
András Németh

Computing Resource Optimization Using Open

Source Virtualization Technologies

Computing Resource Optimization Using Open

Source Virtualization Technologies

András Németh
Master’s Thesis
November, 2012
Degree Programme in Information Technology
Oulu University of Applied Sciences

This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

ABSTRACT

Author: András Németh
Title: Computing Resource Optimization Using Open Source

Virtualization Technologies
Supervisors: Timo Räty, Dr. Kari Laitinen
Term and year of completition: November, 2012
Number of pages: 68 + 18 appendices

Operating system virtualization techniques allow to decouple the operating system
from the underlying physical hardware. This concept opens new views to software
and system engineers to improve the current ways of working. Virtualization allows
a more abstract and effective way of organizing computing resources. It has a great
potential to reduce costs and provide more operational flexibility.

In the thesis, designing, building and configuring a low cost cluster of virtual servers
is explained. Standard commodity desktop class computers and free open source
software were used to build such a system. The aim of creating a virtual server cluster
was to emphasize the importance of the deliberate computing resource allocation.
With the help of a managed virtual cluster, a wide variety of tasks can be performed
in a very flexible manner. The virtual server system is complemented by a distributed
storage in which multiple disks are grouped and connected to form a fault tolerant high
performance strorage repository.

The performancemeasurements and comparisons were made using various guest op-
erating systems and desktop environments with regard to processor usage, memory
and disk footprints. An example use case of a distributed software compiler is demon-
strated as a subject of th measurements. The built system is proven to be a low cost
yet well performing virtual environment.

Keywords:
virtualization, virtual machine, distributed computing, distributed storage,
GlusterFS, performance comparison, XEN, XCP

4

CONTENTS

Page

Abbreviations and acronyms 8

1 Introduction 11
1.1 Virtualization: definition . 12
1.2 History of virtualization . 13
1.3 Free/Libre Open Source . 14
1.4 Scope and limitations . 14

2 What can be virtualized? 16
2.1 Application level virtualization . 16
2.2 Presentation virtualization . 17
2.3 Guest operating system virtualization 17
2.4 Hypervisor virtualization . 18
2.5 Shared kernel virtualization . 19
2.6 Storage virtualization . 20
2.7 Thin provisioning . 21

3 Distributed disk arrays and file systems 23
3.1 Hadoop distributed file system . 23
3.2 Lustre distributed file system . 24
3.3 Ceph distributed file system . 24
3.4 GlusterFS . 24
3.5 iSCSI . 25
3.6 ATA over Ethernet . 25

4 Virtual machine cluster 27
4.1 Storage subsystem . 28
4.2 Virtual machine instance types . 28
4.3 Requirements . 30
4.4 Resource usage considerations . 31
4.5 Implementation plan . 32

5 Prototype implementation and configuration 34

5

5.1 Selected hardware components . 34
5.2 Hardware installation . 35

5.2.1 Experiences with RocketRaid SATA adapter 35
5.2.2 Physical placement of machines 37

5.3 Selected virtual server platform . 37
5.3.1 XCP management interfaces 38
5.3.2 XCP resource pool . 39
5.3.3 XCP installation . 39

5.4 Selected distributed disk solution 40
5.4.1 Gluster installation . 40
5.4.2 Firewall configuration for Gluster 41
5.4.3 Building up the storage pool 42
5.4.4 Setting up storage volumes 43

5.5 Fine tuning and configuration of virtual servers 44
5.5.1 Installing VM from ISO image 44
5.5.2 Installing Xenserver tools 45
5.5.3 Time synchronization between Dom0 and VMs 45
5.5.4 Forced file sytem checking at every boot 45
5.5.5 Automatic VM startup on server boot 46

6 Performance tests with VMC 48
6.1 Research approach . 48
6.2 Building task . 49
6.3 The build speed of the single machine native installation 50
6.4 Measurement results of build speed from single virtual installation 52
6.5 Measurement results from distributed build 55
6.6 Number of parallel compilation jobs 57
6.7 Discussion and summary of tests 58

7 Performance of distributed storage 60
7.1 Test environment . 60
7.2 Test results . 61

8 Conclusion 62
8.1 Commodity hardware . 62

6

8.2 Virtual server with XCP . 62
8.3 Distributed disk array with Gluster 63
8.4 Improvement possibilities and future plans 63

References 64

Appendices 69

1 CPU Flags For Determining The Virtualization Support 69

2 VM Parameter List Before And After Installing Xenserver Tools 70

3 Screenshots From Xcp Installation 72

4 Screenshots From Ulteo Desktop Virtualization Demo Appliance 75

5 Scripts And Commands For The Compilation Tests 77

6 Scripts And Commands For The Distributed Storage Tests 79

List of tables 84

List of figures 85

7

Abbreviations and acronyms

AMD Advanced Micro Devices . 13

AoE ATA over Ethernet . 25

APIC Advanced Programmable Interrupt Controller . 44

BIOS Basic Input/Output System . 13

CD Compact Disc . 39

CD/DVD-ROM Compact Disc or Digital Versatile Disc Read-only Memory 44

CLR Common Language Runtime . 16

CP Control Program. .13

CPU Central Processing Unit . 13

CRUSH Controlled Replication Under Scalable Hashing . 24

DR Disaster Recovery . 46

EC2 Elastic Compute Cloud . 29

ext4 Fourth extended filesystem . 45

FLOSS Free/Libre and Open Source Software. .14

GB Gigabyte = 109 bytes . 22

GbE Gigabit Ethernet . 35

GPU Graphics Processing Unit .30

GUI Graphical User Interface. .38

HBA Host Bus Adapter. .35

HDD Hard Disk Drive . 34

HDFS Hadoop Distributed File System . 23

HVM Hardware Virtual Machine . 18

HW Hardware . 13

IBM International Business Machines. .13

iSCSI Internet Small Computer System Interface . 25

ISO International Organization for Standardization. .44

IP Internet Protocol .25

IT Information Technology . 38

I/O Input and Output . 18

IOPS Input/Output Operations Per Second . 34

JVM Java Virtual Machine . 16

KVM Keyboard Video and Mouse . 37

LAN Local Area Network . 26

LMDE Linux Mint Debian Edition . 31

LTS Long Term Support . 31

LV Logical Volume . 28

LVM Logical Volume Manager . 40

MiB/s Mibibytes per second = 220 bytes per second . 34

MiB Mibibyte = 220 bytes . 31

MDS Management Data Server . 24

NFS Network File System. .61

NIC Network Interface Card . 34

NTP Network Time Protocol . 44

OS Operating System . 16

OSS Object Storage Server . 24

OVD Open Virtual Desktop. .17

P2V Physical to virtual .14

PBD Physical Block Device . 28

PC Personal Computer . 34

PVHVM Paravirtual on Hardware Virtual Machine. .19

RAID Redundant Array of Independent Disks . 25

RDP Remote Desktop Protocol. .38

Rx Received . 56

DDR-3 SDRAM Double data rate type three synchronous dynamic random access

memory . 35

SAN Storage Area Network . 24

SATA Serial Advanced Technology Attachment . 25

SPOF Single Point of Failure .31

SR Storage Repository . 28

SSD Solid-state Drive .35

SW Software . 14

TCP Transmission Control Protocol . 41

TPS Transactions Per Second . 50

Tx Transmit .56

UDP User Datagram Protocol . 41

UUID Universally Unique Identifier .47

V2P Virtual to physical . 14

VBD Virtual Block Device . 28

VDI Virtual Disk Image . 28

VHD Virtual Hard Disk . 40

VIF Virtual (network) Interface . 45

VM Virtual Machine. .13

VMC Virtual Machine Cluster . 31

VMM Virtual Machine Manager . 18

VNC Virtual Network Computing . 38

XAPI Xen Application Programming Interface .38

XCP Xen Cloud Platform. .17

XFCE Xforms Cool Environment. .31

XVA Xen Virtual Appliance. .17

XVP Xen VNC Proxy . 39

1 Introduction

In a turbulent economy, virtualization and cloud computing are becoming more and more

attractive for enterprises because of the convenience and flexibility over traditional com-

puting. Using a virtual machine is convenient compared to traditional computing, for ex-

ample, when the user has to have a machine with a certain set of special applications.

Today it is typical to distribute applications preinstalled on a virtual machine which the user

can deploy without complicated installations and configurations. As an example, Kdenlive

free and open-source video editor sofware can be downloaded in a complete virtual ma-

chine image format (26). A virtual machine is flexible because it can be easily equipped

with a varying set of resources such as processing power, memory or storage. Virtual-

boximages1 website provides thousands of preinstalled open source operating systems

with given set of applications for download. For a quick evaluation it is more convenient to

use these images instead of installations. If one looks around and seeks for virtualization

trends in publications and in online media, one can find numerous reports written in this

topic.

Zenoss2 conducted a virtualization and cloud computing survey in 2010 to measure the

usage trends. The number one stated goal with regards to virtual infrastructure was cost

savings (64.7%) followed by deployment control (1). 43.3% of participants out of 204

individuals indicated flexibility as the main reason for using virtualization (see figure 1.1).

It is undoubtedly visible from the data that the demand is highest for operating system

virtualization and application level virtualization; however, storage virtualization plans are

also significant. Knowing these trends results in a question. What can we learn and

benefit from various virtualization models?

This thesis investigates how virtualization can be introduced starting off small-scale with-

out massive investments. The focus is put on technical and practical aspects and on the

sharing of experiences. The aim is to gather the knowledge for building and configuring

a cluster of virtual servers. After a short overview of the virtualization history and the

summary of the recent virtualization techniques, it is shown how a working prototype of a
1http://virtualboximages.com
2http://www.zenoss.com

11

serverless (without managing server) virtual cluster was designed and constructed using

commodity hardware.

FIGURE 1.1: Survey results about the planned virtual deployments for the near future.
The survey is dated second quarter of 2010. (1)

1.1 Virtualization: definition

Virtualization has an encompassing scope in manner. Numerous definitions can be found

from various sources. The one that the author has selected is written by Amit Singh in

2004:

Virtualization is a framework or methodology of dividing the resources of a computer
into multiple execution environments, by applying one or more concepts or technolo-
gies such as hardware and software partitioning, time-sharing, partial or complete
machine simulation, emulation, quality of service, and many others. (24)

Virtualization does not always imply a division or partitioning of the resources but the oppo-

site. Distributed computing grids appear as one logical entity that can also be interpreted

as virtual.

12

1.2 History of virtualization

Virtualization was first implemented in the 60’s by International Business Machines (IBM)

corporation. CP-40, the first time-sharing virtual machine/virtual memory operating sys-

tem provided a Virtual Machine (VM) environment in which multiple instances (up to 14) of

client operating systems were running (36). The system consisted of a virtualizing Control

Program (CP) which created multiple independent VMs. Each virtual machine had its own

set of virtual devices, mapped to the real hardware of the system. CP helped in segrega-

tion of complex system problems from a single user application. Isolating users from each

other improved system stability. A bug in one user’s software could neither crash another

user’s application nor the underlying CP. The platform was made generally available to

IBM customers in source code format later in 1968 (36).

In the 70’s and 80’s improved versions of CP-40 virtualization platforms were introduced

in numerous large IBM mainframes. Since mainframes were expensive resources at the

time, they were designed for partitioning as a way to fully leverage the investment (22).

In the 90’s inexpensive x86 server and desktop deployments led to new infrastructure

changes and different kinds of challenges. More and more Linux and Windows server

operating systems became available running on x86 processor architecture. In 1999,

VMware introduced the first x86 virtualization product, VMware Virtual Platform. Un-

like mainframes, x86 machines were not designed to support full virtualization. It was

achieved by complex software techniques.

Since 2006 Intel and Advanced Micro Devices (AMD) processors have hardware virtu-

alization capability. These hardware features differ between Intel and AMD processors.

Intel named its technology VT-x; AMD calls theirs AMD-V. The hardware virtualization fea-

tures first need to be enabled in the Basic Input/Output System (BIOS) before VM can use

them on many systems. The user needs to look-up the corresponding Central Processing

Unit (CPU) flag to determine whether the CPU supports Hardware (HW) virtualization.

The name of the flag for AMD-V it is "svm" and for VT-x is "vmx". This can be displayed

on Linux operating systems via /proc/cpuinfo file. An example for checking the CPU flags

can be found in appendix 1.

