with their

main purpose being to standardize the visual aspect of the application. Since the

monolithic application is to be migrated into smaller micro frontend applications,

these shared components also need to be migrated in order for them to be used

in the micro frontend application.

In this project, the chosen solution is to use a shared component library, which,

in this case, means creating a new repository aside from the repositories for each

of the micro frontend. This repository employs rollup, which is a JavaScript

module bundler, to compiles the different components into a single library and

publish it to a GitHub registry package. This package then can be installed, and

the shared components can be utilized by the micro frontends.

The next part of this section is to provide a generalized documentation of the

creation of the common component library to be used within this example

application. The overall file structure of the shared library can be seen in figure

12 below.

Figure 12. Repository structure of the common-component library

The shared components are the Colors, Container, and Typography files, which

are then exported by the index.js:

Figure 13. Content of the index file

Then with the rollup, babel, and other dependencies installed, the package.json

file is to be reconfigured so rollup can build the files and then npm can publish to

GitHub. Since this npm package is private, one needs access to GitHub and

create appropriate token to push new version of the package. The token

information is then stored in the .npmrc file, which looks as followed:

Figure 14. Content of the .npmrc file

Figure 15. Setup of the package.json file for the common-component repository

Once this is set up, it is relatively straightforward to publish to GitHub package as

there are few steps needed to accomplish thus:

• If a change has been made to the files in the repository, the version
in the package.json needs to be updated (in this case in figure 15,
the version needs to be updated from 0.1.5 to the next number, for
example 0.1.6)

• Run the command ‘npm update && npm build’ so rollup can build the
dist folder and the package files.

• Run the command ‘npm publish’ and the contents of the dist will be
pushed with the package updated to the next iteration (0.1.6 in this
situation)

Once the package is published, there is some needed steps of configuration on

the micro frontends for them to utilize the components from the common library:

• Create a .npmrc file in the micro frontend repositories, in which will
contain the GitHub token that allows access to the GitHub package.
The TOKEN is the generated token from GitHub and the registry is
the URL of the GitHub package that the application needs to access.
In this case, nsonb is the owner of the package:

//npm.pkg.github.com/: authToken={TOKEN}

registry=https://npm.pkg.github.com/nsonb

• Run the command ‘npm install @nsonb/common-
components@0.1.5’

• Import the component from the installed package and use them
normally as a component created inside the application. For
example, in this next line a component named AppContainer is
imported from the package and can be used as a normal React
component.

import AppContainer from '@nsonb/common-components'

const App = () => {

 return (

 <AppContainer>

 <Upload/>

 </AppContainer>

);

}

There are some downsides in this approach, such as when a change is made in

the common-component package, all the micro frontends will also need to update

their common components at the same time to benefit from the new version. This

may be inconvenient in the long term as dependency issue or breaking changes

from the shared common library may occur, but within the small confide of this

current project, this approach is acceptable since the scope of this current project

is still simple and changes can be fixed easily.

4.5 The micro frontend solution and the setup process of the single-spa
root config repository

Even though there are a good number of micro frontend frameworks such as Bit

or Webpack/Module Federation, the solution utilized for this project is the single-

spa framework. The reasoning behind this choice is due to single-spa’s capacity

to integrate multiple frameworks into one single DOM (both React and Vue in this

case) without the need for refreshing the page. This section will focus on the

process of setting up single-spa for the migration process and explaining various

details of the working of single-spa.

The process of installation of single-spa is straightforward, simple type the

following command in the console:

npm install --global create-single-spa

or

yarn global add create-single-spa

Once the installation is complete, there is a variety of customizability and options

for single-spa initiation, in this case following command is used:

create-single-spa

A selection of choices will be presented, wherefrom the choices are selected as

below, with the goal is to generate a root repository. This will host the

configuration files, act as the container for the micro frontend applications through

importing them and dictate how they will display on browser. It will also take

advantage of the single-spa Layout Engine to render multiple micro frontends on

one single HTML page. The various chosen options can be regarded in figure 18.

