

Rupesh Basnet

Wireless Control Mechanism for a Trolling
Motor

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor Thesis

Date: 13 January 2013

 Abstract

Author
Title

Number of Pages
Date

Rupesh Basnet
Wireless Control Mechanism for a Trolling Motor

44 pages + 3 appendices
14 January 2013

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Embedded System Engineering

Instructor(s)

Kimmo Sauren, Lecturer

The goal of the project was to develop a wireless control mechanism for a trolling motor.
Widely used trolling motors are expensive ranging from 100 to over 1000 Euros. Manual
control trolling motors are relatively less expensive than wireless trolling motor. The project
was carried out to minimize the cost involved in wireless trolling motors. A goal was that
having this mechanism developed, one could enjoy unconfined mobility within a boat while
fishing at a lower cost.

A manual control trolling motor was bought and a wireless control system for the motor
was developed. Microcontrollers and radio transceivers were used to communicate wire-
lessly. Three input buttons were used for users to feed in the speed inputs. A simple ana-
log electronic circuit was designed to interface the low power microcontroller with high
power trolling motor. An N-type transistor was used for the purpose.

A smoothly running wireless trolling motor was developed as a result of the project. It was
discovered that developing a wireless control system for a trolling motor, one could mini-
mize the cost involved in buying wireless trolling motors which could save hundreds of
Euros. The speed and direction could be customized as required. The user interface for
the input could be made more user-friendly.

The project could be further developed to have a global positioning system (GPS) to keep
on track of where the boat is going and an auto steering system for a boat to steer itself.
Also, a remote pilot that navigates the boat through the GPS system could be implement-
ed. In addition, some external position detecting sensors should be used to locate the ex-
act position so that the auto pilot would know where exactly the boat is and where it should
be navigated.

Keywords PSoC, nRF24L01, UART , SPI, trolling motor, VSD-22YMB

Contents

1 Introduction 7

2 Hardware Overview 8

2.1 Programmable System on Chip (PSoC) 8
2.1.1 PSoC Architecture 10
2.1.2 Central Processing Unit 12
2.1.3 Frequency Generator 13
2.1.4 PSoC Power Consumption 14
2.1.5 Reset 14
2.1.6 Digital Inputs and Outputs 14
2.1.7 Analog Inputs and Outputs 16
2.1.8 Digital Programmable Blocks 16
2.1.9 Analog Programmable Blocks 17

2.2 Radio Transceivers 17
2.3 Electric Motors 19
2.4 Brushed DC Motors 21
2.5 Brushless DC Motors 21
2.6 Servo Motors and Servo winch 22
2.7 Trolling Motor 23

3 Interfacing Microcontroller 24

3.1 Serial Peripheral Interface (SPI) 25
3.2 Serial Peripheral Interface in PSoC 25
3.4 Field Effect Transistors and their Application 26

4 Implementation 28

4.1 Push Button 28
4.2 PSoC and Radio Interface 30
4.3 Shadow Register 32
4.4 Radio Transmission 34
4.5 PSoC and Trolling motor Interface 39

5 Results and Discussion 40

6 Conclusions 43

References 45

Appendices

Appendix 1: Program code - Transmit side

Appendix 2: Program Code - Receive Side

Appendixm 3: Function Prototypes Declaration

List of Abbreviations
ADC - analog to digital converter

API - application programming interface

CE - chip enable

CIS - complex instruction set

CPHA - clock phase
CPOL - clock polarity

CRC - cyclic redundancy check

CSN - chip select signal

DAC - digital to analog converter

FIFO - first in first out

GPIO - general purpose input output

GPS - global positioning system

I2C - inter integrated circuit

IC - integrated circuit

ISR - interrupt service routine

MAC - multiply and accumulator

MCU - microcontroller

MISO - master in slave out

MOSFET - metal oxide semiconductor field effect transistor

MOSI - master out slave in

POR - power on reset

PRS - pseudo random sequence

PSoC - programmable system on chip

PWM - pulse width modulation

RF - radio frequency

RFID - radio frequency identity

SCLK - system clock

SMP - symmetric multiprocessor

SPIM - serial peripheral interface master

SRAM - static random access memory

UART - universal asynchronous receiver and transmitter

WDR - watch dog reset

XRES - external reset

Acknowledgements

I would like to extend my sincere thanks to Kimmo Sauren, who not only proposed me

the topic but also provided his valuable time in debugging and suggesting me the idea

to get the project done to the extent I did. Many thanks to Dr. Antti Piironen for accept-

ing the idea and providing administrative support. I would also like to thank Juho

Vesanen and Joseph Hotchkiss for their valuable suggestions and feedback.

7

1 Introduction

The goal of the project was to develop a wireless control mechanism for a trolling mo-

tor. The purpose was to develop a prototype which would embed a wireless control

system in a manual control trolling motor. A manual control trolling motor in any boat

would make fishing difficult in a way that one has to control the boat sitting close to the

nstalled

in the rear deck, one cannot go to the front deck for fishing. Therefore the idea was

proposed to develop a wireless control mechanism for the trolling motor that would

nboard.

An aim of the project was to put forth an answer to how a manual control trolling motor

could be further developed to work as a wireless control trolling motor. One of the key

reasons why the project was carried out was the cost issue. How a wireless trolling

motor can be developed using a manual control trolling motor with minimum cost is

described in this thesis. A block diagram consisting of major electronic parts is illustrat-

ed in figure 1.

Figure 1: Block diagram of the wireless control system for the trolling motor

(Designed by using web platform, Gliffy [1])

Figure 1 shows five different input possible buttons which are fed in to the microcontrol-

ler (MCU). The MCU reads inputs through some connecting wires and based on the

inputs, it transmits a unique value to the remote MCU through radio transceivers (RF).

The remote MCU reads the received value and outputs a unique pulse with a unique

8

duty cycle to the trolling motor. The serial peripheral interface master (SPIM) is the

protocol to communicate between the MCU and RF.

Trolling motors are used in boats for steering which is a replacement for manual rowing

of the boat particularly for fishing purposes. The scope of the project was limited to the

wireless steering of a boat. This project did not incorporate auto steering or the global

positioning (GPS) system. The trolling motors could be placed in the front or rear deck

and steer the boat wirelessly sitting anywhere in the boat. The range of the control sys-

tem is confined within the area of the boat.

2 Hardware Overview

The project involved programmable system on chip (PSoC) microcontrollers, RF trans-

ceivers, a manual control trolling motor and a winch servo motor. PSoC was used to

read the fed-in inputs and process the inputs according to the requirements. The RF

sends the signals from one module to the other and the trolling motor was the load that

the output signals work on and bring the desired consequence.

2.1 Programmable System on Chip (PSoC)

PSoC is a family of integrated circuits (IC) designed and manufactured by Cypress

Semiconductor. The application of PSoC ranges from a simple toothbrush to the ad-

vanced field of robotics. The PSoC microcontroller is the most powerful microcontroller

chip which allows graphical chip-level design and C code implementation or assembly

language programming. It also supports inline assembly that is embedded within the C

code implementation and has configurable digital and analog blocks. Modules can be

placed to these blocks according to the requirements and parameters to these modules

can be selected in a graphical environment.

PSoC fascinates users because it lays forth a platform to add in the required modules

and edit accordingly in a graphical environment. Additionally a well-documented guide

and the built- in datasheets for each module with an illustrated application program-

ming interface (API) assist beginners. Figure 2 shows how a graphical chip-level de-

sign environment for a PSoC looks like.

9

Figure 2: Screenshot of PSoC chip level design

Figure 2 shows how the PSoC chip level graphical window looks like. One can drag (or

simply double click) the required components to either the digital blocks or analog

the user s modules window. Digital mod-

ules like a digital to analog converter (DAC), liquid crystal display (LCD) or light emit-

ting diode (LED) go to the digital block while the analog modules like an analog to digi-

tal converter (ADC) or amplifiers etc go to the analog blocks. The global resources

window is used to customize the clock source and define the other hardware settings

like voltage levels, sleep time rate for the processor. The parameters window allows to

change the name of the module, select the input clock and row input and output buses.

Pins can be configured through the pin configuration window.

10

2.1.1 PSoC Architecture

CY8C29466-24PXI was the microcontroller used in the project. It is an 8-bit complex

instruction set (CIS) computer. The selection of a particular microcontroller depends

on the functionality of the project. However the basic differences among the PSoC

families are the number of available programmable blocks and number of input and

output pins. Depending on the microcontroller family, PSoC chips have 4-16 pro-

grammable digital blocks and 3-12 analog blocks. The prominent features of PSoC

are the following:

 Multiply and accumulator (MAC) unit, hardware 8x8 multiplication with result

stored in 32-bit accumulator,

 Changeable working voltage, 3.3V or 5V,

 Possibility of small voltage supply, to 1V,

 Programmable frequency choice [2].

PSoC microcontrollers have programmable voltage, inverting amplifiers and non-

inverting amplifiers. Accessing the peripheral device through PSoC is convenient from

the code implementation point of view as one can easily find the sample firmware in

the datasheets. The reason for the PSoC success is its ability to allow peripheral de-

vice configuration inside the MCU itself and flexible pin assignment.

Fast prototyping is another significant feature of the PSoC MCU. Developing a proto-

type using the PSoC MCU is convenient and fast because of its graphical user inter-

face on which the required user module could simply be dragged and dropped and the

available sample firmware in the datasheets makes coding fast. The PSoC standard

library includes almost all the features of C programming and additionally it also sup-

ports inline assembly programming, which enlarges the algorithm implementation

scope. Introducing sleep modes in the PSoC helps it to ease its performance. If the

MCU is not performing anything special, it can be set to the sleep mode, so that it

draws minimal current and hence power. It is useful mainly in a battery operated appli-

cation. The use of sleep modes varies from application to application. If an application

is such that the MCU keeps on doing something all the time, then it is wise to use the

suitable clock frequency to keep the MCU up on running all the time. Unlike this, if the

MCU does some specific jobs for a period of time and does nothing the rest of the

time, it is better to use the sleep mode that lets MCU work until a required period of

time and then drives the MCU to the sleep mode.

11

The usual way to enter into the sleep mode is use the API function CyPmAltAct() [3].

