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1. INTRODUCTION 

Many plastic materials have a tendency to start burning if they are exposed to fire. Fires 

kills and injures people and destroys material possessions. In 2005 fires killed 85 people 

in Finland and the direct economical losses were 225 million € (Geneva association 

2008). To prevent a fire from starting and continuing so called flame retardants are 

often used in e.g. polymers and textiles. The production and usage of different polymers 

and composites is growing steadily which also means a larger need for flame retardants. 

Deflamo Ab is a Swedish chemical company that manufacture and market the 

environmentally friendly flame retardant Apyrum. UPM has developed a new cellulose 

and polypropylene based composite material suitable for injection molding. Thus this 

more environmentally friendly composite decreases the need and use of oil based raw 

materials. A certain percentage is replaced with the renewable raw material cellulose. 

Products from the two earlier mentioned companies were used in this project.  

 

One main group of flame retardants used are so called halogenated flame retardants. 

These are organic compounds containing bromine or chlorine atoms. Some brominated 

flame retardants (BFRs) have been banned in Europe due to their toxicity and capability 

to bioaccumulate in living organisms, including humans. Some BFRs show 

characteristics of POPs (persistent organic pollutants)(Janssen 2005 p. 26). The 

European directive RoHS has banned the use of some brominated substances in 

electronics in Europe and the WEEE directive instructs the removal of brominated FRs 

in electrical and electronic waste recycling. Chemicals need to be registered in REACH 

(registration, evaluation, authorization and restriction of chemicals) where they are first 

evaluated and later  decisions on approval are made. REACH is established to protect 

the safety of humans and the environment against the risk that chemicals might bring 

(Brominated Science and Environmental Forum, BSEF). 

 

Brominated flame retardants have been found e.g. in our food, in us humans and in 

breast milk that babies drink. In animal studies it has been showed that some BFR 

effects are neurobehavioral toxicity, thyroid hormone disruption and possibly cancer. 

Other evidence suggest that BFRs might also contribute developmental effects, 

endocrine disruption, immunotoxicity and long term effects (Janssen 2005 p. 19). In a 

study made by researchers at the University of California at Berkley it was shown that 
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prenatal and childhood exposure to PBDEs lead to decreased fine motor coordination 

and cognitive development  in early school age children (Eskenazi et. al. 2012). New 

regulations, changing attitudes and growing environmentally friendly values have 

contributed in an increased interest and demand of nontoxic and environmentally safe 

flame retardants. Deflamo has taken its place and strives after growth in this specific 

market gap. 

1.1 Aims and objectives 

The aim with this project is to use Deflamo’s environmentally friendly FR, Apyrum, 

together with UPM’s new composite material, ForMi GP. Apyrum has not been tested 

with a cellulose and PP based composite material before so the results could potentially 

be useful for Deflamo. Fire test and tensile test results of different mixtures of Apyrum 

and ForMi GP will be compared to find a compound that has good flame retardant 

properties. The emphasis in this project is on the fire test results and not so much on the 

mechanical properties of the compounds. Nevertheless suitable processing parameters 

for the extrusion and injection molding step need to be experimented with in order to 

get the test specimens made. There will however not be much focus on finding out the 

optimal production process parameters. The time schedule does not make this possible 

due to the relatively large amount of different compounds that needs to be made and 

tested.  

2. Literature review 

2.1 Fire 

To start a fire there needs to be a fuel, oxygen and a heat source that reaches the ignition 

temperature of the fuel. When the fuel is ignited and starts to burn in the present of 

oxygen there is enough heat produced to start a chain reaction that feeds itself.   

This exothermic chemical chain reaction continues as long as there is enough oxygen, 

fuel and high enough temperature. If one of these three is removed the fire cannot 

continue and it dies out. 
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There are many different polymers that are used together with FRs and they also 

possess different burning properties. When a polymer burns free O and OH radicals 

are released that cause the flame spread. A simple figure that explains the combustion 

process can be seen below in figure 1 (Troitzsch 1990 p. 17). 

 

Figure 1. Combustion process. (Troitzsch, International Plastics Flammability Handbook. 1990). 

2.2 Flame retardant function 

Flame retardants can function and protect either chemically or physically. Physically 

acting retardants can act by cooling the fuel to a temperature below that needed for the 

combustion process to continue. Also a formation of a protective carbon (charring) layer 

can be used. This layer result in a cooling of the condensed phase and blocks out the 

oxygen needed for the combustion process (Troitzsch 1990 p. 43). Intumescence also 

takes place in the condensed phase. In intumescence the burning material forms a layer 

of char that swells up to foam like substance, which blocks out oxygen and insulates the 

fuel from the heat source. For Intumescence to work the FR usually needs the following 

ingredients: 

 a catalyst (an inorganic acid) that ramps up the formation of char, 

 a charring agent that under combustion is able to form a lot of char, 

 a blowing agent that creates a lot of noncombustible gases that causes the char to 

swell up. (Xanthos 2005 p. 290) 

