

Juha Hollanti

Representing Knowledge

Thesis
CENTRAL OSTROBOTHNIA UNIVERSITY OF APPLIED
SCIENCES
Degree Programme for Information Technology
November 2010

Thesis Abstract

Department
Technology and Business,
Kokkola

Date
22 Nov 2010

Author
Juha Hollanti

Degree programme
Degree Programme for Information Technology

Name of thesis
Representing Knowledge

Instructor
Szewczyk Grzegorz

Pages
88 + appendices

Supervisor
Szewczyk Grzegorz

This thesis work was about creating a commissioned work for a company called
ALMA Consulting Ltd. The commission work was about creating a visual
representation for the system that ALMA is building. The ALMA system is an
information and knowledge management system for factories and production
facilities.

This work is also about investigating the user interface differences between two
technologies – the Java platform and Qt UI library. This comparison proved to be
difficult to make and the results found are somewhat ambiguous. The comparison
fell short because of a lack for a proper graphing library for Qt.

The goal of this work was to build an application and to build this application a
software methodology titled Unified Process was used. This report extensively
tries to describe the Unified Process and how a person might employ it in use in
Software projects. This report was built and documented in an Agile project
manner, which makes it a little bit different from a normal approach to writing a
project document.

Keywords:
ALMA, Software Engineering, Graph Visualization, Visualization of Objects, Java,
Qt,

Abstrakti

Osasto
Tekniikka ja Liiketalous,
Kokkola

Date
22.11 2010

Tekijä
Juha Hollanti

Koulutusohjelma
Tietotekniikan koulutusohjelma

Opinnäytetyön nimi
Representing Knowledge

Ohjaaja
Szewczyk Grzegorz

Sivuja
88 + liitteet

Valvoja
Szewczyk Grzegorz

Tämän työn tarkoitus oli luoda sovellus yritykselle nimeltään ALMA Consulting
Oy. Sovelluksen tarkoitus on visuaalisesti tuoda esille yrityksen luoman
sovelluksen, ALMA järjestelmän, rakenne. ALMA on tietämyshallintajärjestelmä
teknisen tiedon ja tapahtumien elinkaarenaikaiseen hallintaan. Työn tavoite
saavutettiin onnistuneesti.

Tämän työn oli myös tarkoitus verrata toisiinsa Javan ja Qt:n tarjoamia
käyttöliittymäsuunnittelua.

Tässä työssä käytettiin sovelluskehitysmenetelmää nimeltään Unified Process.
Tämän työn tarkoitus oli myös kuvata, miten tätä menetelmää käyttäen luodaan
sovelluksia ja tama työ dokumentoitiin Agile kehitysmenetelmän tavoin. Tämän
takia raportin rakenne poikkeaa jokseenkin perinteisestä raportin rakenteesta.

Hakusanat:
Graph

TERMS

Agile A broad term to house a number of modern
software engineering methodologies. The most
common Agile methodologies are Scrum and UP
with its different variations such as RUP.

ALMA Automation Lifecycle Management. Because
ALMA is both an acronym and a company, it
creates a source of ambiguity. In this work
ALMA is never used as an acronym. When
speaking of ALMA I'm always referring to the
company, not the acronym.

ALMA Consulting Ltd. The company, which commissioned the work
discussed in this report.

AWT Abstract Window Toolkit. The original
windowing, graphics and user-interface widget
toolkit for Java.

BFS Breadth First Search. A search used with graph
structures. Contrast with DFS.

BGL Boost Graph Library. C++ library for analyzing
graphs.

Boost A set of various C++ libraries.

CVS Concurrent Versioning System. Version control
tool.

Design Pattern A general, i.e. reusable, solution to a software
engineering problem.

DFS Depth First Search. A search used with graph
structures. Contrast with BFS.

Edge Graph element. Connects two nodes to each
other.

Graph (Graph Theory) The word graph is used in different context where
it exhibits different meaning. I want to set apart
the graphs discussed in this work from the most
popular notion of a graph, i.e. a graph of a
function. The graphs discussed in this work are
graphs of Graph Theory, not graphs of a
function.

Graph (Graph of a Function) Graph of a function plots how the output of a

function changes in respect to the input it
receives.

GraphML Graph Markup Language. A standard markup
for graphs.

HWA Heat, Water, Air-condition.

IDE Integrated Development Environment. Tool of a
developer, which includes compilers, builders,
etc. in one concise package.

Interface (Programming) A programming language construct, which
allows the design of robust and scalable systems.

Interface (API) Application Programming Interface (API)
describes how to use an external (3rd party)
application via an interface designed specifically
for this purpose.

Interface (Between
Technologies)

For example, an interface between Java and C++,
which is one aspect of this whole work.

JNI Java Native Interface. A technology to interface
Java technology with operating system native
technology.

JVM Java Virtual Machine. JVM executes Java byte
code.

MVC Model-View-Controller. A Design Pattern used
in most systems, which offer user interface
elements.

Node Graph element. A nexus point to which edges
connect to.

OOP Object Oriented Programming. OOP is the
mainstream solution for managing large software
projects.

OOA/D Object Oriented Analysis and Design. The
concept of modeling and designing software
systems.

OGDF Open Graph Drawing Framework. A C++ library
for graph drawing.

Qt Qt application framework. A cross platform
library to create native software. Primarily
advertised for its effectiveness in UI
development.

Swing Swing supersedes AWT by providing a richer set

of UI widgets.

TDD Test Driven Development. Software engineering
method.

UI User Interface.

UML Unified Modelling Language. General purpose
modeling language for software engineering.

UP Unified Process. An iterative software
development methodology.

Set (Mathematics) Unordered set of arbitrary items.

VCS Version Control System.

Vertex Synonym for node.

Waterfall Software development methodology, which
emphasizes planning and documentation.

TABLE OF CONTENTS
1 Introduction ... 1	

2 Goals and problem setting ... 2	

2.1 ALMA Consulting Ltd. .. 2	

2.2 Goals ... 2	

2.3 Context ... 3	

2.4 Limitations of the work ... 3	

2.5 Structure of this document .. 4	

3 Initial settings and overview of the achievable result ... 5	

3.1 Hierarchical views .. 5	

3.2 Network views .. 5	

3.3 Schematics ... 6	

3.4 Grouping and abstractions ... 7	

4 Theory ... 8	

4.1 Graphs .. 8	

4.2 Trees ... 11	

4.3 Maps, Lists and Sets ... 14	

4.4 Miscellaneous .. 14	

4.5 Layouting Graphs .. 18	

4.6 Design Patterns ... 24	

4.6.1 Strategy ... 25	

4.6.2 Observer ... 26	

4.6.3 Composite ... 27	

4.6.4 MVC .. 28	

4.6.5 Decorator .. 30	

4.6.6 Command ... 32	

4.6.7 Singleton ... 33	

4.6.8 Memento ... 34	

4.6.9 Façade ... 34	

4.6.10 Visitor .. 34	

4.7 Software Engineering .. 37	

4.7.1 Agile over Waterfall? .. 37	

4.7.2 Agile Unified Process (UP) .. 39	

4.7.3 UP Project Phases .. 39	

4.7.4 UP Disciplines .. 40	

4.7.5 UP Artifacts .. 41	

4.7.6 Use Cases .. 42	

5 Tools of the trade ... 44	

5.1 Java ... 44	

5.2 Qt .. 44	

5.3 External Java Libraries ... 45	

5.4 Java Native Interface (JNI) .. 45	

5.5 Concurrent Versioning System (CVS) for Version Control 46	

5.6 Integrated Development Environments (IDE’s) .. 46	

6 Leg Work .. 47	

6.1 Inception .. 47	

6.1.1 Initial Requirements For The Project .. 47	

6.1.2 Use Cases - functional requirements .. 49	

6.1.3 Implementation ... 49	

6.2 Java Elaboration 1 ... 49	

6.2.1 Tasks .. 50	

6.2.2 Core Architecture .. 50	

6.2.3 Implementation ... 54	

6.3 Java Elaboration 2 ... 54	

6.3.1 Tasks .. 54	

6.3.2 Core Architecture .. 54	

6.3.3 Implementation ... 55	

6.4 Java Elaboration 3 ... 55	

6.4.1 Core architecture ... 55	

6.4.2 Implementation ... 57	

6.5 Qt Elaboration ... 57	

6.5.1 Requirements ... 58	

6.5.2 High-Risk Elements .. 58	

6.6 Iterations for the Java application .. 62	

6.7 Iteration 1: Plotter Base Class and Network plotter .. 62	

6.8 Iteration 2: Schematic plotter .. 63	

6.9 Iteration 3: Commands .. 64	

6.9.1 Undoable Commands ... 66	

6.9.2 Effects .. 66	

6.10 Iteration 2: Saving the program’s running state .. 67	

6.11 Iteration 3: Façade for GraphConfiguration ... 68	

6.12 Iteration 4: Choosing a layout algorithm .. 71	

6.13 Beta Tests ... 71	

6.14 Deployment ... 72	

7 Results ... 73	

7.1 Summary of the work .. 73	

7.2 Performance—heuristic ... 74	

7.3 Performance—benchmarking ... 75	

7.4 Evaluation of the design process ... 86	

7.5 On the issue of Java vs. Qt .. 87	

7.6 General Reflections on Software Engineering .. 87	

 1

1 INTRODUCTION

Information and structure is best described using images and symbols. From a
human point of view a visual representation can be consumed much more quickly
and much more efficiently. This thesis works in this context—in the context of
visualizing data, information and knowledge. This thesis work was commissioned
by ALMA Consulting Ltd.

This work also touches upon the issue of user interface (UI) development—
especially, maturity of UI development between different platforms. Two
technologies are contrasted between each other, the Java platform and Ot
application development framework. Drawing straight on conclusions between
Java and Qt can be deemed as a naive task since the technologies vary and work in
different areas—Java is a full-blown platform whilst Qt is "just" a UI library.
However, Qt offers functionality past UI and what Qt lacks can be taken care of
with C++ since Qt works on top of C++.

This work is primarily about software engineering. There's of course theory about
networking and graphs but all those aspects are rather well taken care of by ready-
made libraries used in this work—I won't go into great detail about graphing. So,
when reading this take into consideration that it mainly describes the software
engineering process I followed when creating new software. This software
engineering process is thoroughly discussed in chapter 4.7 .

All the images and pictures in this work are title as graphs. So you’ll see images
and pictures of class diagrams, sequence diagrams, etc., titled as graph 1, graph 2,
etc. These pictures and images, though titled as graphs, are not to be confused
with the graphs discussed in this thesis work. The graphs discussed in this work
are data structures. A more detailed description can be found from chapter 4.1 .

 2

2 GOALS AND PROBLEM SETTING

The primary goal of this work is, of course, to provide a working solution for the
commissioner of the work. This is nothing too amazing in itself; it's basically to
employ the use of a Java graphing library to represent information and knowledge
in a clear and concise way.

Secondary goal is to contrast Qt with Java, or more precisely, Qt in combination
with C++. The secondary goal is a "nice-to-have" and it's purely an additional
goal, which is greatly shadowed by the primary goal.

Also posing a problem is to develop a Java and a Qt application simultaneously so
that they could be effectively compared. The two projects overlap by some but
there are also aspects, which vary greatly between the two.

2.1 ALMA Consulting Ltd.

The company, which commissioned the work, ALMA Consulting Ltd, is a
knowledge-based company founded in 1986; currently located in Kokkola. To
describe the company, the following excerpt is from the ALMA website:

ALMA® is a totally integrated engineering and knowledge management
system for creation and life-cycle handling of Logical Plant Model, technical
data and documentation, production line efficiency and maintenance
management. (ALMA Consulting Ltd. 2010)

2.2 Goals

The goal of this work is to produce sensible means to portray the ALMA
information system in a graphical setting. This means providing clear and concise
visual representation of information about different elements in the information

 3

system and how they relate to each other. The ALMA knowledge management
system is an object-based system where objects can relate to each other by
hierarchy and links. For a naive comparison, it could be contrasted with the
structure of the World Wide Web.