13

1.3 Free/Libre Open Source

As the author is Free/Libre andOpen Source Software (FLOSS) advocate, the project uses

only software solutions from this model. The author tries to highlight that FLOSS is not

intrinsically higher or lower quality than the proprietary software. It is not inherently more or

less secure than its closed source Software (SW) counterpart (19). The difference resides

in the license under which it is made available and in the development schemewhether the

end user is able to contribute to the product. The FLOSSmodel allows for any user to view

and modify the source code of a product. It is often necessary to read the source to fully

understand their working methods. Using FLOSS and open standards tends to improve

interoperability (19) which is considered as a major advantage in this project. Further

advantages cited by proponents are expressed in terms of trust, acceptance, teamwork,

collaboration, and quality (18). Using an open source platform also means that the user

is never locked to a proprietary vendor and can therefore stay more flexible.

1.4 Scope and limitations

The nature of the virtualization would allow a long discussion. Therefore, the scope of this

writing has to be clearly defined. After studying the available and latest technologies, the

author selected a likely working prototype configuration, and made a proposal of imple-

mentation for a project. All the planning and implementation phases are explained in the

following chapters, together with the faced problems and their solutions (if found). The

intention is to provide a practical reference for the reader. The list below shows some

adjacent fields which are not discussed in this thesis work:

• Proprietary tools and services from providers such as Microsoft and VMware

• Physical to virtual (P2V) and Virtual to physical (V2P) transformations

• High performance and large production grids

• Cloud computing stacks and platforms such as Cloudstack, Openstack and Open-

Nebula

14

The prototype virtual cluster is close to minimum entry level configuration and suitable

for small projects only. Building high availibility and large clusters require more exten-

sive studying and careful planning for specific needs. Building up cloud services on the

top of the designed architecture is feasible. This is also mentioned as one of the future

improvements.

15

2 What can be virtualized?

When selecting a suitable method of implementing virtualization, it is essential to have a

clear understanding of different (currently available) virtualization solutions. The following

virtualization methods are studied and described in this chapter:

• Application level virtualization

• Operating system virtualization

– Guest operating system virtualization

– Hypervisor virtualization

– Shared kernel virtualization

• Storage virtualization

2.1 Application level virtualization

In the application level virtualization VM runs as a single process inside host Operating

System (OS). The purpose of the application virtual machine is to provide a platform-

independent software environment that allows a program to execute in the same way on

many platforms (40). This type of VM has become popular with the Java programming

language, which is implemented using the Java Virtual Machine (JVM). In .NET frame-

work a similar process VM is called Common Language Runtime (CLR). Process VMs

are always implemented using an interpreter. Application level virtual architecure allows

creating platform independent and highly portable applications. The applications which

are using these kinds of VMs naturally have a lower performance than their compiled

counterparts.

16

2.2 Presentation virtualization

Presentation virtualization is an application level virtualization model that delivers users

desktops and applications from a shared server, also known as server based computing or

virtual desktop (31). Presentation-layer virtualization makes it possible to run applications

on one location while these applications can be controlled remotely from a distant client.

With presentation virtualization, applications are installed and run on centralized servers

in the datacenter with screen images being delivered to the machines of users. The first

implementation of presentation virtualization was the X Window System, a graphical re-

mote display standard that was introduced in the mid-1980s.

Ulteo1 Open Virtual Desktop (OVD) 3 is a well-known open source implementation of

presentation virtualization. Ulteo provides an application delivery method that delivers

users desktops and applications from a shared server. A fully funtional demo version of

Xen Virtual Appliance (XVA) image can be downloaded from their internet page. It includes

the session manager and application server with example applications. It is possible to

start an OVD session without installing anything on the client machine, only a web browser

is required with Java 1.6 support (38). Native Ulteo client application can also be used to

access session. The XVA image was downloaded and imported into Xen Cloud Platform

(XCP) for trial purposes. A few example screenshots can be found in appendix 4.

2.3 Guest operating system virtualization

The guest operating system virtualization (see figure 2.1) is also called software-based

virtualization. This is the most simple and the easiest concept of all OS level virtualization

methods. It does not require CPU virtualization support. The physical host computer

runs a standard unmodified operating system such as Windows, Linux, Unix or MacOS

X. Guest operating systems are created and ran within a virtualization application. The

virtualization application is responsible for starting, stopping and managing each virtual

machine and controlling physical hardware access. The virtualization application reads

the executing guest OS CPU operation calls and replaces each privileged instruction with
1http://www.ulteo.com

17

safe emulations. The most commonly known open source virtualization application is

Virtualbox.

FIGURE 2.1: Guest operating system virtualization

2.4 Hypervisor virtualization

Hypervisor (also called as type 1 Virtual Machine Manager (VMM)) is a software layer

that runs directly on host computer replacing the operating system (see figure 2.2). In this

case, the VMM itself is the minimalistic OS. The hypervisor is the interface for all hardware

request such as CPU, Input and Output (I/O), and disk for the guest operating systems

(33). It is so named because it is conceptually one level higher than a supervisory program

or operating system.

Hardware Virtual Machine (HVM) term is used do describe the guest operating system

that is running in hardware-assisted virtualization environment. This technique requires

CPU virtualization extensions e.g. Intel VT or AMD-V. HVM guests do not require special

kernel, for example native windows operating systems can be used as HVM guests (45).

18

FIGURE 2.2: Hypervisor virtualization

Paravirtualization is another technique that relies on the hypervisor virtualization but does

not require virtualization support from the host CPU. The guest OS is aware of the hyper-

visor therefore only modified guest operating systems can be loaded. Linux kernel version

2.6.24 and above have the Xen PV guest support and include all the necessary patches for

use as PV guests (45). Microsoft Windows requires a HVM Guest and can not be used in

paravirtualized environment. Paravirtualized guests are slightly faster than fully virtualized

guests, but HVM guests can use special paravirtual device drivers to bypass the emula-

tion for disk and network I/O. These Paravirtual on Hardware Virtual Machine (PVHVM)

drivers provide better performing disk- and network I/O operations.

Hypervisor solutions are available from different vendors and sources such as: XenSer-

ver, VMware ESX/ESXi, and Microsoft Hyper-V hypervisor. The author has selected Xen

open source hypervisor with hardware virtual machine solution for the prototype imple-

mentation. The following chapters explain Xen hypervisor in more detail with examples.

2.5 Shared kernel virtualization

Shared kernel virtualization is also known as system level or operating system virtualiza-

tion that is available on Linux and Unix based operating systems (see figure 2.3). This type

19

of virtualization is made possible by the ability of the kernel to dynamically change the cur-

rent root file system. This concept requires the guest operating system to be compatible

with the shared kernel version. For example, a 32bit guest operating system architecture

will not be accessible by using a 64bit shared kernel version. With the help of the chroot

command it is possible to change root file system from a host OS using a shared kernel.

On many systems, only the super-user (a user with root privileges) can do this. Chroot can

also be used to fix problems when the OS does not boot correctly because of problems in

rootfs or in boot loader. Major web hosting providers have been using the shared kernel

virtualization for years so that customers get their own virtual server for their web hosting

needs. The customers do not know that the system is virtual, nor can they contact the

host system through their VM (15). Unlike the above mentioned virtualization methods,

the VMs only have their own root file system but not a kernel of their own.

FIGURE 2.3: Shared kernel virtualization

2.6 Storage virtualization

Storage virtualization is a concept in which storage systems use special tools to enable a

better functionality and more advanced features within a storage system (34). The main

feature of storage virtualization is the abstraction of the logical and physical location of the

20

data (see figure 2.4). One of the major benefits is the non-disruptive data migration when

the data can be freely moved or replicated without affecting the operation of any client.

Concurrently performed disk operations can significantly improve the I/O performance

while the utilization of physical resources remain load-balanced. Different solutions are

available based on the needs for availibility, I/O performance, search and indexing and for

a combination of these.

FIGURE 2.4: Storage virtualization

A simple version of the storage virtualization is considered in the design of the virtual

machine cluster. Some of the most common practically used distributed disk arrays are

explained in the following chapter.

2.7 Thin provisioning

Thin provisioning (over-allocation) is a mechanism that is widely utilized in virtual environ-

ments. It gives the appearance of a more physical resource than what is actually available.

Most often it is associated and used with relation to the disk resources but it can also re-

21

fer to an allocation scheme for any type of resource (CPU, memory). Thin provisioning

is more efficient compared to the conventional allocation in cases where the amount of

resource used is much smaller than the allocated amount (35). Figure 2.5 demonstrates

an example of thin provisioning.

FIGURE 2.5: Thin provisioning example when a 60GB physical volume is over-allocated
to 2x50GB virtual disks

22

3 Distributed disk arrays and file systems

As a response to the demand for data intensive file systems (systems which use large

volumes of data, typically terabytes or petabytes in size), several distributed file systems

have been developed in recent years. It is envisioned a further large scale increase in

the use of parallel programming tools, scientific applications, data mining, etc. (52). The

most commonly used open source implementations are:

• Hadoop distributed file system

• Lustre distributed file system

• Ceph distributed file system

• GlusterFS

• iSCSI

• ATA over Ethernet

These are described in more detail in the following sections.

3.1 Hadoop distributed file system

The Hadoop Distributed File System (HDFS) is a highly fault-tolerant distributed file sys-

tem. It is designed to be deployed on low-cost hardware (20). Hadoop is an open source

ApacheTM project. It is used by a wide variety of companies and organizations includ-

ing Amazon, Google and Yahoo (2). Configurations can vary from standalone mode to

extremely large clusters with thousands of nodes. A HDFS cluster consists of two node

types. NameNode is for managing the file system metadata and multiple DataNodes

storing the actual data. Hadoop has a software framework (MapReduce) for writing appli-

cations which can process vast amounts of data (multi-terabyte data-sets) in parallel on

clusters of thousands of nodes. Hadoop is not a drop-in replacement for storing database

23

files or Storage Area Network (SAN) filesystem because of its significantly higher response

time.

3.2 Lustre distributed file system

Similarly to Hadoop, Lustre also has two server node types, namely Management Data

Server (MDS) and Object Storage Server (OSS). On the client side (after having the

necessary kernel modules loaded) it is possible to mount the Lustre cluster. The system

allows multiple clients to access the same files concurrently, and all the clients see consis-

tent data at all times (39). Expanding the array is possible on the fly (without interrupting

any operations). Several Linux distributions include Lustre file system libraries and utili-

ties. Many of the users of Lustre do not recommend it to others because it easily breaks

down in many kinds of situations (9).

3.3 Ceph distributed file system

Ceph is a distributed network storage and file system with distributed metadata manage-

ment (11). In the file system there is a cluster of metadata servers. This cluster manages

the namespace (file names and directories) and coordinates security, consistency, and

coherence (55). The minimal system does not require metadata server and has at least

two MDSs for data replication. The allocation list is predictably striped across storage

devices using a distribution function called Controlled Replication Under Scalable Hash-

ing (CRUSH). This method eliminates the need to maintain the object lists and look-up

tables. The Ceph client is merged to Linux kernel since version 2.6.34 (14).

3.4 GlusterFS

GlusterFS is an open source, highly scalable clustered file system. It can be flexibly com-

bined with commodity physical, virtual, and cloud resources to deliver highly available

and performant storage with relatively low cost. GlusterFS is suitable for public and pri-

vate cloud environments (14). Unlike other cluster file systems, GlusterFS does not use a

24

centralized meta-data server. This feature makes it simple and easy to deploy in prototype

environments. The author has selected this filesystem to be used in the current project.

The following two sections describe software solutions that can be used in connection

with the above mentioned distributed file systems to access data:

3.5 iSCSI

There are several existing software solutions that were designed to help building a dis-

tributed disk array between computers using Ethernet interface. Internet Small Computer

System Interface (iSCSI) is a network storage protocol over the Internet Protocol (IP).

The protocol allows to use SCSI commands over an IP network. This was earlier possible

only by using costly Fibre Channel (high-speed optical network technology developed for

storage networking) technology. The clients (called initiators) can send SCSI commands

to block storage devices (targets) on remote servers (32). iSCSI uses a client-server ar-

chitecture and usually only one client has access to the remote block storage. A server

that makes targets available only needs free partition to be available for export, and the

partition does not need to be a SCSI disk. The technique may be combined with clus-

tering solutions by exporting logical volume(s) and/or Redundant Array of Independent

Disks (RAID). Open-iSCSI is an open source project that provides multi-platform imple-

mentation of iSCSI (28). The binaries are available for all major Linux distributions.

3.6 ATA over Ethernet

ATA over Ethernet (AoE) is a network protocol that was designed and optimized for high-

performance access of Serial Advanced Technology Attachment (SATA) storage devices

over Ethernet (5). AoE is a layer 2 protocol which makes it fast and lightweight. The

protocol is non-routable, so the distributed disk array is not extendable over different sub-

networks. Coraid provides a hardware AoE cluster implementation called EtherDriveTM.