However, there are different wakeup sources for the MCU to get it to the pre-sleep

mode state. A pending interrupt service routine (ISR) could be one of the wakeup

sources. There are three available categories of wakeup events: periodic, asynchro-

nous and reset. A sleep timer, comparator and XRES are the respective examples of

wakeup sources.

In the PSoC, timers and counters are more flexible than in a usual implementation. A

sample C code implementation in a datasheet for each module makes it easy to write

the code. PSoC also supports inline assembly, which consequently enhances the code

implementation. If a certain function is not defined in the standard library file of the

PSoC, an inline assembly of complex instruction set computer can be used.

Figure 3: PSoC architecture

 Reprinted from Scribd (2012) [2]

Figure 3 shows the internal architecture of PSoC microcontrollers. The central pro-

cessing unit (CPU) is the brain of the microcontroller which controls the program exe-

cution. The frequency generator provides the required frequency to the CPU to work.

12

The reset controller enables the start of MCU and brings back the MCU to the right

track if something unusual happens. The watch dog timer is used to detect software

dead loops. Sleep timer can wake up the MCU periodically from power saving modes.

[2]

The input/output pins enable communication between the CPU, digital blocks, analog

blocks and the real world. The digital and analog blocks enable users to configure

digital and analog programmable components added by users. The interrupt control-

ler handles the interrupt action. The I2C (inter integrated circuit) controller enables the

hardware realization of I2C communication. [2]

In figure 2, Vref refers to the voltage reference which acts as the frame of the refer-

ence for the voltage measurement in the analog operation. The MAC unit is responsi-

ble for multiplication and accumulation operation and the SMP is the symmetric multi-

processor which can be used as a part of the voltage regulator. For instance, it is

possible to supply the voltage to the PSoC microcontroller from single 1.5 V battery.

[2]

2.1.2 Central Processing Unit

The instructions during programming are stored in the flash memory. The CPU fetch-

es each instruction from the flash memory, decodes it and executes accordingly. The

CPU has internal registers such as a program counter, stack pointer, index register,

flag register and arithmetic and logic unit, which are involved in a complete instruction

execution [2].

13

Figure 4: CPU of PSoC

Reprinted from Scribd (2012) [2]

The program counter keeps track of which instruction is executed and which one is on

the way. The stack pointer points to the address of the static random access memory

(SRAM) where data is written to or read from in case of any PUSH or POP operation.

The accumulator handles all the arithmetic, logical and data transfer operations and

the index registers act as an accumulator when large instructions are handled. The

result of previously executed instruction is stored in flag register as a bit value. [2] The

arithmetic and logical unit is used for the arithmetic and logical operation such as ad-

dition, subtraction or shifting.

2.1.3 Frequency Generator

A frequency generator is important to the CPU unit functioning and programmable

blocks. Each programmable component has a certain operating speed. The fed in

frequency signal should match the desired operating speed for the efficient result.

PSoC microcontrollers have a system for generation of different frequency signals,

which is done by selecting different parameters in the global resources window. Tim-

ers, counters or PWMs can be used to synchronize the clock further.

The system clock is the main internal clock signal with a speed of 24 MHz. It is used

as a reference clock for most other sig arameters such as

VC1, VC2 and VC3 further divide the system clock. The allowed dividing value for

VC1 and VC2 is 16 or less, while that of VC3 is 256 or less. Even having done that, if

desired clock frequency is not achieved, one can further divide it using timers or

PWMs.

Apart from the internal system clock, the CPU has its own synchronizing clock for the

instruction execution. It is used as a CPU unit frequency which has a direct impact on

the instruction execution speed. The CPU clock can have any of eight frequencies

that are in the range from 93.75 MHz to 24 MHz, which can be done by setting ap-

propriate parameters in the Device Editor or during program runtime by selecting

three lower bits of OSCCR0 register. [2]

14

2.1.4 PSoC Power Consumption

The CPU clock in the PSoC is responsible for the instruction execution speed. Dou-

bling the frequency, the program executes twice faster. However, a higher frequency

does not necessarily mean a better overall performance. A higher frequency could

bring in an undesired effect on microcontroller power consumption. This results in

problems with battery supply. Moreover, generation of electromagnetic interference

increases with a higher frequency and that intrudes the surrounding devices.

It is imperative to bring power consumption to its lowest satisfactory functional level in

battery-operated devices to maintain the longest possible uninterrupted work time.

Microcontrollers often operate periodically. Power saving can be done by switching

the microcontroller to the sleep mode while it has no important role. The microcontrol-

ler could be woken up from sleep mode only by reset or an interrupt.

2.1.5 Reset

Power on Reset (POR) can be done to avoid any unpredictable actions. If the supply

voltage variation occurs, it is likely that the voltage drops beneath a certain limit. The

microcontroller is switched into the POR mode and stays there until the voltage stabi-

lizes above a critical limit defined by the Trip Voltage parameter.

The external reset (XRES) allows the user to switch the microcontroller to the start

state by pressing a button. Reset is activated when the XRES pin reads the logic true.

The simple reset circuit can be made with a pull-down resistor and one switch. The

watch dog reset (WDR) is used for avoiding infinite loops or other irregularities by

switching the system to the start state.

2.1.6 Digital Inputs and Outputs

Digital inputs and outputs pins connect the real world with the PSoC microcontroller.

Each port has eight pins of which one is the power supply and the other is the ground.

Regardless of the number of ports in microcontrollers, the read and write operations

are done in the same fashion. Port access registers are stored inside the register ad-

dress space noted as PRT0DR, PRT1DR, PRT2DR, PRT3DR, PRT4DR or PRT5DR.

15

Figure 5: Write and read operation through PSoC port

Reprinted from Scribd (2012) [2]

The PSoC port pins can be accessed by directly writing to or reading from the port data

(PRTxDR) registers. To write to a particular port pin, the corresponding mask and bit-

wise AND or OR operation is done. For example, to set and clear pin 4 of port 1, the C

code implementation is done in the following way:

PRT1DR |= 0x10;;

PRT1DR &= ~0x10;;

To read from a port pin, read the PRTxDR register and corresponding bit mask is used.

For example, the C code implementation is done in the following way which reads the

third pin of port one and processes the pin set state provided the condition is true.

if (PRT1DR & 0x08)

{

 // Code to process Pin Set state

}

16

The pin configuration can be done in two ways. One way to configure the pins is to

define the configuration as part of the initialization in the Device Editor. It is easy to

configure the pins if the pin configuration is the same at all times. The other way to con-

figure is to use API. The pin configuration can be changed through API any times.

The drive mode for pins can be selected in the Device Editor or can be implemented

through APIs. Setting up the drive mode during runtime can be done initializing the

drive mode registers PRTxDM2, PRTxDM1 and PRTxDM0. The different drive modes

available for PSoC pins are:

 Strong mode is used when it is needed to connect the state on the PRTxDR

register directly to pins. This mode is used for outputs.

 Analog Hi-Z mode is used to connect analog signals like an ADC input. All in-

ternal connections between PRTxDR and pins are disconnected in this mode to

ensure non-interference with the value of the brought voltage.

 Pull-up or pull-down resistors are used when input is fed in through some but-

tons. These resistors ensure the correct state when the button is not pushed.

 Open drain mode is used to maintain several devices to the same line when an

external pull-up or pull-down resistor is added. [4]

2.1.7 Analog Inputs and Outputs

Some of input-output pins, besides their standard use, can perform an analog input

or output operation. Any pin of port P0 as well as lower four pins of port P2 can be

used as an analog input. Inputs of port P0 are connected to analog blocks over ana-

log multiplexers, while in the case of port P2 they are connected directly to program-

mable switched capacitor blocks. Pins P2 [4] and P2 [6] can serve as external refer-

ent voltage inputs. [2] Outputs from analog blocks can be connected to 4 output buff-

ers, which are connected to P0 [2], P0 [3], P0 [4] and P0 [5] pins.

2.1.8 Digital Programmable Blocks

Digital components such as timers, counters, PWM or Pseudo-Random Sequence

Generator (PRS) can be configured. The digital communication protocol such as seri-

al peripheral interface (SPI), I2C or a universal asynchronous receiver and transmitter

(UART) are responsible for establishing communication among hardware compo-

17

nents. Most components such as counters or PRS can be stored inside any free

block, while communication components such as UART or SPI can be set on the right

side of the programmable blocks [2]. A digital programmable block is shown in figure

2 above.

The frequency signal is imperative for the digital components to work. Depending on

the desired speed, there is a range of several built-in frequencies to choose from. The

faster the frequency, the faster the speed is. However, it does not ensure overall bet-

ter performance. A higher frequency means higher power consumption on the one

hand and on the other, it results in higher interference with the surrounding devices

which is often undesired. Therefore a suitable frequency is the one that satisfies the

power consumption and interference issues.

2.1.9 Analog Programmable Blocks

Analog programmable blocks are grouped into columns of three programmable

blocks. Depending on the family of the microcontroller, there could be 1, 2 or 4 analog

columns. Each column has an input multiplexer, one frequency line, output analog

and a comparator line [2]. The analog programmable block is shown in figure 2

above.

Some of the analog components such as AD converters or filters require frequency

signal to determine the sampling rate of the analog signals that affect the compo-

 speed. For each of the columns it is possible to select:

 internal frequency VC1
 internal frequency VC2
 output from the digital blocks such as PWM, counters or timers selected

through a multiplexer.

2.2 Radio Transceivers

A transceiver is a device that comprises of a transmitter and a receiver with a common

circuitry. In the past, there used to be a separate transmitter and a receiver device for

any radio transmission, but at present most of the radio device is a transceiver. A walk-

ie-talkie is an example of a radio transceiver.

18

Radio frequency (RF) is the rate of oscillation in the range of about 3 KHz to 300 GHz,

which is the frequency range of radio waves [5]. RF is the acronym commonly used to

represent radio. An RF transceiver uses radio frequency, which is responsible for

transmitting and receiving data wirelessly. RF modules have an antenna that receives

thousands of radio waves at a time. A resonator circuit amplifies the radio signals in the

frequency band but attenuates the oscillation outside the frequency band and hence

used to tune into a particular frequency band.

nRF24L01 Chip

The nRF24L01 is a highly integrated, ultra low power RF transceiver. It can have up to

2 Mbps on air data rate. It can operate at very low voltages. The supply voltages can

vary from 1.9 to 3.6 volts. However they have an input tolerance of 5 volts. The trans-

ceiver nRF24L01 is marked by its key features which include Enhanced ShockBurst,

Automatic packet handling, Auto packet transaction handling. [6] The nRF24L01 trans-

ceivers have a wide range of applications. They can be used as wireless computer

peripherals, mice, keyboards and remotes, VoIP headsets, game controllers, sports

watches and sensors, RF remote controls for consumer electronics, home and com-

mercial automation, ultra low power sensor networks, active RFID, asset tracking sys-

tems or toys.