Apyrum is based on intumescence and the blowing agent used in the FR generates 

only CO2 and water. 
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Chemically reacting flame retardants react with the free radical mechanism of the 

combustion process which take place in the gas phase and thus the fire will eventually 

be suppressed. The exothermic process is stopped which results in system cooling and 

in a reduction of flammable gases needed for the combustion process. (Xanthos 2005 

p. 291)   

2.3 Main flame retardants and market 

The flame retardant market was valued at approximately 4,2 billion US$ in 2007 

(Reilly & Beard 2009) and a total global usage of approximately 1,8 million metric 

tonnes (European Commission, Arcadis). According to a market study made by 

Ceresana the FR market will generate revenues up to 5,8 billion US$ in 2018. The 

most widely used FR group are the metal hydroxides that cover 51% of the total 

consumption. The mostly used single FR is aluminum hydroxide (ATH) and covers 

40% of the FR consumption (European Commission, Arcadis). The main flame 

retardants used can roughly be divided into: halogenated, metal hydroxides and 

phosphorous containing flame retardants. 

 

 

Figure 2. Flame retardant consumption in 2007 .(European commission, flame retardant study). 
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Figure 3. Flame retardant consumption in tonnes in 2007.( European commission, flame retardant 

study). 

2.3.1 Inorganic flame retardants 

Aluminum hydroxide, ATH (Al(OH)3) is the most widely used FR. When temperatures 

exceed 200°C an endothermic decomposition starts. Here water is released which then 

dilutes the gases that feeds the combustion reaction. A vapor barrier prevents oxygen 

from getting in contact with the flame and so it slows down and ends the combustion 

(Xanthos 2005 p. 293). Magnesium hydroxide is based on the same functions as ATH 

but have a higher decomposition temperature (320°C) (Xanthos 2005 p. 299).  

2.3.2 Halogenated flame retardants 

Brominated and chlorinated organic FRs act chemically in the gas phase. In the process 

halogen radicals reacts to form hydrogen halide gas which interferes with the free 

radical chain mechanism. The high energy radicals are replaced when reacted with 

hydrogen halide with low energy Br or Cl radicals which are not capable of maintaining 

the combustion process (Pritchard 1998). According to the European Flame retardant 

Association (EFRA) there are about 75 different commercial brominated flame 

retardants on the market. Antimony trioxide is often used as an synergist together with 

halogenated FRs. PCBs, pentaBDE and hexaBB are examples on halogenated FRs that  

have been listed as POPs (persistent organic pollutants) by the Stockholm convention. 
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The Stockholm convention is an international environmental treaty that strives to 

restrict or eliminate the production and use of POPs.  

According to the Brominated Science and Environmental Forum (BSEF) today the main 

three commercially used BFRs are decaBDE, TBBPA and HBCD. HBCD is at the 

moment reviewed by the Stockholm convention POPs review committee whether or not 

it should be added to the POP list and phased out.  

2.3.3 Phosphorous flame retardants 

Red phosphorous is the most simple phosphorous based flame retardant and is 

effective in polymers such as polyolefin’s, polyamides and thermosetting resins. Other 

phosphorous based FRs are melamine phosphate, ethylenediamine phosphate and 

ammonium polyphosphate (APP). APP acts as an intumescent fire retardant system 

and has been shown to be effective in cellulose based polymers (Troitzsch 1990 p. 47).   

2.3.4 Other flame retardants 

Other flame retardants are for example melamine, different boron compounds and 

metal oxides. Nanoclayes in combination with e.g. ATH have also been used in 

polyolefin based cable and wire products (Xanthos 2005 p. 174). Different polymer 

layered silicate nanocomposites are also widely studied and they show very promising 

flammability properties. For example a study made by the National Institute of 

standards and technology (NIST) showed reduced flammability and peak heat release 

rate for Nylon-6, PS and PP layered silicate nanocomposites. A study by Kashiwagi, 

Grulke, Hilding, Harris, Awad and Douglas showed promising flame retardant 

properties in a PP/ carbon nanotube composite. 

3. EXPERIMENTAL PART 

The flame retardant(s) needs to be incorporated into the composite material to give the 

final product wanted flame retardant properties. This was done by extruding a mixture 

containing the chosen components to get new granulates that could be injection 

molded into the final test specimens. The test specimens were tested in order to find 

out the flammability and some mechanical properties. Apyrum was compounded on its 
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own and together with aluminum hydroxide because ATH starts to decompose at 

lower temperatures than Apyrum. The aim with this was to cover a broader 

temperature range when the test specimens were set on fire. 

3.1 Materials 

The materials available and used in this thesis project 

were supplied by Deflamo and UPM. The following raw 

materials were used, 

- ForMi GP(30, 40, 50) granulates 

- Borealis bormod™ Bormod-BJ368MO. PP 

- Apyrum FR powder 

- Martinal OL-104 LEO. Aluminum hydroxide  powder. 