Coraid claims that “AoE delivers a simple, high performance, low cost alternative to iSCSI

25

and FibreChannel for networked block storage by eliminating the processing overhead of

TCP/IP ” (54).

Ivan Pepelnjak (7) strongly criticises the design and simplicity of this protocol due to the

lack of authentication, re-transmission and fragmentation. He disagrees with the existence

of the inherent security in the non-routability of AoE.

On Linux it is relatively simple to implement AoE using aoetools (8) and vblade software

packages. Vblade is a program that makes a seekable file available over an ethernet local

area network (LAN) via the AoE protocol. The file is typically a block device or partition like

/dev/md0 or /dev/md0p1. When vblade exports the block storage over AoE it becomes

a storage target. Another host on the same Local Area Network (LAN) can access the

storage if it has a compatible AoE kernel driver. Similarly to iSCSI, only one client has

access to the remote block storage. Figure 3.1 shows the differences between the iSCSI

and AoE protocol stacks.

FIGURE 3.1: Comparison of the protocol stack complexity between AoE and iSCSI (6)

26

4 Virtual machine cluster

A cluster is a group of computers (virtual servers) bound together into a common resource

pool. All the VMs in this pool can have access to the Gluster distributed volumes. The

usage of distributed storage could provide high scalability with redundancy options. In this

chapter the design of such a cluster is presented. Figure 4.1 explains the concept of the

designed prototype.

FIGURE 4.1: Virtual machine cluster prototype

27

4.1 Storage subsystem

The storage objects defined in XCP in a container called a Storage Repository (SR) to

describe a particular storage target, in which Virtual Disk Images (VDIs) are stored. SRs

can be local or shared. For instance, a shared SR is defined in resource pools. Physical

Block Devices (PBDs) are the interfaces (software objects) through which the XCP server

accesses SRs. In spite of its name (physical), in this case it is a Logical Volume (LV)

device but can also be another (any) type of block device. A VDI is a disk abstraction

which contains the contents of a virtual disk. This virtual disk is presented to a VM through

Virtual Block Devices (VBDs) which are similar interfaces to previously mentioned PBDs.

SRs can be attached (plugged) to multiple PBDs which might be located on one or several

physical hosts. Also, VBDs can be attached to one or many VMs and one VM can have

multiple VBDs attached (see figure 4.2).

As a simple example of typical PBD at the server can be a partition of pysical disk e.g.

/dev/sda5. The naming convention for VBDs differ from physical partitions, e.g. /dev/xvda5.

4.2 Virtual machine instance types

There are various kinds of roles in which virtual machines can be applied, and there are

some in which virtualization could not provide sufficient replacement of native installations.

Each role can be mapped to a workload profile based on the processing, memory, disk

I/O or network I/O need. Writing down a table of expected machine roles is often part of

the design process. Table 4.1 is an example of such a table.

After characterising the expected workload model, the virtual machines can be combined

into the same physical hardware to achieve the optimal utilization rate. For instance, a file

server role with low CPU and high network I/O load can be combined with an SW compiler

virtual machine. These two machines can then be run on the same hardware.

28

FIGURE 4.2: Virtual disk subsystem. (Similar configuration is used in the prototype.)

As a practical example, Amazon Elastic Compute Cloud (EC2) defines six families of VM

instance types (3) such as:

• Standard

• Micro

• High-Memory

• High-CPU

• Cluster Compute

• Cluster GPU

One to four sub-instances are provided for each category to meet the customers’ needs.

In total there are 13 different VM types that can be selected based on the needs. The VM

instances at Amazon are hourly priced (4).

29

Similarly to the role categorization, the time-sharing operation can also be applied. Typ-

ically, peak and off-peak periods can be easily predicted. Knowing these periods, the

utilization can be improved by resource and priority re-allocation. For instance, on week-

days daytime the virtual instances of office desktop may have higher priority compared to

a virtual machine doing a long simulation. On weekends, the simulation process may be

adjusted to be run with higher priority.

TABLE 4.1: Virtual machine roles and their typical workload types

Role CPU/GPU Memory Disk I/O Network I/O
Sw compilation • • • ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
Office Desktop • • ◦ ◦ ◦ • • ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦
Web server • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • • • ◦ ◦
File server • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • • • ◦ • • • • •
Simulation • • • • • • • • • • • • ◦ ◦ ◦ • • ◦ ◦ ◦

4.3 Requirements

The specification and requirements for the environment were not explicitly defined by any

customer. A list of specified internal requirements is as follows:

1. The designed system must be capable of providing up to 30 virtual machine in-

stances that can be used for executing different tasks.

2. The designed systemmust be easily integrated to existing SW and HW infrastructure

and should be compatible with it.

3. The designed system must be easily extendible and scalable on demand.

4. The designed system must be easily reconfigurable for various kind of tasks e.g.

SW build environment.

30

5. Assessment of potential Single Point of Failure (SPOF) must be made. The number

of critical components should be reduced or eliminated. Fault tolerance should be

provided.

4.4 Resource usage considerations

Due to that the Virtual Machine Cluster (VMC) servers are built using standard desktop

class computers, special care should be taken when selecting the SW components. The

limited memory and CPU processing capacity compel us to seek for a less resource in-

tensive, lightweight virtual environment.

A simple desktop environment memory usage comparison wasmade by using the gnome-

system monitor1 to compare memory consumption of different Linux operating systems.

The 64-bit version of installer ISO disk image was downloaded and booted in Virtualbox

application. Only the default services were running and the gnome-system monitor appli-

cation which displayed the actual resource usage. The comparison showed that the least

resource hungry desktop environment is XFCE, using about 38% of memory compared to

Unity which is the default environment in Ubuntu release 12.04. The results of the com-

parison can be seen in table 4.2. A similar comparison was made in 2010 by Phoronix

with the similar results (30). The same study also showed that there were no significant

power consumption differences between the tested desktop environments.

TABLE 4.2: Memory consumption comparison of Linux desktop environments

OS version (64-bit) Desktop Environment Used memory (MiB)
Linux Mint LMDE (12.04) XFCE 191.9
Linux Mint LMDE (12.04) MATE/Cinnamon 293.8
Ubuntu Desktop 12.04 LTS Unity 502.4

1https://launchpad.net/gnome-system-monitor

31

4.5 Implementation plan

It was decided that the prototype will be integrated into the production environment grad-

ually. The demand for the virtual environments is small at the beginning, and growing

progressively. The implementation steps are scheduled synchronously with the needs.

In the early phase there is no specific need for disk redundancy options and the HW uti-

lization does not require performance adjustments. These can be added later without

disturbing the existing virtual configurations.

The implementation work is divided into the following phases:

Phase 01: Collect and define internal requirements for the future system. Study existing

practical virtualization technologies and tools to be used and select the most suitable one

that can be integrated easily to the existing infrastructure.

Phase 02: Order the selected HW resources. Prepare the environment for quick deploy-

ment when the HW resources are available.

Phase 03: Implement a standalone virtual server for reference using only a local disk.

Create first instance of general virtual machine for templating base. This VM can be used

for demo purposes.

Phase 04: Use template VM to create a production version of VM and clone multiple

instances according to the needs. At this phase it is still the standalone virtual server is

in use with local disk repository.

Phase 05: Install virtual servers on all the physical machines. Build a distributed file

system. Do performance measurements on distributed volumes. Tune configuration pa-

rameters if necessary.

32

Phase 06: Clone as many production VMs as needed using the distributed filesystem.

Do performance measurements on production VMs and tune configuration parameters if

necessary.

Phase 07: Finalize the environment, extend the VMC with new nodes on demand.

33

5 Prototype implementation and configuration

After reviewing the design plan, the VMC prototype was decided to be implemented. The

building of this small-size cluster is suitable for gaining adequate level of knowledge for

further extensions of the prototype. In this chapter the building of the four-machine VMC

is presented.

5.1 Selected hardware components

Before any parts are selected, one should clearly define the intended functions. There

are multiple operating systems running simultaneously on a single computer. This drives

the selection toward quad-core (single computing component with four independent cen-

tral processing units) system instead of a dual-core alternative. The default configuration

consisted of a single Network Interface Card (NIC) and only one Hard Disk Drive (HDD).

For the good isolation of functions (virtual server and distributed disk) it was decided to

extend the default configuration by adding two more disk drives and two more NICs. In

a more isolated system, one can measure performance more accurately without the in-

terference of parallel systems. For example, with a separate network one can ensure

that other Ethernet traffic will not alter our measurements. For the data storage device

within the distributed array a component with low latency (high Input/Output Operations

Per Second (IOPS) parameter) is needed. OCZ1 Vertex 4 family provides 85000-120000

maximum IOPS with more than 500MiB/s sequential reading performance (27).

The price trend and capacity of the commodity computer is followingMoore’s law. One can

predict the future desktop-class computers will likely be equipped with better performing

components.

As a result of hardware component selection, four pieces of Dell Optiplex 990 desktop

Personal Computers (PCs) were ordered for building the VMC system with the following

components:
1http://www.ocztechnology.com

34

• Intel R© CoreTM i7 quad core processor

• 8GB of Double data rate type three synchronous dynamic random access memory

(DDR-3 SDRAM)

• 500GB SATA Hybrid Hard Drive

• One Gigabit Ethernet (GbE) network interface

In addition to the default desktop configuration, the following components were added:

• Two additional GbE network interface cards

• Two OCZ Vertex-4 Solid-state Drives (SSDs)

5.2 Hardware installation

The SSDs arrived separately with all the necessary screws and brackets. Installation went

rapidly with the help of a single Phillips-head PH1 size screwdriver tool.

After installing the SSDs, a quick test was made of the new drives using Linux Disk Utility

program2. It was observed that only one of the four port was supporting SATA-3 (6Gbps)

transfer data rate. All the other three ports supported only SATA-2 (3Gbps). This limitation

was not mentioned in the product specification of the computer (16). RAID0 configuration

was tested using two similar SSDs which resulted 8.2% reading speed improvement. Con-

figuring SSD and SATA hard disk into RAID0 array performed even worse than a single

SSD drive. The buffered average read rates can be seen in table 5.1.

5.2.1 Experiences with RocketRaid SATA adapter

Due to the previously seen SATA port speed limitations, an alternate solution was tested

to get the maximum performance out of the Vertex-4 SDDs. Two pieces of RocketRAID

640-6Gb/s PCI-E Gen2 RAID Host Bus Adapter (HBA) (21) were purchased and tested.
2http://git.gnome.org/browse/gnome-disk-utility

35

TABLE 5.1: Average disk reading rate comparison on Dell Optiplex 990 at different SATA
ports with single and RAID0 configurations

Test 1
Port number Average Read Rate (MiB/sec) Disk type
0 438.2 OCZ-Vertex4
1 210.6 OCZ-Vertex4
2 282.8 OCZ-Vertex4
3 215.4 OCZ-Vertex4

Test 2
Port number Average Read Rate (MiB/sec) Disk type
0 515.3 OCZ-Vertex4
1 91.7 500 GB SATA HDD
2 282.5 OCZ-Vertex4
3 Not Tested CDROM

Test 3 - RAID0 configuration
Port number Average Read Rate (MiB/sec) Disk type
0

Total: 557.8
OCZ-Vertex4

2 OCZ-Vertex4

Test 4 - RAID0 configuration
Port number Average Read Rate (MiB/sec) Disk type
0 OCZ-Vertex4
1

Total: 318.0
500 GB SATA HDD

2 OCZ-Vertex4

The HBA has 4 SATA ports and advertised to be capable of up to 6Gb/s transfer speed.

It requires a kernel module to be compiled from source. The compiled kernel module

worked with a generic kernel, but did not work with the Xen special kernel. It was loaded

without any error message but the adapter could not connect to the disk. It printed the

following error to the syslog:

rr64x:[0 0 f] failed to send 1st FIS
rr64x:[0 1] failed to hard reset.
rr64x:[0 1] failed to perform port hard reset.

36

With the generic kernel, the reading performance reached 222MiB/s on PCI express slot

1 and 345MiB/sec on PCI express slot 4. This achieved transfer speed with the generic

kernel was less than expected. The HBAs were decided not to be used. The SSDs

were decided to be be connected to the best performing SATA ports on the motherboard

(port0,port2).

5.2.2 Physical placement of machines

All of the four desktop machines were placed on a working desk for the SW configuration

and for the performance measurements. With the help of a four-port Keyboard Video

and Mouse (KVM) switch, only one display and keyboard was needed. For the normal

operation, the machines were relocated to a server room into a server cabinet without

local console access.