The nRF24L01 has a built-in state machine that controls the transitions between differ-

ent operating modes of the chip. The state machine takes input from the user defined

signals and register values. The nRF24L01 can be configured in four main modes of

operation.

The nRF24L01 is disabled with minimal current consumption in the power down mode.

The register values available from the SPI are maintained and the SPI can be activated

in power down mode. The power down mode is entered by setting the PWR_UP bit in

the CONFIG register low. The nRF24L01 should be in power down mode for at least

1.5 milliseconds to ensure settling time. [6]

The device enters standby-I mode by setting the PWR_UP bit in CONFIG register to 1.

The nRF24L01 returns to this mode from the transmit (TX) or receive (RX) mode when

the chip enable (CE) is set low. The device enters the RX mode and behaves as a re-

19

ceiver when the PWR_UP bit in CONFIG register is set high, the PRIM_RX bit is set

high and the CE pin is set high. The transceiver must have the PWR_UP bit set high,

the PRIM_RX bit set low, a payload in the TX FIFO (first-in-first-out) and the CE pin set

high for more than 10 microseconds to enter TX mode. [6]

Enhanced ShockBurst uses ShockBurst for automatic packet handling and timing. The

key features are:

 1 to 32-byte dynamic payload length

 Automatic packet handling

 Auto-packet transaction handling

 Auto-acknowledgement

 Auto-retransmit. [6]

ShockBurst assembles the packet and clocks the bits in the data packet during transmit

and during receive, it searches for a valid address in the demodulated signal. When it

finds the valid address, it processes the rest of the packet and validates it by the CRC.

If the packet is valid, the payload is moved into the RX FIFO. The high speed bit han-

dling and timing is controlled by ShockBurst. [6]

The data and control interface allows access to all the characteristics in nRF24L01.

The data and control interface consist of the following digital signals:

 IRQ (this signal is active low and is controlled by three maskable interrupt

resources)

 CE (this signal is active high and is used to activate the chip in RX or TX

mode)

 CSN (chip select SPI signal)

 SCK (serial clock SPI signal)

 MOSI (master out slave in SPI)

 MISO (master in slave out SPI). [6]

2.3 Electric Motors

An electric motor is an electromechanical device that converts electrical energy into

mechanical energy. Electric motors work on the principle of electromagnetic induction.

Electric motors are found in applications such as industrial fans, blowers and pumps,

household appliances or disk drive. DC motors and AC motors are by far the most

20

common electric motors. On the other hand generators convert a mechanical energy

into electric energy. [7] For example, generators use benzene to produce electric ener-

gy.

Figure 6: Basic operating principle for an electric motor

 Reprinted from GSU (2008) [7]

Figure 6 shows how an electric motor works. There are two permanent magnets with

opposite poles facing each other and a current conducting coil between those magnets.

This coil is connected to a commutator through which the electric current is supplied to

the coil. The commutator reverses the direction of the current so that the coil experi-

ences a torque in the same direction as long as the electric current is passed through.

A magnetic field is produced around a magnet. The direction of the magnetic field is

from north to south. In figure 6, a magnetic field from north to south is set up. When a

current carrying a conductor is brought into this field, it experiences a torque which is

responsible for rotating the armature. [7]

d-

dle finger points in the direction of the magnetic field and the index finger points in the

direction of the current then the thumb points to the direction of torque experienced in

the coil. That means that the coil rotates in clockwise direction as illustrated in figure 6.

The electric current supplied to the system as shown in figure 6, can either be direct

current (DC) or an alternating current (AC). If the motor is designed to run with a DC

power source, it is called a DC motor, and if it is designed to run with an AC power

source, then it is called AC motor. The most common DC motors are brushed DC mo-

tor and brushless DC motors. [7]

21

2.4 Brushed DC Motors

A brushed DC motor has an armature. An armature is a set of wound coils which acts

as an electromagnet with two poles. A commutator reverses the direction of the electric

current flowing through the coil when the poles of the armature electromagnet pass the

poles of the permanent magnet in the electric motor.

The advantages of the brushed DC motors are:

 Two-wire control (with the help of commutator)

 Replaceable brushes for extended life

 Low cost of construction

 Simple and inexpensive tool

 No controller is required for fixed speeds. [9]

The disadvantages are:

 Periodic maintenance is required

 Torque is moderately flat; at higher speeds, brush friction increases, thus reduc-

ing torque

 Poor heat dissipation due to internal rotor construction

 Higher rotor inertia, which limits the dynamic characteristics

 Lower speed range due to mechanical limitations of the brushes

 Brush arcing will generate noise. [9]

2.5 Brushless DC Motors

Brushless DC motors are synchronous motors powered by a DC source but an inte-

grated inverter converts this DC power to AC to drive the motor. There are additional

sensors and electronics to control the inverter output. Unlike brushed DC motors,

brushless motors have rotating permanent magnets and a fixed armature. This elimi-

nates the problem of connecting the current to the rotating armature. An electronic con-

troller replaces the commutator and hence the brushes are not used.

The advantages of brushless motors are:

 Less required maintenance due to absence of brushes

 Torque is relatively higher

22

 High efficiency, no voltage drop across brushes

 Higher speed range

 Low electric noise generation. [9]

The disadvantages of the brushless motors are:

 Higher cost of construction

 Control is complex and expensive

 Electric controller is required to keep the motor turning. [9]

2.6 Servo Motors and Servo winch

Servo motors are the electric motors that work on the principle of magnetic induction.

However the working mechanism is different. A servo motor is an assembly of a DC

motor, a gear reduction unit, a position-sensing device and a control circuit. [10]

Servo has three terminals for the input. Two terminals are used to feed in voltage and

ground while the third one receives a digital control signal from a MCU and causes the

servo to produce torque accordingly. The control signal represents the desired output

position of the servo shaft. The servo receives this control signal that represents the

desired position and applies power to the embedded DC motor until its shaft turns to

that position.

A position sensing device is used to determine the rotational position of the shaft. The

degree of rotation of the shaft in is confined to certain angle. It turns back and forth

approximately 200 degrees. The control signal is pulse width modulated. The positive

pulse determines the position of the shaft. For instance, 1.52 milliseconds is the center

position for the Futaba S148 servo [10]. A longer pulse turns the shaft clockwise from

center and a shorter turns it counter clockwise.

The basic principle of servo motors and winch servos is the same. The external inter-

face looks similar: one power signal, one ground signal and one digital control signal.

Unlike a usual servo motors, a winch servo is not capable of detecting the position of

the rotating shaft. A separate algorithm should be implemented to know the position of

the shaft. The application of the servo motor can be seen widely where positional accu-

racy plays a role. Sometimes positional accuracy is not the only aim. The torque pro-

duced by the servo should be large enough to turn the load to the desired location.

23

The usual servo can rotate around 200 degrees. If the load is to be rotated more than

200 degrees like in a sail in a yacht, then the winch servo is useful.

Winch servos are more powerful than usual servos. The winch servo model VSD-

22YMB can rotate around 2160 degrees that is 6 rotations around the central axis. As

mentioned before, the positive pulse going through the control signal cable controls the

direction of the servo motion. The neutral position for this type of servo is 1500 micro-

seconds. The pulse travelling time is between 800 and 2200 microseconds and has a

dead band width of 2 microseconds [11]. The downside of a winch servo is that posi-

tional precision is unknown. Some external means should be applied to detect the posi-

tion of the rotating shaft.

2.7 Trolling Motor

A trolling motor is the marine propulsion system that contains an electric motor and

propeller and steers the boat in water. By and large trolling motors are used for fishing.

Moreover, they are also used as a primary source of propulsion for a smaller water

craft such as canoes and kayaks. It is also known as an electric outboard motor. [13]

Modern electric trolling motors are designed to operate at 12 volts, 24 volts or 36 volts.

The electric motor is sealed inside a watertight compartment at the end of the shaft.

This part is submerged during use, which prevents overheating. Depending on the

price, trolling motors differ from one another. Hand controlled, foot controlled and re-

mote controlled are the ones currently available on the market. Figure7 shows how a

hand-controlled trolling motor looks like.

24

Figure 7: Hand controlled trolling motor

 Reprinted from Aol Answers (2012) [12]

d-control system. Rotating the tiller changes the

speed and also causes the boat to move forward or backward. Moving the controls

around the shaft causes the boat to move to the right or left. The trolling motors can be

attached either to the bow or stern of the boat and voltage is supplied through battery

cables.

The trolling motor has a DC motor inside it and there are three different cables con-

nected to different resistors. The different possible combination of these resistors in

turn changes the voltage drop across the load, which makes the load rotate at a differ-

ent speed. The trolling motor used in this project was 36 pound Shakespeare trolling

motor and it has five forward speeds and two reverse speeds and operates in 12 volt

power supply [13].

3 Interfacing Microcontroller

Radio transceivers are physically connected with PSoC microcontrollers with some

connecting wires but that does not ensure the communication between PSoC and the

RF transceivers. There has to have some communication interface between them. The

25

digital communication protocols could be UART, I2C and SPI etc. The nRF24L01 is

interfaced with PSoC through SPI.

3.1 Serial Peripheral Interface (SPI)

The SPI is a synchronous serial data link that operates in a full duplex mode shifting a

bit at time [14]. Devices communicate in a master/slave mode where master device

initiates the data frame. The microcontroller is the master and the RF transceiver oper-

ates as a slave. The SPI is depicted in figure 6. The master in figure 6 represents the

microcontroller and the slave is the RF transceiver. SPI communication is used to

communicate with a serial peripheral device or with another microcontroller with an SPI

interface.

