

Fasil Leulseged

Application Development
in Symbian C++ and Qt

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

02/11/2012

 Abstract

Author(s)
Title

Number of Pages
Date

Fasil Leulseged
Application development in Symbian C++ and Qt

52 pages
02 November 2012

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor

Ranne Pasi, Project Manager

The smartphone business landscape has shifted considerably ever since the introduction
of the iPhone in 2007. The ensuing years have seen Nokia, the world leader in the smart-
phone industry at the time, loose grip on market share. Consequently, Nokia has set a new
roadmap to revamp the Symbian operating system and regain lost market shares. The
roadmap is headlined by two important entries: the adoption of the Qt framework and part-
nership with Microsoft on Windows Phone 7.

This thesis is concerned with the adoption of the Qt framework into the Nokia smartphone
family. More precisely, the thesis discusses how the programming paradigms of Qt differ
from the archaically well-established Symbian operating system.

The architectural differences of Qt and Symbian OS have been thoroughly examined using
code snippets as supplement to demonstrate implementations.

The findings of this thesis show that not only does Qt make the life of a developer much
easier than traditional Symbian OS, but also, and more importantly, Qt delivers industry
standard user interfaces and fluid user interactions at par with the competition.

Keywords Symbian, Qt, Programming, C++

Contents

Abstract

Abbreviations

1 Introduction 1

2 Symbian and Qt Development Environments 2

2.1 Symbian Development Enviroment 2

2.1.1 Carbide C++ IDE 4

2.1.2 Carbide C++ Project Files 4

2.2 Qt Development Enviroment 5

2.2.1 Qt Mobile Application Development Using Nokia Qt SDK 5

2.2.2 Qt Mobile Application Development with Standalone SDK 7

2.2.3 Qt Creator IDE 8

2.2.4 Qt Creator Project Files 9

3 Application Development 10

3.1 Classes 11

3.1.1 Symbian Classes 11

3.1.2 Qt Classes 12

3.2 Objects and Memory Management 13

3.2.1 Symbian Objects 13

3.2.2 Qt Objects 15

3.2.3 Signals and Slots 16

3.3 Application Structure 19

3.3.1 Symbian Application Structure 19

3.3.2 Qt Application Structure 21

3.4 UI Implementation 24

3.4.1 Symbian GUI Implementation 24

3.4.1.1 Dialog Based Architecture 24

3.4.1.2 Traditional Symbian OS Architecture 24

3.4.1.3 S60 View Architecture 24

3.4.2 Qt GUI Implementation 25

3.4.3 Symbian UI Designer vs. Qt Designer 29

3.5 Files and Streams 31

3.5.1 Symbian Files and Streams 31

3.5.2 Qt Files and Streams 32

3.6 Strings 34

3.6.1 Symbian Strings 34

3.6.2 Qt Strings 35

3.7 Communications 37

3.7.1 Communications in Symbian 37

3.7.1.1 The COMMS Framework 37

3.7.1.2 Telephony Services 38

3.7.1.3 Networking Services 40

3.7.1.4 Short-link Services 41

3.7.2 Communications in Qt 42

3.8 Threads and Processes 45

3.8.1 Symbian Threads and Processes 45

3.8.1.1 Active Objects 45

3.8.1.2 RThread 46

3.8.2 Qt Threads and Processes 47

4 Conclusion 48

References 49

Abbreviations

OS Operating System

PLC Private Limited Company

MB Mega Byte

GB Giga Byte

RAM Random Access Memory

JRE Java Runtime Environment

IDE Integrated Development Environment

OEM Original Equipment Manufacturer

API Application Programming Interface

SDK Software Development Kit

GUI Graphical User Interface

UI User Interface

MVC Model-View-Controller

UID Unique ID

FTP File Transfer Protocol

TCP/IP Transfer Control Protocol / Internet Protocol

UDP User Datagram Protocol

SSL/TLS Secure Socket Layer/Transport Layer Security

SDP Service Discovery Protocol

HCI Host Controller Interface

1

1 Introduction

Mobile phones have become an indispensible tool in day to day activities. Besides the

intrinsic design to make calls, users can check e-mail, surf the web, and connect with

friends on social networks on the fly.

Nokia has been the market leader in the mobile phone sector. However, fierce competi-

tion from Apple’s iPhone and Google’s Android has seen Nokia loose huge market

shares. Nokia has set a new direction to regain the lost market share. The new direc-

tion includes the introduction of Qt as a major haul to Nokia’s operating system, the

Symbian operating system (OS), and partnership with Microsoft on the Windows phone

platform.

The Symbian operating system (OS) is developed by Symbian Limited. The company

has its roots in Psion private limited company (PLC). In fact, Psion is considered the

precursor of Symbian Limited. Founded by Nokia, Psion and Ericsson in July 1998,

Symbian limited had its beginnings in the Psion EPOC software. In fact, the early ver-

sions of the operating system that shipped with phones in 1999 carried the EPOC

name. Symbian OS version 6.0 based mobile phones were ‘open’, meaning that users

were able to install their own software. Symbian OS v6.0 appeared in 2001 and

shipped on the Nokia 9210 Communicator but the world’s first Symbian OS phone was

the Ericcson R380 which went on sale in 2000. Symbian OS continued to evolve in

functionality and market-leading features. In 2004 Symbian shareholders purchased

Psion stakes. Consequently, the next big change occurred in early 2005 when Symbian

OS version 9.0 was announced. This version was designed to be more secure and

deliver major cost savings to manufacturers. [1, 24]

Qt was developed by Trolltech and became publicly available in 1995. During incep-

tion, Qt was meant to be a C++ GUI framework but has grown popular to become a

cross-platform application and GUI framework. Subsequently, Trolltech released newer

versions of Qt but Qt 4.0, released in 2005, was a major step forward for the company

and was the first Qt edition to be available for both commercial and open source devel-

opment. [2]

2

The appeal of Qt to Nokia, with respect to the Symbian OS, is in C++ compatibility and

the much needed GUI framework. This allows Qt to be wrapped around Symbian OS.

When Qt integration to the Symbian OS is finalized, developers deal directly with Qt

instead of Symbian programming paradigms and the end user will get more dynamic

applications and a modern user interface among others – a win-win-win situation for

Nokia, developers and end users.

The purpose of this thesis is to point out how the shift to Qt programming paradigm

differs from Symbian programming paradigms as seen from the developer point of

view.

3

2 Symbian and Qt Development Environments

2.1 Symbian Development Environment

The Symbian development environment is based on the open Symbian (OS) which is

the most widely used operating system for mobile phones. Symbian OS is a highly op-

timized, pre-emptive, multitasking environment. In order to start development of Sym-

bian applications there are prerequisites to be fulfilled.

The following requirements should be fulfilled to start the software development proc-

ess:

• An operating system.

• At least 512 megabytes (MB) of random access memory (RAM).

• 1 gigabyte (GB) or faster Pentium-class processor.

• At least 1 GB of free disk space.

• 16-bit color display of 1024 * 768 pixels resolution.

• Java Runtime Environment (JRE).

• ActivePerl version 5.6.1 or later.

An Integrated Development Environment (IDE) provides with an organized way of de-

veloping applications. Most programmers use an IDE because of the comprehensive

facilities that encapsulate a source code editor, a compiler, automation tools and a de-

bugger. There are some IDEs available for developers: CodeWarrior, Visual C++, and

Carbide C++. The recommended IDE is Carbide C++ which is based on the Eclipse

platform. Carbide C++ has a commercial version and a free version. There are different

flavors or editions of the commercial edition of Carbide C++. The free edition is called

the Express edition and the commercial ones are Developer edition, Professional edi-

tion and Original Equipment Manufacturers (OEM) edition. [1, 1 – 7]

The free edition of Carbide C++ can be downloaded and installed separately or as part

of Application Developer’s toolkit (ADT). Either way, one has to make sure the compiler

version is compatible with Carbide’s requirements which usually dictate the compiler

must be at least version 3.2.5, build 487 to be able to accommodate some functionality

such as Qt support .[3]

A Software Development Kit (SDK) is the platform which provides the track on top of

which all applications for a specific target are developed using the provided Application

4

Programming Interface (API).When developing an application for a specific target, like

Symbian, the first step is to acquire the SDK for the target. Depending on the need,

there are three different SDKs for the Symbian platform: S60, UIQ and MOAP. Each

SDK in turn has different versions.S60 versions are referred to as feature packs. S60 is

one of the leading smartphone platforms and is the SDK of interest in this thesis.