5.3 Selected virtual server platform

The XCP3 is an open source server virtualization and cloud computing platform. It is de-

rived from Citrix Xenserver commercial product (44) and built on the top of Xen hypervisor.

The functionality is somuch similar to Citrix XenServer that all the XenServer manuals also

apply to XCP. For instance XenServer 6.0 documents cover XCP 1.5 (42).

The first stable version (1.0) of XCP was announced in 2011. At the time of writing, the

latest version is 1.5 (released in 2012). The hypervisor is built on the top of CentOS 5

operating system. Besides the ISO installer, the xcp-xapi standalone toolstack and server

daemons can also be installed on the top of an existing Ubuntu or Debian installation by

using the upstream Linux kernel (46). XCP was selected to be utilized for VMC realization

because of its simplicity with clean installation.

The XCP was deployed on each of the four computers in the cluster. XCP is easily instal-

lable from ISO image and includes all of the necessary components for the target cluster.
3http://www.xen.org/products/cloudxen.html

37

It includes the Xen hypervisor, lightweight dom0 privileged domain and powerful command

line control interface (xe).

5.3.1 XCP management interfaces

XCP includes Xen Application Programming Interface (XAPI) toolstack which allows man-

aging the server either by using the command line, Graphical User Interface (GUI), or web

management tools.

Xe (xe) is a powerful command-line interface which talks to both hosts and resource

pools over https, invoking XenAPI operations. Commands can be executed both from

within DOM0 and from remote hosts. Tab completion is available which is increasing

usability and speed. Xe enables the writing of the scripts for automating tasks and allows

the integration into an existing Information Technology (IT) infrastructure. Xe is installed

by default on XCP server. A stand-alone remote version is also available for Linux (13).

XenWebManager (51) is an open source web based application written in Python Cher-

ryPy (12) web framework with graphical interface to manage XenServer / XCP hosts over

the network. From the sourceforge4 website it is possible to download a complete XVA

image which can be directly imported and run from within XCP server. Xenwebmanager

virtual image was loaded into one of the servers. It was tested and worked with small ad-

justments. The firewall (iptables service) must be configured or disabled to enable TCP

ports for the web server. Corporate network proxy usage must be disabled in the client

browser settings. Xenwebmanager provides the same functionality as XenCenter and

Openxenmanager, except the VNC console which was not functional.

Citrix XenCenter (47) is a proprietary windows-native graphical user interface. It can be

freely downloaded (after registration) from Citrix web page (48). It supports and autode-

tects (automatically identifies) both Remote Desktop Protocol (RDP) and Virtual Network

Computing (VNC) protocol as a graphical console.
4http://sourceforge.net/

38

Openxenmanager (29) is a multiplatform tool written in Python with graphical interface to

manage XenServer / XCP hosts over the network. OpenXenManager is an open-source

clone of Citrix XenCenter windows application.

Xen VNC Proxy (XVP) (23) is a suite of open source programs for management of virtual

machines running on XenServer and XCP developed by Colin Dean. The console allows

to operate and access virtual machines through a web browser.

5.3.2 XCP resource pool

XCP resource pool consists of multiple XCP/XenServer host installations (up to a maxi-

mum of 16), merged into a single entity. The resource pool enables VMs to be started

on an automatically selected server which has sufficient memory and the available re-

sources. This feature requires a shared storage and each CPU from the same vendor

and the same feature flags. AMD-V and Intel VT CPUs cannot be mixed. In the pool at

least one physical node has to be selected as the master. Only the master node accepts

commands through the administration interface. In case of a failure of the pool master, re-

election takes place. The automatic re-election is only available when the High Availability

feature is enabled (13).

5.3.3 XCP installation

The Xen Cloud Platform 1.5 Beta was available from the Xen internet page (43). The size

of the disk image was 362MiB. The installation was carried out from Compact Disc (CD)

media and took approximately half an hour. XCP uses the whole physical disk and does

not allow to leave another operating system on a different partition. The dom0 physical

disk footprint is less than 200MiB. This is enough to accomodate the hypervisor, necessary

Xen services, command line tools and a minimalistic console user interface. The rest of

the physical hard disk space can be used to store virtual disks and/or ISO images in a

SR. A few screenshots were taken during XCP installation process (see appendix 3).

39

TABLE 5.2: Logical partition requirements and priorities

Logical partition requirements and priorities
Purpose Size approx. Fault tolerance R/W performance
Dom0 boot partition 4GB YES YES
ISO storage repository 100GB NO NO
VHD storage repository 100GB YES YES
Shared working read area 15GB YES YES
Shared working read/write area 15GB NO YES

5.4 Selected distributed disk solution

The option of having a distributed array of disks provides the most flexible and scalable

solution for the virtual machine cluster. The Gluster5 distributed filesystem has been se-

lected for use as a core of the designed distributed disk array. The requirements for the

logical volumes can be grouped into the following categories: size, fault tolerance and I/O

performance. Table 5.2 shows an example arrangement of the logical volumes for the sys-

tem. For the volumes on the gluster server, XFS formatted Logical VolumeManager (LVM)

partitions (volumes) were used.

5.4.1 Gluster installation

The installation of the Gluster server packages on the XCP servers was slightly more

difficult than the installation on traditional Linux distributions. Because of the security

reasons, the yum (package-management utility) manager does not allow to install any

packages on the server by default. This can be enabled by editing the corresponding

yum repository file: /etc/yum.repos.d/CentOS-Base.repo. The following steps should

be performed on each GlusterFS server nodes.

root@xcp# sed -i -e "s/enabled=0/enabled=1/" /etc/yum.repos.d/
CentOS-Base.repo

5http://www.gluster.org

40

In corporate networks, a proxy server is often used to connect to the Internet and protect

their internal network(s). The proxy usage can be enabled (for host proxyhost with port

proxyport) by writing:

root@xcp# echo proxy=http://proxyhost:proxyport/ >> /etc/yum.conf

Once the installation is enabled, one can continue with installing development tools for

the Gluster source compilation.

root@xcp# yum groupinstall ’Development Tools’
root@xcp# yum groupinstall --skip-broken ’Development Libraries’
root@xcp# yum install python-ctypes

Resolving software dependencies is followed by the downloading source code, compila-

tion and installation. This can be done with the following commands:

root@xcp# wget http://download.gluster.org/pub/gluster/glusterfs/
LATEST/glusterfs-3.3.0.tar.gz

root@xcp# tar -xvf glusterfs-3.3.0.tar.gz
root@xcp# cd glusterfs-3.3.0/
root@xcp# ./configure
root@xcp# make
root@xcp# make install

5.4.2 Firewall configuration for Gluster

By default the needed Transmission Control Protocol (TCP) and User Datagram Protocol

(UDP) ports are not open in the firewall (iptables) configuration. These can be enabled

and verified by using the following commands as a superuser (root):

root@xcp# iptables -F
root@xcp# iptables -A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp

--dport 24007:24047 -j ACCEPT

41

root@xcp# iptables -A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp
--dport 111 -j ACCEPT

root@xcp# iptables -A RH-Firewall-1-INPUT -m state --state NEW -m udp -p udp
--dport 111 -j ACCEPT

root@xcp# iptables -A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp
--dport 38465:38467 -j ACCEPT

root@xcp# service iptables save
root@xcp# service iptables restart
root@xcp# service iptables --list

5.4.3 Building up the storage pool

A storage pool is a trusted network of several storage servers, called peers. Before con-

figuring any GlusterFS volume, a storage pool must be set up. To add storage servers to

the pool, the gluster probe command is used in the following way.

root@xcp# gluster peer probe 10.10.10.64
Probe successful

root@xcp# gluster peer probe 10.10.10.65
Probe successful

The server from which the commands are issued will automatically be part of the storage

pool and does not have to be probed. The peer status can be checked by using the

following command:

root@xcp# gluster peer status
Number of Peers: 2

Hostname: 10.10.10.64
Uuid: ff073a59-56ca-47e2-8b5a-f50164a72aee
State: Peer in Cluster (Connected)

Hostname: 10.10.10.65
Uuid: c64c0b22-2c8d-4163-a386-7e9e54169970
State: Peer in Cluster (Connected)

42

When a storage server is not needed anymore in the pool, it can be removed using the

gluster detach command. The command will only work if all the peers of the given pool

are in connected state.

5.4.4 Setting up storage volumes

Gluster storage volumes can be created by using gluster volume create command. In

the Gluster a "brick" is the basic unit of storage, represented by an export directory on a

server in the trusted storage pool. A server can accomodate one or more bricks. Gluster

storage volumes of the following types can be created:

• Distributed — Distributes files throughout the bricks in the volume.

• Replicated — Replicates files across bricks in the volume.

• Striped — Stripes data across bricks in the volume.

• Distributed Striped — Distributes data across striped bricks in the volume.

• Distributed Replicated — Distributes files across replicated bricks in the volume.

The first two volume types were tested in the VMC prototype.

In a distributed volume, the files are spread randomly across the bricks in the volume.

Creating distributed volumes is recommended when the scalable storage is needed and

redundancy is not important (17). Figure 5.1 shows how a simple distributed volume is

built.

The replicated volumes create copies of the files across multiple bricks in the volume.

Creating replicated volumes is recommended in the environments where high-availability

and high-reliability are critical (17).

43

FIGURE 5.1: Illustration of a Gluster distributed volume

5.5 Fine tuning and configuration of virtual servers

After finishing all installation steps on the server, one can continue with setting up storage

repositories and then installing the virtual machines.

Once a virtual machine instance is up and running, additional configurations can bemade.

These include configuring network (hostname, IP configuration), loading paravirtual drivers,

setting up Network Time Protocol (NTP). The newly created, configured VM can be cloned

and copied between the servers at will. In this phase, distributed disk volumes were not

used yet.

5.5.1 Installing VM from ISO image

The VM installation can be performed by using an ISO 9600 formatted CD/DVD-ROM im-

age located on a shared network location. Samba6 network file share was used for storing

installation media. The installer stopped at the bootloader due to a driver problem (incom-

patible or missing device driver). The same problem was noticed by testing several ISO

images through various repositories. (NFS share, local repository, physical CD) The prob-

lem was solved by giving the following kernel parameters to the installer: noapic nolapic.

The first one disables the Advanced Programmable Interrupt Controller (APIC) and the
6http://www.samba.org

44

second one disables the local APIC (10). Kerner parameters can be edited by pressing

the Tab key when the bootloader lists the startup options.

5.5.2 Installing Xenserver tools

Installing XenServer Tools (PV Drivers) enhances the network performance and disk I/O

operations without the overhead of traditional device emulation (50). XCP includes the

xenserver tools ISO image (xs-tools.iso) which can be easily loaded and installed onto the

guests. The Xenserver tool installation was performed on a Linux HVM guest (Linux Mint

13MATE). Several additional VM features unveiled that were listed as <not in database>

before (guest OS version, IP address). The VM allowed operation list now includes

pool_migrate, suspend and checkpoint. The number of VBD and Virtual (network) Inter-

face (VIF) devices has increased. For the full list of additional features, consult appendix

2. On the general tab in the properties pane within OpenXenmanager the message "Tools

not installed" has been replaced by "Optimized (version 1.4 build 53341)" and the OS ver-

sion is also displayed. The machine suspend and resume operations were tested and

worked through OpenXenmanager.

5.5.3 Time synchronization between Dom0 and VMs

By default, the clocks in a paravirtualized Linux VM are synchronized to the clock running

on the control domain and cannot be independently changed. The behaviour is controlled

by the setting /proc/sys/xen/independent_wallclock. This mode is a convenient de-

fault, since only the control domain needs to be running the NTP service to keep accurate

time across all VMs (49). With other types of VMs, running an NTP client daemon is

recommended to keep the date and time synchronized.