- Clariant Exolit AP 422. Ammonium polyphosphate powder. 

 3.1.1 Apyrum flame retardant 

As earlier mentioned the Apyrum flame retardant is produced by the Swedish 

chemical company Deflamo. Apyrum is a 100% environmentally and human friendly 

flame retardant. It is based on citric acid and all of its individual components are 

proven food additives. Today it is used in e.g. PVC products and is getting a lot of 

interest due to its environmental benefits. As earlier mentioned Apyrum acts trough 

intumescence. Apyrum is available as a water based liquid solution or as a fine grained 

powder. For this project Apyrum in powder form was used and is shown in figure 3. 

 

Figure 5. From left Apyrum and ATH FR powder. Photograph Christian Östman 2012. 

Figure 4. Borealis virgin polypropylene. 

Photograph Christian Östman 2012. 
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3.1.2 ForMi composite 

The new polymer composite material ForMi GP is manufactured by UPM and is made 

of polypropylene and cellulose. The ForMi GP composite range consists of four 

variants with cellulose concentrations of 20%, 30%, 40% or 50%. ForMi GP 

composite is one of three ForMi grades and is suitable for general use for injection 

molding. The other two grades in the ForMi family are ForMi EFP for thin wall 

applications and ForMi TP for technical applications. 

3.2 Mixtures 

Following mixtures were successfully (with bold font) extruded and injection molded 

for further tests. Mixtures with an italic and underlined font were unsuccessfully 

extruded and only useless products were obtained. GP granulates were compounded 

with different quantities of Apyrum and ATH to find out the needed weight 

percentages to achieve wanted flame retardant properties.  

Table 1. Extruded mixtures. 

 GP30 Apyrum ATH Exolit AP422 

GP30-1 90% 10% - - 

GP30-2 80% 20% - - 

GP30-3 70% 10% 20% - 

GP30-4 100% - - - 

GP30-5 80% - - 20% 

 GP40 Apyrum ATH Exolit AP422 

GP40-1 80% 20% - - 

GP40-2 70% 10% 20% - 

GP40-4 100% - - - 

GP40-5     

 GP50 Apyrum ATH Exolit AP422 

GP50-1 90% 10% - - 

GP50-2 80% 20% - - 

GP50-3 70% 20% 10% - 

GP50-4 100% - - - 

 Borealis PP Apyrum ATH Exolit AP422 
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Borealis PP-1 80% 20%   

Borealis PP-2 70% 10% 20%  

Borealis PP-3 100%    

3.3 Processing 

The whole processing cycle started with drying and mixing the different components 

that then would be fed into the extruder. The extrudate containing the additives was 

then grinded to new granules which could be injection molded. All these steps were 

repeated for all the different mixtures. It was important to dry and extrude big enough 

batches of each mixture as both the extrusion and injection molding process produced 

waste material in the beginning and in the end of the production runs.   

3.3.1 Drying 

The GP composite granules were dried for at least 3 hours in 115°C to get rid of 

moisture. The drying temperature and time can be found in the ForMi GP material sheet (appendix, 

page 40). The Apyrum FR was dried at least for 3 hours in a temperature range 

between 170-198°C to get rid of moisture. After drying Apyrum weight losses of over 

6% were measured. The drying of the Apyrum FR turned out to play a key role in the 

whole extrusion process. If Apyrum was not dried properly before the extrusion there 

was water vapor released inside the extruder barrel. This water vapor resulted in an 

extremely uneven material output and the extrudate was unusable for further 

processing. 

The ready extruded FR containing compound was again dried for 3 hours in 115°C 

before the injection molding process. The reason for this was that the material was led 

trough a water bath for cooling when it came out of the extruder. Also there were 

several days between the extrusion and the injection molding processes. 

3.3.2 Mixing 

When the materials had been dried the GP composite and the FRs were weighed and 

mixed together in wanted proportions in a closed plastic bucket. The bucket containing 

the materials was shaken for a couple of minutes in order to mix the different 
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materials. Visually it seemed that the composite granules and the FR powders stuck to 

one another relatively good and that this method was good enough to use in the 

project. 

3.3.3 Extrusion 

The extruder used in this project was a KFM lab ex 18 with a screw L/D ratio of 

25/D and a screw diameter of 18mm. It was a small single screw extruder suitable 

for lab use. The extrusion line can be seen in figure 4. 

  

Figure 6. KFM extrusion line in Arcada. Photograph Christian Östman 2012. 

 

The mixtures containing the GP composites and the FRs were extruded in order to 

get the final compounds that could be injection molded into the final specimens 

suitable for testing. Depending on the cellulose and FR contents in the mixtures 

different processing temperatures and extruder screw RPMs were used. The 

extrudates had some change in color and were darker than the original granulates. 

The extruder die used resulted in two continuous solid round extrudate strings. 