2.3 Context

The ALMA system is an information system for plants and production facilities in
general. Its main purpose is to document in some way or the other all that
happens in a production system. ALMA offers products for Process Automation,
Field Engineering, Electrical Engineering, Mechanical Engineering, Construction,
Maintenance, HWA and Documentation. All the different products (or modules)
work on top of a core application, which is responsible for composing tailored
solutions for different needs. ALMA uses server-client based architecture. Both the
server and the client are realized using Java technology. For the client, ALMA
offers a desktop application for all systems that support Java, as well as a web
interface for browsers. The ALMA system is integrated to 3rd party systems where
necessary.

All this varying information and functionality should be able to be expressed by
visual means—i.e. by drawing a graph—which shows how different parts interact
with each other.

More detailed description of ALMA system is considered sensitive material and it
shall not be discussed in this work.

2.4 Limitations of the work

This work aims to describe the structure of the ALMA system and how to
implement a graphical graph representation on top of it. This work does not try to
describe how exactly the ALMA system might be used—this would be the subject
of a completely different thesis work.

 4

2.5 Structure of this document

This document first describes the initial settings and requirements of the work.
After that all the theoretical aspects are accounted for and last the work done is
documented.

This work was done using Agile software methodologies, which means that
contrary to traditional software development, no exhaustive plans were made
before the work was started. Every effort has been made to adhere to Agile
software development methods and Agile modelling (see chapter 4.7) when
creating the documentation. (Larman 2005, 17-22)

All major, and some of the minor use cases—which are not that numerous—are
documented and in this fashion the future development of the system is also
going to be, at least partially, documented. These requirements have been mainly
gathered by conducting meetings in the workplace where people suggested
functionalities that would be useful for the end users. On top of these "pre-made"
requirements actual customers have suggested functionalities that they would
need to have in the product so that it would better produce value for them. I also
insisted on a few of my own functionalities.

 5

3 INITIAL SETTINGS AND OVERVIEW OF THE ACHIEVABLE RESULT

The primary thesis of this work is to provide a working solution to visually
present the ALMA system. There are varying aspects to this, which are included
next.

3.1 Hierarchical views

To get the best picture of how a production facility is structured a hierarchical
view is the best choice. This is also a good way to introduce the layout of the
production facility to new, and maybe even to old, personnel. It provides a clear
and concise way to understand the lay of the land.

3.2 Network views

A network view is basically the same as a hierarchic view but it also supports
inspection of the link structure. The need for network views is to quickly realize
the structure of information (or data) flow in the system. This could, for instance,
be used to quickly realize any possible weaknesses in the information flow.

Picture below depicts an example of a network view of an arbitrary structure. It
might be difficult to interpret this picture. The picture consists of graph elements,
nodes and edges. A node is a dot on the picture. Each node is connected to an
arbitrary amount of other nodes by a line leading from one node to the other. This
connecting line is called an edge. This essentially forms a graph. In this case the
graph is connected because you can start from any given node in the picture and
by following edges you can reach all nodes in the graph.

 6

Graph 1: Example of a networked graph structure (yWorks 2010)

As an example, imagine a production facility that uses automated sensor to signal
the start of a production cycle. This could be something like a proper amount of
weight of substance in a conveyor line before production can be started. Now
imagine that this sensor is not connected to the system or perhaps it's connected
but in an incorrect way. To spot these kinds of deficiencies is critical because a
production facility cannot tolerate constant pauses, which cause loss of resources
and time.

3.3 Schematics

Schematics are used to display connections, e.g. from a sensor to chip. The world
of schematics is also a very broad and deep one. In this work a basic
implementation for schematics is included, but it would be too much to work out
an exhaustive implementation.

 7

3.4 Grouping and abstractions

An important aspect of information visualisation is to group and abstract certain
things. For instance, same kinds of things should be grouped and some things
should be abstracted away. An example of an abstraction would be to represent a
cable instead of all the wires it holds within it.

Creating groups and abstractions in a graph will quickly add to the complexity of
the whole application since in a graph, all functionality either indirectly or directly
affects other functionality. E.g. grouping might affect abstractions and vice-versa,
because elements of a graph might belong to both sets. Grouping and abstractions
directly affect the basic elements of a graph. This creates an intertwined
functionality mess, which is difficult to implement and maintain (coding wise).

 8

4 THEORY

Graph theory contains within it all the theoretical aspects of this work. To begin
with, I’m going to describe the basic nature of graphs and trees (since trees are
perhaps the most common type of graph) and how they're used utilized in the
work. I'm also going to describe other data structures used in the work and the
most common/important algorithms used.

I'll also describe the software engineering methods used and I'll provide quick
explanations for the Design Patterns used in this work because in chapter 47 I will
refer to these structures rather often.

I'll also describe a few algorithms. Though this is largely unnecessary, it does paint
a picture of how one works with graphs.

4.1 Graphs

A graph is a data structure in computer science used to model the relationships
between objects. These objects can be whatever the problem requires them to be. A
graph consists of nodes and edges. A node is a nexus point to which edges can
connect to. Two edges cannot connect to each other. Thus graphs realize network
structures, which again can be used to model things like the World Wide Web.
(Knuth 1997, 363-372)

The following picture depicts a simple graph.

 9

Graph 2: Simple graph

There exist various definitions and various different semantics for graphs with
differing natures. Concerning this work, it's not necessary to go over different
definitions. Suffice to say that a graph can take on various characteristics, which
quickly turn it from one thing to another.

As a single example, consider the definition for a tree. A tree is said to be a

connected, undirected, acyclic graph (Black, tree 2008). It is in this fashion that
different kinds of graphs are labeled. Connected means that if you start from any

node in the graph, you can reach any other node by traveling via edges (Black,

connected graph 2004). Acyclic means that there are no cycles formed in the graph

structure (Black, acyclic graph 2004). Adding a single edge to the tree found from
Graph 4: Simple tree structure would render the graph cyclic (consider Graph 2:
Simple graph) and it could no longer be seen as a tree in the meaning of the word.
Removing an edge renders the tree as a forest (more on forests shortly). This

means that a tree always has an edge count of 𝑛 − 1, where n is the amount of
nodes.

If the graph was not connected but was acyclic, it would mean that the graph would
consist of a number of trees. This would essentially render the graph to bear the

 10

label forest (Black, forest 2004). So, a forest is a group of trees—a quite fun, and
fitting, multilevel analogy. A forest could then be defined as having an edge count

of (𝑛 − 1) − (𝑡 − 1), where n is the amount of nodes in the graph while t is the
amount of trees in the graph.

In addition to the definitions found from this simple definition of a tree, a graph
can be considered directed or undirected. This simply states whether the edges of
the graph are directed or not—that is, an edge can only be traversed one way so
that if an edge exists between nodes A and B and the edge is directed, meaning
that it travels from node A to node B, you can only traverse the edge from node A

to node B (Black, directed graph 2008). Consider the following graph:

Graph 3: Directed and Undirected Graphs side by side

This gives new meaning to cyclic and acyclic, since it's not a given that a cyclic
graph stays cyclic if you superimpose the meaning of directed edges upon it.

There also exist a variety of terms, which further specify a given structure. A tree
could, for instance, bear an add-on label of binary, making it a binary tree. A binary

 11

tree could, once again, be furthermore labeled e.g. red-black tree or it could be
generalized into a B-tree and/or a number of other labels could be assigned to it
(Black, red-black tree 2011). Concerning this work, it doesn't really matter what all
of these labels mean, suffice to say that there are very many of them.

Concerning data structures, graphs are usually implemented with maps, where
graph elements and connections between the elements are stored in maps. A
graph is not an overly complex structure but surprisingly enough, most problems
can be modelled into graph problems. (Yegge 2008)

4.2 Trees

Trees are the most important nonlinear structure in computer algorithms.
Nonlinear means that you can’t have, except on special cases, linear trees—that
would effectively render them as lists. Like the graph, a tree is a data structure
consisting of nodes and edges—more precisely, tree is a specialization of a graph.
Trees differ from graphs in the sense that a tree cannot have within it loops.
(Knuth 1997, 308)

The following picture describes a simple tree. The numbers inside the nodes is not
important in this context.

 12

Graph 4: Simple tree structure (Holowczak 2007)

As can be seen from the picture, a tree—any graph for that matter—has the
following elements in it: root node, leaf nodes, parents, children and siblings. The
definitions parents, children and siblings are of course context sensitive—different
nodes have different relationships, i.e. different parents and/or children and/or
siblings. Two nodes cannot have same relations; otherwise they would essentially
be the same element.

Trees are especially useful when representing hierarchies. Consider Graph 5:
Family tree of Arwen Evenstar of a simple family tree. The hierarchy is easy to
spot and it's easy to see how everybody relates to each other.

 13

Graph 5: Family tree of Arwen Evenstar (Squidoo 2011)

14

4.3 Maps, Lists and Sets

Graphs and trees are the primary ways to visualize an information system like the
ALMA system is. However to support these data structures a variety of other data
structures are utilized.

A map is a data structure, which associates a value to a key. The key and the value
can be anything that will fit the bill. (Vesterholm and Kyppö 2006, 290, 300,
Niemeyer and Knudsen 2005, 361-363)	

A list is an ordered (i.e. sequential) set of items. It can hold duplicate values in it
and it is usually used to hold an array of similar kinds of items within it. The list is
most likely the most used data structure in applications of any kind. (Vesterholm
and Kyppö 2006, 290-292)

A set on the other hand does not allow duplicate values in it nor does it keep an
order of any kind in it. A set (at least concerning Java) consists of homogeneous
types of objects. (Vesterholm and Kyppö 2006, 290-292)

4.4 Miscellaneous

When dealing with maps, quite frequently the maps used are hashed maps. A
hashed map uses a hash value of an object instead of the object itself the key. A
hash value is a simple value, such as an integer, given to a complex structure, such
as an object. This way it is easier and faster to work with complex structures.
Invariably, the maps used in this work are going to be hashed maps because they
offer constant time for adding, removing and retrieving an element. The one
drawback that hashed maps introduce is that if you're extremely unlucky you
might get collisions when converting complex structures into simple hashed
values. This does not happen often and usually it can be guaranteed not to
happen.

15

Graph 6: Hashing example

In Java, a map needs to be typed, i.e. you need to define what kinds of elements
you want to store in it. This is perfectly fine. Java does not, however, support the
use of primitive types as map types. This means that instead of using a number,
Boolean, etc. as the type, you need to use the primitive types object type.
(Niemeyer and Knudsen 2005) The object types work exactly the same as primitive
types but they consume more memory and are slower to work with. To come
around these limitations an external library is used, when applicable, called
fastutil, which offers maps (and other data structures too), which can be typed
with primitive types. The functionality remains exactly the same; the performance
is a little bit better, especially when it comes to preserving memory. The difference
is small but with large structures it helps a lot. 	

Traversing a graph can be done in a number of ways but they usually fall into two
categories: breadth first and depth first. Most often, when a graph is traversed it is
done in order to find an item. Search-wise, corresponding with breadth first and
depth first are Breadth First Search (BFS) and Depth First Search (DFS). The names
rather successfully describe how the searches work. BFS searches for an item,
trying to find it first as near as possible, DFS quickly starts to look for the item
further away. BFS is especially useful if you want to limit the number of
recursion—i.e. the maximum depth of how far away should the item be looked for

16

(Knuth 1997, 351). BFS is also very useful if you want to search for the nearest
matching element (Knuth 1997, 351). The implementation of a DFS is a bit more
straightforward than that of BFS because a DFS can be implemented by using
recursion alone. (Knuth 1997, 437)

Consider the following graphs. The number inside a node tells the order in which
it is processed; contrast the difference between BFS and DFS.

Graph 7: BFS example

17

Graph 8: DFS example

Other ways of traversing graphs are Pre Order, Post Order and In Order. These
methods may very well be more common than BFS or DFS. Consider the following
graph:

Graph 9: Pre Order, Post Order and In Order ways to traverse a graph

Preorder traversal first considers the node itself, then its left descendants and

finally its right descendants (Black, postorder traversal 2008). Post Order traversal
first considers a nodes left descendant, then its right descendant and finally the

18

node itself (Black, postorder traversal 2008). In Order traversal first considers the
nodes descendant on its left, then the node itself and finally the descendant on its
right (Black, in-order traversal 2008).