5.5.4 Forced file sytem checking at every boot

During the experiments, the forced hard VM shutdown often resulted in errors in the jour-

naling filesystems. The Fourth extended filesystem (ext4) has a parameter called “Maxi-

mum mount count” which defines the number of the mounts after which the filesystem is

45

checked (by e2fsck). This parameter can be read by using dumpe2fs and set by using

tune2fs Linux filesystem utility programs as the following lines show:

users@desktop ~ $ sudo dumpe2fs -h /dev/sda1 | grep -i ’mount count’
dumpe2fs 1.41.14 (22-Dec-2010)
Mount count: 13
Maximum mount count: 21
user@desktop ~ $ sudo tune2fs -c 1 /dev/sda1
tune2fs 1.41.14 (22-Dec-2010)
Setting maximal mount count to 1

The file system check at every boot can be forced by adjusting this parameter to 1 and

can be disabled completely by using value -1 (37). The forced filesystem check was set

in each VM root filesystem to increase the reliability and recovery in case of failures. The

execution time depends on the size of filesystem, the number of inodes and other file

system parameters. In the case where the virtual disk size is relatively small (≤ 20GB at

maximum), the file system check took approximately 5-10 seconds to execute. In spite of

frequent filesystem checks, a forced hard reset may cause irrecoverable file system errors

that possibly prevent the OS boot. This behaviour was also observed a few times during

the experiments. As a workaround solution a template of VM was created which is not in

normal use but in recovery. The template VM is normally in shutdown state. It is used

only as a security copy to overwrite the corrupted VM.

5.5.5 Automatic VM startup on server boot

It is often useful to have some of the virtual machines started up on server boot without

manual interaction of the administrator. In the earlier versions of Xenserver there was an

option to enable the VM autostart, but since Xencenter 6 the option has been removed.

Bill Carovano explained the reason in Citrix forum:

It was removed due to bad interactions with other features like High Availability,
Rolling Pool Upgrade, and integrated DR. Auto-start settings made VMs start up
in an uncontrolled fashion, at the wrong times or on the wrong hosts and basically
broke these other features (41).

46

As a replacement for the missing feature we created a simple startup shell script that

launches the selected VMs. This shell script (autostart.sh) is called at server boot by

placing it to /etc/rc.local.

In the simple script the xe vm-start command is called after a 40 seconds sleep time.

This 40 seconds was proven to be enough for all the xen services to be started up. This

amount of delay is an individually tested, non-deterministic parameter which may vary

between different systems. The following shell script was used for automatic VM startup:

#!/bin/bash
export PATH=/opt/xensource/bin:/usr/local/sbin:
/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin
sleep 40
xe vm-start uuid=UUID

The Universally Unique Identifier (UUID) of the VM can be figured out and copied from

the output of the xe vm-list command.

47

6 Performance tests with VMC

In this chapter an example use case is demonstrated which is utilizing the newly built

VMC. A distributed build system was chosen to be the first use case of the prototype

virtual machine cluster.

During the sofware building process, source code files are converted to binary executable

code. It is the speed that is the most important and critical goal to achieve by any building

framework today. This demand is particularly critical when someone is considering ag-

ile and continuous integration based software development where it is common to have

frequent builds. In the tested scenario the building process workflow steps are sent to

separate (virtual) machines for execution. In the current research the author seeks for an

answer whether any significant speed improvement can be achieved compared to single

machine execution. The definition of the term significant is when the improved build ex-

ecution time (reciprocal of building speed) is at least 20% less than the single machine

execution time. Mathematically expressed in 6.1:

t1 =
1

n
t0 and n > 1.25 (6.1)

where: t0 and t1 are the compilation execution times before and after improvement.

6.1 Research approach

The applied research approach is a quantitative, experimental approach. With quantita-

tive experiments, a sufficient amount of data is collected. The hypothesis is either justified

(proved) or rejected based on the statistical analysis of the data. Even if there are indefi-

nitely many (unknown) complex functions explaining the set of data, experiments may be

repeated and theories can be verified by using this method.

In the current case there were two alternative models compared. The first one is a single

virtual machine mode. It has a similar CPU and memory configuration in the VM as in

48

the native physical installation. The second one is using multiple VMs working parallel

orchestrated by distcc, a distributed C compiler. 1 The preliminary expectations on the

compilation speed is that the distributed build is the fastest followed by the single phys-

ical installation and the single virtual machine. If the single physical and single virtual

machines are very similar, one can expect only minor (2%..5%) difference because Xen

paravirtual driver is installed in VM. The applied research method can be seen in figure

6.1.

FIGURE 6.1: Research approach for verifying the hypothesis

The hypotheses is that the equation (6.1) is valid for at least one of the alternative models

against the single machine execution (primary) model.

6.2 Building task

In order to determine and compare the performances, Linux 3.4.6 kernel compilation was

selected as the task to be executed. All the source code files, temporary artifacts and
1https://code.google.com/p/distcc

49

result binaries were stored on the local filesystem (ext4) on Vertex-4 SSD. The machine

was not restarted between the measurements because it was seen that the repeated

execution time is nearly identical in both cases.

6.3 The build speed of the single machine native installation

The primary model to which the alternative model improvements are compared to is based

on a single native physical installation of Linux machine with the following parameters:

CPU type Intel 4-core (8 threads)

Allocated memory size 8 GB

Operating system Linux Mint 13 (64bit)

Storage type Vertex-4 SSD

Executed command make -j10

The compilation task was executed n=500 times using j=10 parallel jobs. The execution

time samples were recorded into output files. The population was later processed and

analysed. The number n=500 is chosen because it is not only providing a good statistical

amount of samples but also tests the stability of the system. The minimum and maximum

execution time of all samples were tmin = 735.83s and tmax = 750.27s. The calculated

sample mean ā = 737.63 with standard deviation s2 = 1.124. The absolute frequency of

execution time samples can be seen in figure 6.2. The performance measurement loop

and the postprocessing scripts can be found in appendix 5.

The machine load from one compilation cycle is presented in figure 6.3 where CPU uti-

lization and disk Transactions Per Second (TPS) (read and write) are shown. The Iostat2

program was used to collect samples in two-second intervals for the whole duration of the

compilation task. In the stacked area chart the user level application is marked in blue

(user) and the kernel level executions (system) marked in red. The percentage of the time

that the CPUs were idle during which the system had an outstanding disk I/O request is
2http://linux.die.net/man/1/iostat

50

FIGURE 6.2: Compilation time distribution on native operating system

marked in yellow. The remaining percentage —which is marked in green— represents

the CPU idle state. A highly loaded CPU can be seen for the vast majority of the samples

while significant disk device utilization is only visible near the end of the task for about 20

seconds (10 samples). The nature of the example compilation task contains mostly CPU

intense operations with few disk I/O transactions and no netwok usage (if source code

files and results are stored locally).

51

FIGURE 6.3: Compilation load on single machine with native operating system

6.4 Measurement results of build speed from single virtual in-

stallation

The same compilation job was executed n=500 times on a console only (without graphical

desktop environment) virtual machine instance with the following parameters:

52

number of VCPUs 8

VCPU priority highest (65535)

Allocated memory size 7.0 GB

Operating system Ubuntu 12.04 (64bit) console only

Storage type local virtual image on Vertex-4 SSD

Executed command make -j10

Theminimum andmaximum execution time of all samples were tmin = 772.61s and tmax =

785.31s. The calculated sample mean ā = 777.87 with standard deviation s2 = 2.128. The

absolute frequency of the execution time samples can be seen in figure 6.4. The histogram

shape is asymmetrical and skewed which does not show Gaussian (normal) distribution

in population.

FIGURE 6.4: Compilation time distribution on single virtual machine

The mean execution times from the measurements show that the single virtual machine

is on the average 5.45% slower than the single native machine. The variance of the

execution times are 89% greater in the virtual machine compared to the native one.

53

FIGURE 6.5: Compilation load on single virtual machine

XCP Dom0 resides within a small fixed portion of physical memory. Therefore, the maxi-

mum allocatable memory is less than the physical (8GB). Consequently, the virtual mem-

ory size was limited to 7.0 GB in this test. The load pattern of the virtual and native

compiler machines look very similar. In both cases the CPU load was high and near

the maximum. The magenta color is only visible on the virtual machines which shows the

“steal” percentage of the virtual CPU. In other words, it is the time spent in involuntary wait

by the virtual CPU or CPUs while the hypervisor was servicing another virtual processor

(25). The virtual disk utilization shows significantly higher numbers on the virtual machine

compared to the physical, peaking 7000 TPS. These numbers mean logical transactions

where multiple logical requests can be combined into a single I/O request to the actual

physical device. In spite of the greater number, the actual transferred bytes are identical.

54

6.5 Measurement results from distributed build

The compilation task was executed n=500 times and the execution time samples were

recorded in the same way as in the previous test. The population was later processed and

analysed. The minimum and maximum execution time of all samples were tmin = 353.44s

and tmax = 424.11s. The calculated sample mean was ā = 359.62 with standard deviation

s2 = 6.09. The standard deviation is more than five times larger than in the single-machine

compiler, which can be explained by the differences in the system complexity. The dis-

tributed build machine has much more variable dependencies, e.g. network latency. The

absolute frequency of the execution time samples can be seen in figure 6.6. The shape

of the histogram shows a normally distributed population.

The machine load profile of the distributed build in figure 6.7 looks more scattered. It is

clearly visible that the load is not well balanced between the master and slave computing

nodes. The master has a higher average load because the master node has more and

different kinds of tasks to perform. Because of the different roles, it is logical to have

the master and computing slave nodes configured differently. A reasonably good solution

is to create two kinds of virtual machines or keep the master node machine on a native

installation.

The workload is measured on one of the three slave computing nodes together with the

master node. Only one node was measured because it is assumed that the other two

slaves have similar patterns. The lower, (30%..40%) average CPU utilization was ob-

served and can be seen in figure 6.8. The light blue color represents the user processes

with the nice priority other than 0. The name "niceness" originates from the idea that a

process with a higher niceness value is "nicer" to other processes in the system as it al-

lows the other processes more CPU time (53). By default, distcc version 3.1 uses +10

as nice priority in order to avoid an undesirable high CPU load on the systems where

distcc runs in a background. The nice priority can be verified or modified by editing the

file /etc/default/distcc. The default parameters were not altered during the tests unless

otherwise noted.

55

FIGURE 6.6: Compilation time distribution with distcc

From the Ethernet utilization graph (figure 6.7 bottom) it is visible that the Transmit (Tx)

compilation job data is 35–50% more than the processed Received (Rx) data on the mas-

ter node. It is typical that the compiled binary files are smaller in size than the source

code. The well balanced distribution can be verified by comparing the amount of slave

Rx and master Tx data. In the current setup the master transmitted data is approximately

three times more than the slave received data. This is normal, because there are three

equal slave nodes. In addition, the workload difference between the slave nodes can be

compared using the above mentioned methods.

56

FIGURE 6.7: Compilation load on master node of distributed build system

6.6 Number of parallel compilation jobs

It is important to run asmany parallel compilation jobs as possible to achieve themaximum

performance. It is logical to assume that considering n number of jobs, there is an optimum

number where the compilation time curve has aminima. A series of overlapping tests were

driven (three runs) to determine the optimum number of the parallel jobs for the system.

The results can be seen in figure 6.9.

When launching less than the optimum number of concurrent processes, the CPU spends

more time in the idle state. Too few jobs do not optimally utilize the computing resources

(CPUs) and cause the tasks being blocked waiting for the disk or network I/O. On the

57

FIGURE 6.8: Compilation load on slave computing node of distributed build system

other hand, if the number of jobs are more than the optimum, the CPU is forced to switch

between the concurrent processes. This makes the compilation slower. As it is visible in

figure 6.9, the ‘overloaded‘ system has less negative effect on compilation performance.

Even if the number of the jobs is twice the optimum (35 ⇒ 70), the compilation time is

hardly increased.

6.7 Discussion and summary of tests

The chosen task of the Linux kernel compilation is analyzed in detail with regard to the

CPU utilization, disk I/O, and network utilization. Both the virtual machine performance

and distcc performance matched the expectations. The single virtual machine model was

58

FIGURE 6.9: Distcc number of jobs

slightly slower than the (primary) model without virtualization. The distcc distributed com-

piler was the most performant with the native master and three virtual slave nodes even

if the computing virtual nodes had untapped CPU resources. Tuning the distcc configu-

ration may potentially further increase the performance by the utilization of the additional

exploitable computing resources, i.e. changing nice priorities or adjusting the number of

the accepted jobs per node. The measurements showed that having too few jobs severely

degraded the performance but having too many had less effect on the performance.

The testing method was suitable for determining the resource usage and highlighting the

possible bottlenecks of the system. The hypothesis in 6.1 is verified by themeasurements.

The performance of a single virtual machine was 5.45% less than a native machine. The

distributed build system with multiple virtual machines performed the best where the com-

pilation time was 48.75% of the primary model.

59

7 Performance of distributed storage

In virtual environments, efficient data management is a key component in achieving good

performance. Unix/Linux applications typically share data between the tasks using files,

e.g. log files. When the tasks are distributed, these files are either transferred from one

computational node to another, or accessed through a shared storage system. Other-

wise it can be laborious to collect –for example– the output files from hundreds of nodes

executing a distributed task.