Figure 8: Serial peripheral interface

 Reprinted from RPI (2012) [Serial Peripheral Interface, SPI]

In figure 8, shifting of one bit in or out at a time takes place. The bits are sent out from

the master out slave in (MOSI) pin and received through the master in slave out (MI-

SO) pin in the master SPI. The bits to be shifted are stored in the SPI data register and

are sent out either the most significant bit (7th bit) first or the least significant bit (0th bit)

first. This is done by writing to the 7th bit of the SPIM control register CR0. The MSB

first specifies that the MSB bit should be transmitted first. The 7th bit of the slave shifts

into bit 0 of the master through the MISO pin when the 7th bit of the master is shifted

out through the MOSI pin. This bit will eventually end up in bit 7 of the master after

eight clock pulses. [14]

3.2 Serial Peripheral Interface in PSoC

26

Two digital communication modules are available in PSoC for SPI communication, SPI

master and SPI slave. When configured for SPI, the data register DR0 acts as a shift

register. All data is shifted in or out of this register. After a complete byte is received,

the data is transferred to another data register DR2 that acts as one byte RX register.

DR1 acts as one byte TX register in a similar fashion. The data to be transmitted is

loaded in DR1 and shifted to DR0 during transmission. [15]

SPIM is the master module. There are several parameters to be configured. The clock

selects the input clock source. The MISO is the input to the master, and the MOSI is

the input to the slave device. SCLK selects the destination for the output clock signal.

The actual SCLK frequency is half of the clock frequency because of clock division that

occurs in the module. A slave select signal is created in the chip level design by desig-

g-

nal connects and enables the slave device with the master. Several slave devices can

be connected to the master but only one is active at a time.

3.4 Field Effect Transistors and their Application

The metal-oxide-semiconductor field-effect transistor, popularly known as MOSFET, is

a transistor used for amplifying or switching electronic signals. The MOSFET is a four

terminal device but body of the MOSFET is connected to the source leaving source as

one terminal. Gate and drain are other two terminals. Gate intakes the control signal

and the drain takes one terminal from a load, the other being connected either to

ground or power source. An H bridge is an electronic circuit that enables voltage to be

applied in either direction across a load. An electric motor is often required to move in

either direction. An H bridge makes it possible to supply the voltage in either direction

and achieve the desired movement through the motor. H bridges are available as inte-

grated circuits or can be built using discrete components like MOSFETs and diodes.

[17]

Figure 9 shows how an H bridge circuit can be built up using discrete components.

27

Figure 9: H bridge circuit

 Reprinted from Modular Circuits (2011) [16]

In figure 9, Q1, Q2, Q3 and Q4 represent four different MOSFET switches. D1, D2, D3

and D4 represent four diodes. M represents electric motor. Q1 and Q3 are connected

to voltage and Q2 AND Q4 are connected to ground. If Q1 and Q4 are closed, the mo-

tor rotates in clockwise direction and if Q3 and Q4 are closed the motor rotates in coun-

ter clockwise direction.The four catch diodes D1, D2, D3 and D4 seem to have no role

while two or four switches are on. Once the switches are off, the induced field in the

inductive loads looks for a way to collapse. These catch diodes provide a low resistive

path for the induced field to collapse when the switches are off. [16]

There might be the case where unidirectional motion of the motor is desired. This com-

plex H Bridge would only kill time and make the circuit complex then. A single

MOSFET could be used to turn the motor on and off in that case. Either P channel

MOSFET or N channel MOSFET could be used as a switch in such case. The working

mechanism is the same however; the circuitry is different for N and P type MOSFET.

Unlike in N channel MOSFET, source is connected to the power supply in P type

MOSFET. The control signal from MCU goes to the gate in both the case. Load is con-

nected between the drain and ground when P type MOSFET is used as a switch. Fig-

ure 10 shows how it is done using an N channel MOSFET.

28

Figure 10: N channel MOSFET as a switch

 Reprinted from MOSFET as a switch (2012) [17]

In figure 10, the PWM from MCU goes to the gate of the N channel MOSFET. The

source is grounded and a load is connected between the drain and the voltage. A fly-

wheel (catch) diode is connected across the load to provide a low resistive path for the

collapsing field.

4 Implementation

Wireless control for the trolling motor involves two PSoC MCU, two RF transceivers

(nRF24L01), trolling motor, push buttons and a winch servo (servo model number). The

first step taken was to establish communication between a PSoC MCU and a RF trans-

ceiver. SPI interfacing protocol was used for the purpose. Three push buttons are used

to toggle the input. Depending upon the output signal combination from three push but-

tons, MCU writes different values in the register which is read by the RF through SPI

and sent to another RF. This read values are used to distinguish different speed condi-

tions.

4.1 Push Button

Three push buttons named button_0, button_1 and button_2 were used. They have

eight possible combinations. Depending upon the status of the push button, different

values are written to the MCU register. These different values are sent to another MCU

to generate different pulse widths. These different pulse widths drive the trolling motor

29

with different speeds. Push buttons were defined as directives. The pull down drive

mode was used to ensure that the signal was pulled to the reference ground when

switched off. This was implemented as follows:

#define button_0 (Button_0_Data_ADDR & Button_0_MASK)

The above directive definition lets the program know that a button named button_0 is

defined. A button with the same name is defined in the chip level design. The drive

mode can be selected from the drop down list in the pin configuration window or by

directly writing to the drive mode register. A pin status can be monitored through the

button implementation as described above or can directly be read from the port data

register. Reading and writing to a PSoC port is possible by directly accessing the port

data register. Similar is the case for the drive mode implementation. Writing to or read-

ing from a port is done using a corresponding bit mask and bitwise AND or OR opera-

tion. For example, to set and clear the fourth pin 4 of port 1, the C code implementation

is as follows:

 PRT1DR |= 0x10;; //sets the forth pin port 1

PRT1DR &= ~0x10;; //clears the forth pin port 1

Listing 1: Set and clear a pin of a port

To read from a particular port pin, the corresponding bit mask is used. For example to

read the status of pin 3 of port 2, the C code implementation is as follows:

if (PRT2DR & 0x08)

{

 //Block of statment

}

Listing 2: Reading a pin status of a port

When three push buttons have been implemented, the possible combination would be

eight. The following is the truth table for three push buttons.

30

Table 1: Push button conditions

Button_0 Button_1 Button_2 Output value

0 0 0 0x05

0 0 1 0x0A

0 1 0 0x0B

0 1 1 0x0C

1 0 0 0x0D

1 0 1 0x0E

1 1 0 0x0D

1 1 1 0x09

Table 1 shows eight possible push button combinations and hence values written to

nRF24L01. If all three buttons are low, then the hex value 0x05 is written to nRF24L01

and sent to the other module of nRF24L01. The MCU reads this value and knows that

three buttons are in the low state and hence accordingly generates a pulse width of 0,

which is the case of the rest. Accordingly, when all buttons are pressed, 0x09 is sent

and the MCU knows the condition and generates a PWM of the full duty cycle.

The drive mode configuration can be set either in the device editor or by using firm-

ware. If the configuration is fixed all the time, it is a good idea to configure it in the de-

vice editor. The IO configuration can be changed at any time using firmware. For ex-

ample if the drive mode strong is to be set for pin 4 of port 2, DM0=1, DM1=0, DM2=0,

then the 5th bit of DM0 register is set and the same bit for the DM1 and DM2 registers

are cleared [4].

Depending on the input read, the MCU prepares some output. For each button combi-

nation, the MCU assigns a unique value which is then written to the RF module

(nRF24L01). This is done by using the SPI interface protocol.

4.2 PSoC and Radio Interface

The PSoC microcontroller uses the SPI master and slave protocol to interface RF

transceivers [6]. The RF transceiver acts as a slave and the PSoC as a master. The

SPI slave user module is added to the digital block. It performs full duplex synchronous

31

8-bit data transfers. The Devices communicate in the master/slave mode where the

master device initiates the data frame. The microcontroller is the master and the RF

transceiver operates as a slave.

Attention should be taken while doing the SPI read and write operation. The following

timing diagram shows what should be taken into consideration for the SPI read and

write operation. Every new command must be started by a high to low transition on the

CSN. In parallel to the SPI command word applied on the MOSI pin, the STATUS reg-

ister is shifted serially out on the MISO pin. The serial shifting SPI commands are in the

following format:
<Command word: MSBit to LSBit (one byte)>

<Data bytes: LSByte to MSByte, MSBit in each byte first>. [6]

Listing 3: Command format for the SPI read and write operation

Figure 11: SPI read operation

 Copied from nRF24l01 datasheet (2007) [6]

The read or write operation is done while the CSN is in a low state. In addition to the

CSN signal, there are CE, SCK, MISO, MOSI, IRQ signals sharing the same port.

Changing the pin status for the CSN could corrupt the pin configuration setting for other

signals sharing the same port. It is therefore, the pin assigned for the CSN signal,

should be controlled by the implementation of a shadow register.

Figure 12: SPI write operation

 Copied from nRF24l01 datasheet (2007) [6]

32

The SPI communication is initiated with the following function:
SPIM_Start(SPIM_SPIM_MODE_0 | SPIM_SPIM_MSB_FIRST)

A SPIM user module is added to the chip level design. The clock polarity (CPOL) and

clock phase (CPHA) are two main parameters that define the SPI transfer modes of the

clock to be used by the SPI. SPIM_SPIM_MODE_0 tells the MCU to start the SPIM in

mode 0 that is CPOL and CPHA are both zero. In this mode, data sampling is done on

the first edge of the clock and propagation occurs on the second edge.

Figure 13: SPI transfer mode 0

 Reprinted from SPI transfer modes (2012) [18]

Figure 7 shows how data sampling is done, when the SPI transfer mode 0 is used. Ad-

ditionally, the SPI transfer mode 1, mode 2 and mode 3 are also available depending

upon the status of CPOL and CPHA. When CPOL=0 and CPHA=1, it is mode 1; when

CPOL=1 and CPHA=0, it is mode 2 and when CPOL and CPHA are both 1, it is mode

3. [18] SPIM_SPIM_MSB_FIRST tells the MCU to define SPI such that MSB data is

read or written through SPI first.

4.3 Shadow Register

The ShadowRegs is a user module defined in PSoC. It creates a random access

memory (RAM) variable (the shadow register) that caches values written to a port data

register [19]. The shadow register enables the microcontroller control of an individual

GPIO pin without corrupting the settings of other GPIO pins sharing the same port. The

ShadowRegs user module is software only and does not consume any PSoC blocks.