Often when traversing a graph, a technique called coloring is used. Coloring is
adding information to a node to ensure, for instance, that a node is processed only
once, or some other predefined number of times. This is important when loops
arise in a graph structure—you need to somehow be able to tell what nodes you
have gone through already, otherwise you would spend the rest of eternity
traversing the graph.

Sometimes when traversing a graph, the structure of the graph is first flattened or
linearized before it is processed. This means that the relationship information is
abstracted away from the graph—the nodes are stored as an ordered set (i.e. a list)
while the edges are ignored altogether. A graph can be flattened using a number
of strategies. E.g., left-to-right flattened list of the graph found from Graph 8: DFS
example gives a list of: 3, 2, 4, 1, 6, 5, and 7. Top-to-bottom would yield: 1, 2, 5, 3, 4,
6 and 7. There are numerous ways to flattening a graph.

4.5 Layouting Graphs

An important aspect of creating graphs and trees is to visually layout them to the
screen. This is primarily where the yFiles Java library comes in. yFiles provides a
number of layout algorithms. The primary layout methods used in this body of
work are: Hierarchic, Organic, Balloon ... etc. The names of the layout algorithms
quite successfully describe how they function.

Layouting is an important aspect of this work because with different structures
different layout algorithms provide views, which are easier for human beings to
interpret visually. Hierarchical views, for instance, are ideal when the hierarchical
nature of a tree is presented. If included in that same tree is the link structure, a
different layout algorithm might portray information in a better way. There is no

19

simple way to say where to use a given layout algorithm, which only stresses
the importance of allowing the user to specify it by themselves.

Below are pictures of graphs layouted with various layout algorithms. Note the
picture rendered with Circular layouter—a graph can quickly grow to be hard to
understand. The nodes and edges are of varying shapes and sizes in the pictures.
This goes only to show that it's possible to create nodes and edges with varying
characteristics.

20

Graph 10: Hierarchic layouter (yWorks 2010)

21

Graph 11: Organic layouter (yWorks 2010)

22

Graph 12: Orthogonal layouter (yWorks 2010)

23

Graph 13: Tree layouter (yWorks 2010)

24

Graph 14: Circular layouter (yWorks 2010)

4.6 Design Patterns

The following subheadings provide a short description of the most important
Design Patterns used in this body of work. Design Patterns are a way to create
reusable object oriented software (Gamma, et al. 1994, 1).

25

4.6.1 Strategy

Strategy Pattern is one of the simplest Patterns out there. A Strategy Pattern
allows the selection of an algorithm at runtime, i.e. Strategy Pattern allows one
class to work in a number of ways by delegating the process of an algorithm to
another implementation. (Gamma, et al. 1994, 315)

Graph 15: Structure of Strategy Pattern (Gamma, et al. 1994, 316)

A strategy class implements an interface. Using this notion you can have a family
of strategy classes which all implement that same interface. A class with a variable
of that type of an interface can change the implementation of that variable to any
one in that family of strategies.

For example, imagine a duck simulator application. This application models
different kinds of ducks within it. Different kinds of ducks have different kinds of
quacks. Some ducks have the same kinds of quacks though. To reasonably manage
different kinds of quacks it would be sensible to define quacks as classes of their
own. Then we could make all these classes implement the same interface (let's call
it DuckQuack) and define in that interface a method called quack. Now we could
associate a duck with a DuckQuack implementation and whenever a duck needs
to quack we would delegate the call from the duck class to the DuckQuack
implementation. If a duck becomes old and loses its ability to quack, we could
switch to a DuckQuack instance which is unable to quack (i.e. the method in it
does nothing). (Freeman, et al. 2004, 2-24)

26

The Strategy Pattern is used in many places – so many that it would prove to be
rather difficult to list them all. It's a Pattern that you use even if you don’t quite
realize it. In practice every time you're using an object as an interface you're using
the Strategy Pattern. Simply put, it's too arduous to go over all the places where
this occurs.

4.6.2 Observer

The Observer Pattern is used to link together different objects. In this Pattern these
objects are of two types, the ones that listen to other objects (Observer) and the
ones who signal the other one to do something (Observable). I.e. when the state of
one object changes all its dependents are notified of this change and they can then
change their own state. (Gamma, et al. 1994, 293)

Graph 16: Structure of Observer Pattern (Gamma, et al. 1994, 294)

An Observable object keeps a list of observing members. This list is usually typed
by some interface and it usually implements a method called update. Whenever
the Observable changes its state it simply goes through all the registered members
in its list and calls their update method. (Gamma, et al. 1994, 293)

A simple real world example: Imagine that there’s a radio station broadcasting a
message. There are some end-devices listening to that broadcast. Essentially, in

27

this rather mundane example, the radio station is the observable while the end-
devices are observers. Whenever the radio station sends a message the end-
devices pick it up and decide what to do with that signal.

The Observer Pattern is an integral part of the MVC Pattern. Other than that, the
Observer Pattern is not used very heavily in this work except when creating
undoable commands.

4.6.3 Composite

The Composite Pattern is very much similar to the Decorator Pattern. The
Composite Pattern essentially allows you to create a tree structure to represent
hierarchies. The intended idea is that you could have the root object of that tree
and only use it to manage all the subsequent nodes in the tree. (Gamma, et al.
1994, 163). This is not limited to this case however and you should use it as best
suites your needs. You could also use objects randomly from that hierarchy
because they all work in the same kind of manner, i.e. they all implement the same
interface.

Instead of using just single objects in the composite hierarchy you can also use the
entire hierarchy as a single object. It might sound that you would need to
implement something to make this happen but you don’t. Using the composite
patter allows the person using it to deal with a clean and simple interface, while at
the same time making it easy to extend your composite collection. (Gamma, et al.
1994, 166)

The setback is that you can easily create huge structures. Managing these huge
structures can of course become cumbersome. But as with all good things, nothing
is quite perfect. (Gamma, et al. 1994, 166)

28

Graph 17: Structure of Composite Pattern (Gamma, et al. 1994, 164)

The proverbial example when discussing about the Composite Pattern is always
UI components, especially Java Swing implements the Composite Pattern in an
exemplary manner.

Example: On top of the Swing UI hierarchy is an instance of a JFrame. You can
add various other components to this JFrame instance, like JButtons, JLabels,
JPanels and so on. The JFrame is then responsible for managing the lower lever
items found in the composite structure.

4.6.4 MVC

The MVC Pattern is not a single Pattern; it's a compound Pattern. This means that
it is composed of a number of other Patterns, sewed together and made to look
pretty in pink. The MVC Pattern is rather difficult to understand or to implement
despite good real world examples. (Freeman, et al. 2004, 529)

29

The MVC Pattern composes of three major parts: the View, the Controller and
the Model. The MVC Pattern uses three other Patterns to make it work: the
Observer Pattern, the Strategy Pattern and the Composite Pattern. (Freeman, et al.
2004, 529)

Graph 18: Structure of MVC composite Pattern (Moock 2011)

Between the Model and the View an Observer Pattern is used. This is to enable the
Model to update the view when it itself is updated. So, the Views register
themselves with the Model to receive updates of its state. The Views then update
themselves based on information they query from the Model when the need arises
(when the Model signals an update). It's important to remember that the Model
has no dependencies on Views or on Controllers - Views can simply register to
listen to state changes of the Model. (Freeman, et al. 2004, 532-533)

Between the View and the Controller lies the Strategy Pattern. The View can
choose the Controller it's associated with. This means that if the functionality
needs to be changed in the future the View can simply swap its Controller to
another one.

30

The View in itself is a GUI Composite. It means that you don't have to
separately update each of the elements of the GUI component, instead you update
the top level component and the top level component then deals with all the lower
level components via delegation or whatever mechanism is used. (Freeman, et al.
2004, 533)

Perhaps the most evident example of the MVC Pattern is the Web browser. The
Web browser renders the view on the screen based on HTML it received from a
Web server. This HTML code is basically the Model of the Web browser. The View
part of the Web browser is what you see on the screen after the browser has
finished parsing the HTML file and has formed a visual representation of it.

In this context the Controller part is the address bar where you can input an
address for a web page, thus changing the underlying model. JavaScript is also a
controller for a page (could be some other script language as well), which is used
to alter the state of the HTML code. For example with JavaScript you could
remove elements or add new elements to the HTML code. The browser then
updates the View automatically.

MVC Pattern can be found from almost anywhere where user interfaces are built.
In this body of work I didn't use it myself but the yFiles Java library uses it and it's
good to understand how a tool works.

4.6.5 Decorator

To separate responsibilities among different classes, rather than a single class, the
Decorator Pattern can be used. The Decorator essentially forms a chain of objects,
each object decorating previous one in the chain. The Decorator can also be
understood as a wrapper class. (Gamma, et al. 1994, 175-184)

All the Decorator classes share the same interface or base class. The Decorator
class has a member object of that interface, essentially wrapping it in itself.
(Gamma, et al. 1994, 175-184)

31

Graph 19: Structure of Decorator Pattern (Gamma, et al. 1994, 177)

For example, a template parser works on text file. It parses the text file and
whenever it comes across a keyword which signal an action to take, it delegates
that keyword to an object that knows what to do with it. This object can be
implemented as a Decorator where each object in the chain is responsible for
certain kind of behavior. For instance, if the parser comes across a piece of text
"[insert_current_time]" it recognized it as a keyword because it is enclosed within
brackets. It then inputs that keyword to a decorated keyword-handler object,
which is composed of a number of decorating objects. One of these objects knows
how to deal with "[insert_current_time]" and successfully returns the current time
for the parser.

The initial idea to use a Decorator for handling different kinds of graph plotting
strategies came into mind. It's something that might not be in the final design at
all, but there's a good chance that it will be mentioned.

32

4.6.6 Command

To issue commands in an application is a rather frequent operation. Usually you
hard code these commands into the application, essentially predefining what
happens every time you execute a certain routine. The Command Pattern is
created to allow you to change that command on the fly, without recompiling. The
Command Pattern encapsulates a command to an object. (Freeman, et al. 2004,
206-207)

Graph 20: Structure of Command Design Pattern (Gamma, et al. 1994, 236)

To employ the Command Pattern all you really need to do is to create an interface,
which is implemented by all command objects. You then program your
application against this interface rather than implemented objects. This interface
defines methods necessary for your application – usually it’s enough to define a
method called execute, which is essentially responsible for creating the
functionality defined in a given command object. (Freeman, et al. 2004, 207)

Sometimes you also want to be able to undo commands you’ve executed. This is a
nice feature for any application. To extend your command objects to support undo
you only need to extend your command interface to house another method called
undo. In case of undo methods you do however need something to keep track of
undoable commands. This can be anything you want it to. Easiest thing to do is to
create a singleton object running in a separate thread, responsible for keeping

33

track of executed commands and route all your undo requests through this
singleton object. (Freeman, et al. 2004, 216-220, 228)

4.6.7 Singleton

Singleton is probably the most used Design Pattern in software industry. It's also
probably the simplest one. The responsibility of the Singleton Pattern is to ensure
that there is only one instance of a given object used in the application. (Gamma,
et al. 1994, 127-134)

Singleton composes of only one class and its functionality is pretty
straightforward. The Constructor is declared private, preventing any other object
or class except the class itself to instance new objects. The class has a field holding
it's own type; this is essentially the only one object within the whole application.
The class also declares one static getter method, which is responsible for returning
the singleton instance to the caller. Usually, if the singleton instance is not defined,
it is defined in this method only once. (Gamma, et al. 1994, 127-134)

Consider a logger object. This logger object is responsible for managing all logging
operations in the application. To effectively store data and possibly even display
information, it is prudent that there is only one logger object present in the
application. If you have more, then you'll have to deal with concurrency issues
when they're writing information to file or creating log files. Singleton fits this bill
perfectly.