Figure 16. Options chosen during the setting up the single-spa root config
repository

After the setup finalizes, the result repository structure should resemble the

following folder structure in figure 19. With this set up, most of the configurations

have been set up in the initial process and the main focus for getting the

repository to work with the micro frontend is with the files in the src folder.

Figure 17. Project structure and files generated through the create-single-spa

command

There are three files in this folder:

• microfrontend-layout.html is the template file that contains the
template that dictates the routing and compositional juxtaposition of
the micro frontend applications on the web page. This is read by the
single-spa layout engine and used to render the web application.

• example-root-config.js in the central configuration JavaScript file that
is responsible for importing, mounting and control the layout to
render.

• Index.ejs is the root HTML file of the entire project whereon the
contents of the micro frontend applications are to be rendered.

4.6 Initiation of the micro frontend applications

In this project there are two frameworks that are to be utilized for composing the

micro frontend applications – which are React and Vue. Though these two

frameworks share no similarities aside from using JavaScript and HTML

technologies, the setup methods for both of them are going be quite similar

despite some minor discrepancies.

In a similar fashion with the root configuration repository set up process and still

taking advantage of the benefits of single-spa, the command to use is the same

as before:

create-single-spa

Consequentially, an array of options will emerge which are similar to the root

configuration albeit a few differences. These include choosing single-spa

application / parcel choice for type of project to generate and framework to use,

Vue for the content project and React for the upload projects. The choices for

both of these repositories can be observed in the following figure:

Figure 18. Choices for the content project. For this project the default Vue 3.0
will be utilized.

Figure 19. Choices for setting the upload project, which utilizes React and npm
to manage its installed packages.

The result the generation command is the creation of two different repositories,

one using React and the other utilizing Vue, which are both pre-configured by

single-spa to be used in conjunction with the root project. The project structures

of the repositories can be regarded below.

Figure 20. Generated project file structure of the upload micro frontend
application, which uses React.

Figure 21. Generated project file structure of the content application, which uses
Vue framework.

The subsequent two sections will briefly go through the files in figure 20 and 21

to provide a brief understanding of the functions of the files and their configuration

along with the changes made to the generated files. This is to migrate the

corresponding components in the original project to micro frontends in the new

application system.

4.7 Migrating the upload component to React micro frontend

This section will elaborate further on the details of the upload micro application,

which uses React framework. Of the generated files seen in figure 20, the most

important is the example-upload.js file in the src folder. The content of the file can

be observed as followed:

import React from "react";

import ReactDOM from "react-dom";

import singleSpaReact from "single-spa-react";

import App from "./App";

const lifecycles = singleSpaReact({

 React,

 ReactDOM,

 rootComponent: App,

 errorBoundary(err, info, props) {

 return null;

 },

});

export const { bootstrap, mount, unmount } = lifecycles;

This file is generated by the create-single-spa command which installs single-

spa-react and instantiate the single-spa version of React with everything already

set up. The file is responsible for exporting the lifecycle functions (bootstrap,

mount, and unmount functions in this case) so that the upload micro application

can be registered to the root-config application. These functions are then to be

called by the root-config application through the course of the application running

which allows the micro frontends are bootstrapped (initialized), mounted, and

unmounted (putting the micro frontend contents on the DOM and removing them

therefrom respectively). These are handled by the single-spa package and can

be customized for advanced usage. Within the context of this project, the

example-upload file does not need to be changed except for root component

changed from the generated Root file to the newly written App file.

Since the original project also uses React which is the same framework as the

newly created upload micro application, migrating to the upload component is

rather straightforward. There is only the matter of copying the code of the

components and installing the needed dependency packages for it to function

identically to its original counterpart.

Figure 22. File structure of the upload micro frontend application.

As seen from the figure 22, the Upload.js and the api.js are directly copied from

the original monolithic application and the App.js file is used as the wrapper

component for the files. The content of the App.js is as followed:

import Upload from "./components/Upload";

const App = () => {

 return (

 <Upload/>

);

}

export default App;

Aside from the previous changes, the package.json file also needs to be set up

so the application will run on a local port when using the npm run start command,

which is 8080 in this case.