There are different versions of the S60 SDKs to choose from:

•S60 1st Edition SDK for Symbian OS

•S60 2nd Edition SDK for Symbian OS

•S60 3rd Edition SDK for Symbian OS

•S60 5th Edition SDK for Symbian OS

•Nokia N97 SDK for Symbian OS

Each of these SDKs might have versions of their own usually referred to as feature

packs. An example would be S60 3rd edition feature pack 1 and S60 3rd edition fea-

ture pack 2. After the SDK installation the binaries and libraries are located in the fol-

lowing directory of the installation folder:

1 - Emulator drives …/epoc32/winscw

2 - Emulator binaries …/epoc32/release/winscw/udeb

3 - ARM libraries …/epoc32/release/gcce/urel

To render the developed application usable, compilers transform the source code into

an executable file. Usually, these compilers come bundled with the SDK installer, true

at least in the S60 SDK case.

There are two targets in mind when compiling for the Symbian C++ environment. The

first target is compiling for an emulator. An emulator mimics the actual device and dis-

plays the output of a project as it would appear on device. This allows for an efficient

way of debugging code before the software is deployed to device.

The compiler responsible for the Symbian OS emulator for Microsoft Windows is the

Nokia x86 compiler which is usually referenced as WINSCW. The second target is

compiling for the actual device. This is done using the open source compiler known as

GCCE. Both WINSCW and GCCE are bundled with the SDK: they are installed with the

SDK and there is no need to download and install them separately. [3]

5

2.1.1 Carbide C++ IDE

The IDE is organized in such a way that the project files are located on the left screen,

file view on the right and error messages and related items on the bottom.

In order to start working on a particular program, the first step is to create a project

from the File menu or alternately from the toolbar. After choosing the Symbian OS C++

Project from the menu or toolbar, one has the option to choose from an array of Ge-

neric Symbian OS, S60 and tutorial templates, and then proceed to assign a project

name and workspace location and selection of the preferred SDK if more than one

SDK is present on the system. After these steps are completed, a project with the given

name will be created along with all necessary files that can be viewed and modified.

These files are located on the left side of the IDE screen.

2.1.2 Carbide C++ Project Files

The project files are inside their respective folders and careful understanding of these

files is crucial and in most cases a big time saver in future project endeavors.

• Includes Folder - This is the master ‘includes’ folder with a global scope (SDKs

header files …/epoc32/include) and local scope (project header files …/project/

inc) as well.

• Data Folder - Contains resource definition files necessary for creation of menus

and other UI components. The .rss extension files are resource files and the .rls

extension files are localized string files. String localization is not done in the re-

source file itself.

• Inc Folder - Contains a .hrh extension file which is a common header file for re-

sources and C++ programs which define the commands to be used in the re-

source files. Also located in this folder are standard C++ header files and a .pan

extension file which contains the panic codes for the application.

• Src Folder - Contains the project source files with file extension .cpp.

• Doc Folder - The graphic files used to create icons reside in this folder.

• Gfx Folder - Contains an XML file associated with graphics.

• Group Folder - This folder contains the files necessary to build the project appli-

cation. The bld.inf file provides the compiler with information for building the pro-

ject, for instance what project to build, where the project is located and what pro-

ject specification to include in the build. The projectname.mmp file is the project

specification file.

6

• Sis Folder - Contains the package file used to create an installation file. The

package file (projectname.pkg) contains the files and resources necessary to

make an installation file with the .sis or .sisx extensions. When the package file is

compiled using the IDE or command line (makesis.exe), an installation file (pro-

jectname.sis) is created which can be deployed to a device.

2.2 Qt Development Environment

Qt is the de facto C++ user interface development framework which is a cross platform

application framework. Applications are written once and can be deployed across desk-

top and operating systems without rewriting the source code. Qt applications are de-

veloped in standard C++ as opposed to Symbian which uses the Symbian C++ dialect.

[14]

Qt application development for the Symbian platform is still in its infancy. Until recently,

the Qt framework, Qt IDE, Symbian SDK and other required tools were installed sepa-

rately to start Qt development. In June of 2010, Nokia released the all in one Nokia Qt

SDK which contains everything required for development of Qt mobile applications on a

compatible Nokia device. So as it stands, there are two ways to start developing Qt

mobile applications: using the Nokia Qt SDK and using a standalone SDK.

2.2.1 Qt Mobile Application Development Using Nokia Qt SDK

Starting off with Nokia Qt SDK is the easiest way. Everything that is required to start

development is bundled in one installation file. There is also an online installation op-

tion which eliminates the need to download the installation file.

The following are required by the system:

• Windows XP service pack 2 or Windows Vista or Windows 7 are the supported

Windows operating systems.

• Approximately 4 GB of free disk space.

There is no need to install the Symbian S60 SDK separately as it is bundled with the

Nokia Qt SDK installation file.

The native Qt IDE is called Qt Creator. It can be used to develop, build and deploy ap-

plications to devices. Applications can also be deployed to the Qt Simulator.

7

Alternately, Carbide C++ IDE can be used since it supports Qt provided the Carbide

compiler version is at least 3.2.5 build 487.

Qt Creator is installed as part of the Nokia Qt SDK along with Qt Designer, Qt Assistant

and Qt Linguist.

Qt Designer is a very useful UI creation tool which is integrated with Qt Creator. The Qt

user interface can be created either with raw coding in Qt creator or with the simple

and easy to use Qt Designer. Alternately, QtQuick can be used for rapid UI implemen-

tation.

Qt Assistant provides help with the Qt API documentation. Qt namespaces or classes

can be navigated with this tool.

Qt Linguist is the IDE which provides Qt application translation; once an application is

developed, it can be translated to the required language and deployed.

In order to deploy Qt applications to a device and make them functional, Qt binaries

should be installed on the target device first. The required and optional binaries are

listed below.

• Qt binaries - This is the main Qt binary.

• Qt Mobility binaries - Qt Mobility is a recent API release by Nokia which allows

developers to use mobile features like messaging, multimedia and sensors to

name a few. The term Mobility to Qt is what Capability is to Symbian.

• Qt SQLite - This is an optional binary install which can be deployed to a device

if the developer intends to integrate SQLite database into applications.

• TRK - Allows for on-device debugging with Qt creator. TRK needs to be started

first before every debug session. TRK is also needed to achieve the same de-

bugging on Carbide C++.

2.2.2 Qt Mobile Application Development Using Standalone SDKs

Setting up a development environment using standalone SDKs is a fairly complicated

process when compared to the Nokia Qt SDK alternate. Unless there is a need to use

or mix Symbian C++ code, Nokia Qt SDK is the easiest and most natural way to go.

8

The following prerequisite must be fulfilled to get up and started.

• Windows XP service pack 2 or Windows Vista or Windows 7 are the supported

Windows operating systems.

• Approximately 4 GB of free disk space.

• JRE 1.6.0_xx

• Active Perl 5.6.1 build 635

• ADT (Application Developer Kit) – this kit includes the Carbide C++ IDE and

other required tools.

• Open C and Open C++ plug in – Qt is dependent on Open C/C++ to work. This

compatibility layer should be downloaded and installed. During installation it is

crucial to choose the target S60 SDK. If there are multiple SDKs, this plug-in

should be installed for each SDK.

• Compiler compatibility is necessary. A Windows compiler patch should be in-

stalled in the x86Build directory of the ADT path.

The target S60 SDK should be downloaded and installed. Qt for Symbian should be

downloaded and installed. The latest version is Qt for Symbian by Nokia version 4.6.3.

Qt must be installed on the same drive as the target S60 SDK and the Qt install path

must not contain any spaces or it will not work.

Qt Creator is installed with Qt for Symbian while Carbide C++ IDE is installed with ADT.

Qt Mobility must be downloaded and installed since it is for some reason not included

with the standalone version of Qt. The install text file can be used as a guide to prop-

erly compile and configure Qt mobility.

The easy way to install Qt binaries is through Nokia PC Suite or Nokia OVI suite. If

either of these applications is installed on the PC, binaries can be installed from

Start/Nokia Qt SDK/Symbian menu of the PC. Otherwise, the device should be con-

nected in USB storage mode and the binary installation files copied to the device and

launched individually from the device’s file browser. The binaries to be installed are:

• Qt binary - this is the main Qt binary.

9

• Qt Mobility binaries - Qt Mobility is a recent API release by Nokia which allows

developers to use mobile features like messaging, multimedia and sensors to

name a few. The term Mobility to Qt is what Capability to Symbian is.

• Qt SQLite - This is an optional binary install which can be installed to a device if

the developer intends to integrate SQLite database into applications.

• TRK - Allows for on-device debugging with Qt Creator. TRK needs to be started

first before every debug session. TRK is also needed to achieve the same de-

bugging method on Carbide C++.

2.2.3 Qt Creator IDE

Qt Creator is the preferred IDE of application development. The IDE is organized in

such a way that on the far left are switching buttons that make switching from editing

mode to design mode and also located here are the debug button which opens the

debug window on the right bottom of the screen and also the project and help buttons

which allow for viewing the project’s build/run configurations and help manuals respec-

tively.