Singleton is again something, which is used extensively in this work. The places
are rather numerous. There's a logger and there's going to be a number of
instances, which handle threads and so on.

34

4.6.8 Memento

The Memento Pattern is used when a state of an object needs to be saved. It would
be cumbersome to save the state to object itself, rather it’s easier to use another
object simply for keeping track of all it’s defining attributes. Whenever an object
needs to be restored back to its previous state you can simply retrieve this state
from the memento object. (Freeman, et al. 2004, 624-625)

To create a memento class you need to simply account in it all the important
attributes found from the object, which state it is saving. Using a memento object
can prove to be difficult if your application is in a constant state of change because
every time you change something in the original object you also need to
accommodate this change into your memento object. (Freeman, et al. 2004, 624-
625)

4.6.9 Façade

The Façade Pattern defines a rather simple idea, i.e. to provide a simple
programming interface to a complex system. The façade allows you to use
complex composites through a single object making your system easier to use.
(Freeman, et al. 2004, 264)

4.6.10 Visitor

It’s as ominous as the lizards in the TV-show. Yet it’s kind of nice to have around
in a terrarium. It’s scary and it’s a commodity item all wrapped up into one. Who
wouldn’t love that?

The Visitor Pattern is used with composites to extend their functionality. The
Visitor Pattern allows you to traverse a composite collection. An important aspect
to take note of when using the Visitor Pattern is that it breaks encapsulation.
(Freeman, et al. 2004, 628-629)

35

The Visitor allows you to go through a group of objects that belong to the same
family. A visitor object visits each object in turn, inspects their state and does
something with that information and possibly even alters the state. The visited
object essentially exposes its internals to the visitor object and this is the only
drawback of the Visitor Pattern. (Freeman, et al. 2004, 628-629)

On the next page is a class diagram of the Visitor Pattern.

 36

Graph 21: Visitor Pattern structure. (Gamma, et al. 1994)

37

Implementing the Visitor Pattern is a rather messy business mainly because it
involves spreading code related to one group of classes in various places. It's easy
to get lost after a while. The Visitor is an appealing choice but it also brings
trouble to the table. (Freeman, et al. 2004, 628-629)

4.7 Software Engineering

The primary concern when choosing a software engineering principle is to adhere
to good object design. The idea is to create a maintainable solution, which will
serve to support future development of the system. (Larman 2005, 3)

The goal is to provide clear Object-Oriented Analysis and Design (OOA/D), using
Design Patterns and to effectively communicate these intentions in UML (Unified
Modelling Language) format. What lead to good OOA/D is good Requirements
Analysis, principles and guidelines of software development. All this work is
done in a iterative fashion with agile Unified Process (UP). (Larman 2005, 5)

I'm first going to describe all these things in brief before I describe exactly how
they were employed.

4.7.1 Agile over Waterfall?

Agile software development is something, which emerged after the waterfall
process was found to be ineffective. The waterfall process places a lot of weight on
documentation and especially documenting everything before anything is actually
coded. This ideology proved to be disastrous in many projects, although it can
actually work with a lot of problems. Choosing whether to use Agile over
Waterfall is largely just a decision made before the project is launched and there is
no real guideline to choose one over the other. However, these days the Waterfall

38

process is largely frowned upon and in general Agile is chosen over the
Waterfall process. (Larman 2005, 23, Vandenburg 2010)

To support the claims that the Waterfall process is inferior to Agile process,
research display the following numbers:

On average, 45% of the features in waterfall requirements are never used,
and early waterfall schedules and estimates vary up to 400% from the final
actuals.

In hindsight, we now know that waterfall advice was based on speculation
and hearsay, rather than evidence-based practices. In contrast, iterative and
evolutionary practices are backed by evidence - studies show they are less
failure prone, and associated with better productivity and defect rates.
(Larman 2003, Larman and Basili 2003)

Furthermore, the waterfall process was faulty from the beginning. It was not
supposed to be implemented as it was, in fact it was implemented in a completely
false manner. The waterfall process was build upon a paper by Winston W. Royce.
The paper was misinterpreted however because it didn’t try to explain how
software should be engineered; it tried to explain how software should not be
engineered. For some reason though, it ended up being used as a guideline for
software engineering. (Vandenburg 2010)

When first creating guidelines to software engineering, a task force discovered
viable solutions, which describe today’s Agile approach rather identically, i.e. they
defined that software should be engineered in an iterative fashion with high
emphasis on testing. A few years later the waterfall process was created. It was an
attempt to mimic software engineering with traditional engineering, like bridge
building for instance. Traditional engineering does not however play nice with
software engineering, which is completely different in almost every aspect.
(Vandenburg 2010, Larman 2003, Larman and Basili 2003)

To defend the Waterfall process one has to consider that the time when Waterfall
was used was a time when access to computers was limited. At this time a
developer could possibly only get a few hours of computer time per week.

39

Considering this point of view, good design was more important than testing.
This goes on to imply that with contemporary tools the Waterfall process is not a
reasonable choice (Grzegorz 2011).

Based on these researches and results found, I chose to use an Agile process rather
than a Waterfall process.

4.7.2 Agile Unified Process (UP)

Agile is an iterative and evolutionary process where a problem is not presumed to
be ready until it is actually coded and found to be good. Rather an initial design is
produced, in the fashion of Agile Modelling (more on Agile Modelling in the next
paragraph), and implemented as soon as possible. Feedback from the coded
version of the model is then used to enhance the design to support any possible
disabilities encountered. (Larman 2005, 17-22)

In Agile UP, Agile Modelling is used. This means that quick sketches of a design
are produced in the easiest possible way (Larman 2005, 30-31). For me this meant
to draw them out on a piece of paper. In this work I’m only including computer
reworked images and only when it suites to illustrate a point. I sketched a lot of
class and sequence diagrams. To include them in this report would only serve to
confuse things (plus I already threw away large number of the sketches).

4.7.3 UP Project Phases

UP is a software development process used for building, deploying and
maintaining software. It is an iterative process, like all agile processes are.
(Larman 2005, 33)

Four major phases are included in a UP project. These major steps hold within
them a number of iterations in which whatever might come along is tackled in
detail, but this is the big picture of a UP project. (Larman 2005, 33)

40

1. Inception: approximate vision, business case, scope, vague estimates
2. Elaboration: refined vision, iterative implementation of the core

architecture, resolution of high risks, identification of most requirements
and scope, more realistic estimates.

3. Construction: iterative implementation of the remaining lower risks and
easier elements, and preparation for deployment.

4. Transition: beta tests, deployment.

All the different parts of a UP project – Inception, Elaboration, Construction and
Transition – are iterations. These iterations base weight on different aspects of a
project. The Inception stage of a project is meant to roughly define what is to be
done and also to include proof-of-concept. Elaboration is a step to further define
the Inception stage. In Elaboration it would be desirable to further elaborate on
requirements and to create a core model for the application. In Construction stage
the application is built on top of the core model, which was designed and
implemented in the Elaboration stage. Transition deals with beta testing and
deployment. (Larman 2005, 33)

4.7.4 UP Disciplines

This chapter is only included for clarifying the UP Phases. Not much attention is
paid later on to these issues, rather they are allowed to evolve and progress as best
deemed in any given situation.

UP disciplines which are important in this body of work are:

• Business Modelling

• Requirements

• Design

• Implementation

All of these are included in a UP Phase iteration, and the disciplines merely
describe the problem area where we're currently working on. For instance in a UP

41

Phase iteration you might start with creating a business model to support the
requirements you are going to create. Next you would implement those
requirements to a design and maybe even execute them if you would deem them
important enough to take precedence of things, which have been created earlier.
(Larman 2005, 35)

4.7.5 UP Artifacts

In UP, an artifact is any kind of a document in the project. This includes within
itself all diagrams produced, text documents and basically everything done for
and in the confines of this project. (Larman 2005, 34)

The important thing to note about the artifacts is that one has to choose the
artifacts he is going to include in his work. This does not of course mean that you
should make this decision in the beginning of the project and then live with. No,
you can include additional artifacts to the project as it progresses, which is very
Agile-like. (Larman 2005, 34)

The primary artifacts used in this work are Class diagrams, Sequence diagrams,
use cases and some icons and images. Here and there you can also find artifacts
like “Vision and Business Case”. These are artifacts, which describe an important,
software project centric, requirement. Whenever this occurs, I’ve dropped in the
text a short text describing that this is an artifact. Images consist largely of UML
sketches.

One could also create an artifact, which would describe all the artifact types used
in the project. This however seems largely unnecessary for this work. (Larman
2005, 34)

42

4.7.6 Use Cases

Capturing requirements for a software project is difficult. There are however good
tools to work with. One of the most useful tools lying around are use cases. They
are effective because they’re easy to understand (Pressman 1997, 608). This
essentially means that it’s easy for even the most non-technical person to create a
use case. (Larman 2005, 64-65)

A use case simply dictates how a user might use the application. A typical use case
consists of an actor and a scenario (also known as a use case instance). The actor is
essentially the end-user, while the user can play various roles, i.e. act as different
actors, of the application and the scenario describes how the actor interacts with
the application. (Larman 2005, 61-63, Pressman 1997, 608)

There’s really no official form how a use case should be written. As long as it
defines functionalities that should be present in the application, it is considered
sufficient (Pressman 1997, 608). There’s three ways to categorize use cases: brief,
casual and fully dressed. Use cases found from this body of work are mostly
casual. A casual use case is something, which simply quickly dictates the issue in
hand; it doesn’t impose a structure. I worked the more important ones to a
stripped down version of a fully dressed use case. This, too, is just a template and
I’ve varied it occasionally to suite a scenario better. Table 1 below illustrates this
stripped down structure. (Larman 2005, 65-79)

Table 1: Use case template

Use Case Section Comment

Use Case Name Short, informative name.

Preconditions What needs to be set before this scenario can occur?

Main Success Scenario
Describes the main flow of the scenario. I.e. a
succession of steps that occur when the user initiates
an action.

Exceptions What might cause exceptions in the scenario?

Frequency of Occurrence How often this scenario is likely to occur. Possible

43

values are: seldom, frequently and continuous.

Miscellaneous Any additional remarks concerning this scenario.

44

5 TOOLS OF THE TRADE

A number of technologies are utilized in this body of work. This chapter provides
a brief summary of all of the essential technologies. I'm not going to go into details
about operating systems. Mainly I used Windows Vista and Windows 7 but
because most of the work was done in Java, the operating system used doesn't
hold much weight because it does not really matter what operating system you are
using.

5.1 Java

Java is both a language and a platform. The Java programming language is an
object-oriented language, which means that everything in Java is an object. The
Java platform is essentially a virtual machine, which works on top of an operating
system. This platform, the Java Virtual Machine (JVM), is responsible for running
compiled Java byte code (compiled from the Java language source files of course).
(Oracle 2010)

It is worth to mention a few details about Java. Java, the core of it, as such doesn't
offer many libraries when it comes to UI's. However, Java offers extensions
(usually included within a Java distributable), which introduce UI libraries. The
primordial Java UI library is called AWT. AWT has been replaced, or extended
with, Swing. Swing is the essential tool for building UI's with Java.

5.2 Qt

Qt is advertised as a cross platform class library, primarily for C++ applications. It
offers an extensive UI library to be used with a number of languages. Qt differs
from Java in many ways. First of all, Java is a platform whereas Qt is simply a UI
library. Qt would correspond better with Java Swing rather than full-blown Java.

45

Qt works with native applications, i.e. you write and compile the code you
create for a specific platform. (Nokia 2010)

5.3 External Java Libraries

Two external Java libraries are used in this work: yFiles for Java and fastutil. yFiles
for Java is the single library which, makes the creation of this thesis work possible.
It’s the graphing library used, which offers algorithms for graph analysis and
visualization. (yWorks 2010)

fastutil library extends the functionality of Java Collections Framework. It
essentially creates prebuilt versions for all primitive data types concerning
collections of items. Without this library you would have to use composite data
types which of course consume more memory in a given application. (fastutil
2010)

5.4 Java Native Interface (JNI)

In this work it was necessary to interface a Qt application, i.e. a C++ application,
with Java. There exist a number of tools for this such as Jambi and Jace but after
researching a bit and doing some tests with these systems I opted to use the
original and well-proven technology of JNI. The other tools offered nice features,
which would make a developers life easier, but for my purpose, which was quite
simple in the end, all this didn’t mean much.