"start": "webpack serve --port 8080"

It is also possible to run the micro frontend as a separate instance through the

command line, which helps with the development process of the micro frontend

application:

npm run start: standalone

The application can then be visually seen and functionally tested on any browser

by typing http://localhost:8080. N.B., there is another file generated by the create-

single-spa command named root.component.test.js which is used for testing

purpose but has been deleted since testing is not within the scope of this project.

4.8 Migrating the content components to micro frontend using Vue
framework

This section will detail the migrating process of the content components.

Generally, this process is similar to generating the upload micro application, albeit

the difference in framework, i.e., Vue against React. One of the first similarities in

this case is that create-single-spa also generates a fully working repository but

this time in react. There is also a generated file for exposing the different lifecycles

functions which are mandatory for the micro frontend system to work. The name

of the file is main.js and its contents can be observed below:

import { h, createApp } from 'vue';

import singleSpaVue from 'single-spa-vue';

import App from './App.vue';

const vueLifecycles = singleSpaVue({

 createApp,

 appOptions: {

 render() {

 return h(App);

 },

 },

});

export const bootstrap = vueLifecycles.bootstrap;

export const mount = vueLifecycles.mount;

export const unmount = vueLifecycles.unmount;

As above, in the same fashion as the React micro frontend, bootstrap, mount,

and unmount are the three lifecycle functions that will be called by the root-config

file in order to mount the application into the DOM. The difference from the upload

application is that this utilizes Vue so simple copying and pasting codes will not

apply. In this scenario, new code needs to be composed in order to achieve the

same goals as the application counterpart in the original monolithic application.

The current implementation includes two files, Post.vue and Posts.vue, which

respectively renders the content of one post and acts as the container component

for the many instances of component generated from Post.vue. The following is

the code of the Posts.vue file:

<template>

 <div>

 <div>This is contents</div>

 <div class="posts-container" v-for="post in posts" :key="post.id">

 <Post :post="post"/>

 </div>

 </div>

</template>

<script>

 import Post from './Post.vue'

 export default {

 name: 'Posts',

 props: {

 posts: Array

 },

 components: {

 Post

 }

 }

</script>

<style scoped>

 .posts-container{

 width: 35vw;

 min-width: 480px;

 margin: auto;

 margin-top: 1rem;

 box-sizing: border-box;

 }

</style>

And the Post.vue file with the styling mimicking the stylings in the original

monolithic:

<template>

 <div class="post-container">

 <div class="post-author">

 {{post.author}}

 </div>

 <div class="post-content">

 {{post.content.text}}

 </div>

 </div>

</template>

<script>

 export default {

 name: 'Post',

 props: {

 post: Object

 }

 }

</script>

<style scoped>

 .post-container {

 position: relative;

 background-color: #54565B;

 color: #FAF8EB;

 padding: 1rem;

 padding-bottom: .6rem;

 font-family: 'Open Sans', sans-serif;

 width: 100%;

 margin-top: 1.2rem;

 height: fit-content;

 border-radius: .5rem;

 box-sizing: border-box;

 }

 .post-author {

 display: box;

 position: absolute;

 top: -.7rem;

 left: .5rem;

 padding: .3rem;

 font-size: .6rem;

 color: #FAD41B;

 width: fit-content;

 background-color: #76777B;

 border-radius: .2rem;

 }

</style>

The Posts.vue file is then imported by the App.vue and rendered on top of the

application, which subsequently is imported by the main.js and exported to be

used in the root-config repository. The App.vue is set up so it can fetch the data

and refresh the data after certain interval, which in this case is 12000

milliseconds:

<template>

 <div>

 <div>Latest contents</div>

 <Posts :posts="this.posts"/>

 </div>

</template>

<script>

 import Posts from './components/Posts.vue'

 import PostDataService from './PostDataService'

 export default {

 name: 'App',

 data() {

 return {

 posts: Array,

 polling: null

 }

 },

 methods: {

 doSomething() {

 PostDataService.getAll()