In edit mode, the project files are listed in their respective folders on the left side of the

screen immediately next to the switch mode buttons and the individual files can viewed

on double click in the viewing area located on the right side of the screen. Most areas

on the IDE screen can be resized according to need.

One should check if both Qt for Symbian and Nokia Qt SDK are detected by Qt creator

using the menu Tools/Options and then choosing the Qt 4 tab. If all goes well Qt for

Symbian and the S60 SDK should be listed under the Auto-detected column of the Qt

Versions Tab. Also located in the same tab under the title Manual should be the Nokia

Qt SDK.

A project is created from the ‘file > new file / Project’ menu. This yields an array of tem-

plates to choose from. Choosing Qt C++ Project on the left side of the dialogue will give

three options: Qt Gui Application, Mobile Qt Application and Qt Console Application.

For mobile device development, the Mobile Qt Application option is the right choice.

After making the choice, one has to provide the Project name and project location. The

next dialogue reflects Qt’s motto, “Code once, deploy everywhere”. In this dialogue the

various available platforms are listed; from Qt simulator to Standalone Qt for Symbian,

10

Nokia Qt SDK and Maemo platform. Of course, all of these targets have to be installed

to be accessed. After choosing the targets in need from this dialogue, on clicking next,

the class information dialogue appears. The developer should provide a class name, a

base class: QMainWindow, QWidget or QDialogue, a header file name, a source file

name and a form file name. Qt creator automatically corrects the aforementioned file-

names when a class name is provided. Qt creator then creates the project and the files

according to the information provided.

2.2.4 Qt Creator Project Files

The following is a list of the Qt project files:

• Sources Folder - This folder contains the source files of the project. Usually, it

will contain a classname.cpp and main.cpp files.

• Headers Folder - The project header files reside here. The header and source

files are like standard C++ files.

• Forms Folder - This folder contains the classname.ui file. This file is edited only

in the design mode. Design mode is the easiest method to create a user inter-

face. Alternately, UI design can be done in code. There are rich UI building tools

located on the left side of the screen of the Qt Designer ranging from layouts,

spacers, buttons, views, widgets and containers. Designing a UI is as easy as

dragging and dropping the required item. UI components developed with Qt De-

signer can also be referred to in code using a pointer to the UI and subsequently

pointing to the desired UI component.

•classname.pro - This is the file used to build the project. It contains items that

are included in building the project. The following is a list of items included in a

typical .pro file. The sign += indicates the item after the equal sign will be in-

cluded in building the project.

• QT+= core gui - This shows QtCore and QtGui components of Qt will

be included.

• TARGET+= project name – This specifies the project name as target.

• TEMPLATE += app – This shows the project is an application.

• SOURCES+= main.cpp\ Classname.cpp – This specifies source files.

• HEADERS+=classname.h – This specifies header file(s).

• FORMS +=classname.ui – This specifies the form file.

• CONFIG += mobility – This specifies mobility inclusion.

• MOBILITY = ______ – This specifies a particular mobility to be added

(example: sensors).

11

The details of setting up Carbide C++ for development are discussed in section 2.1.

Nonetheless, it is important to make sure the proper settings are in check. First, one

has to make sure that the required S60 SDK is selected. This is done via the ‘win-

dow>preferences’ menu, expanding Carbide C++ and clicking on SDK preferences

section. Here if the S60 SDK has not already been selected or if there are multiple S60

SDKs, the preferred SDK(s) can be added. Also, the Qt preferences section is located

in the same preferences window. The desired Qt version is selected here.

Mobile application development environment set up can be a complex process in gen-

eral; the developer has to go through hoops to get the environment up and running.

Symbian application development environment setup is one such instance; however,

recent SDK re-releases incorporate most tools needed for the development environ-

ment setup. Nokia Qt SDK eliminates the tedious setup process by providing a single

installer that contains everything a developer needs to start application development.

12

3 Application Development

The main purpose of this project was to show how the programming paradigm of Qt

and Symbian differ and in the process show how applications can be developed using

the two paradigms. To achieve that, a rich text document application was developed

called fWord. fWord works much like any word processing application such as Micro-

soft word. It is developed both in the Qt framework and the Symbian platform. Since

the emphasis of the project was to explain both Qt and Symbian, most of this final year

project’s time was allocated to explain the two programming paradigms rather than the

project application. fWord was used as an illustrative tool. Nevertheless, fWord ex-

plains the core concepts sufficiently. It contains sample code components provided by

Nokia. The application was designed for Symbian S60 5th edition devices.

3.1 Classes

3.1.1 Symbian Classes

There are several classes with a prefix that define the purpose of a class in Symbian;

Symbian classes are prefixed with a letter which stands for a particular purpose: there

are four such prefixed classes. [5, 30]

T Classes: T classes are similar to type definitions in standard C++. In fact, the T

stands for type. This class does not have a destructor which makes object ownership

by T classes a bad idea since ownership implicates a responsibility to delete the object

from memory, the result being T classes not owning pointers, references or handles. [5,

32]

Lack of a destructor makes object creation on the heap complicated. The easiest way

is to create the object on the stack but if the need arises to create a T class instance on

the heap, it has to be pushed to the stack before a potential leave operation. [5, 32]

C Classes: C classes are derived from the CBase class. CBase derived classes have a

virtual destructor which ensures object deletion in derived classes in order. Moreover,

objects instantiated from the CBase class are zero initialized with an overloaded new

operator; this means there is no need to initialize object members individually. Zero

13

initialization works only on the heap because the new operator does not apply for the

stack. Hence, C class objects must be initialized on the heap. [5, 34]

R Classes: The R stands for resource. There are no base classes associated with the

R class, as it usually refers to an external resource. A constructor must be made to

initialize the resource handle to zero and subsequently, resource functions must be

developed to allocate and handle opening, closing, resetting or initializing the resource.

R classes are usually small in size and contain mostly the resource handle. [5, 35]

M Classes: The M stands for Mix-in. An M class is an abstract interface class; there is

usually a main class which serves as the first base class and one or more M class in-

terfaces which extend the functionality. M classes are usually used to define observer

classes or callback interfaces. Strict control is required when using M classes due to

the complexity arising in the use of multiple classes which have their own peculiar be-

havior. [5, 39]

Besides T, C, R and M classes, the Symbian OS has several static classes without a

prefix used as utility classes. These non-prefixed classes are not directly available but

can be invoked with the scope operator (::) using the corresponding static member

functions.

3.1.2 Qt Classes

There is a fundamental paradigm shift in class convention and object creation in Qt.

There are no discrete prefixed classes, there is no cleanup stack, there are no two

phase constructions and most of the memory management is done by Qt itself.

There is only one base class for all Qt objects, which is the QObject.

The main feature of the Qt object model is the use of signals and slots.

Signals and slots allow for an object to communicate with each other by connecting an

object’s signal with another object’s slot [6].

The other feature is object trees; objects are organized in a tree form in order of crea-

tion. When child objects are created, they are added to the parent tree and if in turn

those children create objects of their own, the object tree extends further down. This

makes memory management, which has a paramount place in mobile software engi-

neering, seamless in Qt. When a parent object is deleted, all child objects will be de-

14

leted behind the scene; there is no need to delete child objects programmatically. Child

objects can also be deleted individually. When this is the case, the parent object tree

reflects the deletion by removing the child objects from the tree. [7]

Qt’s meta-object system contains detailed information for objects inherited from QOb-

ject.

An object’s class name can be retrieved using this system among others. The meta-

object system is a prerequisite for the Signal and Slots mechanism. QObjects can re-

ceive events that they are interested in and QObjects also provide basic timer support.

The Q_OBJECT macro must be used in order to implement any Signal and Slot func-

tionality. By design, QObject has neither a copy constructor nor an assignment opera-

tor. Signals and slots are automatically connected by Qt’s meta-object system. [6]

Qt has a simplistic and intuitive way of class and object implementation whereas Sym-

bian has a complex set of classes and objects that follow. One point to keep in mind is

that Symbian is designed from the ground up with mobile device resource limitations

(memory, power) in mind while Qt is designed to be a GUI framework. Of course, Qt

has a variety of classes but they are not intrinsic to Qt’s core architecture. Regardless,

Qt offers an easy class implementation.

3.2 Objects and Memory Management

3.2.1 Symbian Objects

Mobile phones have a limited memory when compared with personal computers.

Therefore, application development on a mobile phone is memory critical and Symbian

is no exception. The Symbian OS implements a fairly complicated mechanism for ob-

ject instantiation and memory management; the cleanup stack and the two-phase con-

struction provide such a mechanism, and they are integral parts of the Symbian OS

architecture.