According to the GP composite material sheet the recommended maximum 

processing temperature is 200°C. The temperatures were kept lower than 200°C in 

order to avoid or at least minimize thermal degradation of the cellulose fibers and 
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polymer in the GP composite. The viscosity of the GP composite on its own and 

also when mixed with the different FRs was relatively high so the lower 

processing temperatures were kept at around 180°C. The lower temperature limit 

was used to avoid too much stress on the extruder screw which could result in 

screw breakage. The RPMs were also chosen to minimize the stress on the screw. 

Higher RPMs also resulted in some increased degree of “burning” of the material 

possibly due to higher friction inside the extruder. Also much lower RPMs than 

what were used for the final specimens made resulted in higher thermal 

degradation of the extrudate. This could be seen as a color change of the extrudate 

as shown in figure 5. 

 

 

Figure 7. Upper row virgin GP, row below extruded GP. From left GP30, GP40, GP50. Photograph 

Christian Östman 2012. 

 

The extrusion parameters used for the final test specimens that were injection molded 

can be found below in tables 2-4. Many different temperatures (between175°C and 

200°C though) and RPMs were used but the parameters mentioned in this text were 

the ones that resulted in the steadiest material output and smallest thermal degradation 

of the material. 

3.3.3.1 GP30 

Pure GP30 was extruded as well as GP30 containing 10% and 20% Apyrum and 10% 

Apyrum together with 20% ATH. Different temperatures and RPMs were used 
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depending on the specific mixture. The extrusion parameters used for the final 

extrudate are listed below in table 2. From left are the mixtures, RPMs used in the 

second column and temperatures from the nozzle (left) to feed (right) zone.  

Table 2. GP30 extrusion parameters. 

100% GP30 40RPM 184°C 182°C 182°C 181°C 180°C 180°C 

90% GP30 + 

10% Apyrum 

 

32 RPM 182°C 182°C 181°C 181°C 181°C 180°C 

80%GP30 + 

20% Apyrum 

 

30- 33 RPM 185°C 182°C 181°C 181°C 181°C 181°C 

70% GP30 + 

10% Apyrum 

+ 20% ATH 

 

25- 32 RPM 181°C 182°C 182°C 181°C 181°C 181°C 

3.3.3.2 GP40 

Extrusion parameters for GP40 mixtures are listed below in table 3. From left are the 

mixtures, used RPMs in the second column and temperatures from the nozzle (left) to 

feed (right) zone. 

Table 3. GP40 extrusion parameters. 

80% GP40+ 

20% Apyrum 

 

32 RPM 181°C 181°C 181°C 181°C 180°C 180°C 

70% GP40+ 

10% 

Apyrum+ 

20% ATH 

 

33 RPM 181°C 180°C 180°C 181°C 181°C 182°C 

100% GP40 

 

40-42 

RPM 

182°C 182°C 181°C 181°C 181°C 180°C 
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3.3.3.3 GP50 

GP50 mixture containing 10% Apyrum was extruded successfully. Extrusion 

parameters for GP50 mixtures are listed below in table 4. From left are the 

mixtures, RPMs used in the second column and temperatures from the nozzle 

(left) to feed (right) zone.  

Table 4. GP50 extrusion parameters. 

100% GP50 

 

37RPM 182°C 182°C 181°C 180°C 180°C 180°C 

90% GP50+ 

10% Apyrum 

 

37-39 

RPM 

181°C 181°C 181°C 180°C 180°C 180°C 

3.3.4 Granulation 

The extrudate strings were fed into a granulator at the end of the extrusion line. The 

machine grinded the FR containing compound into granulates ready to be used for the 

injection molding process. 

3.3.5 Injection molding 

The injection molding machine used was an Engel 200 ES/ 50 HL CC90 with a 

clamping force of 500 kN and is shown in figure 6. The test specimens that were 

injection molded were so called dog bones that are used when determining tensile 

properties according to the ISO 527-1:1993 standard. Figure 7 shows the 2 cavity 

mold that was used in the project. 
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Figure 8. Engel IM machine. Photograph   Figure 9. ISO 527-1 dog bone mold. Photograph 

Christian Östman 2012.  Christian Östman 2012.   

 

The different compounds were successfully injection molded using process 

temperatures found on the GP material sheet. The color change after the extrusion step 

that was mentioned earlier could be seen even more clearly after the injection molding 

step when comparing 100% GP extruded material with non extruded in figure 8. The 

final injection molded specimen in figure 9 shows clearly the FR lumps that were 

formed during the extrusion step. This issue is further analyzed in the next chapter.    

 

Figure 10. From left not extruded, extruded. Photograph Christian Östman 201. 

 

Figure 11. 80% GP30+ 20% Apyrum. Photograph Christian Östman 2012. 
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As the cellulose and additive content increases in the mixture so does the 

viscosity. For example pure GP30 that has a cellulose content of 30%  has a much 

lower viscosity than for example GP40 containing 10% Apyrum and 20% ATH. 