JNI essentially enables the integration of C++ code with Java code. E.g. to build an
interface from C++ to Java you would create a JVM inside your C++ application
and in that JVM you would start the Java application you choose. JNI then offers
you with “hooks” that you can use from C++ to tell the JVM what to do. (Oracle
2010). It’s really a quite nice system if you’re interested about bridging
technologies.

46

5.5 Concurrent Versioning System (CVS) for Version Control

Good software engineering policies dictate that you should always use a version
control system (VCS) in your projects. I chose to use CVS because of various
reasons. New, more robust, tools exist but CVS is quite adequate for version
control purposes.

CVS is an old system; it’s one of the first version control systems in existence.
Using CVS (using any version control system in fact) you can record the history of
files and documents. (CVS 2010)

5.6 Integrated Development Environments (IDE’s)

A number of IDE’s were used in this work. The most important of these were
IntelliJ IDEA for Java development and Qt Creator for Qt application creation. I
used Microsoft Visual Studio 2010 for testing C++ graphing libraries. Eclipse was
used just for the same purpose. I also thought about using Eclipse IDE instead of
the Qt Creator but didn’t stay with this decision in the end.

The number of IDE’s used might seem a bit too much but it really was necessary
to look under every rock when creating interfaces between C++, Java and the
ALMA server. Of course you could’ve done all the things in one IDE but it offered
some perspective to use different tools considering that my personal experience
with creating C++ applications was next to nothing – still is.

47

6 LEG WORK

6.1 Inception

Artifact: Risk List & Risk Management Plan:

The initial objectives for the project are to implement the visual graph-like
structure, described in chapter 2. Concerning Java there really is no big problems
immediately in the horizon. Concerning Qt the problems are vast.

Since the primary aim of this project is to provide a working application for Java, I
didn’t want to slow down the start by concentrating on Qt. So, at this point I
already decided to tackle and create the project first in Java (at least I would finish
the elaboration phase before I would move on to Qt); I would create the Ot
application after I had successfully modelled and coded the core model for the
Java application. It seemed like a prudent choice to concentrate on one thing at a
time and leave everything relating to Ot to a later stage.

This decision was made because I did a little bit of research on Ot and found the
lack of a proper graphing library (which would be able to produce tabularized
views of a graph for schematic purposes) as something, which would require a lot
of research work to get even started on. And to be honest I was anxious to get to
do something other than research.

The next big problem on the list was the implementation of tabularized schematic
views in Java. This, however, was something, which could be quickly researched
from yFiles documentation. I found it to be doable even though it would take
great many hoops to jump through.

6.1.1 Initial Requirements For The Project

Artifact: Vision and Business Case:

48

The application is able to visually represent the structure of the ALMA system
with all it's objects and links. Additionally it is able to represent schematics. These
representations should be incremental so that the user is not presented with all the
objects in the database all at once. Rather the user chooses a point of origin and
then begins to investigate it further by interacting with the application.

The application needs to differentiate the objects described so that it is visually
clear of which kind of an object the user is inspecting. This basically means that an
icon should be portrayed with the object in question. This icon is something that is
used as a de facto standard in the ALMA system.

The connections between objects can be, and most often will be, directed. This
means that a link displayed between two objects needs to be able to represent,
which object is the linker and which one is the linked object.

The user is able to define what he wants to display in the graph. This means that
the user is able to define if he wants to see the links for instance, or if he wants to
see links only of a certain type, etc.

The user is able to specify how objects are grouped and what objects should be
abstracted and also which objects should offer interactive abstractable behaviour.
Interactive abstractable behaviour is when, for example, you have a group of
wires, which have been abstracted as a cable, and you would like to be able to
expose the abstracted objects or vice-versa.

Artifact: Prototype, proof-of-concept for Java: Demo Application. This is
considered sensitive material and has thus been censored from this work.

For Qt there is no proof-of-concept, since merely the proof-of-concept for Qt
would take a lot of effort. Instead the first Elaboration steps concerning Qt are
used to provide proof-of-concept for the key areas of the application. This is a
wrong way to use UP but since pretty much everything is allowed within the
confines of a UP Agile project I considered this to be my prerogative.

49

6.1.2 Use Cases - functional requirements

Artifact: Use-Case Model

You can find a list of use-cases used with inception step from appendices. As
defined by the UP process, these use cases are largely not yet defined other than
by name. Only a small subset of them is exhaustively documented. These use
cases have been extracted from Initial Requirements (chapter 6.1.1) as well as
from interviews. These use cases also include a few personal “nice-to-have’s” as
well.

6.1.3 Implementation

Implementation at this point didn't cover much work. Mostly it was testing the
yFiles library and seeing how it works - nothing too exciting. At this point serious
implementation would be a waste of time because the requirements are hardly
executable at this point.

6.2 Java Elaboration 1

This step builds on top of the Inception phase, described in the chapter before this
one. The main goal of this step is to further redefine and elaborate on risks and
requirements. The first draft of the application core is also modelled and coded.

Table 2: Java Elaboration phase backlog

Priority Requirement
1. Core architecture
2. Extend yFiles to accommodate ALMA system
3. Core model

50

6.2.1 Tasks

All three items in the backlog are tackled in this Elaboration step.

6.2.2 Core Architecture

The core architecture of the program is responsible for identifying the different
aspects of creating a graph from the ALMA system. First and foremost, the yFiles
library needs to be extended to accommodate ALMA-centric features.

The different aspects of graphing fall into the following categories:

1. Extracting information from the ALMA system.
2. Input extracted information into the yFiles library, i.e. plot the graph.
3. Define the layout algorithm to be used.
4. Define the scope within which the graphing algorithm works in.

6.2.2.1 Superimposing ALMA layer on top of yFiles library

To properly incorporate the yFiles library into the ALMA system, it needs to be
extended in some way and a proper separation of concerns needs to be figured
out.

To extend the yFiles library is a rather straightforward procedure. All you need to
do is extend the key classes in the yFiles library and superimpose your
functionality on top of it. The following class diagrams describe the most
important aspects of this inheritance structure.

 51

Graph 22: ALMA layer on top of yFiles graphing library

52

6.2.2.2 Core model

Definitely the hardest part of creating the core application is to implement
different kinds of plotting solutions and how exactly they should be implemented.

Plotting is the process of extracting information from the ALMA system database
and figuring out how to use that information. This is essentially the step, which
separates whether the graph in question is a hierarchical view, a network view or
a schematic view.

Based on sound judgement, i came to the conclusion that to begin the design
process of the graphing part, it would be best to choose to use the Decorator
Pattern. Essentially this would allow me to comprise the plotting algorithm from
various algorithms, implementing (or including) a plotting scenario if it would
seem prudent.

Following class diagram describes the core model of the system.

53

Graph 23: Core model, first version

54

6.2.3 Implementation

The implementation of this model proved to be a difficult one. The Decorator
Pattern for plotting the graph doesn't work that well in the end for this purpose. A
better solution could be to just create a stand-alone algorithm for different kinds of
plot types (i.e. network, schematic, etc.). The problem with this approach is
however that it would make the tool less generic and thus new application areas
might need to do more work to make use of the tool.

6.3 Java Elaboration 2

The main goal for Elaboration step 2 would be to change the decorator of the
plotter to something else.

6.3.1 Tasks

The only task planned for this iteration is to redesign and reimplement the
applications core architecture and how it should exactly function. In iteration 1 it
became evident that the Decorator Pattern didn't suite the need.

6.3.2 Core Architecture

Since the Decorator Pattern proved to be unsuitable for this purpose, a different
Design Pattern is employed. If this Pattern doesn’t offer a workable solution, then
a standalone solution will be employed. Reflecting with the Decorator Pattern, a
somewhat similar approach is to use the Composite Pattern. The Composite
Pattern is in many ways similar to Decorator Pattern. It does however offer some
more flexibility concerning structure.

See section 4.6.3 for a detailed description of the Composite Pattern.

55

6.3.3 Implementation

I didn’t even get around to implement the Composite Pattern wholly. Somewhere
between designing and coding it became evident that the Composite wouldn’t
offer much more than the Decorator Pattern did. Instead of trying to make it work,
I decided to drop the design altogether and maybe figure out an alternative
approach to the problem.

6.4 Java Elaboration 3

Since it’s difficult to work this problem to a Design Pattern, a better solution
would be to redefine the problem.

6.4.1 Core architecture

The problem is to effectively implement a plotter, which would be easily
customizable. Trying to work this problem to a Design Patter didn’t do any good.
A different approach is to work directly with the ALMA system building blocks.
The plotter essentially works with objects, figuring out their characteristics. To
effectively customize what a plotter considers to take in would be to filter an
object before basing any plotting on it. This way different kinds of plotters can plot
everything without altering their structure to accommodate different kinds of
scenarios. The plotter doesn’t know, nor does it care, what are the “real” contents
of an object are, it just works with the filtered version of the same object. The
sequence diagram below illustrates the different things that a plot operation
entails.

 56

Graph 24: Plotting a graph.

57

6.4.2 Implementation

I created a filter utility method, which is responsible for filtering objects against
user-defined settings. This works in a pretty straightforward manner. Essentially
the user defines what he wants to see per type basis. This offers plenty of room to
customize different views.

Despite the straightforward manner in which the solution works, the actual coded
implementation proved to be arduous to create. It takes many LOCs (Lines of
Code) to take into account all the possible definable configurations. However, this
solution is easy to work with. Some issues might rise somewhere in the future
when this tool would be used to input data as well, since a filtered object does not
have all the same things in it that the original does. Thus it might create some
ambiguities. But for now the approach seems to fit the bill perfectly.

6.5 Qt Elaboration

The Java application elaboration stage is now all done. What remains to be done is
to pick-up on speed concerning the Qt side of building the same application. This
part of building the application is still largely a mystery. What should have been
done, before getting this far in the thesis work, would have been to do more
research on Qt and its abilities to create graphs. However, since researching all
these things takes a lot of time—time that I would have been forced to take out of
the main goal of this thesis work, namely creating a working solution for Java—I
decided to postpone everything relating to Qt.

This iteration is responsible for further researching Qt and its abilities. There are
going to be minor implementations as well – small tests to prove the concept of
interfacing Qt with Java and to test how different graphing applications work.

58

Table 3: Qt Elaboration phase backlog

Priority Requirement
1. Interface Qt (C++) with Java

2. Once an interface to Java has been built, another interface needs to be
created to connect to the ALMA system

3. Research graphing libraries for Qt

6.5.1 Requirements

The overall end-requirements for the Qt application are the same as with the Java
application. The Qt application is much more challenging in a number of ways
though. First of all, to build a successful Qt application that works together with a
Java application server, one has to interface the two technologies in some way.

In large contrast to the Java application, these requirements are almost purely non-
functional. The Qt application pretty much can gather all the functional
requirements from the Java application. However, because the Qt application
needs to interface with Java and since a proper graphing library for Qt is yet to be
found, it would be pointless to start defining functional requirements before non-
functional questions are answered.

6.5.2 High-Risk Elements

Concerning the requirements listed in the previous chapter, the only real question
mark is to find a proper graphing library for Qt. Interfacing Qt (C++) with Java is
something which will be built with ready-made tools which have been proven to
work – so there’s nothing there that could really go wrong. Of course
implementing a proper interface to suit the needs of the project can prove to be
difficult, but in this case it’s something that can be worked out.

59

Other high-risk elements might rise during this iteration step, but mainly the
high-risk elements are going to become more detailed and clear as more research
is done.