The cleanup stack is a data structure which stores pointers to objects for safe destruc-

tion later in an event of a leave. If a class owns a pointer, then the pointer must be

pushed to the cleanup stack except for class members or sub-objects. In Symbian ter-

minology, a leave is an exception that might arise in code and cause an error. Leaves

are analogous to standard C++ exceptions. Standard C++ handles exceptions by nest-

ing code with the try, catch and throw statement. This mechanism was not adopted by

15

the Symbian OS. Rather, the concept of a leave was developed which is also an inte-

gral part of the Symbian OS. Potentially leaving functions are denoted with an L suffix.

[5, 58]

C class derived objects can describe the role of a cleanup stack very well. C class ob-

jects are always created on the heap because they are created using the new operator.

If a local variable is a pointer which points to such a C class object, in the event of a

leave, the local variable will be destroyed without properly freeing the heap memory the

C class object was occupying. This causes a memory leak. An alternate way to avoid

such a memory leak is to use trap harnesses which essentially set a trap around the

code. Encapsulating every function with such a trap harness, ironically, has an impact

on memory; excess usage of traps will increase the size of the end product (applica-

tion) which is deployed to a mobile phone’s memory. The cleanup stack was introduced

to alleviate the problem of memory leaks as described above. The idea behind it is to

push objects that are not leave-safe to the cleanup stack before calling any potentially

leaving function. If a leave occurs when the potentially leaving function is called, the

memory space the object was occupying can be freed by retrieving and destroying the

object from the cleanup stack where it was stored. [5, 58-64]

Objects that are not leave safe and which are created on the heap with the new opera-

tor can be pushed to the stack. However, what if such an object contains a sub-object

in its constructor? The main object can be pushed to the cleanup stack but the sub-

object might leave at any point and there is no mechanism that allows for putting the

sub-object on the cleanup stack or by design, calling the destructor from within the

constructor. Therefore, as a general rule, no code in the constructor should leave.

Nevertheless, this rule is not guaranteed to be followed since it ties the hand of the

developer. [5, 78]

The two phase construction was introduced as a solution to the above mentioned com-

plex problem. In the first phase, the focus is on creating a constructor that cannot

leave. In the second phase, the actual memory allocation for sub objects is done with

the ConstructL function which can leave. The following code snippet illustrates the two

phase construction. The numbers on the left side are for explanatory purposes. This

numbering method will be used throughout this paper.

16

CRTEDocument* CRTEDocument::NewL(CEikApplication& aApp)

 {

1 CRTEDocument* self = new (ELeave) CRTEDocument(aApp);

2 CleanupStack::PushL(self);

3 self->ConstructL();

4 CleanupStack::Pop();

 5 return self;

 }

Listing 1. Symbian two-phase construction

Line 1 is the first phase constructor where the constructor is created with the new

(ELeave) operator. The new (ELeave) operator is similar to the new operator except it

will call the static function User::Leave() if there is insufficient memory to allocate the

object. User::Leave() is used to terminate the current function immediately. The first

phase constructor must not leave and the sub-object should not be initialized here. Line

2 shows the object created with the new operator pushed to the stack. At this point,

there is a constructor that is designed not to leave and an object in the cleanup stack.

Line 3 is the second phase constructor where sub-objects that can leave are initialized

within the ConstructL function. Lines 4 and 5 show after ConstructL is called that it is

safe to remove the object from the cleanup stack and return it.

To avoid the laborious task of calling ConstructL function every time an object is cre-

ated, the static methods NewL or NewLC are used.

The cleanup stack and the two phase construction are at the core of object creation,

leave compartmentalization, memory leak management and sub-object management.

The two concepts are the most common idioms in Symbian C++ programming.

3.2.2 Qt Objects

The Qt object model provides a way for object ownership management in a simplified

manner; the owner implies a “responsibility for deletion”, usually when a destructor is

called [8]. The Qt object model is based on the object from which most Qt objects are

derived, QObject. Objects derived from QObject can have one parent object at most

and a container for children which are also of type QObject [9]. Each parent stores

pointers to its children in QObjectList; the QObjectList class stores pointers to objects

in a list, QPtrList, which is a template class that provides a list [9]. To avoid double de-

17

letion, if a child is deleted before the parent, it is automatically removed from the par-

ent’s list of children [9].

Qt does not force an object to be part of the object tree. Objects can be declared on the

stack as automatic variables or alternately, as heap based objects that are manually

owned and to be deleted by the parent in the standard C++ way. [8]

Each QObject child can have a large collection of children: This is one of the reasons

why a copy constructor is not allowed in QObject objects [8]. A copy constructor in C++

provides with a deep copy of an object. Allowing copy constructors would have a costly

consequence in memory management in Qt objects derived from QObjects.

Unlike the Symbian programming paradigm of using the two phase construction to

avoid initializing sub-objects on construction, objects can be added to other objects on

construction in Qt.

3.2.3 Signals and Slots

Signals and slots offer an intuitive and easy way of communication between objects.

An object emits a signal when a certain event occurs: a click of a button, a menu selec-

tion, or when a timer expires. This signal can be connected to the slot of another ob-

ject; when an object triggers a signal, another object’s slot will be executed. Any two

connected objects’ signal and slot are not mutually exclusive; a signal can also be con-

nected to any number of slots in any kind of objects. All connected slots are executed

when a signal is emitted. [8]

An object emitting a signal does not have any prior knowledge of or interest in the slots

receiving the signal. Moreover, the signal slot mechanism is type safe: a signal may

have more arguments than the connected slot but the signal’s signature must be

matched allowing the slot to ignore extra arguments. [8]

The following code snippet demonstrates how to derive objects from QObjects, the

parent and child paradigm and the concept of signals and slots.

1 class MainWindow : public QMainWindow

 {

 2 Q_OBJECT

18

 public:

 3 MainWindow(QWidget *parent = 0);

 4 ~MainWindow();

 private:

 5 FtpWindow *ftpWin;

 6 private slots:

7 void open();

 …

};

Listing 2. Qt class definition

Line 1 in the header file shows the class is derived from the QMainWindow class which

is one of the three GUI classes in Qt. The instance of the class (the object) will be de-

rived ultimately from QObject. Line 2 shows the Q_OBJECT macro which must be de-

clared in order to use signals and slots. Line 3 shows the constructor. QWidget will be

the parent of the object, thereby making QWidget responsible for the deletion. Line 4 is

the destructor and line 5 is a declaration of an object which will be used to download

text files via FTP. This FTP object can be initialized in the constructor. Line 6 shows the

slots used in the application. Slots must be declared in the class declaration with the

keyword ‘slots’ preceded by either the private or public keyword as in line 6. Slots are

declared just like C++ member function. The open slot in line 7 is a slot used for open-

ing files with the appropriate file dialog. This slot is defined in the .cpp file as follows:

1 void MainWindow::open()

{

 2 if (maybeSave()) {

 3 QString fileName = QFileDialog::getOpenFileName(this);

 4 if (!fileName.isEmpty())

 5 loadFile(fileName);

19

 }

}

Listing 3. Qt slot implementation

If any object is interested in the open() slot, then the interested object’s signal should

be connected to the MainWindow’s (which is the object to whom the slot belongs to)

open() slot as follows:

1 MainWindow::MainWindow(QWidget *parent) :

 2 QMainWindow(parent),

 3 ui(new Ui::MainWindow)

{

4 ui->setupUi(this);

 5 createToolBars();

6connect(openToolButton,SIGNAL(clicked()),MainWindow,SLOT(open()))

Listing 4. A typical Qt constructor

Listing 4 shows a typical Qt Constructor. Line 4 sets up the user interface created by Qt

Designer. Qt Designer is a fully fledged GUI designing tool.

As shown in listing 4, line 6, the appropriately named connect function is used to con-

nect Signals with Slots. The first argument, openToolButton is a button in the tool bar.

When this button object is clicked by the user, it emits the clicked() signal. The clicked

signal is passed as an argument to the Signal macro and the Slot macro has the open()

method passed to it. The SIGNAL() and SLOT() macros are used to specify the method

to use. In Listing 4, the clicked() method and the open() method are used for this par-

ticular purpose.

Listing 4, line 6 shows that when the openToolButton is clicked, it emits the clicked()

signal and when the clicked signal is emitted, the MainWindow object will execute the

open() slot. Then the file open dialog will pop up on screen according to the code in

listing 3.

A good example to demonstrate the parent-child paradigm in Qt is the partial code from

listing 3, line 3: the getOpenFileName function shows a file dialog object and returns

20

the file chosen by the user. The ‘this’ argument in the getOpenFileName function

means the current object, which is MainWindow, is the owner of the file dialog object

created by the getOpenFileName function, and as such the MainWindow object is re-

sponsible for the deletion of the file dialog object. Therefore, the file dialog object (child

object) will be added to the MainWindow (parent object) object tree and will be re-

moved along with other children when the MainWindow’s destructor is called. Alter-

nately, the setParent() function can be used to set a particular object’s parent.