This meant that the injection molding parameters had to be varied to some extent 

depending on the specific mixture. All compounds were injection molded using 

the same temperatures, from nozzle to the feeding zone: 195°C, 190°C, 185°C, 

180°C. With compounds containing less PP and  higher additive contents higher 

injection speeds, higher holding pressures, higher mold temperatures were used in 

order to fill the mold cavities. Examples of parameters used for two different 

compounds is shown in table 5. When pure non extruded GP50 was injection 

molded higher holding pressure was needed compared to pure once extruded 

GP50. This could indicate that the cellulose fibers had degraded to some extent 

during the extrusion step. 

Table 5. Example on injection molding parameters used. 

 90% GP30+ 10 
Apyrum 

70% GP40+ 10% 
Apyrum+ 20% 
ATH 

injections 
speed(mm/s) 
 

80, 82, 80, 78, 
75, 72, 70, 70, 
65, 60 

75, 80, 85, 80, 
78, 72, 72, 68, 
60, 55 

holding pressure 
(bar) 
 

50, 55, 55, 60, 
55, 55, 50, 50 

60, 65, 70, 75, 
70, 70, 65, 60 

holding time (s) 3 3.5 

mold temp.( °C) 
 

65 75 

cooling time(s) 
 

22 25 

shot size (mm) 43 45 

clamping 
force(kN) 

370 420 

3.4 Processing problems  

During the different preparation and processing steps there appeared a number of 

different complications and issues that needed to be solved. These matters are discussed 

in the next two chapters 
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3.4.1 Extrusion problems 

The moisture content of the Apyrum FR was an essential matter in order to 

successfully extrude. Too high moisture content in the powder and the extrusion 

process was impossible to carry out due to the uneven extrusion material output. The 

uneven material output was seen in very short extrudate strings (the extrudate strings 

cracked) and material “spitting”. An even spread of the FRs in the GP composite was 

not achieved in the extrusion process and lumps of FR powders can be seen in the 

final extrudate in figure 10. The FR powder was also unevenly spread in the two 

extrudate strings. The extrudate surface was different depending on trough which die 

nozzle it came out. Also higher FR content could be seen in the extrudate with the 

more smoother surface shown in figure 11. 

 

Figure 12. FR lump in extrudate. Photograph Christian Östman 2012. 

 

Figure 13. FR lumps and surface smoothness difference in the two extrudate strings. Photograph 

Christian Östman 2012. 

 

When extruding the different mixtures gas (water vapor) was formed inside the 

barrel that resulted in “bubbles” in the extrudate. The effect could be seen in a much 
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lower density. Below in figure 12 the weight is approximately the same for the non-

extruded and for the extruded GP granulates. 

 

Figure 14. Extruded and non- extruded GP. Photograph Christian Östman 2012. 

  

80% GP50 and 20% Apyrum could not be extruded successfully due to a very 

uneven material output and “spitting” of the extrudate. Two trial tests were made and 

before the second extrusion session it was made sure that the materials were dry but 

without improvement. 

When extruding a mixture of virgin PP and 20% Apyrum the FR powder lumps 

(agglomerates) gathered in front of the extruder strainer plate causing an increasing 

pressure. This increased pressure resulted in higher stress on the screw and the 

ampere meter showed momentary values up to 4,9 amperes. To avoid e.g. breakage 

of the screw the amperes should be kept under 4,0 as a safety precaution. Two 

attempts were made and barely enough extrudate needed for the injection molding 

step was obtained. The true percentage of Apyrum in the extruded PP remained 

though unknown. It could not be measured how much PP compared to Apyrum came 

out trough the strainer plate before the process had to be aborted. 



27 
 

 

Figure 15. Extruder screw end . Photograph         Figure 16. Clogged strainer plate. Photograph 

Christian Östman 2012.          Christian Östman 2012.   

 

The “burning” or color change of the extrudate was a problem that couldn’t be solved 

by changing the parameters.  When attempting to extrude 80% GP30 and 20% 

ammonium polyphosphate (Clariant Exolit AP422) the material turned totally black as 

shown in figure 15. The material stuck inside the extruder barrel and the machine 

ampere values increased rapidly close to 5. As safety precaution no new attempts 

compounding GP with Exolit AP422 were made. The temperatures were kept between 

180°C- 183°C and RPMs between 8 and 33. Exolit AP422 has a decomposition 

temperature of >275°C thus should it not start decomposing using the parameters 

mentioned. One explanation for this phenomenon could be that the true temperatures 

inside the extruder barrel were much higher due to high friction and shear.  

Some possible solutions to these extrusion problems are considered later in chapter 5.1. 

 

Figure 17. Burnt material, 80% GP30 + 20% Exolit AP422. Photograph Christian Östman 2012. 
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Figure 18. FR lumps in virgin PP. Photograph     Figure 19. Agglomerates in virgin PP. Photograph 

Christian Östman 2012.  Christian Östman 2012.  