For the virtual machine cluster prototype the GlusterFS distributed storage solution was

designed and implemented. In this chapter the performancemeasurements of this storage

are explained.

7.1 Test environment

A number of performance parameters can bemeasured on the distributed storage systems

including the throughput or the IOPS in various concurrent operation (read and write) sce-

narios. Each of these can be tested with various storage configurations using distributed,

replicated or striped volumes.

Due to the few number of bricks (four), only a distributed volume was tested with no replica

and no striping set. A directory structure creator and separate file reader scripts were

made for performance tests. In each case the execution time of the script was measured

and compared between the local and the distributed filesystems. The server nodes of

the distributed filesystem were connected using a dedicated GbE LAN. Throughput tests

were not planned because it would only be meaningful on striped Gluster volumes. The

summary of the executed tests can be seen in table 7.1. The test scripts and local disk

parameters can be found in appendix 6.

60

TABLE 7.1: Summary of executed tests

Storage type Generate structure Find file Read all files
Local Seagate HDD partition (ext4) X X X
Local SSD partition (ext4) X X X
Network File System (NFS) share (ext4) X X X
GlusterFS distributed partition (xfs) X X X

7.2 Test results

Figure 7.1 demonstrates that the NFS share speed results are showing similarity to the

SSD only with higher latency. This is caused by the overhead on the network compared to

local SATA bus. The GlusterFS performance is worse (the script execution time is higher)

than the NFS share. This can be explained by the lack of a true parallel operation. By

analysing the file structure on each brick, it was observed that in spite of the distributed

metadata, the directory structure was created on each brick. The SSD find file execution

time was significantly better than Seagate HDD. It took only 10.199 seconds to execute.

FIGURE 7.1: Test script execution times comparison between local and distributed vol-
umes

61

8 Conclusion

The designed platform meets all the earlier defined requirements in 4.3 and operates

properly at the time of the writing. The explained virtualization solution can be utilized in

various environments. However, it requires familiarization with the technology. Studying

additional guidelines and developing expertise is advised to properly set it up with confi-

dence. Due to the increased complexity, virtualization might not be suitable for everyone.

8.1 Commodity hardware

Using desktop-class computers for a virtual server is an affordable, yet a powerful solution

for both the operating system and the storage virtualization. Some of the HW suppliers

–such as Dell– do not always provide full detailed documentation on their components.

The SATA bus bandwidth of the motherboard was not enough to benefit the maximum

performance of the SSDs.

8.2 Virtual server with XCP

The deployed open source Xen virtual platform is proven to be an excellent choice for

those seeking an open source virtualization solution. The platform is well-documented

and understandable even to first-time users. The installation is easy and self-explanatory

and does not require more than 30 minutes. However, the customization and virtual ma-

chine configuration require significantly more time depending on the complexity of the

desired system. Various Linux (Ubuntu, Mint, Fedora) distributions and Microsoft Win-

dows 8 evaluation version guest operating systems were installed and tested. The virtual

machine migrations across servers were carried out without problems.

62

8.3 Distributed disk array with Gluster

During the experiments, both distributed and distributed-replicated volumes were created

and tested. A simulated node failure was tested with success on a replicated volume by

disconnecting the network cable. The performance measurements were only made on

one distributed volume and showed significantly lower performance compared to the local

volumes. It is assumed that using more nodes in a larger network the benefits of Gluster

distributed filesystem can be greater. Although the fault tolerance option is available and

tested in Gluster, it was not enabled inproduction environment due to the few number of

bricks.

8.4 Improvement possibilities and future plans

The designed and implemented virtual machine cluster with a distributed storage is func-

tioning as expected. It can be further improved by applying one or more ideas of the

following possibilities:

• Prepare various VM templates with different roles for quick deployment

• Make individual task based optimizations (such as optimizing process nice levels on

build machines)

• Extend the cluster with more computing nodes and Gluster bricks

• Install more operational memory to server machines

• Convert existing physical machines to virtual and free-up resources

• Build a cloud platform stack on the top of existing cluster

• Organize a demonstration session and present the advantages of virtualization

• Prepare providing application as service (build private cloud)

63

REFERENCES

[1] 2010 virtualization and cloud computing survey presented by zenoss, inc.

Available at: http://mediasrc.zenoss.com/documents/wp_2010_virtualization_and_

cloud_survey.pdf, Retrieved 14 July 2012.

[2] Alphabetical list of institutions that are using hadoop for educational or production

uses. Available at: http://wiki.apache.org/hadoop/PoweredBy, Retrieved 02 May

2012.

[3] Amazon ec2 instance types. Available at: http://aws.amazon.com/ec2/

instance-types/, Retrieved 17 June 2012.

[4] Amazon ec2 pricing. Available at: http://aws.amazon.com/ec2/pricing/, Retrieved 17

June 2012.

[5] Ata over ethernet. Available at: http://en.wikipedia.org/wiki/ATA_over_Ethernet, Re-

trieved 01 May 2012.

[6] Ata-over-ethernet enables low-cost linux-oriented san.

Available at: http://www.linuxfordevices.com/c/a/News/

ATAoverEthernet-enables-lowcost-Linuxoriented-SAN/, Retrieved 17 June 2012.

[7] Ata over ethernet for converged data center networks? no

way. Available at: http://searchnetworking.techtarget.com/

ATA-over-Ethernet-for-converged-data-center-networks-No-way, Retrieved 14

October 2012.

[8] Ata over ethernet tools. Available at: http://aoetools.sourceforge.net, Retrieved 01

May 2012.

[9] Best distributed filesystem for commodity linux storage

farm. Available at: http://stackoverflow.com/questions/269179/

best-distributed-filesystem-for-commodity-linux-storage-farm, Retrieved 11 May

2012.

[10] Bootoptions , common kernel options. Available at: https://help.ubuntu.com/

community/BootOptions#Common_Kernel_Options, Retrieved 23 June 2012.

64

 http://mediasrc.zenoss.com/documents/wp_2010_virtualization_and_cloud_survey.pdf
 http://mediasrc.zenoss.com/documents/wp_2010_virtualization_and_cloud_survey.pdf
 http://wiki.apache.org/hadoop/PoweredBy
 http://aws.amazon.com/ec2/instance-types/
 http://aws.amazon.com/ec2/instance-types/
 http://aws.amazon.com/ec2/pricing/
 http://en.wikipedia.org/wiki/ATA_over_Ethernet
 http://www.linuxfordevices.com/c/a/News/ATAoverEthernet-enables-lowcost-Linuxoriented-SAN/
 http://www.linuxfordevices.com/c/a/News/ATAoverEthernet-enables-lowcost-Linuxoriented-SAN/
 http://searchnetworking.techtarget.com/ATA-over-Ethernet-for-converged-data-center-networks-No-way
 http://searchnetworking.techtarget.com/ATA-over-Ethernet-for-converged-data-center-networks-No-way
 http://aoetools.sourceforge.net
 http://stackoverflow.com/questions/269179/best-distributed-filesystem-for-commodity-linux-storage-farm
 http://stackoverflow.com/questions/269179/best-distributed-filesystem-for-commodity-linux-storage-farm
 https://help.ubuntu.com/community/BootOptions#Common_Kernel_Options
 https://help.ubuntu.com/community/BootOptions#Common_Kernel_Options

[11] Ceph documentation. Available at: http://ceph.com/docs/master/, Retrieved 11 May

2012.

[12] Cherrypy project home - a minimalist python web framework. Available at: http:

//www.cherrypy.org/, Retrieved 27 June 2012.

[13] Citrix xenserver 6.0 administrator’s guide. Available at: http://docs.vmd.citrix.com/

XenServer/6.0.0/1.0/en_gb/reference.html, Retrieved 09 June 2012.

[14] Client merged for 2.6.34 - ceph. Available at: http://ceph.com/updates/

client-merged-for-2-6-34/, Retrieved 03 May 2012.

[15] Comparing virtualization technologies. Available at: http://www.informit.com/articles/

article.aspx?p=1400336&seqNum=5, Retrieved 29 May 2012.

[16] Dell optiplex 990 technical guidebook version 1.5. Available at: http://www.dell.com/

downloads/global/products/optix/en/optiplex-990-customer-brochure.pdf, Retrieved

22 July 2012.

[17] Gluster file system 3.3.0 administration guide. Available at: http://www.gluster.

org/wp-content/uploads/2012/05/Gluster_File_System-3.3.0-Administration_

Guide-en-US.pdf, Retrieved 07 Sept 2012.

[18] The gnu manifesto - gnu project - free software foundation (fsf). Available at: http:

//www.gnu.org/gnu/manifesto.html, Retrieved 12 May 2012.

[19] A guide to open source software for australian government agencies (sec-

ond edition). Available at: http://www.finance.gov.au/e-government/infrastructure/

open-source-software.html, Retrieved 12 May 2012.

[20] Hdfs architecture guide. Available at: http://hadoop.apache.org/common/docs/

current/hdfs_design.html, Retrieved 02 May 2012.

[21] Highpoint rocketraid 600 family series. Available at: http://www.highpoint-tech.com/

USA_new/cs-series_rr600.htm, Retrieved 29 June 2012.

[22] History of virtualization. Available at: http://www.vmware.com/virtualization/history.

html, Retrieved 30 April 2012.

[23] Introduction to the xvp suite of programs. Available at: http://www.xvpsource.org/,

Retrieved 09 June 2012.

65

 http://ceph.com/docs/master/
 http://www.cherrypy.org/
 http://www.cherrypy.org/
 http://docs.vmd.citrix.com/XenServer/6.0.0/1.0/en_gb/reference.html
 http://docs.vmd.citrix.com/XenServer/6.0.0/1.0/en_gb/reference.html
 http://ceph.com/updates/client-merged-for-2-6-34/
 http://ceph.com/updates/client-merged-for-2-6-34/
 http://www.informit.com/articles/article.aspx?p=1400336&seqNum=5
 http://www.informit.com/articles/article.aspx?p=1400336&seqNum=5
 http://www.dell.com/downloads/global/products/optix/en/optiplex-990-customer-brochure.pdf
 http://www.dell.com/downloads/global/products/optix/en/optiplex-990-customer-brochure.pdf
 http://www.gluster.org/wp-content/uploads/2012/05/Gluster_File_System-3.3.0-Administration_Guide-en-US.pdf
 http://www.gluster.org/wp-content/uploads/2012/05/Gluster_File_System-3.3.0-Administration_Guide-en-US.pdf
 http://www.gluster.org/wp-content/uploads/2012/05/Gluster_File_System-3.3.0-Administration_Guide-en-US.pdf
http://www.gnu.org/gnu/manifesto.html
http://www.gnu.org/gnu/manifesto.html
http://www.finance.gov.au/e-government/infrastructure/open-source-software.html
http://www.finance.gov.au/e-government/infrastructure/open-source-software.html
 http://hadoop.apache.org/common/docs/current/hdfs_design.html
 http://hadoop.apache.org/common/docs/current/hdfs_design.html
 http://www.highpoint-tech.com/USA_new/cs-series_rr600.htm
 http://www.highpoint-tech.com/USA_new/cs-series_rr600.htm
 http://www.vmware.com/virtualization/history.html
 http://www.vmware.com/virtualization/history.html
 http://www.xvpsource.org/

[24] An introduction to virtualization. Available at: http://www.kernelthread.com/

publications/virtualization/, Retrieved 31 May 2012.

[25] iostat(1) - linux man page. Available at: http://linux.die.net/man/1/iostat, Retrieved

29 August 2012.

[26] Kdenlive - virtualbox images. Available at: http://www.kdenlive.org/user-manual/

downloading-and-installing-kdenlive/virtualbox-images, Retrieved 28 July 2012.

[27] Ocz vertex 4 sata iii 2.5" ssd specifications. Available at: http://www.ocztechnology.

com/ocz-vertex-4-sata-iii-2-5-ssd.html#specifications, Retrieved 21 July 2012.

[28] Open-iscsi project: Open-iscsi - rfc3720 architecture and implementation. Available

at: http://www.open-iscsi.org/, Retrieved 03 June 2012.

[29] Openxenmanager’s official wiki. Available at: http://sourceforge.net/apps/trac/

openxenmanager/, Retrieved 09 June 2012.

[30] Power and memory usage of gnome, kde, lxde and xfce. Available at: http:

//www.phoronix.com/scan.php?page=article&item=linux_desktop_vitals&num=1,

Retrieved 26 May 2012.