As demonstrated, Qt’s Signals and Slots mechanism is easy to use, intuitive and a

good alternate to the conventional callback function. Signals and Slots can also be

connected in Qt Designer by dragging a line from the signal object to the slot object

provided both objects are GUI elements. This makes application development in Qt

faster and more efficient.

3.3 Application Structure

3.3.1 Symbian Application Structure

Symbian uses the model-view-controller (MVC) pattern in application design. MVC is a

common design pattern used in user interface applications in Symbian. MVC splits the

application into three components: Model, View and Controller. [20]

Figure 1. The Model-View-Architecture design pattern in Symbian[20]

Each component has a specific role to play in the overall scheme of the application.

Model:

• Encapsulates the application state.

• Exposes the application functionality.

21

• Notifies the view of changes.

• Stores program data in the model.

View:

• Renders the model.

• Receives updates from the model.

• Sends user input and commands to the controller.

Controller:

• Defines the application and reacts to received commands and requests.

• Maps user actions to Model updates.

• Selects views for response. [20]

Figure 2. Symbian implementation of MVC. [20]

Figure 2 shows the MVC implementation in Symbian. The Application, Document and

AppUi classes are used as the controller while the AppView class is used as the view

and a user implemented engine as the model.

The Application class sets up and executes the application by supplying a globally

unique 32-bit identifier (UID). The application properties are also defined here and the

document class is also created in the application class. The Document class which is

created in the Application class has application data ownership and responsibility for

persisting data. This class creates the AppUi class. The AppUi class is used to handle

22

application wide events such as menu commands, key presses, opening and closing

files. These events can be passed to the views and container classes of an application.

The AppView class along with other container classes displays data to the screen and

collects data from the user. A view can be activated internally or externally by supplying

the UID of the application and the ID of the view. [4, 79 - 80]

Figure 3. Project source file in Carbide C++ IDE

Figure 3 shows the source files for fWord. The source file names contain App, AppUi,

Container and Document suffixes. The files are implementations of the MVC classes so

to speak. MyPicture.cpp file is the Model\Engine implementation of the Application.

RichTextEditorApp.cpp file is the application class implementation. The RichTextEdi-

torAppUi.cpp file is the AppUi class implementation. The RichTextEditorDocument.cpp

file is the Document class implementation and the RichTextEditorContainer.cpp file is a

substitute implementation for the AppView class. A container class will suffice when

developing small applications.

3.3.2 Qt Application Structure

The structure of a typical Qt application is mostly like a standard C++ application with

header files, source files, resource files and forms.

Figure 4. Project source folder

23

Figure 4 shows the project source folder. It can be observed that no peculiar naming

conventions are used on file names to indicate underlying principles. They are just

conventional C++ source files.

A slightly different version of the MVC architecture is employed in Qt. The Controller

class is merged with the model and called Model\View (MV) architecture. Like the MVC

architecture, the model\view architecture separates data storage from data presenta-

tion. The concept of the delegate is also introduced in MV architecture. A delegate al-

lows the way items of data are rendered and edited to be customized.[10]

Figure 5. Qt’s Model\View architecture. [10]

Figure 5 illustrates the MV architecture in Qt. The model provides an interface for the

other components by communicating with the source of data. The way the model is

implemented and the type of data source determines the nature of communication.

Model indexes, which are references of items of data, are obtained by the view from

the model. The view uses these model indexes to retrieve data from the data source

indirectly by supplying the model with the model index(es) of interest. A delegate com-

municates with the model directly using model indexes when an item is edited. A dele-

gate renders the items of data if in standard views. Models, views and delegates com-

municate with each other using Signals and Slots. [10]

24

Figure 6. The four main types of classes in Qt Model-View framework

Figure 6 shows the types of classes in Qt’s Model-View framework. Unlike Symbian’s

implementation of MVC, which applies for any application other than a console applica-

tion, Qt’s MV framework is there if a developer has the need to use it. Developers

oblivious to Qt’s MV framework can still develop the desired application; in other words,

it is optional not a necessity as in Symbian. Nevertheless, Symbian is a platform not a

framework.

25

3.4 UI Implementation

3.4.1 Symbian GUI Implementation

There are three ways to develop a user interface in Symbian: the Traditional Symbian

OS architecture, the S60 view architecture and the dialog based architecture.[10]

3.4.1.1 Dialog Based Architecture

In the dialog based architecture, the dominant parts of the views are dialogs. Resource

files can be used to change the content and layout of the dialog without rebuilding the

entire code.[10]

3.4.1.2 Traditional Symbian OS Architecture

In the traditional Symbian OS architecture, a UI controller based on the CAknAppUi

class and a view based on the CCoeControl class should be implemented. Each

CCoeControl object acts as a different view.[10]

This option is by far the most flexible way to construct a user interface in Symbian; the

only catch is the developer has to do the view management like view switching.[10]

3.4.1.3 S60 View Architecture

The CAknViewAppUi class is used to implement a view management mechanism. The

CAknViewAppUi class acts as a UI controller, the CAknView class acts as a view con-

troller, and the CCoeControl acts as a view. Only one view is allowed to be active in

each application in this architecture.[10]

The project application, fWord, is developed with the traditional Symbian OS architec-

ture option.

class CRTEAppUi : public CAknAppUi

 {

 public:

. . .

Listing 5. The fWord controller class

Listing 5 shows the controller class for the project application.

26

class CRTEContainer : public CCoeControl

 {

 public:

. . .

Listing 6. The fWord view class

Listing 6 shows the view class for the project application.

The Carbide IDE contains a wizard for creating UI applications. A GUI application with

a UI designer can be chosen from the ‘File > New > Symbian OS C++ project’ menu.

The Carbide UI designer offers an interactive way to create UI components. Compo-

nents can be dragged and dropped in the design area. Components can be added,

deleted or repositioned until the desired UI layout is achieved. However, each compo-

nent's functionality must be implemented in code.

3.4.2 Qt GUI Implementation

QWidget is the base class of UI objects in Qt. In Qt terminology, widgets are objects of

classes derived from QWidget.

Figure 7. QWidget multiple inheritance

Figure 7 shows QWidget’s multiple inheritance. The inheritance from QObject makes

QWidget a QObject. As a consequence, QWidget can implement the Signals and Slots

mechanism, manage child objects, and acquire a parent itself. On the other hand, the

inheritance from QPaintDevice, which is the base class of objects that can be painted

to screen, makes Qwidget a QPaintDevice. [12]

27

Despite the complexity of the QWidget class and several hundred functions contained

in it, QWidget, in its simplest form, is rendered as an empty box. UI objects in Qt like

QPushButton and QLineEdit are implementations of the Qwidget class. One can de-

velop one’s own UI object by re-implementing the Qwidget class. There is a wide vari-

ety of readymade widgets available in Qt. [12]

A widget without a parent is called a window. Usually, applications have at least one

such window. QMainWindow and QDialog are the most common window types in Qt. A

widget’s constructor accepts one or two standard arguments: the first one is Qwidget

*parent argument. If this argument is specified as zero, then the widget will be a win-

dow. Otherwise, the widget will be the child of the parent. The second argument is

used to set the window flags.

1class FtpWindow : public QDialog

 {

 2 Q_OBJECT

 public:

 3 FtpWindow(QWidget *parent = 0);

. . .

Listing 7. The fWord File Transfer Protocol (FTP) client constructor

As shown in listing 7, line 3, the parent is set to zero making the FtpWindow object a

window. The FTP client can be made into a standalone FTP client application, but it is

used as one tool amongst many in this project. Therefore, the application’s main win-

dow has to take ownership of the FTP client object.

void MainWindow::startFtp()

{

 1 ftpWin = new FtpWindow(this);

. . .

Listing 7. The fWord FTP slot

Listing 7, line 1, shows that the MainWindow object takes ownership of the FTP client

object by passing the 'this' pointer in the argument for the constructor. The 'this' pointer

in this case refers to the MainWindow object. Thus the FTP client will be deleted when

the MainWindow destructor is called.

28

A user interface can be designed in Qt either by manually typing the code or by using

the Qt Designer. The project application, fWord, makes use of both ways ofthe UI de-

sign.