3.4.2 Injection molding problems 

Visually it seemed that the earlier mentioned FR powder lumps or agglomerates are 

spread in higher volumes in the cavity part that is filled last with help of the holding 

pressure. E.g. lower holding pressure and larger dosage was used to fix this but the 

result was not successful. The dosage speeds were also increased to find out if the FR 

agglomerate problem could be somewhat reduced at this stage, but without any 

success. Overall the injection molding step was executed without any problems. 

4. TESTING 

Tensile tests were made in order to find out how the FR powder effects the mechanical 

properties compared to the pure GP composite. Burning properties were also tested 

with the different compounds to see the effects on different FR contents used. 

4.1 Tensile test results 

Tensile tests following the ISO-571 standard were made using so called dog bones as 

test specimens. The dog bone dimensions are shown in figure 18. The testing machine 

used was a Testometric M350-5CT and is shown in figure 19. With this mechanical 

test method results as  the modulus of elasticity (stiffness or Young’s modulus), 

elongation (strain) and how much stress (tensile strength) the material can withstand 

are obtained. Some test results for the different compounds are shown below in tables 
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six to nine. The results show decreasing tensile strength and strain and increasing 

values for Young’s modulus  when increasing the additive contents. The tensile 

strength and stress values were found to be overall somewhat lower than on the ForMi 

GP material sheet (appendix, page 40). The FR additives that were  used in the 

compounds resulted in higher stiffness or i.e. Young’s modulus. The tensile strength 

values for the FR containing compounds would presumably have been higher if the FR 

dispersion in the extruded material had been more uniform and the agglomerate 

formation problem could have been solved. Figure 20 shows a stress strain curve for 

GP40 containing 20% Apyrum. 

 

Figure 20. Test specimen. "Dog bone". Photograph Christian Östman 2012. 

 

Figure 21. Tensile testing machine. Photograph Christian Östman 2012. 
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Table 6. GP30 tensile test results. 

GP30 100% 100% extruded 10% Apyrum 20% Apyrum 10% apyrum 
20% ATH 

Stress@Yield, 
MPa 

29.65 26.71 23.68 20.97 21.09 

Stress@Peak, 
MPa 

29.65 26.71 23.68 20.97 21.09 

Stress@Break, 
MPa 

29.50 26.54 23.45 20.61 20.94 

Young’s 
modulus, Mpa 

1216 1163 1246 1272.4 1354 

Strain@Yield,% 4.495 3.797 3.096 2.668 2.285 
 

Table 7. GP40 tensile test results.  

GP40 100% 100% extruded 20% Apyrum 10% Apyrum  
20% ATH 

Stress@Yield, MPa 37.66 36.97 24.54 23.25 

Stress@Peak, MPa 37.66 36.97 24.54 23.25 

Stress@Break, MPa 37.56 36.8 24.48 23.2 

Young’s modulus, Mpa 1310 1288 1388 1526 

Strain@Yield,% 5.17 5.138 2.647 2.175 

 

Table 8. GP50 tensile test results. 

GP50 100% 100% extruded 10% Apyrum 

Stress@Yield, MPa 35.46 30.51 27.23 

Stress@Peak, MPa 35.46 30.51 27.23 

Stress@Break, MPa 35.37 30.44 27.17 

Young’s modulus, Mpa 1647 1506 1602.5 

Strain@Yield,% 3.456 2.893 2.463 

 

Table 9. PP tensile test results.  

PP 100% 100% extruded 20% Apyrum 

Stress@Yield, MPa 24.07 24.20 18.22 

Stress@Peak, MPa 24.07 24.20 18.22 

Stress@Break, MPa 22.68 23.44 17.48 

Young’s modulus, Mpa 673 688 870 

Strain@Yield,% 6.86 6.48 3.36 
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As mentioned the tensile test results shows decreasing values when comparing them to 

the GP and PP material sheets. For example the test results gave the tensile stress value 

35 MPa for pure non extruded GP50 when the stated value in the material data sheet is 

58 MPa. There are some possible reasons for these quite big differences. The different 

tensile testing equipment used in this project and in tests made by UPM might explain 

some result differences but is certainly not the main reason. The test specimen and its 

injection molding parameters might also have resulted the differences. For example the 

test specimens might have been a bit porous due to too low holding pressures used 

during the injection molding of the dog bones. The very big differences between the 

tensile test results and the stiffness values in the material sheet (appendix, page 43) for 

the Borealis PP could not be explained in this project. 

 

 

Figure 22. Stress strain curve for 80% GP40+ 20%Apyrum. Photograph Christian Östman 2012. 