[31] Presentation virtualization. Available at: http://www.virtualizationpractice.com/

topics/presentation-virtualization/, Retrieved 14 July 2012.

[32] A quick guide to iscsi on linux. Available at: http://www.cuddletech.com/articles/iscsi/

index.html, Retrieved 03 June 2012.

[33] Server virtualization with the xen hypervisor. Available at: http://www.xen.org/files/

Marketing/WhatisXen.pdf, Retrieved 12 May 2012.

[34] Storage virtualization. Available at: https://en.wikipedia.org/wiki/Storage_

virtualization, Retrieved 14 May 2012.

[35] Thin provisioning storage, challenges & opportunities - wikibon. Available at: http:

//wikibon.org/wiki/v/Thin_provisioning, Retrieved 08 July 2012.

[36] Timeline of virtualization development. Available at: http://en.wikipedia.org/wiki/

Timeline_of_virtualization_development, Retrieved 30 April 2012.

[37] tune2fs(8) - linux man page. Available at: http://linux.die.net/man/8/tune2fs, Re-

trieved 16 June 2012.

66

http://www.kernelthread.com/publications/virtualization/
http://www.kernelthread.com/publications/virtualization/
 http://linux.die.net/man/1/iostat
 http://www.kdenlive.org/user-manual/downloading-and-installing-kdenlive/virtualbox-images
 http://www.kdenlive.org/user-manual/downloading-and-installing-kdenlive/virtualbox-images
 http://www.ocztechnology.com/ocz-vertex-4-sata-iii-2-5-ssd.html#specifications
 http://www.ocztechnology.com/ocz-vertex-4-sata-iii-2-5-ssd.html#specifications
 http://www.open-iscsi.org/
 http://sourceforge.net/apps/trac/openxenmanager/
 http://sourceforge.net/apps/trac/openxenmanager/
 http://www.phoronix.com/scan.php?page=article&item=linux_desktop_vitals&num=1
 http://www.phoronix.com/scan.php?page=article&item=linux_desktop_vitals&num=1
 http://www.virtualizationpractice.com/topics/presentation-virtualization/
 http://www.virtualizationpractice.com/topics/presentation-virtualization/
 http://www.cuddletech.com/articles/iscsi/index.html
 http://www.cuddletech.com/articles/iscsi/index.html
 http://www.xen.org/files/Marketing/WhatisXen.pdf
 http://www.xen.org/files/Marketing/WhatisXen.pdf
 https://en.wikipedia.org/wiki/Storage_virtualization
 https://en.wikipedia.org/wiki/Storage_virtualization
 http://wikibon.org/wiki/v/Thin_provisioning
 http://wikibon.org/wiki/v/Thin_provisioning
 http://en.wikipedia.org/wiki/Timeline_of_virtualization_development
 http://en.wikipedia.org/wiki/Timeline_of_virtualization_development
 http://linux.die.net/man/8/tune2fs

[38] Ulteo open virtual desktop v3.0 easy installation. Available at: http://doc.ulteo.com/

3.0/Easy_Installation.pdf, Retrieved 14 July 2012.

[39] Understanding lustre. Available at: http://wiki.lustre.org/manual/LustreManual20_

HTML/UnderstandingLustre.html, Retrieved 03 May 2012.

[40] Virtual machine - wikipedia entry. Available at: http://en.wikipedia.org/wiki/Virtual_

machine#Process_virtual_machines, Retrieved 13 May 2012.

[41] Vm autostart option. Available at: http://forums.citrix.com/message.jspa?

messageID=1558923#1558923, Retrieved 22 June 2012.

[42] Xcp - manuals and documentation. Available at: http://wiki.xen.org/wiki/Category:

Manual, Retrieved 09 June 2012.

[43] Xen - xcp download. Available at: http://xen.org/download/xcp/index.html, Retrieved

26 May 2012.

[44] Xen cloud platform project. Available at: http://xen.org/products/cloudxen.html, Re-

trieved 09 June 2012.

[45] Xen overview. Available at: http://wiki.xen.org/wiki/Xen_Overview, Retrieved 20 May

2012.

[46] Xencenter. Available at: http://wiki.xen.org/wiki/XCP_toolstack_on_a_

Debian-based_distribution, Retrieved 14 June 2012.

[47] Xencenter. Available at: http://community.citrix.com/display/xs/XenCenter, Re-

trieved 14 June 2012.

[48] Xencenter. Available at: http://www.citrix.com/xenserver/download, Retrieved 14

June 2012.

[49] Xenserver 6.0 virtual machine installation guide. Available at: http://support.citrix.

com/article/CTX130422, Retrieved 07 June 2012.

[50] Xenserver tools. Available at: http://docs.vmd.citrix.com/XenServer/6.0.0/1.0/en_

gb/guest.html#windows_pvdrivers, Retrieved 09 June 2012.

[51] Xenwebmanager sourceforge project. Available at: http://sourceforge.net/projects/

xenwebmanager/, Retrieved 27 June 2012.

67

 http://doc.ulteo.com/3.0/Easy_Installation.pdf
 http://doc.ulteo.com/3.0/Easy_Installation.pdf
 http://wiki.lustre.org/manual/LustreManual20_HTML/UnderstandingLustre.html
 http://wiki.lustre.org/manual/LustreManual20_HTML/UnderstandingLustre.html
http://en.wikipedia.org/wiki/Virtual_machine#Process_virtual_machines
http://en.wikipedia.org/wiki/Virtual_machine#Process_virtual_machines
 http://forums.citrix.com/message.jspa?messageID=1558923#1558923
 http://forums.citrix.com/message.jspa?messageID=1558923#1558923
 http://wiki.xen.org/wiki/Category:Manual
 http://wiki.xen.org/wiki/Category:Manual
 http://xen.org/download/xcp/index.html
 http://xen.org/products/cloudxen.html
 http://wiki.xen.org/wiki/Xen_Overview
 http://wiki.xen.org/wiki/XCP_toolstack_on_a_Debian-based_distribution
 http://wiki.xen.org/wiki/XCP_toolstack_on_a_Debian-based_distribution
 http://community.citrix.com/display/xs/XenCenter
 http://www.citrix.com/xenserver/download
 http://support.citrix.com/article/CTX130422
 http://support.citrix.com/article/CTX130422
 http://docs.vmd.citrix.com/XenServer/6.0.0/1.0/en_gb/guest.html#windows_pvdrivers
 http://docs.vmd.citrix.com/XenServer/6.0.0/1.0/en_gb/guest.html#windows_pvdrivers
 http://sourceforge.net/projects/xenwebmanager/
 http://sourceforge.net/projects/xenwebmanager/

[52] Bin Fan, Wittawat Tantisiriroj, et al. Diskreduce: Raid for data-intensive scalable

computing. page 4, November 2009.

[53] Brian Kernighan and Rob Pike. The unix programming environment. page 35, 1984.

[54] Carl Purvis and Morgan Marquis-Boire. Access over ethernet: Insecurities in aoe

(whitepaper). Available at: http://www.security-assessment.com/files/documents/

whitepapers/Access%20over%20Ethernet%20-%20Insecurities%20in%20AoE.pdf,

Written: 21 Aug 2006, Retrieved 03 November 2012.

[55] Sage Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn.

Ceph: A scalable, high-performance distributed file system. page 2, November 2006.

68

 http://www.security-assessment.com/files/documents/whitepapers/Access%20over%20Ethernet%20-%20Insecurities%20in%20AoE.pdf
 http://www.security-assessment.com/files/documents/whitepapers/Access%20over%20Ethernet%20-%20Insecurities%20in%20AoE.pdf

CPU Flags For Determining The Virtualization Support APPENDIX 1

1 CPU Flags For Determining The Virtualization Support

An example of displaying the CPU flags for determining the virtualization support on Linux/Unix
operating system.

user@desktop ~ $ cat /proc/cpuinfo | grep flags
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb
rdtscp lm 3dnowext 3dnow constant_tsc rep_good nopl nonstop_tsc extd_apicid
pni monitor cx16 popcnt lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a
misalignsse 3dnowprefetch osvw ibs skinit wdt npt lbrv svm_lock nrip_save

There is an AMD-V compatible processor model can be seen in the example above with the svm
flag. The second example shows CPU flags of an Intel processor model with the vmx flag.

user@xcpserver67 $ cat /proc/cpuinfo | grep flags
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp
lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf
pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm pcid
sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer aes xsave avx lahf_lm ida arat epb
xsaveopt pln pts dts tpr_shadow vnmi flexpriority ept vpid

69

VM Parameter List Before And After Installing Xenserver Tools APPENDIX 2

2 VM Parameter List Before And After Installing Xenser-
ver Tools

Virtual machine parameter list before installing Xenserver tools:

[root@xcpserver66 ~]# xe vm-param-list uuid=1e16e81e-3872-4fb2-3f1e-64c1dcd6919f
uuid (RO) : 1e16e81e-3872-4fb2-3f1e-64c1dcd6919f

name-label (RW): Linux Mint 13 MATE-virtual01

...lines removed..

allowed-operations (SRO): changing_dynamic_range; changing_VCPUs_live;
hard_reboot; hard_shutdown; clean_reboot;
clean_shutdown; pause; snapshot

...lines removed..

allowed-VBD-devices (SRO): 2; 3
allowed-VIF-devices (SRO): 0; 2

...lines removed..

os-version (MRO): <not in database>
PV-drivers-version (MRO): <not in database>

PV-drivers-up-to-date (RO): <not in database>
memory (MRO): <not in database>
disks (MRO): <not in database>

networks (MRO): <not in database>
other (MRO): <not in database>
live (RO): <not in database>

guest-metrics-last-updated (RO): <not in database>

...lines removed..

70

VM Parameter List Before And After Installing Xenserver Tools APPENDIX 2

Virtual machine parameter list after installing Xenserver tools:

[root@xcpserver66 opt]# xe vm-param-list uuid=1e16e81e-3872-4fb2-3f1e-64c1dcd6919f
uuid (RO) : 1e16e81e-3872-4fb2-3f1e-64c1dcd6919f

name-label (RW): Linux Mint 13 MATE-virtual01

...lines removed..

allowed-operations (SRO): changing_dynamic_range; pool_migrate;
changing_VCPUs_live; suspend; hard_reboot;
hard_shutdown; clean_reboot;
clean_shutdown; pause; checkpoint; snapshot

...lines removed..

allowed-VBD-devices (SRO): 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15
allowed-VIF-devices (SRO): 0; 2; 5; 6

...lines removed..

os-version (MRO): name: Linux Mint 13 Maya;
uname: 3.2.0-23-generic; distro: linuxmint;
major: 13

PV-drivers-version (MRO): major: 1; minor: 4; micro: 90; build: 53341
PV-drivers-up-to-date (RO): true

memory (MRO):
disks (MRO):

networks (MRO): 0/ip: 172.16.128.201
other (MRO): platform-feature-multiprocessor-suspend: 1;

feature-balloon: 1
live (RO): true

guest-metrics-last-updated (RO): 20120607T13:42:36Z

...lines removed..

71

Screenshots From Xcp Installation APPENDIX 3

3 Screenshots From Xcp Installation

FIGURE A3.1: XCP installation screenshots, select destination

FIGURE A3.2: XCP installation screenshots, confirm and start installation

72

Screenshots From Xcp Installation APPENDIX 3

FIGURE A3.3: XCP installation screenshots, installation completed

FIGURE A3.4: XCP installation screenshots, XCP starting up

73

Screenshots From Xcp Installation APPENDIX 3

FIGURE A3.5: XCP installation screenshots, XCP console status display

74

Screenshots From Ulteo Desktop Virtualization Demo Appliance APPENDIX 4

4 Screenshots From Ulteo Desktop Virtualization Demo
Appliance

FIGURE A4.1: Ulteo virtual desktop from web browser after login

75

Screenshots From Ulteo Desktop Virtualization Demo Appliance APPENDIX 4

FIGURE A4.2: Gimp application running on virtual desktop within web browser window

76

Scripts And Commands For The Compilation Tests APPENDIX 5

5 Scripts And Commands For The Compilation Tests

Compilation loop for performance test:

#!/bin/bash
Warning. This may take 3-5 days to run !!!

for i in 100..600
do

make clean ;
/usr/bin/time --output=distcc_build$i.txt -f "%e real,%U user,%S sys"
make -j35 CC=distcc

done

Performance and workload masurement commands

CPU and Disk

iostat -cd 2 200 > distcc_iostat.out.txt

Ethernet

sar -n DEV 2 200 > distcc_sar-out.txt

Output file processing one-liners

/dev/sda device statistics

awk ’/sda/ print $2’ distcc_iostat.out.txt

CPU statistics

awk ’/^ / print $1’ distcc_iostat.out.txt

Ethernet statistics

77

Scripts And Commands For The Compilation Tests APPENDIX 5

awk ’/eth1/ print $3’ distcc_sar-out.txt

Example output of iostat

user@desktop ~ $ iostat -cd 2 200
Linux 3.0.0-13-generic (desktop) 09/03/2012 _x86_64_ (4 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle
8.30 0.00 2.27 0.03 0.00 89.40

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
sda 4.72 63.67 169.36 941647 2504716

Example output of sar

user@desktop ~ $ sar -n DEV 2 200
Linux 3.0.0-13-generic (desktop) 09/03/2012 _x86_64_ (4 CPU)

04:40:27 PM IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s
04:40:29 PM lo 0.00 0.00 0.00 0.00 0.00 0.00
04:40:29 PM eth0 0.00 0.00 0.00 0.00 0.00 0.00

04:40:29 PM IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s
04:40:31 PM lo 0.00 0.00 0.00 0.00 0.00 0.00
04:40:31 PM eth0 0.00 0.00 0.00 0.00 0.00 0.00

78

Scripts And Commands For The Distributed Storage Tests APPENDIX 6

6 Scripts And Commands For The Distributed Storage
Tests

Distributed storage performance measurement script which generates directory structure:

#!/bin/bash
This script creates a two-level directory structure
and creates a file in each of subdirectory.