 1 titleLabel = new QLabel;

 2 titleLabel->setText("fWord: LANorWIFI Upload");

 3 statusLabel = new QLabel;

 4 statusLabel->setText("STATUS: ");

 5 uploadButton = new QPushButton;

 6 uploadButton->setText("Upload");

 7quitButton = new QPushButton;

 8quitButton->setText("Quit");

 9fileTextEdit = new QTextEdit;

 10statusLineEdit = new QLineEdit;

 11buttonsLayout = new QHBoxLayout;

 12buttonBox = new QDialogButtonBox;

 13buttonBox->addButton(uploadButton,QDialogButtonBox::ActionRole);

 14buttonBox->addButton(quitButton,QDialogButtonBox::RejectRole);

 15buttonsLayout->addWidget(buttonBox);

 16statusLabel->setBuddy(statusLineEdit);

 17statusLabelAndEditLayout = new QHBoxLayout;

 18statusLabelAndEditLayout->addWidget(statusLabel);

 19statusLabelAndEditLayout->addWidget(statusLineEdit);

 20mainLayout = new QVBoxLayout;

 21mainLayout->addWidget(titleLabel);

 22mainLayout->addWidget(fileTextEdit);

 23mainLayout->addLayout(statusLabelAndEditLayout);

 24mainLayout->addLayout(buttonsLayout);

 25 setLayout(mainLayout);

Listing 8. UI design for fWord’s Wi-Fi File upload tool

Line 1 to line 10 in listing 8 instantiates a label object, button objects, a text editor ob-

ject and a line edit object. These objects are assigned text where applicable. Lines

11,17 and 20 show how to create a layout. Line 11 creates a layout called buttonsLay-

out which will determine how the buttons are laid out on screen. There are three lay-

outs in Qt: horizontal, vertical and grid. QHBoxLayout, QVBoxLayout and QGridLayout

29

classes are used respectively to achieve the layouts. Line 12 creates a QDialogBut-

tonBox which will be used to contain the upload button and the quit button created in

lines 5 and 7 respectively.

Hence, buttonBox becomes the parent widget of the quitButton and the uploadButton

when the addButton function is invoked as in line 13 and line 14. Lines 15, 18, 19, 21

and 22 show how a widget can be added to a layout. Lines 23 and 24 show how a lay-

out can be added to another layout. Finally, line 25 sets the layout called mainLayout

as the main layout which will be executed when the constructor is called. Lines 21 to 24

shows how widgets and layouts containing widgets can be added to the main layout.

Qt has a very dynamic, interactive and intuitive GUI building tool called QtDesigner.

Besides laying out UI components in the desired fashion, QtDesigner also provides

with a way to connect signal(s) of a UI component with slot(s) of another UI component

by simply dragging an arrow from the former to the latter.

Figure 8. Qt Designer’s Signals and Slots editing feature for fWord application

As shown in figure 8, Qt Designer enables establishing and/or editing signals and slots

by dragging a line from one object to another. The copy, cut and paste buttons are

separately dragged to the QTextEditor object upon which a dialog will appear with

30

available signals of the button on the left side of the screen and available slots of the

text editor on the right side.

3.4.3 Symbian UI Designer vs. Qt Designer

The Symbian UI Designer and the Qt Designer each offer different ways to implement

UI design.

Figure 9. Symbian UI Designer

Figure 9 illustrates Symbian’s UI designer. The areas marked in red show the different

working areas. Area 1 is the main working area where individual UI components can be

dragged from area 2 and dropped in area 1. Area 2 shows the UI components available

in Symbian. Area 4 shows the currently select UI component along with class name.

Area 3 shows an outline of area 1’s UI components and their containers.

The UI components to choose from in area 2 are out of view most of the time. Search-

ing for basic components by scrolling down can be tedious; the palette area (area 2) is

not efficiently designed.

31

Figure 10. Qt Designer used in the fWord Application

Figure 10 illustrates the use of Qt designer in the fWord project application. Area 1

marked in red, contains the UI components. Area 2 is the main working area where UI

components from Area 1 can be dragged and dropped to. Area 3 outlines the objects

used in area 2 along with their containers and class names. Area 4 is the property sec-

tion where a UI component’s property can be edited.

Qt Designer has advantages over the Symbian UI Designer in that the UI components

in Area 1 are clearly and efficiently designed and presented. Signals and Slots can be

connected in Qt Designer which would be tantamount to implementing a callback func-

tion in Symbian UI Designer had it been implemented. A UI component’s properties

can be edited directly in Qt Designer. A fully fledged application can be designed, im-

plemented and deployed without writing a single line of code just by using the features

of Qt designer. This cannot be achieved in Symbian UI Designer.

In general, Qt Designer has the upper hand in UI design because it has many features

which are not available in the Symbian UI Designer but make UI designing seem effort-

less.

32

3.5 Files and Streams

3.5.1 Symbian Files and Streams

An RFs class provides a session to a file server.

_LIT(KDirectoryPath, "C:\\Private\\e033e32b\\");

RFs& fsSession = CCoeEnv::Static()->FsSession();

User::LeaveIfError(fsSession.Connect());

CleanupClosePushL(fsSession);

RFile fWordfile;

User::LeaveIfError(fWordfile.Write(KWriteData));

CleanupStack::PopAndDestroy(&fsSession);

Listing 9. Symbian file server connection and write operation

As shown in listing 9, a session to a file server must be established prior to any opera-

tion involving the file system. Subsequently, data can be written to or read from a file.

[4, 155]

The traditional way of opening files with the help of a dialog is done by deriving a cakn-

fileselectiondialog object from the caknfileselectiondialog.h header file and linking it

against the commondialogs.lib library. The process of creating these dialogs lacks a

certain level of abstraction.

A file operation can also be done using streams. Streams provide a way to read from

and write to a file with RReadStream and RWriteStream objects.[4,156]

_LIT(KDirectoryPath, "C:\\Private\\e033e32b\\");

RFs& fsSession = CCoeEnv::Static()->FsSession();

User::LeaveIfError(fsSession.Connect());

CleanupClosePushL(fsSession);

RFileReadStream readStream;

TInt error = readStream.Open(fsSession, KParentFileName, EFileRead);

Listing 10. Symbian streams: read stream

33

Listing 10 shows how to open a file stream for reading. The other structure available for

file manipulation is a store. Persistent objects can be implemented by using a store. A

store is a collection of related streams. There are a number of different stores derived

from the base store CStreamStore. The most common use of a store is in a relational

database.

3.5.2 Qt Files and Streams

Qt provides support for input and output operation through the QIODevice abstraction

class. QIODevice subclasses are:

•QFile - Accesses files in the local file system and in embedded resources.

•QTemporaryFile - Creates and accesses temporary files in the local file system.

•QBuffer - Reads data from or writes data to a QByteArray.

•QProcess - Runs external programs and handles inter-process communication.

•QTcpSocket - Transfers a stream of data over the network using TCP.

•QUdpSocket - Sends or receives UDP datagrams over the network.

•QSslSocket - Transfers an encrypted data stream over the network using

SSL/TLS. [14].

QIODevice cannot be instantiated directly since it is an abstract class but one of its

sub-classes can be.

Qt also provides with the QFileDialog class for file operation dialogs. The abstraction

level provided in QFileDialog makes file operation management very easy.

1 void MainWindow::open()

{

 2 if (maybeSave()) {

 3 QString fileName = QFileDialog::getOpenFileName(this);

 4 if (!fileName.isEmpty())

 5 loadFile(fileName);

 }

 }

Listing 11. File open slot

34

Listing 11, line 3, shows how to launch a file open dialog. The getOpenFileName func-

tion returns a string to the file selected by the user. This string is used as the file name

to open as shown in line 5. The load file function loads the file.

1 void MainWindow::loadFile(const QString &fileName)

{

 2 QFile file(fileName);

 3 if (!file.open(QFile::ReadOnly | QFile::Text)) {

 4 QMessageBox::warning(this, tr("fWord"),

 tr("Cannot read file %1:\n%2.")

 .arg(fileName)

 .arg(file.errorString()));

 return;

 }

 5 QTextStream in(&file);

 6 QApplication::setOverrideCursor(Qt::WaitCursor);

 7 ui->textEdit->setPlainText(in.readAll());

 8 QApplication::restoreOverrideCursor();

 9 setCurrentFile(fileName);

 10 statusBar()->showMessage(tr("File loaded"), 2000);

}

Listing 12. The load file function

Listing 12 shows how the load file function loads the file to the rich text editor screen.

One of the QIODevice subclasses, QFile, is used to open the file with the name ac-

quired in listing 11, line 3. Lines 3 and 4 of listing 12 show the process of opening the

file and in the case where an error occurs, how a message box will notify the user

about the current situation and the function exits. Line 5 of listing 12 shows the use of

text streams in Qt. QTextStream provides a convenient interface for text operations.

The only operation remaining is to show the text file in the rich text editor; this is done

as shown in line 7 of listing 12 by passing the entire content of the stream as a string to

the text editor’s setPlainText function.