4.2 Burn test results 

The burning tests were made in Sweden at Deflamo Ab. The results are not officially 

comparable to any flammability test standards but do simulate the 50-W horizontal IEC 

60695-11-10 test method. All compounds passed both the HB40 (burning rate 40mm/ 

min) and HB75 (burning rate 75mm/min) classes concerning the burning rates. The test 
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specimens that were injection molded did not have the correct dimensions in order to 

fulfill the standard criteria’s. To achieve these classes the burning rates need to be 

slower than 40mm and/ or 75mm per minute and no burning material dripping shall 

occur. All test specimens eventually burnt up and dripping of burning material occurred 

for all compounds except pure GP50 which reminded of wood like burning (see figures 

22 and 23).  

 

Figure 23. IEC 60695-11-10 Burning test layout. (Troitzsch 1990 p. 356).  

 

The burning rates and test results for the different materials and compounds are shown 

in tables 10 to 14. Overall some increases in burning time could be measured when 

using FRs but the reason and function for this remained uncertain. Either the increase of 

burning time depended on the true FR function or on the dilution of the composite or on 

both. This question could not be answered during the project. Intumescence caused by 

Apurym could however be seen during the fire tests as bumps or swellings on the 

surface compared to a more even surface for 100% GP which is shown in figure 24. The 

wanted effect would have resulted in a total surface swelling and not in randomly 

occurring ”swellings”. As mentioned the test results show increased burning time when 

the increasing the FR content. The compounds containing 10% Apyrum+ 20% ATH 

gave the longest burning times. Pure GP composite burned faster when it had been 

extruded once compared to the non extruded. This could be a result of the decreased 

density (see figure 14) mentioned earlier or by composite fibre degradation that occured 

during the extrusion (see color change in figure 10). 



33 
 

.  

  Figure 25. 80% GP30 20% Apyrum. Material   

dripping. Photograph Christian Östman 2012. 

 

 

 

 

Figure 26. Above GP40 100%, below GP30 20% Apyrum. Photograph Christian Östman 2012. 

  

Figure 24. 100% GP50 burns without 

dripping. Photograph Christian 

Östman 2012. 
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Table 10. GP30 burn test 1.  

GP30 100% specimen 1 specimen 2 specimen 3 

time/ 100mm 2 min 40 sec 2 min 45 sec 2 min 55 sec 

GP30 100% extruded    

time/ 100mm 3 min 25 sec 3 min 20 sec 2 min 46 sec 

GP30+ 10% Apyrum 10%    

time/ 100mm 3 min 45 sec 3 min 06 sec 3 in 07 sec 

GP30 80%, Apyrum 20%    

time/ 100mm 2 min 58 sec 3 min 22 sec 3 min 59 sec 

GP30 70%, Apyrum 10%, ATH 
20% 

   

time/ 100mm 4 min 21 sec 3 min 50 sec 4 min 52 sec 
 

Table 11. GP30 burn test 2.  

GP30 100% specimen 1 specimen 2 specimen 3 specimen 4 

time/ 100mm 3 min 20 sec 3 min 55 sec 4 min 12 sec - 

GP30 100% 
extruded 

    

time/ 100mm 3 min 12 sec 3 min 10 sec 3 min 30 sec - 

GP30 90%, Apyrum 
10% 

    

time/ 100mm 2 min 40 sec 3 min 3 min 10 sec 2 min 56 sec 

GP30 80%, Apyrum 
20% 

    

time/ 100mm 3 min 12 sec 3 min 30 sec 3 min 45 sec 3 min 44 sec 

GP30+ 10%  
Apyrum+ 20% ATH 

    

time/ 100mm 4 min 50 sec 5 min 18 sec 5 min 5 sec 5 min 40 sec 
 

Table 12. GP40 burn test 1.  

GP40 100% specimen 1 specimen 2 specimen 3 specimen 4 

time/ 100mm 3 min 42 sec 3 min 30 sec 3 min 25 sec 3 min 40 sec 

GP40 100% 
extruded 

    

time/ 100mm 3 min 22 sec 3 min 8 sec 3 min 14 sec 3 min 43 sec 

GP40 80%, 20% 
Apyrum 

    

time/ 100mm 3 min 20 sec 4 min 30 sec 4 min 48 sec 4 min 23 sec 

GP40 70%, Apyrum 
10%, ATH 20% 

    

time/ 100mm 5 min 40 sec 6 min 23 sec 6 min 53 sec 6 min 55 sec 
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Table 13. GP40 burn test 2.  

GP40 100% specimen 1 specimen 2 specimen 3 specimen 4 

time/ 100mm 3 min 20 sec 3 min 47 sec 3 min 40 sec - 

GP40 100% 
extruded 

    

time/ 100mm 2 min 42 sec 3 min 18 sec 3 min 42 sec - 

GP40 80%, 20% 
Apyrum 

    

time/ 100mm 3 min 49 sec 3 min 45 sec 4 min 44 sec 4 min 58 sec 

GP40 70%, Apyrum 
10%, ATH 20% 

    

time/ 100mm 5 min 5 sec 4 min 27 sec 7 min 6 sec 5 min 56 sec 

 

Table 14. GP50 and PP burn test. 