6.5.2.1 Interfacing C++ with Java

I started the work by creating a small demo application to interface Qt (C++) with
Java. This interface, as will the final interface when used with the ALMA system,
creates a new Java Virtual Machine (JVM) using the ready-made Java Native
Interface (JNI) libraries provided by Oracle, tailored specifically for these kinds of
purposes. So, the Qt application launches a new JVM and within that JVM the
usual ALMA client, which communicates with the ALMA server, is opened.

The next graph depicts how the interface from Qt to ALMA server is supposed to
work in its entirety. Qt works on top of C++. On top of Qt/C++, there might be a
third party, external, graphing library (not depicted in the graph). C++ uses,
through JNI, an ALMA client, which communicates with the ALMA server.
Everything that is needed to make the whole application work is included in the
picture.

Graph 25: Interfacing a Qt application with ALMA server

60

As it turned out, interfacing from C++ to Java is much easier than the other way
around because the C++ application can easily “drive” the Java application
running within the JVM that it created. Creating new Java objects and calling Java
methods from C++ is pretty straightforward and the return types that it can accept
from methods can be of primitive types (such as Integers or Strings). If you
wanted to use an object as a return type, which is essentially a composite of
primitive types, you would have to go through more trouble—especially if that
object has an inheritance hierarchy and composite members.

6.5.2.2 Interfacing with the ALMA server

After successfully implementing a C++ to Java interface I wanted to expand on it
by creating an interface to the ALMA server application. ALMA has in it already a
remote client, which can be used in this case. In the Java application, running in
the JVM, created by the C++ application, I started a new instance of an ALMA
remote client. This step was really simple. All you actually have to consider is to
include all the proper ALMA modules in your Java application. Starting the
application is like starting any other Java application.

6.5.2.3 Graphing libraries for Qt

The riskiest part of the Qt application also proved to be fatal. After spending
considerable time investigating on various different graphing libraries I came to
the conclusion that while C++ might provide a working solution for this, Qt in
itself doesn’t have this kind of a tool in it yet. This essentially rendered the
creation of the Qt application void—implementing a graphing library from scratch
is too much work concerning the scope of this thesis and using a C++ graphing
library wouldn’t be much of a Qt application.

61

I went through a number of different graphing tools for C++, hoping that I
could only implement the graphics through Qt somehow; the graph calculations
could have been performed purely with C++. The most considerable options were
BGL (Boost Graph Library) and OGDF (Open Graph Drawing Framework).
However, concerning the quality of C++ graphing libraries it would have taken a
lot of effort to make this happen. I got as far as creating graphs with C++ but I
never truly found a good way to import the graphics of the graph to Qt. If I had
managed that, then it would have provided a suitable solution.

The graph below illustrates how I planned to use OGDF with Qt. OGDF can create
a graph and layout it using various layouting strategies. In this plan, OGDF
creates the graph, layouts it and saves the graph in GraphML (graph markup
language) format. Qt reads the created GraphML file and creates a view based on
information found from the file.

Graph 26: Using an external graphing library in conjunction with Qt

I could have also reworked this thesis to concern only C++, instead of Qt, and
compared it against Java. However, to implement all the various kinds of
interactions, all the functional requirements, would have been tedious to work out
using C++, not to mention creating all necessary UI components to work with.

62

Everything else panned out rather nicely when working with Qt. There were a
number of difficult obstacles to overcome, but finally there was nothing to be done
to bring the project all the way home.

6.6 Iterations for the Java application

Now that the core application structure is thought out, the rest of the requirements
need to be taken care of. This namely means that plotting strategies should be able
to define their own commands – the actions that the user executes when
inspecting a network view differ from those of when he's inspecting a schematic.
Some wrapping up is done as well to bundle all the different parts together. It's
sort of like trying to standardize how the tool works or creating a façade to cover
up some of the details that are not really necessary for the user to see.

Table 4: Java Iterations phase backlog

Priority Requirement
1. Create a plotter base class and a plotter for the Network views
2. Create a plotter for the Schematic views
3. Implement Commands
4. Implement Memento
5. Compose a façade for the whole system
6. Construct a mechanism for choosing a layout algorithm
7. Store/restore the state of a graph view

6.7 Iteration 1: Plotter Base Class and Network plotter

The difficulty with creating a base class for all the plotters was that beforehand
you would need to figure out all the generic elements that you could sink in it.
This was largely a matter of reading the yFiles documentation and getting to
proper grips with it.

63

The plotter base class should house in it all the things that all the plotters
require. Defining all these things separately in different plotters would create code
that is hard to maintain. What makes creating the plotter base class easier is how
the core model works – I could focus simply on how to accommodate all the
things in yFiles, I didn’t have to worry about ALMA centric things at all because
the core model already takes care of all this.

The things you need to take into account with yFiles are largely things that
concern layouting. I also decided to house things related to tabular views in the
base class, though each plotter that wishes to utilize these items is responsible for
maintaining them.

Concerning the network plotter there was really little that needed to be accounted
for. The network plotter is a simple plotter and it sits on top of the plotter base
class nicely. The network plotter simply plots everything concerning the objects
you supply it with. The one thing that it does need to account for are user defined
settings about how given things should be grouped and abstracted.

6.8 Iteration 2: Schematic plotter

The schematic plotter is a lot different from the network plotter, even though with
enough levels of abstractions you could make the two as one. This was something
however which seemed to require a lot of work so I decided to create a separate
plotter for it altogether.

The schematic plotter is interested how things connect to each other. It’s titled
schematic plotter because most often it realizes schematic connections. You could
of course use it for other purposes, to realize connections of other types, but at this
time it felt like there would be little other use for it. Hence I declared the plotter as
a schematic plotter instead of trying to come up with a more general description,
meaning and name for it.

The difficulty with realizing the schematic plotter proved to be working with the
yFiles table model. The table model in the yFiles deals with a lot of details that you

64

have to take into account. If you fail to implement some small detail you could
be dead in the water without a proper error message dictating why that is.

Also, creating a layouter for the schematic proved to be difficult because you need
to explicitly instruct the layout algorithm to take certain things, like groups and
tabular structures, into consideration. Incorporating groups into the schematic
layout also required the generation of some amount of custom code so that the
layout algorithm would properly calculate the size of the groups. All in all,
creating the schematic plotter took a lot more time than what I had allocated for it.

6.9 Iteration 3: Commands

A plotting strategy creates the nodes and edges to the graph based on the rules
built into it. Different plotting strategies have different kinds of actions that they
associate with newly created nodes and edges. E.g. what should happen when a
user clicks on a node? With a network strategy that means to expand the clicked
node, revealing its hierarchy, link and type structure. Contrasted with a schematic
strategy that means to deabstract it, i.e. to show its underlying elements.

For each plotting strategy a command factory can be assigned to it. This command
factory takes as parameter the node or edge created and the factory will then
return a list of commands that should be associated with it. This list of actions is
linked to a customized EditMode which manages the clicking of nodes and edges.
An EditMode is a construction in yFiles, which manages users interaction within
the frame where the graph is placed.

If a plotting strategy does not define a command factory a default command
factory is used. This default command factory is provided by the base class
AbstractPlotter, which is the base class for all plotting strategies. The following
sequence diagram illustrates how exactly the command structure works.

 65

Graph 27: Command sequence diagram

66

6.9.1 Undoable Commands

Applications, which support undoability, offer the user a sense of security since
they can always go back if they didn't mean to do something. To support
undoability it takes a few tricks to make it happen and these tricks are command
specific – you need to exactly define how to go back that one step. A few
commands support undoability and this is of course something that can be
extended in the future as well.

An undoable command is a normal command except that it implements
UndoableCommand interface. This interface defines a method (not surprisingly)
called undo. It is up to the command to register itself with an
UndoableCommandChain.

The UndoableCommandChain keeps a stack of executed actions and when called
upon it takes the command, which was last executed and calls the undo method
on it. It then removes this command from the stack and moves it to another stack.
This other stack exists so that the user can redo the command if he so chooses.

6.9.2 Effects

Effects are commands, which create an effect on the graph, which should then be
cleaned up afterwards. An effect-command implements the Effect interface, which
defines a method called dispose. An effect-command works with an instance of
AppliedEffects.

The AppliedEffects instance is responsible for tracking all applied effects and on
occasion calling upon the commands dispose method. It does this by starting a
new thread, so that it doesn’t mess with the execution of the main program. If the
dispose method returns true it means that the effect was removed from the graph
and the AppliedEffects instance then removes this effect from its list of effects.

67

An example of this is the local-edge command. The local-edge command
highlights all the arriving and leaving edges of a node and it works in the
following way:

1. The user activates a node to display all incoming and outgoing edges by
executing the local-edge command.

2. The local-edge command highlights the edges and registers itself with an
AppliedEffects instance.

3. Every time the dispose method is called by the AppliedEffects instance, the
local-edge command executes a series of steps to figure out if the effect
should be removed. The local-edge command does this by checking
whether the user still has focus on the node he clicked. If the user has
moved the cursor away from the node, the command will then remove the
applied effect from the view.

6.10 Iteration 2: Saving the program’s running state

The Memento Pattern is used in two places. First it's used with ALMAGraph2D to
store its state. This stored state is used for example by an undo command to fall
back when a user decides to undo his action.

Second, and much more importantly, the Memento Pattern is used to save the
current state of the graph being inspected, i.e. all the defining characteristics when
viewing a graph: roots of the graph, layout algorithm, plotter, scope,
include/exclude types, etc. This mechanism is also used when the user customizes
how he would like the graphing solution to work since this Memento object can
restore the graph from a text representation. So the user writes (or uses a separate
application) to create a text representation of the Memento object. He then loads
the text representation to the Memento object and in return he gets a ready-made
graph.

To support the use of a Memento object, all the objects in it need to be able to be
represented in text format. Rather than creating a serialized string of them, it
would be better to be able to associate an object type with an ID. This ID could

68

then be used by the application to create an object of this type. The way this
works is nothing too exciting, just associate an ID with an object type and then
create new object based on that type.

Java enumerated types offer quite a lot of functionality if contrasted with
enumerated types in C++. In Java, enumerated types are more like special cases of
classes. In fact when you compile an enumerated type in Java, the compiler turns
it into a regular Java class. (Niemeyer and Knudsen 2005, 150-153)

The point of all this is that when you’re creating enumerated types in Java you can
explicitly declare values corresponding to different types. I.e. you can associate an
enumerated type with a static ID and that ID could be anything you like
(Niemeyer and Knudsen 2005, 150-153). In case of ID’s it’s usually best to declare
them as Integers. This provides a perfect solution for me to associate a type with
an ID – enumerated types associated with an ID.

See section 4.6.8 for a detailed description of the Memento Design Pattern.

6.11 Iteration 3: Façade for GraphConfiguration

The Façade object, which is titled GraphConfiguration, is a concept, which is
created just for convenience sake. The GraphConfiguration houses within it all the
major parts of the graph. The major parts of the graph include:

1. An ALMAGraph2D instance
2. The plotter
3. The layout algorithm
4. The scope
5. Display mask
6. Exception maps to exclude certain types of elements from the graph.
7. Memento object to save/restore the state of the current view
8. Preferred window height and width
9. Selection associations
10. Grouping associations

69

11. Abstractable elements
12. Interactive abstractable elements.

In addition to providing a central point of access to all the major parts of graph
creation and manipulation, the GraphConfiguration instance is the sole element,
which is used when the user initiates the creation of a new graph. For example, to
create a new graph view, the user creates a new GraphConfiguration object and
specifies for it the following items:

1. The graph to use (i.e. which roots to use)
2. The plotter to use (Network, Schematic, etc.)
3. The scope
4. And the layout algorithm

Additionally the user can also define which things he would like to exclude from
the graph and so on, but to get started you’ll only need four things – four simple
questions.

 70

Graph 28: Creating a new GraphConfiguration object.

71

The GraphConfiguration, in essence and among other things, realizes the
Façade Pattern. You can find a description of the Façade Design Pattern from
chapter 4.6.9

6.12 Iteration 4: Choosing a layout algorithm

The layout algorithm isn't chosen by the program, the user predefines it. Of course
you can't really use a schematic layout algorithm with a network plotter but you
could choose to use a balloon layout or a hierarchical layout algorithm with the
network plotter, etc.