35

3.6 Strings

3.6.1 Symbian Strings

Symbian strings are called descriptors. They are used to manipulate binary data stored

in memory in addition to text processing. Descriptors are categorized as modifiable or

non-modifiable with the possible location base of stack, heap or pointer. [4, 84]

Figure 11. Symbian OS Descriptors

Figure 11 shows the descriptor hierarchy in Symbian OS.

The base class for all descriptors is the non-modifiable abstract class, TDesC. The

TDesC class cannot be instantiated or modified directly but it can be used to pass a

non modifiable data to functions. [4, 85]

Another abstract class similar to TDesC is TDes. The only difference between the two

classes is TDes has a maximum length parameter. As long as the TDes descriptor

does not exceed the maximum length, it can be modified. [4, 85]

TPtrC and TPtr are pointer descriptors. The former is non-modifiable while the latter is

modifiable. TPtr descriptors contain a maximum length parameter. It also has methods

used to modify the string. [4, 85]

HBufC descriptors are heap based non-modifiable descriptors. These descriptors are

used for fixed length text and binary data. The size of HBufC descriptors is not known

until run time. Even though HBufC descriptors are non-modifiable, a workaround to

make modifications is to use the Des() method as shown below in listing 13. [4, 86]

36

_LIT(KMessage, "Hello");

HBufC* myMessage = HBufC8::NewL(KMaxItemLength);

myMessage->Des().Append(KMessage);

Listing 13. How to modify an HBufC descriptor

The Symbian OS provides methods to manipulate descriptors of both non-modifiable

and modifiable nature. Some of the most common methods are listed in table 1 below:

Table 1. Descriptor methods

Modifiable

Descriptor Methods

Non-Modifiable

Descriptor Methods

Append Alloc

Capitalize AllocL

Uppercase AllocLC

Lowercase Compare

Copy CompareC

Delete ComapareF

Fill Find

Format FindC

 FindF

Symbian OS strings can also be defined by using literals.

3.6.2 Qt Strings

QString is Qt’s version of a string. QString is a Unicode character string which stores a

string of 16-bit QChars. QChars correspond to a character in QString. QChars are Qt’s

implementation of a character. QString based applications can be translated to other

languages since QChars provide Unicode support. [15]

An alternate to QString strings and particularly to ‘const char*’ strings in Qt is QByteAr-

ray. QByteArray is mostly used to store raw binary data, store traditional Null termi-

nated strings or in memory critical applications [16].

37

 void ChatDialog::returnPressed()

{

 1 QString text =fileTextEdit->toPlainText();

 2 if (text.isEmpty())

 3 return;

 4 else {

 5 client.sendMessage(text);

 6 appendMessage(myNickName, text);

 }

}

Listing 14. String initialization and manipulation in Qt

Listing 14 shows one of the slots in the Rich Text document application. A QString

called text is created and initialized with the content of the rich text editor as shown in

line 1. Line 2 checks if the string is empty and if it is empty, the function returns.

Qt’s string manipulation methods are similar to standard C++ string manipulation meth-

ods.

 Table 2. some common Qt string manipulation method

Methods

Append

Begin

Capacity

Length

Compare

Contains

Count

Insert

Remove

Replace

38

3.7 Communications

The primary purpose of mobile phones is to establish communication between two par-

ties. There are various means of achieving communication besides the conventional

voice communication: text communication, video communication.

3.7.1Communications in Symbian

Communication in Symbian is made through the Comms, short for communications,

service block. The Comms services block is a major, self-contained block within the OS

service layer of Symbian OS. [17, 224]

A wide variety of communications protocols and services are supported by the Comms

service:

•Serial communication

•Bluetooth communication

•Network communications

•Wi-Fi

•Mobile telephony communications. [17, 226]

The Comms service block is divided into four sub blocks:

•Comms framework – Provides a generic infrastructure supporting all communi-

cation services.

•Telephony services – Provides support for 2G, 2.5G, 3G , 4G and CDMA mo-

bile phone networks.

•Short link services – Provides USB, Bluetooth and infrared services.

•Networking services – Provides packet based network services. Implements

TCP/IP, FTP and HTTP. [17, 227 – 228]

3.7.1.1 The Comms Framework

All communication services use the infrastructure implemented by the Comms frame-

work. The primary communications server is the Comms Root Server which is respon-

sible for starting and stopping the communication servers. There are two direct client

interfaces for communication services: The first is the C32 serial server which is the

data communication server and the second being the ESock Socket server which self

descriptively provides a socket server. There are also interfaces that handle socket

server client requests namely the Network Interface Manager and the Network Control-

ler. The former is the network interface manager while the latter is the connection man-

39

ager. Both of these managers find and setup appropriate network connections as re-

quested by the socket server clients. [17, 235 – 236]

 Table 3. Components of the data Comms server

Component Name Development Name

C32 Serial Server c32

ESock Server ESOCK

Network Interface Manager NIFMAN, DIALOG

Network Controller NETCON

Table 3 shows the components of the data Comms Server

3.7.1.2 Telephony Services

The primary telephony service server is the ETel Telephony server. Access to teleph-

ony functions on a Symbian OS device is managed by the ETel telephony server. This

server implements the standard Symbian client-server framework and in the process

provides a client side API. The CPM interface is also implemented by the ETel server

which makes it a communications provider that is managed and run by the Comms

Root Server. The telephony server provides basic abstractions as phones, lines and

calls. Clients open sub-sessions to phone, line and call after opening a server session

with the telephony server. Support for messaging is included in the ETel multimode

extension. [17, 245 – 251]

 Table 4. Telephony server components

Component Name Development Name

ETel Server and Core ETEL

ETel 3rd party API ETEL3RDPARTY

Fax Client and Server FAX

ETel Multimode ETELMM

ETel Packet Data ETELPCKT

ETel SIM Toolkit ETELSAT

ETel CDMA ETELCDMA

Table 4 shows the various components of the Telephony server.

Listing 15 demonstrates how telephony services are used in a messaging application.

40

iMsvSession = CMsvSession::OpenAsyncL(*this);

iClientMtmRegistry = CClientMtmRegistry::NewL(*iMsvSession);

iSmsMtm = static_cast<CSmsClientMtm*>(iClientMtmRegistry->

NewMtmL(KUidMsgTypeSMS));

TMsvEntry msvEntry;

msvEntry.SetInPreparation(ETrue);

msvEntry.iMtm = KUidMsgTypeSMS;

msvEntry.iType = KUidMsvMessageEntry;

msvEntry.iServiceId = iSmsMtmServiceId();

iSmsMtm->Entry()->CreateL(msvEntry);

iMessageId = msvEntry.Id();

iSmsMtm->SwitchCurrentEntryL(iMessageId);

iSmsMtm->Entry().ChangeL(msvEntry);

iSmsMtm->SwitchCurrentEntryL(iMessageId);

iSmsMtmLoadMessageL();

CSmsSettings& smsSettings = iSmsMtm->ServiceSettings();

CSmsNumber * serviceCenter =

&(smsSettings.SCAddress(smsSettings.DefaultSC()));

iSmsMtm->SetServiceCenterAddressL(serviceCenter->Address());

iSmsMtm->SaveMessageL();

msvEntry.SetInPreparation = EFalse;

msvEntry.SetSendingState(KMsvSendStateWaiting);

iSmsMtm->Entry().ChangeL(msvEntry);

iMsvEntrySelection->AppendL(iMessageId);

iMsvOperation = iSmsMtm->InvokeASyncFunctionL(ESmsMtmCom-

mandScheduleCopy,*iMSvEntrySelection, NULL, iStatus);

 Listing 15. An SMS application demonstrating telephony services

41

3.7.1.3 Networking Services

The networking services were created primarily to accommodate web and email ser-

vices. The TCP\IP protocol implementation is the basis for the symbian OS networking

services. However, The TCP\IP packets and the stack itself are not directly available.

The packets are encapsulated within the stack and the stack is implemented as a

socket server PRT protocol plug-in. The socket interface provides access to network

services. [17, 255]

Table 5. Network protocol plug-ins.

Component Name Development Name

IP Event Notifier IPEVENTNOTIFIER

TCP/IPv4/v6 PRT TCPIP6

IP Hook INHOOK6

QoS Framework PRT QOS, QOSLIB,

PFQOSLIB,SBLPAPI

Core IPSec PRT No Unit

Table 5 shows the various network protocol plug-ins.

 HBufC8* iMessage;

 RSocketServ iSocketServer;

RSocket iSocket;

TInetAddr iAddress;

User::LeaveIfError(iSocket.Open(iSocketServer,KAfInet,KSockStream,

 KProtocolInetTcp));

iSocket.Connect(iAddress, iStatus);

User::LeaveIfError(iResolver.Open(iSocketServer,

 KAfInet,KProtocolInetTcp));

 iResolver.GetByName(aAddress, iNameEntry, iStatus);

 iSocket->Write(*iMessage, iStatus);

iSocket->CancelRead();

 iSocket.Close();

iSocketServer.Close();

Listing 16. Network services

Listing 16 shows how to connect to a socket using network services.