33

Once the shadow register is introduced, the data read or to be written is not directly

read from or written to the port. The shadow register caches the information in a regis-

ter and this register is copied to the required port. The C code implementation is as

follows:

// nRF24_CE off

 Port_0_Data_SHADE &= ~nRF24_CE_MASK;;

 PRT0DR = Port_0_Data_SHADE;;

 // nRF24_CE on

 Port_0_Data_SHADE |= nRF24_CE_MASK;;

 PRT0DR = Port_0_Data_SHADE;;

 Listing 4: Shadow register code implementation

The nRF24_CE_MASK has a defined value and is written to the shadow register and

copied to the port 0 of the microcontroller. The first code sets the CE signal low while

the second code sets it high. The individual pin can be controlled in this way, which

does not affect the settings of other pins sharing the same port. The concept of a

shadow register can be implemented in the firmware without using a shadow register

user module. A function which switches the state of the CSN signal and the CE signal

is written and this is called whenever needed.

// Helper function for setting CSN off/on

void nRF24_CSN_state(BYTE state)

{

 if(state == CSN_ON) {

 PRT0DR |= nRF24_CSN_MASK;;

 }

 else {

 //off

 PRT0DR &= ~nRF24_CSN_MASK;;

 }

}

// Helper function for setting CE off/on

34

void nRF24_CE_state(BYTE state)

 {

 if(state == CE_ON) {

 PRT0DR |= nRF24_CE_MASK;;

 }

 else {

 //off

 PRT0DR &= ~nRF24_CE_MASK;;

 }

}

Listing 5: CSN and CE signal state switching

The above code toggles the status of CSN and CE signals. Bitwise OR sets the state

ON and bitwise AND sets the state OFF. Once these functions are written as a proto-

type, they can be called whenever the pin configuration of that particular pin has to be

changed.

4.4 Radio Transmission

After interfacing nRF24L01 with the PSoC, the next task was to transmit values from

this RF to the other. The nRF24L01 has a built-in state machine that controls the transi-

tion between different operating modes described in section 2.3. Figure 14 portrays the

built-in state machine in nRF24L01 and how different modes can be accessed.

35

Figure 14: Operational modes state diagram

 Reprinted from nRF24L01 datasheet (2007) [6]

As shown in figure 14, nRF24L01 is undefined until the power supply becomes 1.9 Volt

or higher. It then enters in POR (power on reset) mode and remains so until 10.3 milli-

seconds or until it goes to the power down mode. The device goes to the Standby-I

mode setting the PWR_UP bit in the CONFIG register. The Standby-II mode occurs if

the CE is held high on a PTX device with an empty TX FIFO. Transmitting data is pos-

sible only if the device enters into the TX mode. Setting the CE signal high for 10 mi-

croseconds or more, setting the PRIM_RX low and a non empty TX FIFO make the

device switch into the TX mode. The device stays in the TX mode until it finishes

36

transmitting the current payload. The CE low will switch the device to the Standby-I

mode. A high CE signal means the successive action depends on the status of TX

FIFO. According to the manufacturer, it is important to never keep the device in the TX

mode for more than 4 milliseconds, so it is wise to enable auto transmit.

For a complete transmission, the other RF must be set as a receiver and should be

able to receive what the transmitter transmits. It is done by setting the device in the RX

mode. For this, the device must have the PWR_UP bit, the PRIM_RX bit and the CE

pin set high. Sending data bytes from one RF module to the other is challenging. The

address of the transmitter and the receiver must be the same. The communication fails

unless the address is ensured to be the same, which is done in the code implementa-

tion. A brief example of how it is done is mentioned below:

// set both RX_ADDR_P0 and TX_ADDR addresses of the nRF24L01

// the default SETUP_AW, which is 5 bytes, is left unchanged

void nRF24L01_setRxTxAddr(void){

 BYTE i;;

 BYTE RxAddrP0[5] = { 0x01, 0x01, 0x05, 0x01, 0x01};;

BYTE TxAddr[5] = { 0x01, 0x01, 0x05, 0x01, 0x01};;

 // set the RX_ADDR_P0, 5 bytes

 nRF24L01_sendPayload(W_REGISTER | RX_ADDR_P0,

RxAddrP0, 5);;

 // set the TX_ADDR, 5 bytes

 nRF24L01_sendPayload(W_REGISTER | TX_ADDR, TxAddr,

5);;

 }

Listing 6: Setting the same source and destination address

The number of registers should be defined in the correct way to establish the radio

transmission. These registers occupy specific memory which was defined as directives

37

in a different header file. The different registers and their memory definitions are de-

fined referring to the datasheet as below:

// Register addresses

#define CONFIG 0x00

#define EN_AA 0x01

#define EN_RXADDR 0x02

#define SETUP_AW 0x03

#define SETUP_RETR 0x04

#define RF_CH 0x05

#define RF_SETUP 0x06

#define STATUS 0x07

#define OBSERVE_TX 0x08

#define CD 0x09

#define RX_ADDR_P0 0x0A

#define RX_ADDR_P1 0x0B

#define RX_ADDR_P2 0x0C

#define RX_ADDR_P3 0x0D

#define RX_ADDR_P4 0x0E

#define RX_ADDR_P5 0x0F

#define TX_ADDR 0x10

#define RX_PW_P0 0x11

#define RX_PW_P1 0x12

#define RX_PW_P2 0x13

#define RX_PW_P3 0x14

#define RX_PW_P4 0x15

#define RX_PW_P5 0x16

#define FIFO_STATUS 0x17

Listing 7: Register address

The reuse of the last transmitted data packet was done by setting the TX_REUSE bit

high in the FIFO_STATUS register and the TX_REUSE is set by the SPI commands

REUSE_TX_PL and reset by SPI commands W_TX_PAYLOAD or FLUSH_TX [6].

38

// SPI commands of the nRF24L01

#define R_REGISTER 0x00

#define W_REGISTER 0x20

#define R_RX_PAYLOAD 0x61

#define W_TX_PAYLOAD 0xA0

#define FLUSH_TX 0xE1

#define FLUSH_RX 0xE2

#define REUSE_TX_PL 0xE3

#define NOP 0xFF

Listing 8: SPI commands of nRF24L01

Similarly, the interrupt mask was defined such that interrupts are reflected as active low

on the IRQ pin.

// IRQ interrupt masks

#define MASK_RX_DR 0x40

#define MASK_TX_DS 0x20

#define MASK_MAX_RT 0x10

Listing 9: Interrupt masks

The status register mask for RX_DR and TX_DS was defined in the status register and

whenever RX_DR is asserted that is new data arrives, RX_DR is cleared. When

TX_DS is asserted referring that packet is transmitted on TX, TX_DS is also cleared.

// useful STATUS register masks

#define RX_DR_MASK 0x40

#define TX_DS_MASK 0x20

#define TX_FULL_MASK 0x01

Listing 10: Status register mask

Writing a dummy is required sometimes. For example, writing a dummy value to

RF_CH register clears the packet loss counter and is hence defined as follow:

39

// general defines

#define DUMMYDATA 0x00

Listing 11: A dummy value directive definition

4.5 PSoC and Trolling motor Interface

The MCU reads in the input from push buttons, processes the output and this value is

sent to the other MCU. Depending upon the value received, this MCU generates the

PWM of a different duty cycle that generates a different speed for the trolling motor. A

bridge circuit is required to feed in this PWM to the trolling motor. The nature of the

bridge circuit depends on the desired functionality of the trolling motor. If the concern is

a unidirectional motion with different speed, then a simple MOSFET circuit (where the

MOSFET is used as a mere switch) is enough. Figure 10 showed how this circuit is

connected. On the contrary, an H bridge circuit is required to get the motor turn in both

directions. Naturally, the motor has a natural tendency to a convenient turn in one di-

rection. Perceiving this fact, unidirectional rotation of the motor was taken into account.

If the motor had to change the direction, the entire shaft holding the motor was rotated

. This was done using a winch servo.

However, the movement was not smooth and as desired.

For the unidirectional motion with different speeds, the MCU can be interfaced with the

trolling motor using either an N-type or a P-type MOSFET. N-type MOSFET was used

in the project. A circuit as shown in figure 10 is connected between the MCU and the

trolling motor. The PWM signal coming out of the MCU is fed into the gate terminal of

the N-type MOSFET. The trolling motor is connected across the drain and the positive

terminal of 12 V power supply. The source of the MOSFET is grounded. The PWM

coming out of the MCU controls the power supply to the trolling motor. If the duty cycle

of the PWM signal is 50%, the power supply is allowed for the half of the period. This

brings the effect that the trolling motor rotates with half speed.

40

5 Results and Discussion

The goal set for the project was met partially. Each button input tells the MCU to write a

unique value in the payload and send it to the other module. Based on the received

value, the other MCU generates a PWM of a different duty cycle which rotates the

trolling motor. The greater the generated duty cycle is, the higher the speed of the

trolling motor is. Table 2 shows what happens in detail when an input is experienced.

Table 2: Result representation

BUTTON

PRESSED

LCD MES-

SAGE TO

IDENTIFY

PRESSED

BUTTON

DATA FED

INTO THE

PAYLOAD

DATA RE-

CEIVED

GENERATED

PWM DUTY

CYCLE (%)

None off 0x05 0x05 0

button_0 A 0x0A 0x0A 20

button_1 B 0x0B 0x0B 30

button_2 C 0x0C 0x0C 45

button_0 &

button_1

AB 0x0D 0x0D 60

button_0

&button_2

AC 0x0E 0x0E 75

button_1 &

button_2

BC 0x0F 0x0F 90

button_0 &

button_1 &

button_2

ABC 0x09 0x09 100

Table 2 shows the input button combination and the succeeding result. When button_0

in the hex value 0x0A in the payload to be transmitted and consequently the value is

transmitted to the receiver module. The receiver module will then generate a PWM

signal with a 20% duty cycle. Table 2 in the same fashion shows different results for

41

the different input. The third column in table 2 shows the data fed into the payload to be

transmitted. Technically this data is written through the SPI.

The designed prototype is advantageous because of its flexibility regarding distant use.