The chosen layout algorithm works with the assigned plotter. It takes the
ALMAGraph2D instance created by the plotter and tries to layout it.
Implementing most of the layout algorithms is a simple enough task. Though with
tabular structures (with schematics) you need to take care of various sorts of
things.

At first, the Visitor Pattern was used to associate a layout algorithm with a
plotting strategy. However, I decided to drop the Visitor Pattern from the final
design because it offered very little but added some complexity to the final design.
Also, worth of note is that the Visitor Pattern is hardly intended for this kind of
purpose.

6.13 Beta Tests

A rigorous testing period ensued after the last iteration ended. Lucky for me, I
could use a test database with loads of information in it. Most of the time I was
testing and configuring schematic views. Network stuff was really much simpler
and it seemed to flow on it’s own (nothing interesting in it really).

It quickly became evident that although the schematic views are able to produce
graphs with tens of thousands of elements (nodes and edges) it would soon grow

72

pretty slow to handle these amounts of information. The strain is not entirely on
the computer; it’s hard for a human being to take in that much information on one
go as well. This goes to show that there is room for improvement and
optimization. For now, things work out well enough though.

6.14 Deployment

Deploying the application consists of the following tasks:

1. Include the application in the main build of the whole ALMA system.
2. Design and implement point(s) of entry for the application
3. In a license file include the graph tool, if the customer has bought a license

for it.

These steps were trivial to carry out.

73

7 RESULTS

No piece of software is ever ready, they say. If an application doesn't evolve it
dies, they say. However, this development cycle has come to an end. The
following is a brief summary of the work, performance, the design process, a
personal reflection on software engineering and a brief view on Qt vs. Java.

7.1 Summary of the work

The Java application works, "adequately" as you can read from the following
chapter. The Qt application never survived past the Elaboration phase. In fact, it
should have never survived past the Inception phase. However, this was a small
setback concerning that the time allocated for the Qt application would have been
spent in any case — where exactly it was spent is just a matter of definition.

While not being able to "drive home" the Qt application it was still fun to work
with the collateral techniques involved with it. Marrying a C++ application with a
Java application, though it proved to be pointless, was much fun. Seeing two
disparate technologies work together was educating and almost even exciting.
Trying out the various ways in which to do Qt and C++ development was also,
pointless, but enlightening.

To list the troubles concerning the Java application the biggest setback was
underestimating the required time concerning implementing schematic layouts.
The schematic layouts require a tabular structure and, though the yFiles library
does support tables, it was still really difficult to realize and implement them.
Besides this hindrance Java development went along pretty well.

A satisfactory end result was produced which manages to fulfil the primary goals
set for the project by the people who initially expressed the interest to develop the
software. Despite the project not being able to deliver a working solution for Ot, I
myself am pleased with the outcome.

74

7.2 Performance—heuristic

It's difficult to give a single answer about how well the application performs. It, of
course, depends upon hardware but it also depends on structure complexity (i.e.
graph structure complexity). Also, schematic layouts, which employ tabular
structures, add their own weight not to mention network capabilities (because the
application works as a client-server system), which can vary radically between
locations.

There are four major aspects related to forming graphs. First one is to query
ALMA server for information. Second, based on information received from the
server a small part of the graph is plotted. This second part is reiterated until some
condition is met and the graph is considered to be ready. The third part is to feed
the whole plotted graph to a layouter provided by the yFiles library. The fourth
aspect is rendering the graph to the screen and navigating in it.

It is, of course, impossible to optimize the third party library used for layouting
the graphs, i.e. yFiles, and thus yFiles sets the par in some manner. But it sets the
par so far that it's practically impossible to reach it. For the same reasons it is also
impossible to affect the performance of rendering the graph to screen. There is
much room for optimization in the manner which the application traverses the
ALMA system structure. Currently a number of tricks—tricks that hinder the
application while making it easier to work with—are employed when working
with the structures of the ALMA system. These tricks could be worked into more
robust solutions and thus enhance the performance.

Varying upon layouting algorithm used, the system can realize graphs with 1,000 -
10,000 objects. Tens of thousands of objects start to hinder execution and result in
long wait times and great difficulty in navigating the graph. While it would be
nice to optimize the system to realize hundreds of thousands of objects, how could
any user read the resulting graph? It's already pretty difficult to read graphs with
more than a hundred objects. Based on this reasoning I rated the performance as
"adequate". When inspecting larger graphs, it is wise to narrow the view down by
some limiting mechanism.

75

There is, however, one way to look at huge graphs (more than 10,000 objects) in
a way that it makes sense and that one way is tabularized views or some other
means of grouping objects. It's not pretty, nor easy, to inspect a graph with close to
a thousand objects in it but on occasion it can be enlightening to see the bigger
picture even though one does not follow every detail in it.

In conclusion, optimizing the process would yield benefits but at this point these
benefits are still a question mark. This need is largely a question of whether a real-
world-user somewhere, sometime requests it. So, based on a "gut-feeling" (you
might also call it a guess) the performance is "adequate".

7.3 Performance—benchmarking

Even though little—or none at all—is to be gained with benchmarking, I thought it
would be at least, if nothing else, fun to do it. Besides one has to satisfy ones geeky
nature.

This benchmarking session is hardly scientific-grade but hopefully it yields results
that are more useful than just fun statistics. Hopefully they will be at least
somewhat informative. Following aspects are taken into account when
benchmarking:

• Number of nodes

• Number of edges

• Layout algorithm used

• Java heap space

These points are rather self-explanatory. Recording different Java heap spaces
gives some insight into the minimum requirements of the application and provide
insight of the consequences of having smaller amounts of memory.

Three separate graph-forming aspects are recorded in this benchmark: graph
creation, graph layouting and rendering a graph to screen. Two types of graphs

76

are used in this benchmark session: cyclic graphs and connected acyclic graphs
(i.e. trees). Three kinds of layouters are used: hierarchic, organic and circular.

The benchmark results were recorded with the following system:

• Intel(R) Core(TM) 2 CPU T7200 (each core clocks at 2.0 GHz)

• 3.00 GB (RAM) memory

• Windows Vista 32 bit.

To note: the computer performing the benchmarks is not optimized for
benchmarking in any manner and there could very well be undesired background
processes running wild. Like said before, this is hardly a scientific-grade
benchmark session, the only purpose is to produce at least some kind of
information.

All the results were taken from a similar set of objects, i.e. the structure of the
graph does not introduce unstable elements regarding benchmarking. All the
graphs realized need to be connected and since it's impossible to create a tree of
e.g. 100 nodes and 10 edges, because the number of edges in a tree is exactly one
less than the number of nodes—hence the lack of results for all permutations.

Each permutation is ran 10 times and the average of these values is recorded,
while excluding radically differing results. Radically differing results are those
that differ by 10% from the average.

There exist a few known reasons for potential differing results. One is something
that will happen each time a benchmark session is executed. Java uses Just-In-
Time (JIT) compilation when it executes byte code (i.e. a program). A JIT compiler
compiles the structures it needs just before execution (just like it's name cleverly
states). This means that the first pass of a benchmark is bound to encounter
hindrance. This is however easy to filter out from the results.

Second potential reason for differing results is that the computer performs some
arbitrary operating system routines in the background, which reduce the amount
of available clock cycles.

77

The notation P stands for the plotter used (hierarchic or network) and H marks
the allocated heap space for the JVM (24 MB, 128 MB and 1024 MB—all amounts
are in mega bytes unless otherwise stated). L stands for layout algorithm. All
recorded times are in milliseconds, notated as [ms] in the table. If some cell in the
time column is annotated with N/A it means that it is not possible to plot that
graph because there is not enough memory available.

The following benchmark results (again, permutations of number of edges,
number of nodes, heap space and plotter/layouter used) were recorded:

 78

Table 5: Results for plotting Hierarchic and Networked graphs

P H Nodes Edges Time [ms]

H
ie

ra
rc

hi
c

24

10 9 63.00
100 99 343.90

1,000 999 3,296.89
10,000 9,999 N/A

12
8

10 9 94.67
100 99 511.22

1,000 999 2,176.22
10,000 9,999 26,833.22

10
24

10 9 65.89
100 99 328.63

1,000 999 2,946.78
10,000 9,999 31,579.22

N
et

w
or

k

24
 100 999 304.22

1,000 9,999 N/A

12
8 100 999 264.00

1,000 9,999 5,564.11

10
24

 100 999 334.67
1,000 9,999 6,654.44

 79

Table 6: Results for using Hierarchic layouter

L H Nodes Edges Time [ms]

H
ie

ra
rc

hi
c

24

10 9 8.00
100 99 19.44
100 999 30,045.56

1,000 999 460.38
1,000 9,999 N/A
10,000 9,999 N/A

12
8

10 9 9.22
100 99 25.33
100 999 19,846.89

1,000 999 276.33
1,000 9,999 x
10,000 9,999 34,268.56

10
24

10 9 7.78
100 99 19.22
100 999 18,985.56

1,000 999 258.78
1,000 9,999 1,209,462.11
10,000 9,999 32,581.89

 80

Table 7: Results for using Organic layouter

L H Nodes Edges Time [ms]

O
rg

an
ic

24

10 9 10.22
100 99 208.60
100 999 1,479.00

1,000 999 14,721.44
1,000 9,999 N/A
10,000 9,999 N/A

12
8

10 9 11.89
100 99 215.89
100 999 1,460.67

1,000 999 14,560.78
1,000 9,999 15,953.33
10,000 9,999 48,604.44

10
24

10 9 10.00
100 99 214.00
100 999 1,420.89

1,000 9,999 14,600.90
1,000 9,999 15,005.33
10,000 9,999 45,965.22

 81

Table 8: Results for using Circular layouter

L H Nodes Edges Time [ms]

C
ir

cu
la

r

24

10 9 5.78
100 99 12.44
100 999 104.00

1,000 999 362.33
1,000 9,999 N/A
10,000 9,999 N/A

12
8

10 9 9.78
100 99 11.11
100 999 27.22

1,000 999 135.56
1,000 9,999 325.11
10,000 9,999 4,924.11

10
24

10 9 6.22
100 99 12.11
100 999 21.00

1,000 999 101.89
1,000 9,999 282.11
10,000 9,999 3,041.44

 82

Table 9: Results for rendering a graph on the screen

H Nodes Edges Time [ms]

24

10 9 848.33
100 99 834.89
100 999 880.78

1,000 999 1,340.00
1,000 9,999 N/A
10,000 9,999 N/A

12
8

10 9 838.78
100 99 836.78
100 999 x

1,000 999 822.78
1,000 9,999 x
10,000 9,999 8,957.44

10
24

10 9 849.00
100 99 844.00
100 999 848.89

1,000 999 869.89
1,000 9,999 1,174.56
10,000 9,999 1,373.56

83

The benchmarked results don't tell us very much. What is of interest are the
plotter results (hierarchic and network) because they are what this thesis was
about. The results display that if the number of elements in a graph grows by a
factor of 10, the execution time also increases roughly by the same factor. Linear
efficiency is good enough.

Nothing too exciting can be found from different layouter results. They tell that
some layouters are faster than others. Circular layouter is by far the fastest one.
Organic and hierarchic are about the same.

Some aspects affect different layout algorithms profoundly. For example, the
number of nodes does not affect as much as the number of edges. Every time the
layout algorithm needs to account for an edge, it needs to calculate that it doesn't
overlap existing edges or nodes—an operation, surely, with rapid increase in time
complexity as the number of edges gets bigger. This aspect has radically different
weights on different layout algorithms, as can be seen from the results, causing
peculiar anomalies to surface. One of these anomalies is the hierarchic layouter
when presented with 1,000 nodes and 10,000 edges—time complexity increases by
almost a factor of 10,000 while the number of items increases by a factor of 10,
rendering the layouter totally useless in production grade software. But, to be fair,
this sort of a graph is hardly ever to exist "in the wild". It does, however, indicate a
potential weakness in the system. How exactly that weakness might manifest itself
in a production system doesn't really matter—the scenario is far fetched to say the
least.