 .then((res) => {

 this.posts = res.data.sort((a, b) => (a.id - b.id)*-1)

 })

 this.polling = setInterval(() => {

 PostDataService.getAll()

 .then((res) => {

 console.log(res.data.sort((a, b) => (a.id - b.id)*-1))

 this.posts = res.data.sort((a, b) => (a.id - b.id)*-1)

 })

 }, 12000)

 },

 },

 created() {

 this.doSomething();

 },

 beforeUnmount () {

 clearInterval(this.polling)

 },

 components: {

 Posts

 }

 }

</script>

The package.json file also needs some minor reconfiguration to set up the

which port the content application will be deployed:

"serve": "vue-cli-service serve --port 8081",

This will set the command ‘npm run serve’ to host the application host at the

address http://locahost:8081. Similar to the React micro application, it is also

possible to run the content application in standalone mode in order to develop it

independently. The command to use is:

 npm run serve:standalone

The resulted Vue content micro application functions the same as the original

component where the different posts are displayed. The contents are fetched on

initial startup and also refreshed every 12 seconds so it can fetch and display the

latest posts. The visual of the application can be regarded below, which is

identical to its monolithic counterpart:

Figure 23. Content micro frontend application display of post contents with
standalone settings.

4.9 Assembling the final root-config repository

After setting up the upload and content micro frontends, the process is repeated

for the nav component which acts as the top navigation bar and allows for logging

out of the application. After all the micro frontends are set up, the root-config

project needs to be set up for using the micro frontends. The repository takes

advantage of the single-spa-layout package to set up the placement and micro

frontend applications on the DOM. The first step is to initiate the layout engine in

accordance to the documentation (Layout Engine | single-spa, no date) :

import {

 constructApplications,

 constructRoutes,

 constructLayoutEngine,

} from "single-spa-layout";

const routes = constructRoutes(document.querySelector("#single-spa-layout"));

const applications = constructApplications({

 routes,

 loadApp({ name }) {

 return System.import(name);

 },

});

applications.forEach(registerApplication);

This segment of code will populate DOM in accordance with the template with id

‘single-spa-layout’, which is present in the index.ejs file in the head section of

the file:

<template id="single-spa-layout">

 <single-spa-router>

 <div class="main-content">

 <route path="/">

 <div class="nav">

 <application name="@example/nav"></application>

 </div>

 <div class="upload-container">

 <application name="@example/upload"></application>

 </div>

 <div class="content-container">

 <application name="@example/content"></application>

 </div>

 </route>

 </div>

 </single-spa-router>

 </template>

With this template, the nav application will be on top of the DOM, followed by

the upload micro frontend and the content micro frontend afterwards. To use the

micro frontends, the root-config needs to import, which is accomplished in the

experimentalSPA-root-config.js file:

const layoutEngine = constructLayoutEngine({ routes, applications });

Promise.all([

 System.import("@example/content"),

 System.import("@example/upload"),

 System.import("@example/nav"),

]).then(() => {

 layoutEngine.activate();

 start();

});

This will load the needed micro frontends and activate the layout engine when all

the importing is finished. Unfortunately at the moment of this writing, the actual

authentication functionality of the final application is incomplete due to the

limitation of the documentation and single-spa layout engine not yet configured

for conditional routing. Without the authentication functions, the upload

application does not work properly. Therefore, the final implementation utilizes a

workaround to add the authentication capability into the upload application so it

will function nearly identical to the original monolithic. This is done through

copying the original Authenticate component to the upload application, but with

some minor modification:

import React, { useState } from 'react'

import styled from '@emotion/styled'

import { default_theme } from '@nsonb/common-components'

const FormContainer = styled.form`

 position: relative;

 background-color: ${default_theme.dark_grey};

 padding: 3rem;

 padding-top: 3rem;

 height: 10rem;

 width: 50rem;

 margin: auto;

 margin-top: 15rem;

 box-sizing: border-box;

 border-radius: .5rem;

 color: ${default_theme.second};

 font-family: 'Open Sans', sans-serif;