One can control the speed from any part of the boat. The system is reliable and user

friendly. It has three input buttons and eight possible input combinations. Each button

combination has a unique speed situation. Since the input feeding is confined with but-

ton combination, there is no confusion for the user.

Two sets of MCUs and two sets of RF transceivers can convert a manual control

trolling motor into a remote controlled trolling motor. This saves hundreds of euros from

an economic perspective. Moreover it can be customized as per requirement, for ex-

ample the speed situations and the degree of rotation of the rotor.

The goal set for the project was not achieved. However 80% of the job was done. Wire-

less control of the speed was achieved but the degree of rotation could not be con-

trolled wirelessly. The motor used for the rotation of the trolling motor shaft is a winch

servo motor model VSD-11YMB. Since this motor was used, it was not possible to lo-

cate the rotation degree and hence the rotation part was a failure. However, the servo

aforementioned was able to rotate the shaft. The mechanical placement of the winch

servo was also a problem. During testing, it was placed on the table and supported

manually.

Implementation Issues

The first idea was to implement a knob that could be rotated by the user to control the

speed. This has an underlying potentiometer which would produce a different voltage

when the knob is rotated. This analog voltage is translated into a digital value by an

inbuilt ADC in the MCU and these different digitized values are used to distinguish dif-

ferent speed situations. While implementing the above concept, the ADC did not func-

tion properly. The problem was with the code implementation. The program got stuck in

the following FOR loop which was used in a function that defines the payload transmit.

for(i = 0 ;; i < bytes ;; i++)

{

42

while(! (SPIM_bReadStatus() &

SPIM_SPIM_TX_BUFFER_EMPTY)){};;

 SPIM_SendTxData(dataArr[i]);;

 while(SPIM_bReadStatus() & SPIM_SPIM_RX_BUFFER_FULL);;

 SPIM_bReadRxData();;

}

Listing 12: For loop defined within payload transmit function

It was disclosed that the program got stuck in the code implementation in listing 12 and

listing 13. However, the reason why it occurred could not be disclosed. The same prob-

lem happened with the

concept was switched to the push button implementation.

The part in the code where data transmission was defined had a small delay.

void transmit_data(void){

while(nRF24L01_is_TX_DS() != 1){

nRF24L01_sendPayload(W_TX_PAYLOAD, payloadData, 2);;

nRF24L01_transmitPayload();;

if(nRF24L01_is_MAX_RT()){

nRF24L01_clear_MAX_RT();;

break;; // This breaks out of while loop

}

}

// Clear the interrupt status

43

nRF24L01_clear_TX_DS();;

 // small delay

 for (i=0;;i<60000;;i++);;

}

Listing 13: Function definition for data transmit

This delay was implemented to make sure that after a successful transmission of a

data packet, the RF would wait for a small time before it transmits the other packet.

After this delay loop was implemented, the transmission was not as expected. A single

data packet was transmitted and the program was stopped. However, a reset on the

receiver MCU would accept a succeeding data packet. The data packet transmission

was successful only after having the reset button pressed. A simple solution was to

check what happens when the delay loop in listing 12 is deleted and interestingly it

worked perfectly.

The IRL530 bridge circuit was built to connect the control signal and the trolling motor.

The 12 volt power supply was then synchronized by the control signal fed into the base

terminal of the MOSFET. Figure 10 showed how the circuit was implemented. Howev-

er, the catch diode was not used at the beginning, which brought in the massive heat-

ing of the MOSFET in a short interval of time. It was because the load was an inductive

load and as the power goes off, the induced field looks for a collapse. The introduction

of a catch diode in the circuit, as shown in figure 10, solved the problem as the diode

provided a low resistive collapse path.

6 Conclusions

The goal of the project was to develop a wireless control mechanism for a trolling mo-

tor. A manually controlled trolling motor was used and customized to accept the user

input. MCUs and RF transceivers were used to make it wireless. Controlling a trolling

motor wirelessly means controlling its speed and degree of rotation. Initially the motor

had five forward speeds and two reverse speeds. For the reverse motion, the idea was

to rotate the motor shaft itself through 180, degrees which could not be met. However,

a forward motion was achieved.

44

A different input button combination would send unique values to the receiving side and

having based on the received value, the MCU would generate a PWM with a unique

e-

ceiving side would generate a PWM with a 0% duty cycle and the system would be at

off state. In the similar fashion 20, 30, 45, 60, 75, 90 and 100 % duty cycle was used

for each different input button combination.

A wireless trolling motor in the market costs hundreds of Euros while a hand-control

trolling motor is considerably cheaper. Buying a manual control trolling motor and im-

plementing the designed prototype would save hundreds of euros. Not only the eco-

nomic side but also the technical customization is equally flexible with this concept. The

speed situation and degree of rotation can be customized. One can enjoy the uncon-

fined movement within a boat while fishing by using design developed in this project,

provided that the design is further developed to control the degree of rotation of the

motor.

Technical customization and lower purchase expenditure are the main advantages of

the design. However the RF transceivers used, operate at their best within a certain

range. The range is not described in the datasheet but after the module was self-

tested, it seemed that the module operates best within a 20 meters distance. The air

data rate of the module is 2 Mbps at most, so it can never exceed this transmission

rate unless the RF module is replaced. The technical customization is not confined

within the speed conditions and the

mechanism, the GPS (global positioning system) guided system and auto-obstacle

detecting system if the project is to be further carried.

45

References

1. Kohlhard C. and Dickson C. Gliffy. [online]. California, USA: Gliffy Inc; 2012.
URL: http://www.gliffy.com/gliffy/#templateId=blank&signup=1
Accessed: August 29, 2012

2. Scribd Inc. Introduction to PSoC. [online]. San Francisco, USA: Scribd Inc;
2012.
URL: http://www.scribd.com/doc/28429985/Chapter-1-Introduction-to-PSoC
Accessed: September 5, 2012

3. Cypress Semiconductor Corp. Power Savings Using Sleep Mode. [online]. CA,
USA: Cypress Semiconductor Corp.; 2012.
URL: http://www.cypress.com/?docID=38262
Accessed: November 20, 2012

4. Cypress Semiconductor Corp. PSoC IO Pin-Port Configuration. [online]. CA,

USA: Cypress Semiconductor Corp.; 2007.
URL: http://rtds.cs.tamu.edu/web_462/labs/port_IO.pdf
Accessed: September 29, 2012

5. Stimac T. Definition of Frequency Band. [online]. Italy: Renato Romero; 2003.

URL: http://www.vlf.it/frequency/bands.html
Accessed: September 29, 2012

6. Nordic Semiconductor. Ultra Low Power 2.4 GHz RF Transceiver. [online].

Trondheim Norway: Nordic Semiconductor; July 2007.
URL: http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01
Accessed: June 15, 2012

7. Georgia State University. How does an electric motor work. [online]. Atlanta,

Georgia: Georgia State University; May 17, 2008.
URL: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/mothow.html
Accessed: September 16, 2012

8. Bailey F. B. The Induction Motor. New York, USA: McGraw-Hill Book Company;
1911.

9. Dynetic Systems. Brushless vs Brushed Motor. USA: Dynetic Systems; 2012.
URL: http://www.dynetic.com/brushless%20vs%20brushed.htm
Accessed: November 20, 2012

10. Sawicz D. Hobby Servo Fundamentals. [online]. New Jersey, USA: Princeton
University; 2002.
URL: http://www.princeton.edu/~mae412/TEXT/NTRAK2002/292-302.pdf
Accessed: November 20, 2012

11. Vigor Precision Ltd. VSD-11 YMB Servo. [online]. Hong Kong: Vigor Precision
Ltd; 2012.
URL: http://www.vigorprecision.com.hk/uploadfile/20120530/
20120530163258416.pdf
Accessed: November 23, 2012

46

12. Yedda Inc. Aol Answers. [online]. USA: Aol Company; 2012.
URL: http://aolanswers.com/questions/
how_to_make_a_trolling_motor_bracket_for_a_gheenoe_p627801525375432
Accessed: September 13, 2012

13. Williams M. Fishing style, location determine best trolling motor choice. [online].
Kentucky, USA: FLW Outdoors; 2008.
URL: http://www.flwoutdoors.com/fishing-articles/tech-tackle reviews/148958/
trolling-motors-101/#.UMG9PeQUvyl
Accessed: June 25, 2012

14. Kraft R. Serial Peripheral Interface, SPI. [online]. USA: Rensselaer Polytechnic
Institute; 2012.
URL: http://www.rpi.edu/dept/ecse/mps/SPI.pdf
Accessed: July 9, 2012

15. Cypress Semiconductor Corp. Getting started with SPI in PSoC. [online] . USA:
Cypress Semiconductor; 2011.
URL: http://www.cypress.com/?docID=32340
Accessed: September 13, 2012

16. Tantos A. Modular Circuits. [online]. Hungary: The H-Storm Project; 2011.
 URL: http://modularcircuits.tantosonline.com/blog/articles/old-h-bridge-secrets/
 part-1/
 Accessed: June 15, 2012

17. Storr W. MOSFET as a Swtich. [online]. Samoa: Electronic tutorials.ws; 2012.
 URL: http://www.electronics-tutorials.ws/transistor/tran_7.html
 Accessed: June 15, 2012

18. Diolan. SPI Transfer Modes. [online]. Israel: Diolan; 2012.

 URL: https://www.diolan.com/dln_doc/spi-transfer-modes.html
 Accessed: September 12, 2012

19. Cypress Semiconductor Corp. Shadow Registers. [online]. USA: Cypress Sem-
iconductor; 2012.
URL: http://www.cypress.com/?docID=40322
Accessed: July 13, 2012

20. Ball B. Everything You Need to Know about the nRF24L01 and MiRF-v2.
[online]. Brennen Ball; 2007
URL: http://www.diyembedded.com/tutorials/nrf24l01_0/nrf24l01_tutorial_0.pdf
Accessed: September 5, 2012

21. Comer D. Electronic Circuit Design. New Jersey, USA: Brigham Young Univer-
sity; 2003.

22. Saslow W. Electricity, Magnetism and Light. Canada: Transcontinental Gagne;
2002.

Appendix 1

1 (5)

Appendix 1: Program code - Transmit side

//--
// Hesinki Metropolia UAS
// Department of IT
// Embedded System Engineering (2012)
//--

/***

This program transmits 2 bytes of payload through nRF24L01 module. SPI
protocol is used to interface the RF with MCU. The transmission here
is half duplex.