DIRECTORY=/tmp/1/

for i in 100..999
do

mkdir $DIRECTORY$i

for ii in 100..999
do

mkdir $DIRECTORY/$i/$ii
touch $DIRECTORY/$i/$ii/somefile$i$ii

done
done

Distributed storage performance measurement script which reads all file in directory structure:

#!/bin/bash
This script reads all files in directory structure
using "cat" command.

DIRECTORY=/dist_gluster_volume/1/

for i in 100..999
do

for ii in 100..999
do

cat $DIRECTORY/$i/$ii/somefile$i$ii > /dev/null
done

done

79

Scripts And Commands For The Distributed Storage Tests APPENDIX 6

Find file command example:

user@desktop:/tmp/1$ time find . -name somefile666999

Local disk types and parameters:

user@testpc73:/tmp/1$ sudo hdparm -I /dev/sda
[sudo] password for user:

/dev/sda:

ATA device, with non-removable media
Model Number: ST3500413AS
Serial Number: ****Serial****
Firmware Revision: JC49
Transport: Serial, SATA Rev 3.0
Standards:
Used: unknown (minor revision code 0x0029)
Supported: 8 7 6 5
Likely used: 8
Configuration:
Logical max current
cylinders 16383 16383
heads 16 16
sectors/track 63 63
--
CHS current addressable sectors: 16514064
LBA user addressable sectors: 268435455
LBA48 user addressable sectors: 976773168
Logical/Physical Sector size: 512 bytes
device size with M = 1024*1024: 476940 MBytes
device size with M = 1000*1000: 500107 MBytes (500 GB)
cache/buffer size = 16384 KBytes
Nominal Media Rotation Rate: 7200
Capabilities:
LBA, IORDY(can be disabled)
Queue depth: 32
Standby timer values: specified by Standard, no device specific minimum
R/W multiple sector transfer: Max = 16 Current = 16
Recommended acoustic management value: 208, current value: 0
DMA: mdma0 mdma1 mdma2 udma0 udma1 udma2 udma3 udma4 udma5 *udma6

Cycle time: min=120ns recommended=120ns
PIO: pio0 pio1 pio2 pio3 pio4

Cycle time: no flow control=120ns IORDY flow control=120ns
Commands/features:
Enabled Supported:

80

Scripts And Commands For The Distributed Storage Tests APPENDIX 6

* SMART feature set
Security Mode feature set

* Power Management feature set
* Write cache
* Look-ahead
* Host Protected Area feature set
* WRITE_BUFFER command
* READ_BUFFER command
* DOWNLOAD_MICROCODE

SET_MAX security extension
Automatic Acoustic Management feature set

* 48-bit Address feature set
* Device Configuration Overlay feature set
* Mandatory FLUSH_CACHE
* FLUSH_CACHE_EXT
* SMART error logging
* SMART self-test
* General Purpose Logging feature set
* WRITE_DMA|MULTIPLE_FUA_EXT
* 64-bit World wide name

Write-Read-Verify feature set
* WRITE_UNCORRECTABLE_EXT command
* READ,WRITE_DMA_EXT_GPL commands
* Segmented DOWNLOAD_MICROCODE
* Gen1 signaling speed (1.5Gb/s)
* Gen2 signaling speed (3.0Gb/s)
* unknown 76[3]
* Native Command Queueing (NCQ)
* Phy event counters
* unknown 76[15]

Device-initiated interface power management
* Software settings preservation
* SMART Command Transport (SCT) feature set
* SCT Long Sector Access (AC1)
* SCT LBA Segment Access (AC2)
* SCT Error Recovery Control (AC3)
* SCT Features Control (AC4)
* SCT Data Tables (AC5)

unknown 206[12] (vendor specific)
Security:
Master password revision code = 65534
supported
not enabled
not locked
frozen
not expired: security count
supported: enhanced erase
80min for SECURITY ERASE UNIT. 80min for ENHANCED SECURITY ERASE UNIT.
Logical Unit WWN Device Identifier: 5000c5003f84c6ec
NAA : 5

81

Scripts And Commands For The Distributed Storage Tests APPENDIX 6

IEEE OUI : 000c50
Unique ID : 03f84c6ec
Checksum: correct

user@xcpserver67 /tmp/1 $ sudo hdparm -I /dev/sda
[sudo] password for user:

/dev/sda:

ATA device, with non-removable media
Model Number: OCZ-VERTEX4
Serial Number: OCZ-PVB****Serial****
Firmware Revision: 1.3
Transport: Serial, ATA8-AST, SATA 1.0a, SATA II Extensions, SATA Rev 2.5,

SATA Rev 2.6, SATA Rev 3.0
Standards:
Supported: 9 8 7 6
Likely used: 9
Configuration:
Logical max current
cylinders 16383 0
heads 16 0
sectors/track 63 0
--
LBA user addressable sectors: 250069680
LBA48 user addressable sectors: 250069680
Logical Sector size: 512 bytes
Physical Sector size: 512 bytes
Logical Sector-0 offset: 0 bytes
device size with M = 1024*1024: 122104 MBytes
device size with M = 1000*1000: 128035 MBytes (128 GB)
cache/buffer size = unknown
Nominal Media Rotation Rate: Solid State Device
Capabilities:
LBA, IORDY(can be disabled)
Queue depth: 32
Standby timer values: specified by Standard, no device specific minimum
R/W multiple sector transfer: Max = 16 Current = 16
DMA: mdma0 mdma1 mdma2 udma0 udma1 udma2 udma3 udma4 udma5 *udma6

Cycle time: min=120ns recommended=120ns
PIO: pio0 pio1 pio2 pio3 pio4

Cycle time: no flow control=120ns IORDY flow control=120ns
Commands/features:
Enabled Supported:

* SMART feature set
Security Mode feature set

* Power Management feature set
* Write cache

82

Scripts And Commands For The Distributed Storage Tests APPENDIX 6

* WRITE_BUFFER command
* READ_BUFFER command
* NOP cmd
* DOWNLOAD_MICROCODE
* 48-bit Address feature set
* Mandatory FLUSH_CACHE
* General Purpose Logging feature set
* WRITE_DMA|MULTIPLE_FUA_EXT
* 64-bit World wide name
* Write-Read-Verify feature set
* WRITE_UNCORRECTABLE_EXT command
* Gen1 signaling speed (1.5Gb/s)
* Gen2 signaling speed (3.0Gb/s)
* Gen3 signaling speed (6.0Gb/s)
* Native Command Queueing (NCQ)

Non-Zero buffer offsets in DMA Setup FIS
* DMA Setup Auto-Activate optimization
* In-order data delivery
* DOWNLOAD MICROCODE DMA command
* WRITE BUFFER DMA command
* READ BUFFER DMA command
* Data Set Management TRIM supported (limit 16 blocks)

Security:
Master password revision code = 65534
supported
not enabled
not locked
not frozen
not expired: security count
not supported: enhanced erase
20min for SECURITY ERASE UNIT. 400min for ENHANCED SECURITY ERASE UNIT.
Logical Unit WWN Device Identifier: 5e83a97a8a2c059a
NAA : 5
IEEE OUI : e83a97
Unique ID : a8a2c059a
Checksum: correct

83

List of Tables

4.1 Virtual machine roles and their typical workload types 30

4.2 Memory consumption comparison of Linux desktop environments 31

5.1 Average disk reading rate comparison on Dell Optiplex 990 at different SATA ports

with single and RAID0 configurations . 36

5.2 Logical partition requirements and priorities . 40

7.1 Summary of executed tests . 61

84

List of Figures

1.1 Survey results about the planned virtual deployments for the near future. The survey

is dated second quarter of 2010. (1) . 12

2.1 Guest operating system virtualization . 18

2.2 Hypervisor virtualization . 19

2.3 Shared kernel virtualization . 20

2.4 Storage virtualization . 21

2.5 Thin provisioning example when a 60GB physical volume is over-allocated to

2x50GB virtual disks . 22

3.1 Comparison of the protocol stack complexity between AoE and iSCSI (6) 26

4.1 Virtual machine cluster prototype . 27

4.2 Virtual disk subsystem. (Similar configuration is used in the prototype.) 29

5.1 Illustration of a Gluster distributed volume . 44

6.1 Research approach for verifying the hypothesis . 49

6.2 Compilation time distribution on native operating system 51

85

6.3 Compilation load on single machine with native operating system 52

6.4 Compilation time distribution on single virtual machine 53

6.5 Compilation load on single virtual machine . 54

6.6 Compilation time distribution with distcc . 56

6.7 Compilation load on master node of distributed build system 57

6.8 Compilation load on slave computing node of distributed build system 58

6.9 Distcc number of jobs . 59

7.1 Test script execution times comparison between local and distributed volumes . . . 61

A3.1 XCP installation screenshots, select destination 72

A3.2 XCP installation screenshots, confirm and start installation 72

A3.3 XCP installation screenshots, installation completed 73

A3.4 XCP installation screenshots, XCP starting up . 73

A3.5 XCP installation screenshots, XCP console status display 74

A4.1 Ulteo virtual desktop from web browser after login 75

A4.2 Gimp application running on virtual desktop within web browser window 76

86

	Abbreviations and acronyms
	Introduction
	Virtualization: definition
	History of virtualization
	Free/Libre Open Source
	Scope and limitations

	What can be virtualized?
	Application level virtualization
	Presentation virtualization
	Guest operating system virtualization
	Hypervisor virtualization
	Shared kernel virtualization
	Storage virtualization
	Thin provisioning

	Distributed disk arrays and file systems
	Hadoop distributed file system
	Lustre distributed file system
	Ceph distributed file system
	GlusterFS
	iSCSI
	ATA over Ethernet

	Virtual machine cluster
	Storage subsystem
	Virtual machine instance types
	Requirements
	Resource usage considerations
	Implementation plan

	Prototype implementation and configuration
	Selected hardware components
	Hardware installation
	Experiences with RocketRaid SATA adapter
	Physical placement of machines

	Selected virtual server platform
	XCP management interfaces
	XCP resource pool
	XCP installation

	Selected distributed disk solution
	Gluster installation
	Firewall configuration for Gluster
	Building up the storage pool
	Setting up storage volumes

	Fine tuning and configuration of virtual servers
	Installing VM from ISO image
	Installing Xenserver tools
	Time synchronization between Dom0 and VMs
	Forced file sytem checking at every boot
	Automatic VM startup on server boot

	Performance tests with VMC
	Research approach
	Building task
	The build speed of the single machine native installation
	Measurement results of build speed from single virtual installation
	Measurement results from distributed build
	Number of parallel compilation jobs
	Discussion and summary of tests

	Performance of distributed storage
	Test environment
	Test results

	Conclusion
	Commodity hardware
	Virtual server with XCP
	Distributed disk array with Gluster
	Improvement possibilities and future plans

	References
	Appendices
	CPU Flags For Determining The Virtualization Support
	VM Parameter List Before And After Installing Xenserver Tools
	Screenshots From Xcp Installation
	Screenshots From Ulteo Desktop Virtualization Demo Appliance
	Scripts And Commands For The Compilation Tests
	Scripts And Commands For The Distributed Storage Tests
	List of tables
	List of figures