`

const WelcomeHeader = styled.header`

 position: absolute;

 top: -5rem;

 left: .5rem;

 color: ${default_theme.main};

 font-size: 8rem;

 font-family: 'Titan One', cursive;

 line-height: 7rem;

`

const FormInput = styled.input`

 width: 100%;

 font-size: 1.2rem;

 line-height: 1.5rem;

 height: 2rem;

 border-radius: .3rem;

 margin-top: .5rem;

 box-sizing: border-box;

`

const Authenticate = (props) => {

 const [user, setUser] = useState('')

 const onSubmit = (e) => {

 e.preventDefault()

 window.localStorage.setItem('user', user)

 props.setUser(user)

 }

 return (

 <FormContainer onSubmit={onSubmit}>

 <WelcomeHeader>WELCOME</WelcomeHeader>

 <div>Enter a name and press Enter to log in</div>

 <FormInput type='text' value={user} onChange={(e) =>

{setUser(e.target.value)}}/>

 </FormContainer>

)

}

export default Authenticate;

Subsequently, the App.js file in the upload application will also need to change,

wherein it will check whether the user object is present in the localStorage on

startup, if not it will load the Authenticate component and allow the user to log in,

else it will display the Upload component.

import Upload from "./components/Upload";
import Authenticate from "./components/Authenticate";
import { useEffect, useState } from "react";

const App = () => {
 const [user, setUser] = useState()
 useEffect(() => {
 const _user = localStorage.getItem('user')
 setUser(_user)
 }, [])
 return (
 <div>
 { user? <Upload/> : <Authenticate setUser={setUser}/>}
 </div>

);
}

export default App;

4.10 Final result

The finalized application functions in a near identical manner as the original

monolithic application. The view of the current root application can be seen below:

Figure 24. Finalized micro frontend root application in juxtaposition to the
original monolithic.

In figure 24, the upload application is disabled and replaced with the authenticate

component which allows the user to authenticate. Once they enter a username,

they can use the upload functionality. All the Vue and React applications are all

loaded, composed, and rendered onto the DOM independently at the same time.

Other than the difference in authentication scheme, almost all functionalities are

the same. In general, the migration can be considered a near success even

though the authentication process is not a complete overhaul. Since all the micro

frontend applications are now properly segregated, development on each of them

can be started separately without affecting each other. Moreover, changes can

be made to each of the micro frontend can be deployed independently and the

root application will be updated with the new version of the changed micro

frontend without the need to be redeployed.

Other than the result, even though the migration process itself is rather

straightforward, the process of learning how to handle to migration is troublesome

and time-consuming due to single-spa documentation being ambiguous and its

explanation being unclear at the moment of this writing. This is understandable

due to the fact that micro frontend is still relatively new and there is not yet an

agreed upon migration method, researching and figuring out how to accomplish

migration on each monolithic can take time and effort, especially with large scale

project with entangled functionalities with highly intertwined components.

Throughout the process, it can be observed that the migration process can work

in a small application setting such as the example project as it is still complex

enough to define the boundaries between core functionalities and simple enough

for the different components not being too entangled to impede the migration

process.

Performance-wise, the resulted migrated application functions as nearly the

same original monolithic. On the other hand, since the applications are all run in

the local machine, the performance can be different when deployed onto cloud

service since the connection between the applications can be affected by internet

connection between the application deploy server. It is more optimal to test these

configurations on a deployed server but that is beyond the scope of this paper.

5 Conclusion

This paper takes closer look at microservice and briefly going through the basics

of frontend development, thereby drawing out the advantages and disadvantages

of adopting microservice architecture for frontend development. This paper also

comes with a project for demonstrating the monolithic to micro frontend migration

process using the single-spa package and various functionalities it provides for

the migration process.