***/

#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules
#include "PSoCGPIOINT.h"
#include "nRF24L01.h"

#define button_0 (Button_0_Data_ADDR & Button_0_MASK)
#define button_1 (Button_1_Data_ADDR & Button_1_MASK)
#define button_2 (Button_2_Data_ADDR & Button_2_MASK)

// Local prototypes

void feed_payload(BYTE data);;
void displayPayload(BYTE *payload);;
void transmit_data(void);;

BYTE payloadData[2] ={0,255};;
unsigned int i, loop, count;;
char theStr[] = "transmit";;
char blank[]=" ";;

void main(void)
{

 M8C_EnableGInt;;

 // initialization: SPIM is needed by RF-module
 SPIM_Start(SPIM_SPIM_MODE_0 | SPIM_SPIM_MSB_FIRST);;

// PGA_SetGain(PGA_G1_00);;
// PGA_Start(PGA_MEDPOWER);;
//
// ADCINC_Start(ADCINC_HIGHPOWER);; // Apply power to the SC

Block

Appendix 1

2 (5)

// ADCINC_GetSamples(0);; // Have ADC run continuously

 LCD_Start();;
 LCD_Position(0,7);; // Place LCD cursor at row 0, col 5.
 LCD_PrString(theStr);; // Print "PSoC LCD" on the LCD

// This is the transmitter side, but just to test mode
changing we first make this receiver

// // Initialize RF module
// nRF24L01_commonConfiguration();;
// // Set as a trasmitter
// nRF24L01_SetAsReciever();;

 // Initialize RF module
 nRF24L01_commonConfiguration();;
 // Set as a trasmitter
 nRF24L01_SetAsTransmiter();;

// LCD_Position(0,5);; // Place LCD cursor at row 0,

col 5.
// LCD_PrCString("DD");; // Print "PSoC LCD" on the LCD

 while (1) {

 //payloadData[1]--;;

//**
 if (!button_0 && !button_1 && !button_2)

 {

 feed_payload(0x05);;
 LCD_Position(0,0);;// Place LCD cursor at row 0,
 col 0.

LCD_PrCString("off");; // Print "PSoC LCD"
 on the LCD

 }

 else if (button_0 && !button_1 && !button_2)

 {

 feed_payload(0x0A);;
 LCD_Position(0,0);; // Place LCD cursor
 at row 0, col 0.
 LCD_PrCString("A");; // Print "PSoC LCD"
 on the LCD

Appendix 1

3 (5)

 }

 else if (button_1 && !button_0 && !button_2)

 {

 feed_payload(0x0B);;
 LCD_Position(0,0);; // Place LCD cursor
 at row 0, col 0.
 LCD_PrCString("B");; // Print "PSoC LCD"
 on the LCD
 }

 else if (button_2 && !button_1 && !button_0)

 {

 feed_payload(0x0C);;
 LCD_Position(0,0);; // Place LCD cursor
 at row 0, col 0.
 LCD_PrCString("C");; // Print "PSoC LCD"
 on the LCD
 }

 else if (button_0 && button_1 && !button_2)

 {

 feed_payload(0x0D);;
 LCD_Position(0,0);; // Place LCD cursor
 at row 0, col 0.
 LCD_PrCString("AB");; // Print "PSoC LCD"
 on the LCD

 }

 else if (button_0 && button_2 && !button_1)

 {

 feed_payload(0x0E);;
 LCD_Position(0,0);; // Place LCD cursor
 at row 0, col 0.
 LCD_PrCString("AC");; // Print "PSoC LCD"
 on the LCD

 }

 else if (button_1 && button_2 && !button_0)

 {

Appendix 1

4 (5)

 feed_payload(0x0F);;
 LCD_Position(0,0);; // Place LCD cursor
 at row 0, col 0.
 LCD_PrCString("BC");; // Print "PSoC LCD"
 on the LCD

 }

// if (button_0 && button_1 && button_2)
 else

 {

 feed_payload(0x09);;
 LCD_Position(0,0);; // Place LCD cursor
 at row 0, col 0.
 LCD_PrCString("ABC");; // Print "PSoC LCD"

 on the LCD

 }

//***

// The code below is just for testing fullduplex transmission.
// Do not try to make it work.

/* // Set as receiver
 nRF24L01_SetAsReciever();;

 count = 0;; // count receives

 // this will end when data has been received 10
times
 while(count < 10) {
 // check if something has been re-
ceived
 if(nRF24L01_is_RX_DR() == 1){
 // read payload
 nRF24L01_readPayload(
R_RX_PAYLOAD, payloadData, 2);;
 // clear interrupt
 nRF24L01_clear_RX_DR();;
 // Print it out
 displayPayload(payloadData
);;
 count++;; // count 10 re-
ceives and start transmitting
 }
 }
*/

 }

Appendix 1

5 (5)

}

void displayPayload(BYTE *payload)

{
 LCD_Position(1,0);;

LCD_PrCString("P1: ");;
 LCD_Position(1,4);;
 LCD_PrHexByte(payload[0]);;
 LCD_Position(1,7);;
 LCD_PrCString("P2: ");;
 LCD_Position(1,10);;
 LCD_PrHexByte(payload[1]);;
}

void transmit_data(void)
{

while(nRF24L01_is_TX_DS() != 1){

 nRF24L01_sendPayload(W_TX_PAYLOAD, payloadData, 2);;

 nRF24L01_transmitPayload();;

 if(nRF24L01_is_MAX_RT()){

 nRF24L01_clear_MAX_RT();;
 break;; // This breaks out of while
 loop
 }
 }

 nRF24L01_clear_TX_DS();;// Clear the interrupt status

 }

void feed_payload (BYTE data)

{
 payloadData[0]=data;;
 transmit_data();;

 displayPayload(payloadData);;
 LCD_Position(0,0);;
 LCD_PrString(blank);;

}

Appendix 2

1 (4)

Appendix 2: Program Code - Receive Side

//--
// C main line
//--
/***

This program receives the data through nRF24L01. The RF is made to re-
ceive only 2 bytes of data in this case. However sendpayload function
can transmit 5 bytes at a time in this case. Literally, this RF can
handle 32 bytes of data.

***/

#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules
#include "PSoCGPIOINT.h"
#include "nRF24L01.h"
#include "PWM8.h"
#include "PWM16.h"

// Local prototypes

void displayPayload(BYTE *payload);;

int j;;

void main(void)

{
 BYTE payloadData[2] ={0,0};;
 BYTE i;;
 char theStr[] = "receiver";;

 // initialization: SPIM is needed by RF-module
 SPIM_Start(SPIM_SPIM_MODE_0 | SPIM_SPIM_MSB_FIRST);;

 M8C_EnableGInt;;

 LCD_Start();;
 LCD_Position(0,5);; // Place LCD cursor at row 0,
 col 5.
 LCD_PrString(theStr);; // Print "PSoC LCD" on the
 LCD

 PWM8_Start();;

 PWM8_DisableInt();;
 PWM8_WritePeriod(200);;

Appendix 2

2 (4)

 //PWM16_WritePeriod(1500);;

 // Initialize RF module
 nRF24L01_commonConfiguration();;

 // Set as receiver
 nRF24L01_SetAsReciever();;

 while(1)

{

 // check if something has been received

 if(nRF24L01_is_RX_DR() == 1)

 {

 // read payload
 nRF24L01_readPayload(R_RX_PAYLOAD, payloadData, 2);;
 nRF24L01_clear_RX_DR();;
 switch (payloadData[0])

 {

 case 0x05:
 displayPayload(payloadData);;

 PWM8_WritePulseWidth(0);;

 PWM16_WritePulseWidth(2800);;

 PWM16_DisableInt();;

 PWM16_Start();;

 break;;

 case 0x0A:

 displayPayload(payloadData);;

 PWM8_WritePulseWidth(40);;

 PWM16_WritePulseWidth(3000);;

 PWM16_DisableInt();;

 PWM16_Start();;

 break;;

 case 0x0B:

Appendix 2

3 (4)

 displayPayload(payloadData);;

 PWM8_WritePulseWidth(60);;

 PWM16_WritePulseWidth(3200);;

 PWM16_DisableInt();;

 PWM16_Start();;

 break;;

 case 0x0C:

 displayPayload(payloadData);;

 PWM8_WritePulseWidth(90);;

 PWM16_WritePulseWidth(3400);;

 PWM16_DisableInt();;

 PWM16_Start();;

 break;;

 case 0x0D:

 displayPayload(payloadData);;

 PWM8_WritePulseWidth(120);;

 PWM16_WritePulseWidth(3600);;

 PWM16_DisableInt();;

 PWM16_Start();;

 break;;

 case 0x0E:

 displayPayload(payloadData);;

 PWM8_WritePulseWidth(150);;

 PWM16_WritePulseWidth(3800);;

 PWM16_DisableInt();;

 PWM16_Start();;

 break;;

 case 0x0F:

Appendix 2

4 (4)

 displayPayload(payloadData);;

 PWM8_WritePulseWidth(180);;

 PWM16_WritePulseWidth(4000);;

 PWM16_DisableInt();;

 PWM16_Start();;

 break;;

 case 0x09:

 displayPayload(payloadData);;

 PWM8_WritePulseWidth(250);;

 PWM16_WritePulseWidth(4200);;

 PWM16_DisableInt();;

PWM16_Start();;

break;;

 default:

 displayPayload(payloadData);;

 PWM8_WritePulseWidth(0);;

 PWM16_WritePulseWidth(5000);;

 PWM16_DisableInt();;

 PWM16_Start();;

 }

 }

}
}

void displayPayload(BYTE *payload)

{

LCD_Position(1,0);;
 LCD_PrCString("P1: ");;

LCD_Position(1,4);;
 LCD_PrHexByte(payload[0]);;

LCD_Position(1,7);;
 LCD_PrCString("P2: ");;
 LCD_Position(1,10);;
 LCD_PrHexByte(payload[1]);;
}

Appendix 3

1 (7)

Appendixm 3: Function Prototypes Declaration

#include "nRF24L01.h"
#include "PSoCAPI.h" // PSoC API definitions for all User Modules
#include <m8c.h> // part specific constants and macros
#include "nRF24L01.h"
#include "PSoCGPIOINT.h"