GP50 100% specimen 1 specimen 2 specimen 3 specimen 4 

time/ 100mm 4 min 4 min 5 sec 4 min 51 sec - 

GP50 100% 
extruded 

    

time/ 100mm 3 min 20 sec 4 min 30 sec 3 min 50 sec - 

GP50 90%, Apyrum 
10% 

    

time/ 100mm 5 min 45 sec 5 min 55 sec 5 min 20 sec 5 min 11 sec 

PP 100%     

time/ 100mm 2 min 30 sec 4 min 5 sec 2 min 55 sec - 

PP 20% Apyrum     

time/ 100mm 4 min 25 sec 6 min 18 sec 3 min 11 - 

5. DISCUSSION 

As new green and more environmentally friendly products and materials have gained 

interest among consumers as well as producers the demand and need for new 

environmentally friendly flame retardants also grow. If a product can be made to be 

environmentally friendly as well as cost efficient it has good potential to attract new 

customers. Also with the increasing concern around the halogenated flame retardants 

and their health effects new possibilities arise. 

Further trial tests would need to be made with proper equipment and experience in 

order to find out the true fire retardant properties of Apyrum in the GP composite.  
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5.1 Extrusion issues and possible solutions 

The main issue in this project was the earlier mentioned agglomeration of the flame 

retardant powders during the extrusion process. This could not be solved during the 

project and using the equipment available. This issue also resulted negatively in the 

FR properties of the final product. The agglomerate formation mechanism in single 

screw extruders is shown in figure 27. 

 

Figure 27. Mechanism of agglomeration formation. (Xanthos 2005 p.46) 

 

 The compounding of Apyrum and the ForMi GP composite might need a twin-screw 

extruder and/ or a screw that enhances mixing. In the extrusion process two different 

mixing types happen, distributive and dispersive mixing. Distributive low shear 

mixing, distributes the particles evenly in the melt while dispersion mixing uses high 

shear to break up e.g. agglomerates and disperses the particles evenly throughout the 

melt. Dispersion mixing is used e.g. when mixing flame retardants and lubricants. One 

way to prevent agglomeration formation is to feed the filler or flame retardant 
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downstream when the polymer is fully melted in the extruder barrel. This could not be 

done with the extruder used in this project. For enhanced mixing, screws with mixing 

sections, co- or counter rotating twin- screw extruders, gear mixers and kneading 

blocks can be used. (Giles et. al. 2005 p. 43, 120). Figure 25 shows some examples on 

mixing sections for a single screw extruder and figure 26 shows examples of kneading 

blocks. 

 

 

Figure 28. Patented dispersion and distributive mixing sections. Rauwendaal Extrusion Engineering Inc. 
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Figure 29. Examples of kneading blocks for a twin-screw extruder from the German company Extricom. 

 

Lubricants are used for example when reduction in melt viscosity and friction is 

needed. Coupling agents can also be used to increase the interfacial bonding 

between the matrix and additive filler (Xanthos 2005 p. 339). The gas formation 

inside the barrel resulted in pressure increase and bubbles in the extruded material 

and could possibly be solved using an extruder with a vent that let volatiles and 

moisture to escape (Giles et. al. 2005 p. 47). 

6. CONCLUSION 

The results acquired did not correspond to those that were set up when starting 

this project. However the different practical and production steps were executed 

somewhat successfully and it was shown that there is a good possibility that 

Apyrum could be compounded with the GP composite using an extruder. This 

kind of project might need some extrusion consulting and more knowledge 

regarding compounding. The extrusion process was relatively demanding due to 

the lack of extruding experience and the new materials and additives used. The 

injection molding of all compounds made was executed without any problems 

when not taking the agglomeration issue from the extrusion step into 

consideration. 

The number of different compounds made in this project as well as the problems 

during the extrusion step resulted in a lack of time used to find optimal processing 

parameters for the materials and to solve the agglomeration problem. During this 

project approximately a total of 80 specimens were fire tested and about 90 
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specimens tested with the tensile testing machine to get the results that are stated 

in this document. 7 different FR containing compounds were made and tested. If 

there would have been more time more compounds would have been made for 

comparison. The project taught a lot about the extrusion process and its potential 

complications as well as material testing.  

There are many scientific studies made involving flame retardants, especially 

BRFs and their impact on humans and the environment. The down side is that 

many of these publications cost money. This means that the number of scientific 

studies concerning recent studies used in this project is limited. ScienceDirect is 

an example of an online database where many articles and studies on flame 

retardants can be found. The main concerns and trends regarding BRFs were 

though stated in this project.  

The project and its content can be useful for Deflamo in the future for example in 

problem solving concerning the customers extrusion processes. Also it needs to be 

pointed out once again that Apyrum had not been compounded with the ForMi GP 

or with virgin PP before. For this reason alone it was very interesting and useful to 

do this project.  
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8. APPENDICES 
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