In the end, the paper is able to discern the mandatory pros and cons of the micro

frontend approach. In addition, it is successful in showcasing an example

migration project with the end result having multiple frameworks, React and Vue

in this case. These frameworks work concurrently with nearly identical

functionalities with the original monolithic project.

Notwithstanding, there exists certain limitation on the result of this paper, which

include restraint on time, effort, availability of documentations, and shortcomings

of the technologies themselves. These hindrances, once be delimited in the

future, may yield some substantial impact on the effectiveness of micro frontend

utilization. Even with these aforementioned limitations, the micro frontend

architecture shows promising results which encourages further explorations and

experimentation, such as using other micro frontend frameworks such as Bit or

Webpack Module Federation.

Conclusively and in opposition to many of the literature, this paper finds the

process of doing the migration early in the development can be advisable

instead of waiting until the monolithic grows too large since some of the benefits

of utilizing micro frontend can already be applicable with smaller application.

Though it is better if the application has already a better boundary definition

between its functionalities.

References

About npm | npm Docs (no date). Available at: https://docs.npmjs.com/about-npm

(Accessed: 5 November 2021).

axios - npm (no date). Available at: https://www.npmjs.com/package/axios

(Accessed: 12 October 2021).

Bogner, J. et al. (2019) ‘Microservices in Industry: Insights into Technologies,

Characteristics, and Software Quality’, in Proceedings - 2019 IEEE International

Conference on Software Architecture - Companion, ICSA-C 2019. Institute of

Electrical and Electronics Engineers Inc., pp. 187–195. doi: 10.1109/ICSA-

C.2019.00041.

Chen, R., Li, S. and Li, Z. (2018) ‘From Monolith to Microservices: A Dataflow-

Driven Approach’, in Proceedings - Asia-Pacific Software Engineering

Conference, APSEC. IEEE Computer Society, pp. 466–475. doi:

10.1109/APSEC.2017.53.

‘Deprecating our AJAX crawling scheme’ (no date) Official Google Webmaster

Central Blog. Available at:

https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-

scheme.html (Accessed: 26 September 2021).

Emotion - Introduction (no date). Available at:

https://emotion.sh/docs/introduction (Accessed: 12 October 2021).

Fritzsch, J. et al. (2019) ‘Microservices Migration in Industry: Intentions,

Strategies, and Challenges’, in Proceedings - 2019 IEEE International

Conference on Software Maintenance and Evolution, ICSME 2019. Institute of

Electrical and Electronics Engineers Inc., pp. 481–490. doi:

10.1109/ICSME.2019.00081.

Ihde, S. and Parikh, K. (2015) From a Monolith to Microservices + REST: the

Evolution of LinkedIn’s Service Architecture, March. Available at:

https://www.infoq.com/presentations/linkedin-microservices-urn/ (Accessed: 1

April 2021).

Introduction to HTML (no date). Available at:

https://www.w3schools.com/html/html_intro.asp (Accessed: 21 September

2021).

Introduction to Monolithic Architecture and MicroServices Architecture | by Siraj

ul Haq | KoderLabs | Medium (no date). Available at:

https://medium.com/koderlabs/introduction-to-monolithic-architecture-and-

microservices-architecture-b211a5955c63 (Accessed: 21 September 2021).

Introduction to the DOM - Web APIs | MDN (no date). Available at:

https://developer.mozilla.org/en-

US/docs/Web/API/Document_Object_Model/Introduction (Accessed: 21

September 2021).

J. Lewis and M. Fowler (2014) Microservices. Available at:

https://martinfowler.com/articles/microservices.html (Accessed: 1 April 2021).

Jackson, C. (2019) Micro Frontends. Available at:

https://martinfowler.com/articles/micro-frontends.html (Accessed: 1 April 2021).

JavaScript - MDN Web Docs Glossary: Definitions of Web-related terms | MDN

(no date). Available at: https://developer.mozilla.org/en-

US/docs/Glossary/JavaScript (Accessed: 21 September 2021).

json-server - npm (no date). Available at: https://www.npmjs.com/package/json-

server (Accessed: 12 October 2021).