// define the addresses of RX_ADDR_P0 and TX_ADDR, LSBs first

BYTE RxAddrP0[5] = { 0x01, 0x01, 0x05, 0x01, 0x01};;
BYTE TxAddr[5] = { 0x01, 0x01, 0x05, 0x01, 0x01};;

// Local prototypes
void nRF24_CSN_state(BYTE state);;
void nRF24_CE_state(BYTE state);;

void nRF24L01_commonConfiguration(void)

{

// nRF24_CSN on
 nRF24_CSN_state(CSN_ON);;

// set CRC to 2 bytes in the CONFIG and disable interrupts
 on IRQ

 nRF24L01_sendInstruction(W_REGISTER | CONFIG, 0x7C);;

 // disable EN_AA for all pipes
 //nRF24L01_sendInstruction(W_REGISTER | EN_AA, 0x00);;

 // ARC set to 15

//nRF24L01_sendInstruction(W_REGISTER | SETUP_RETR, 0x0F
);;

 // set data rate to 2Mbps
 nRF24L01_sendInstruction(W_REGISTER | RF_SETUP, 0x0E);;

 // set addresses for RX_ADDR_P0 and TX_ADDR, change values

in function
 nRF24L01_setRxTxAddr();;

 // set RX_PW_P0 to 2 bytes
 nRF24L01_sendInstruction(W_REGISTER | RX_PW_P0, 0x02);;

}

// set both RX_ADDR_P0 and TX_ADDR addresses of the nRF24L01
// the default SETUP_AW, which is 5 bytes, is left unchanged

void nRF24L01_setRxTxAddr(void)

{

 BYTE i;;

Appendix 3

2 (7)

 // set the RX_ADDR_P0, 5 bytes

 nRF24L01_sendPayload(W_REGISTER | RX_ADDR_P0, RxAddrP0, 5);;

 // set the TX_ADDR, 5 bytes

 nRF24L01_sendPayload(W_REGISTER | TX_ADDR, TxAddr, 5);;

}

// set as transmiter and power up the nRF24L01

void nRF24L01_SetAsTransmiter(void)

{

 BYTE presentConfig;;

 // nRF24_CE off
 nRF24_CE_state(CE_OFF);;

 presentConfig = nRF24L01_sendInstruction(R_REGISTER | CON
 FIG, DUMMYDATA);;

 nRF24L01_sendInstruction(W_REGISTER | CONFIG, presentCon
 fig & ~0x01);;

 presentConfig = nRF24L01_sendInstruction(R_REGISTER | CON
 FIG, DUMMYDATA);;

 nRF24L01_sendInstruction(W_REGISTER | CONFIG, presentCon
 fig | 0x02);;

 // nRF24_CE on
 nRF24_CE_state(CE_ON);;

}

// set as reciever and power up the nRF24L01

void nRF24L01_SetAsReciever(void)

{

 BYTE presentConfig;;

 // nRF24_CE off
 nRF24_CE_state(CE_OFF);;

 presentConfig = nRF24L01_sendInstruction(R_REGISTER | CON
 FIG, DUMMYDATA);;
 nRF24L01_sendInstruction(W_REGISTER | CONFIG, presentCon
 fig | 0x03);;

 // nRF24_CE on
 nRF24_CE_state(CE_ON);;

Appendix 3

3 (7)

}

// Helper function for setting CSN off/on

void nRF24_CSN_state(BYTE state)

 {
 if(state == CSN_ON)

{
 PRT0DR |= nRF24_CSN_MASK;;
 }
 else {
 //off
 PRT0DR &= ~nRF24_CSN_MASK;;
 }
}

// Helper function for setting CE off/on

void nRF24_CE_state(BYTE state)

 {
 if(state == CE_ON)

{
 PRT0DR |= nRF24_CE_MASK;;
 }
 else

 {
 //off
 PRT0DR &= ~nRF24_CE_MASK;;
 }
}

// Sends one command word or byte to the nRF24L01

BYTE nRF24L01_sendOneByte(BYTE oneByte){

 BYTE status = 0x00;;

 // nRF24_CSN off
 nRF24_CSN_state(CSN_OFF);;

while(! (SPIM_bReadStatus() & SPIM_SPIM_TX_BUFFER_EMPTY)
);;

 SPIM_SendTxData(oneByte);;

 while(SPIM_bReadStatus() & SPIM_SPIM_RX_BUFFER_FULL);;
 status = SPIM_bReadRxData();;

 // nRF24_CSN on

 nRF24_CSN_state(CSN_ON);;

 Delay50uTimes(20);;

 return(status);;
}

Appendix 3

4 (7)

// Sends instruction commands to the nRF24L01

BYTE nRF24L01_sendInstruction(BYTE instructionWord, BYTE mapAddr){

 BYTE status;;

 // nRF24_CSN off
 nRF24_CSN_state(CSN_OFF);;

while(! (SPIM_bReadStatus() & SPIM_SPIM_TX_BUFFER_EMPTY)
);;

 SPIM_SendTxData(instructionWord);;

 while(SPIM_bReadStatus() & SPIM_SPIM_RX_BUFFER_FULL);;
 status = SPIM_bReadRxData();;

while(! (SPIM_bReadStatus() &
SPIM_SPIM_TX_BUFFER_EMPTY));;

 SPIM_SendTxData(mapAddr);;

 while(SPIM_bReadStatus() & SPIM_SPIM_RX_BUFFER_FULL);;
 status = SPIM_bReadRxData();;

 // nRF24_CSN on
 nRF24_CSN_state(CSN_ON);;

 Delay50uTimes(20);;

 return(status);;
}

// Sends multiple bytes, such as pipe addresses, to the nRF24L01
// dataArray[] must exist

void nRF24L01_sendPayload(BYTE instructionWord, BYTE* dataArr, BYTE
bytes) {

 BYTE i;;

 // nRF24_CSN off
 nRF24_CSN_state(CSN_OFF);;

while(! (SPIM_bReadStatus() & SPIM_SPIM_TX_BUFFER_EMPTY)
);;

 SPIM_SendTxData(instructionWord);;

 while(SPIM_bReadStatus() & SPIM_SPIM_RX_BUFFER_FULL);;
 SPIM_bReadRxData();;

 for(i = 0 ;; i < bytes ;; i++) {

while(! (SPIM_bReadStatus() &
SPIM_SPIM_TX_BUFFER_EMPTY)){};;

 SPIM_SendTxData(dataArr[i]);;

Appendix 3

5 (7)

while(SPIM_bReadStatus() & SPIM_SPIM_RX_BUFFER_FULL);;

 SPIM_bReadRxData();;

 }

 // nRF24_CSN on
 nRF24_CSN_state(CSN_ON);;

 Delay50uTimes(20);;
}

// Transmits payload via a nRF24L01 to a receiving nRF24L01
// this function must be called after sendPayload()

void nRF24L01_transmitPayload(void){

 // nRF24_CE on

 nRF24_CE_state(CE_ON);;

 Delay50uTimes(1);;

 // nRF24_CE off
 nRF24_CE_state(CE_OFF);;

 Delay50uTimes(20);;
}

// Reads multiple bytes. Note: first byte is STATUS register of the
nRF24L01

// dataArray[] must exist

void nRF24L01_readPayload(BYTE instructionWord, BYTE* dataArr, BYTE
bytes) {

 BYTE i;;

 // nRF24_CSN off
 nRF24_CSN_state(CSN_OFF);;

 while(! (SPIM_bReadStatus() &
SPIM_SPIM_TX_BUFFER_EMPTY));;

 SPIM_SendTxData(instructionWord);;

 while(SPIM_bReadStatus() & SPIM_SPIM_RX_BUFFER_FULL);;
 dataArr[0] = SPIM_bReadRxData();;

 for(i = 0 ;; i < bytes ;; i++) {

while(! (SPIM_bReadStatus() & SPIM_SPIM_TX_BUFFER_EMPTY)
);;

 SPIM_SendTxData(DUMMYDATA);;

while(SPIM_bReadStatus() & SPIM_SPIM_RX_BUFFER_FULL);;
 dataArr[i] = SPIM_bReadRxData();;

Appendix 3

6 (7)

 }

 // nRF24_CSN on
 nRF24_CSN_state(CSN_ON);;

 Delay50uTimes(20);;

}

// checks if payload's been received

BYTE nRF24L01_is_RX_DR(void){

 BYTE tmp;;

 // check the RX_DR of the STATUS register

 if(nRF24L01_sendOneByte(NOP) & RX_DR_MASK)
 tmp = 1;;

 else
 tmp = 0;;

 return tmp;;
}

// checks if payload was successfully sent

BYTE nRF24L01_is_TX_DS(void){

 BYTE tmp;;

 // check the TX_DS of the STATUS register

 if(nRF24L01_sendOneByte(NOP) & TX_DS_MASK)
 tmp = 1;;

 else
 tmp = 0;;

 return tmp;;

}

// checks if MAX_RT is set

BYTE nRF24L01_is_MAX_RT(void){

 BYTE tmp;;

 // check the TX_DS of the STATUS register
 if(nRF24L01_sendOneByte(NOP) & MASK_MAX_RT)
 tmp = 1;;

Appendix 3

7 (7)

 else
 tmp = 0;;

 return tmp;;

}

// clears RX_DR interrupt in STATUS

void nRF24L01_clear_RX_DR(void)

{

 BYTE presentStatus;;
 presentStatus = nRF24L01_sendOneByte(NOP);;

nRF24L01_sendInstruction(W_REGISTER | STATUS, presentSta-
tus |= MASK_RX_DR);;

}

// clears TX_DS interrupt in STATUS

void nRF24L01_clear_TX_DS(void)
{

 BYTE presentStatus;;
 presentStatus = nRF24L01_sendOneByte(NOP);;

nRF24L01_sendInstruction(W_REGISTER | STATUS, presentSta-
tus |= MASK_TX_DS);;

}

// clears MAX_RT interrupt in STATUS

void nRF24L01_clear_MAX_RT(void)
{

 BYTE presentStatus;;
 presentStatus = nRF24L01_sendOneByte(NOP);;

nRF24L01_sendInstruction(W_REGISTER | STATUS, presentSta-
tus |= MASK_MAX_RT);;

}