Rendering the graph on the screen is pretty much a constant—it doesn't matter
how much stuff the graph contains.

It is interesting to note that different allocated heap sizes don't affect the
performance all that much. Some of the results indicate that it's a factor but not in
a significant magnitude.

Java uses a system called garbage collection to clean up things from the memory it
no longer needs. If contrasted with for example C++, there is no such mechanism,
which means that the programmer is responsible for managing memory. In Java a

84

garbage collector routine is executed every now and then to release memory
that is no longer used. What I was hoping to see in these benchmarks would have
been the impact of automated garbage collector when working with limited
amounts of memory. In theory, when memory runs low, the garbage collector is
ran rather frequently which would hinder the whole system down by some
unknown factor—garbage collection being a rather heavy operation. Consider the
following graph, which compares garbage collector activity between a system,
which has 24 MB of heap, and a system that has 1024 MB of heap at its disposal.
Both JVMs are executing the same program. The top image is the system with 1024
MB heap; the bottom image is the system with 24 MB heap. The y-axis marks the
activity of CPU and garbage collector; the x-axis is time. The blue lines correspond
to garbage collector activity while the yellow lines mark the overall CPU usage.

 85

Graph 29: Garbage collector activity. Top image: 1024 MB heap space; bottom image: 24 MB heap space. Blue = garbage collector
activity. Yellow = overall CPU activity.

86

At some point, in a system with a limited amount of heap space, the garbage
collector is ran quite frequently and it accounts for a lot of CPU usage. This
scenario is, however, hard to come by. It takes some thinking to even come up
with a benchmark scenario that renders these kinds of results. So, in short, the
garbage collector is hardly to cause any significant performance loss.

That's about all that could be learned from these benchmarks.

7.4 Evaluation of the design process

The design process was flawed from the very beginning. The main reason for the
partially failed end result was to neglect deep enough research before adhering to
work on the problem. I’m referring to the fact that I didn't research the
possibilities of Qt to work with graph structures enough. It was a major error in
judgment to leave something to faith and pursue Java technology before
understanding and solving all the problems with both technologies.

Though I don't put much weight on following practice it's true that this error in
judgment was primarily because a major UP practice was ignored—i.e. to tackle
high-risk and high-value issues early in the inception phase of the project. Failure
to adhere to this practice caused one of the high value and high-risk problems to
be put on hold until inferior problems were solved.

Also, as nice as the idea of writing unit tests before you write any code sounds, my
personal view is that it is increasingly difficult to maintain tests when reworking
the core application logic frequently. When you rewrite your core application logic
(which turned out to happen all the time in my case) you also have to redesign,
rewrite and reimplement all your test cases. At times I found myself throwing
away unit tests because they no longer served any purpose. This approach could
be feasible when used in a surrounding where one is more comfortable with the
ins and outs of the core problems or when a person would have a higher degree of
professional experience with TDD (Test Driven Development).

87

7.5 On the issue of Java vs. Qt

This modest (and largely biased towards Java) study, which tried to compare Java
and Qt UI capabilities, fell short on its tracks. However something can be deduced
from the fact that using Java technologies this visual representation of the ALMA
system was doable whereas with Qt I was unable to find a proper visual graphing
library to do the job. When it comes to comparing Qt and Java one can say that
they both have their pros and cons and it seems really pointless to try and force
one over the other.

There's a vast amount of people supporting Java and I’m sure that there's also a
vast amount of people supporting Qt. Most of the time, when someone promotes a
technology, those opinions reflect person's own interests towards the technology.
There really is no authority, which can say that Java is better than Qt or the other
way around.

7.6 General Reflections on Software Engineering

In a word, software engineering is hard. It's not so much about tackling different
kinds of techniques or methods; it's the whole process in general – the individual
parts are easy, the whole is a handful. Software engineering entails working ideas,
which form in your mind as perfect, into a functional piece of code. A piece of
code that is responsible for accounting for all the ways in which your perfect idea
fails. It's a big leap from idea to code, one that most often holds within it more
than you originally planned for.

What makes things even more difficult is reading too much into "sound" advice.
There is no right way to do software and making the mistake of following advice
blindly will eventually lead you astray. This goes pretty much for every single
book about software engineering. They have a habit of constraining your mind
with rules without telling you that in 90% of cases, they will not work for you.

88

The most important thing I've learned about software engineering is that it's not
about software—or engineering for that matter. What matters is the end product
and if it serves to benefit the people who use it. Everything else is noise. Software
engineering is a tool, one that is flawed in most ways.

{content_end}

REFERENCES:

yWorks. About yFiles for Java. 2010.
http://www.yworks.com/en/products_yfiles_about.html (accessed November
22, 2010).

Yegge, Steve. Get that job at Google. 12 March 2008. http://steve-
yegge.blogspot.com/2008/03/get-that-job-at-google.html (accessed December 12,
2010).

Vandenburg, Glenn. The Real Software Engineering. Directed by EdgeCase Software
Artisans. Performed by Glenn Vandenburg. JRubyConf, Columbus. 2010.

Vesterholm, M., and J. Kyppö. Java-Ohjelmointi. 6th Edition. Kamppi, Helsinki:
Talentum oyj, 2006.

ALMA Consulting Ltd. ALMA - Transferring Knowhow. 2010.
http://www.alma.fi/In_english/Front_page (accessed September 15, 2010).

Apache Software Foundation. “Apache Ant User Manual.” Apache Ant. 15
November 2010. http://ant.apache.org/manual/ (accessed November 15, 2010).

Black, Paul E. acyclic graph. 19 April 2004.
http://xlinux.nist.gov/dads/HTML/acyclicgraph.html (accessed July 30, 2011).

—. connected graph. 19 April 2004.
http://xlinux.nist.gov/dads/HTML/connectedGraph.html (accessed July 30,
2011).

—. directed graph. 20 November 2008.
http://xlinux.nist.gov/dads/HTML/directedGraph.html (accessed July 30, 2011).

—. forest. 19 April 2004. http://xlinux.nist.gov/dads/HTML/forest.html
(accessed July 30, 2011).

—. in-order traversal. 14 August 2008.
http://xlinux.nist.gov/dads/HTML/inorderTraversal.html (accessed July 30,
2011).

—. postorder traversal. 14 August 2008.
http://xlinux.nist.gov/dads/HTML/postorderTraversal.html (accessed July 30,
2011).

—. preorder traversal. 14 August 2008.
http://xlinux.nist.gov/dads/HTML/preorderTraversal.html (accessed July 30,
2011).

—. red-black tree. 23 May 2011. http://xlinux.nist.gov/dads/HTML/redblack.html
(accessed July 30, 2011).

—. tree. 14 August 2008. http://xlinux.nist.gov/dads/HTML/tree.html (accessed
July 30, 2011).

CVS. “Introduction to CVS.” Introduction to CVS. 22 November 2010.
http://www.nongnu.org/cvs/ (accessed November 22, 2010).

fastutil. “Introduction.” Introduction. 22 November 2010.
http://fastutil.dsi.unimi.it/ (accessed November 22, 2010).

Freeman, E, E Freeman, B Bates, and K Sierra. Head First Design Patterns.
Sebastobol, California: O'Reilly Media, Inc., 2004.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, Massachusetts: Addison-Wesley
Professional, 1994.

Grzegorz, Szewczyk. “Comment.” Comment. April 2011.

Holowczak, Richard. Programming Concepts. 29 May 2007.
http://cisnet.baruch.cuny.edu/holowczak/classes/programming/ (accessed
January 12, 2011).

Knuth, Donald. The Art of Computer Programming. 3rd Edition. Vol. 1. 3 vols.
Reading, Massachusetts: Addison-Wesley Professional, 1997.

Larman, C. Agile and Iterative Development: A Manager's Guide. Reading,
Massachusetts: Addison-Wesley, 2003.

—. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development. 3rd Edition. Upper Saddle River, New Jersey:
Prentice Hall PTR, 2005.

Larman, C., and V. Basili. “Iterative and Incremental Development: A Brief
History.” IEEE Computer, 2003.

Niemeyer, P., and J. Knudsen. Learning Java. 3rd Edition. Sebastopol, California:
O'Reilly Media, Inc., 2005.

Nokia. What is Qt. 2010. http://qt.nokia.com/ (accessed November 22, 2010).

Moock, Colin. moock.org. 21 January 2011.
http://www.moock.org/lectures/mvc/.

Oracle. About the Java Technology. 2010.
http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html
(accessed November 22, 2010).

—. Java Native Interface: Programmer's Guide and Specification. 2010.
http://java.sun.com/docs/books/jni/ (accessed November 22, 2010).

Pressman, R. Software Engineering: A Practitioner's Approach. 4th Edition. New
York, New York: McGraw-Hill, 1997.

Squidoo. Arwen Undomiel. 12 January 2011. http://www.squidoo.com/arwen-
undomiel (accessed January 12, 2011).

	

	

1

APPENDIX: USE CASES

Use Case Section Comment

Use Case Name Initiation of the application

Preconditions The ALMA client needs to be properly set up.

Main Success Scenario

Using the ALMA client, the user chooses an object he
would like to inspect with the graphing application.
The application plots the graph according to
predefined settings.

Exceptions
The selected root does not produce any results leading
to an empty graph. This might be the result of filters,
which limit out the selected item and its connections.

Frequency of Occurrence Continuous

Use Case Section Comment

Use Case Name Interacting with the application

Preconditions None

Main Success Scenario

The user is able to interact with the graphing
application so that he is able to inspect a given element
more deeply. The element to inspect can be a node or
an edge.

For future reference, the user-supported actions
should be something that can be easily
expanded/subtracted later on. In other words this part
of the application should be highly extendable and
customizable. To start with, it's enough that the user is
able to extend his selection to see more of the ALMA
system structure.

	

	

2

Exceptions None

Frequency of Occurrence Continuous

Use Case Section Comment

Use Case Name Defining parameters

Preconditions None

Main Success Scenario

The user is able to define what he wants the graphing
application to show to him. The user is able to decide
whether he wants to see the hierarchy, the links, the
type structure or any permutation of the latter
described list.

The defined parameters are stored in the ALMA
system in text format. To manipulate these
configurations might prove to be arduous, so in the
future a separate application for forming configuration
files needs to be created.

Exceptions None

Frequency of Occurrence Seldom

Use Case Section Comment

Use Case Name Security

Preconditions None

Main Success Scenario

For security reasons, the application should be
identifiable by different kinds of users. This is
something that is handled by the ALMA client but on
some rare occasions issues might rise which need to be

	

	

3

taken into consideration.

Frequency of Occurrence Random

Miscellaneous For future development

Use Case Section Comment

Use Case Name Extending schematic connections based on a pivot

Preconditions None

Main Success Scenario

The user selects a point of origin, a pivot, and relating
to that pivot the schematic connections to and from
that object are mapped from the beginning until the
end.

This is a useful tool for a user who wants to inspect a
single object in the system to quickly see where it
connects to.

Frequency of Occurrence Random

Miscellaneous For future development

Use Case Section Comment

Use Case Name Inspecting electricity distribution

Preconditions None

Main Success Scenario

The user wants to see how electricity is distributed in
the facility.

I.e. in the application settings everything else needs to
be filtered out except electricity related items.

	

	

4

Frequency of Occurrence Random

Miscellaneous For future development

	Thesis_JH_5_rev3
	Thesis_JH_5_rev3.2
	Thesis_JH_5_rev3.3
	Thesis_JH_5_rev3.4
	Thesis_JH_5_rev3.5
	Thesis_JH_5_rev3.6
	Thesis_JH_5_rev3.7
	Thesis_JH_5_rev3.8
	Thesis_JH_5_rev3.9
	Thesis_JH_5_rev3.10
	Thesis_JH_5_rev3.11
	Thesis_JH_5_rev3.12
	Thesis_JH_5_rev3.13
	Thesis_JH_5_rev3.14
	Thesis_JH_5_rev3.15
	Thesis_JH_5_rev3.16
	Thesis_JH_5_rev3.17