Kramer, S. D. (2011) ‘The Biggest Thing Amazon Got Right: The Platform’, pp.

0–3. Available at: https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-

got-right-the-platform/ (Accessed: 1 April 2021).

De Lauretis, L. (2019) ‘From monolithic architecture to microservices

architecture’, in Proceedings - 2019 IEEE 30th International Symposium on

Software Reliability Engineering Workshops, ISSREW 2019. Institute of Electrical

and Electronics Engineers Inc., pp. 93–96. doi: 10.1109/ISSREW.2019.00050.

Layout Engine | single-spa (no date). Available at: https://single-

spa.js.org/docs/layout-overview (Accessed: 4 November 2021).

Mauro, T. (2015) ‘Adopting Microservices at Netflix: Lessons for Architectural

Design’, Nginx Blog, pp. 1–5. Available at:

https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/

(Accessed: 1 April 2021).

Microservices architecture: Moving to microservices | Lightstep blog (no date).

Available at: https://lightstep.com/blog/microservices-architecture-when-and-

how-to-move-to-microservices/ (Accessed: 17 September 2021).

Monolithic & Microservices Architecture | by Henrique Siebert Domareski |

Medium (no date). Available at: https://henriquesd.medium.com/monolithic-

microservices-architecture-239e8799d3e1 (Accessed: 21 September 2021).

Monoliths vs. microservices — benefits and drawbacks [a comparision] | by

Transparent Data | Blog Transparent Data ENG | Medium (no date). Available at:

https://medium.com/transparent-data-eng/monoliths-vs-microservices-benefits-

and-drawbacks-a-comparision-9e7a462b8e3a (Accessed: 16 September 2021).

Nadareishvili, I. et al. (2015) Microservice architecture : Aligning principles,

practices, and culture, Microservices, IoT, and Azure. Available at:

http://oreilly.com/catalog/errata.csp?isbn=9781491956250 for (Accessed: 3 April

2021).

Newman, S. (2015) Building Microservices - Designing fine-grained systems.

Available at:

https://books.google.com/books?hl=en&lr=&id=jjl4BgAAQBAJ&oi=fnd&pg=PP1

&dq=Building+microservices:+designing+fine-

grained+systems.&ots=_BHT_k9_oM&sig=icBfgU4o20X77zbYjSYAkTt-Qo4

(Accessed: 6 April 2021).

Node.js - Introduction (no date). Available at:

https://www.tutorialspoint.com/nodejs/nodejs_introduction.htm (Accessed: 5

November 2021).

React – A JavaScript library for building user interfaces (no date). Available at:

https://reactjs.org/ (Accessed: 12 October 2021).

Single-page application vs. multiple-page application | by Neoteric | Medium (no

date). Available at: https://medium.com/@NeotericEU/single-page-application-

vs-multiple-page-application-2591588efe58 (Accessed: 23 September 2021).

SPA (Single-page application) - MDN Web Docs Glossary: Definitions of Web-

related terms | MDN (no date). Available at: https://developer.mozilla.org/en-

US/docs/Glossary/SPA (Accessed: 23 September 2021).

Villamizar, M. et al. (2015) ‘Evaluating the monolithic and the microservice

architecture pattern to deploy web applications in the cloud’, in 2015 10th

Colombian Computing Conference, 10CCC 2015. Institute of Electrical and

Electronics Engineers Inc., pp. 583–590. doi:

10.1109/ColumbianCC.2015.7333476.

What Is a Front-End Developer? · Front-End Developer Handbook 2018 (2018).

Available at: https://frontendmasters.com/books/front-end-handbook/2018/what-

is-a-FD.html (Accessed: 15 April 2021).

What is AJAX (no date). Available at:

https://www.w3schools.com/whatis/whatis_ajax.asp (Accessed: 26 September

2021).

What Is SEO / Search Engine Optimization? (no date). Available at:

https://searchengineland.com/guide/what-is-seo (Accessed: 26 September

2021).