42

3.7.1.4 Short-link Services

Short link services provide implementations to serial, USB, infrared and Bluetooth func-

tionalities while infrared communications protocol or IrDA contains a complete set of

protocols from application level to link level [17, 272].

Bluetooth communications define a complete protocol stack. Among the Bluetooth

components are:

•The Bluetooth Manager – details of local and remote devices are stored in the

Bluetooth Manager which acts as the information store. The Bluetooth Manager

is implemented over Symbian OS DBMS.

•The Bluetooth Service Discovery protocol (SDP) – Bluetooth devices can find

each other and share information through this protocol.

•The Bluetooth Host Controller Interface (HCI) – The Bluetooth stack is interfaced

with the on board controller through this interface. [17, 273]

Symbian OS implements a serial over USB (USB CSY) class, mass storage and OBEX

over USB classes. The USB manager implements a server interface for USB class

implementations.

Table 6: Serial Comms server plug-ins components

Component Name Development Name

Serial Port CSY ECUART

USB CSY ECACM

Bluetooth CSY BTCOMM

IrDA CSY IRCOMM

Table 6 shows the plug-in components available for the serial comms server.

Listing 17 shows how to discover Bluetooth devices.

1 RSocketServ sockServ;

2 sockServ.Connect();

3 TProtocolDesc pd;

4 _LIT(KL2Cap, "BTLinkManager");

43

5 User::LeaveIfError(sockServ.FindProtocol(KL2Cap, pd));

6 RHostResolver hr;

7 User::LeaveIfError(hr.Open(sockServ, pd.iAddrFamily, pd.iProtocol));

8 TInquirySockAddr addr;

9 TNameEntry entry;

10 addr.SetIAC(KGIAC);

11 addr.SetAction(KHostResInquiry);

12 TRequestStatus status;

13 hr.GetByAddress(addr, entry, status);

14 User::WaitForRequest(status);

Listing 17: Short link Bluetooth services example

Lines1 to 5 of listing 17 show how to connect to the socket server, RSocketServer and

how to choose the protocol to be used for the connection. Lines 6 and 7 create the host

name resolution service and initialize it. The rest of the lines of code show how to set

up the TInquirySockAddr variable to have a ‘general unlimited’ inquiry access. Line 13

starts this inquiry process.

3.7.2 Communications in Qt

The term communications encompasses a wide variety of methods from making a call

to a Bluetooth file upload. Unfortunately, Qt does not provide direct support for most of

the communication protocols provided by Symbian OS. The word communications in

Qt is more tuned to the idea of networking. Qt does not provide direct support to USB,

Infrared or Bluetooth services. However, Qt provides an impeccable network program-

ming implementation via an assortment of classes as shown in table 7.

Table 7. QtNetwork classes for network programming

Class Name Description

QAbstractSocket Provides base functionality common to all

socket types

QAuthenticator Authentication object

QFtp Client side FTP protocol implementation

AHostAddress IP address

QHostInfo Host name lookup static functions

QNetworkAccessManager Sends network requests and receives

replies

44

QNetworkAddressEntry Stores an IP address

QNetworkInteface Host’s IP addresses and network

interfaces listing

QNetworkProxy Network layer proxy

QNetworkProxyFactory Specialized proxy selection

QNetworkReply Contains the data and headers for a

request sent with

QNetworkAccessManager

QNetworkRequest Holds a request to be sent with

QNetworkAccessManager

QSocketNotifier Support for monitoring activity on a file

descriptor

QSsl Declares enumerations common to all

SSL classes in QtNetwork

QSslCertification Convenient API for an X509 certificate

QSslCipher Represents an SSL cryptographic cipher

QSslConfiguration Holds the configuration and state of an

SSL connection

QSslError SSL error

QSslKey Interface for private and public keys

QSslSocket SSL encrypted socket for clients and

servers

QTcpServer TCP-based server

QTcpSocket TCP socket

QUdpSocket UDP Socket

QUrl Convinient interface for working with

URLs

QUrlInfo Stores information about URLs

As table 7 shows, Qt provides a variety of classes for network programming.

45

Listing 18 shows how two of Qt’s networking classes, QFtp and QUrl, can be used in

code.

void FtpWindow::connectOrDisconnect()

 {

1 ftp = new QFtp(this);

2 QUrl url(ftpServerLineEdit->text());

 if (!url.isValid() || url.scheme().toLower() !=QLatin1String("ftp"))

{

 3 ftp->connectToHost(ftpServerLineEdit->text(), 21);

 4 ftp->login();

} else {

 ftp->connectToHost(url.host(), url.port(21));

 if (!url.userName().isEmpty())

 ftp->login(QUrl::fromPercentEncoding(url.userName().toLatin1()),

url.password());

 else

 ftp->login();

 if (!url.path().isEmpty())

 ftp->cd(url.path());

 }

Listing 18. QFtp and QUrl classes usage

Line 1 of listing 18 shows how to create an FTP object. On line 2 the host address is

acquired from the text entered into the provided form by the user. Line 3 and 4 show

how to connect to the host address and how to login to the address respectively.

The FTP program shown in listing 18 can also be designed from scratch using Qt’s

socket classes.

3.8 Threads and Processes

A process is an executing program and one or more processes are contained in an

application [19]. Processes are self contained; a process cannot affect the state of an-

other process directly [18]. Moreover, any two processes do not share the same ad-

dress space and resources [18].

46

A thread is a unit of execution within a process. All threads of a process share the

process’s virtual address space and resources. [19]

A single primary thread is initialized within a process when the process is first created.

Consequently, other threads may be created as required. [5, 141]

3.8.1Symbian Threads and Processes

There are two types of multitasking in Symbian: pre-emptive and cooperative.

In pre-emptive multitasking, which is based on allocating a time-slice for each process,

the kernel, which controls thread scheduling, may suspend or resume a thread when

appropriate. This constant switching between threads is called a context switch. A con-

text switch occurs when a higher priority thread is ready to run or when the currently

running thread is suspended. [5, 141]

In cooperative multitasking, each process has the responsibility to relinquish process-

ing time to allow other processes to execute. [5, 142]

Active objects and threads (RThread) are Symbian OS implementations of co-operative

and pre-emptive multitasking respectively.

3.8.1.1 Active Objects

Active objects are a Symbian OS implementation of cooperative multitasking; “multiple

active objects execute in effect within the context of a single thread.” [17, 81]

Active objects come into play when an event or events is/are generated by a user or a

service provider. The application receives a notification when the request generated by

the event is complete. Then, the active object starts handling the request. There is an

active object waiting for the request to be completed for each asynchronous service

request. Typical to a cooperative multitasking technique, there is a wait loop going

through the outstanding task requests and when a completed task is found by the wait

loop, it calls for the event handler code of the corresponding handler object. The wait

loop is implemented as an active scheduler and the handler objects are implemented

as active objects. [20]

47

1class CMyTimerAo : public CActive

{

public:

 CMyTimerAo();

 ~CMyTimerAo();

 void Start();

 void RunL();

private:

 void DoCancel();

private:

 // An integer representing a timing period

 TInt iPediod;

 // A handle to timing services

 RTimer iTimer;

};

Listing 19. Active object declaration

Listing 19, line 1, shows how to derive an active object from CActive class.

In general, active objects provide requests to asynchronous services, and once com-

pleted they handle the requests. [20]

3.8.1.2 RThread

Threads are scheduled preemptively by the kernel while active objects multitask coop-

eratively within a thread and cannot be preempted by the active scheduler. [5, 181]

The RThread class is used to manipulate threads, and an RThread object can be used

to create or refer to another thread. [5, 183]

RHeap* myHeap = RThread().Heap();

 Listing 20. RThread Object

Listing 20 shows how to use an RThread object to handle to the current thread.

48

3.8.2 Qt Threads and Processes

There are two classes in Qt in charge of processes and threads: QProcess and

QThread. QProcess is used to launch and communicate with external programs while a

QThread instance is used to represent and execute a thread.

QObject *parent;

QString program = "./QtApps/fWord";

QStringList arguments;

arguments << "-style" << "motif";

QProcess *myProcess = new QProcess(parent);

myProcess->start(program, arguments);

Listing 21. Qprocess usage

Listing 21 shows how to start a process by launching an external program, in this case

the program fWord.

1 class MyThread : public QThread

 {

 2 Q_OBJECT

 protected:

 3 void run();

 };

 4 void MyThread::run()

 {

 ...

 }

Listing 22. QThread initialization

Listing 22 shows how to create a thread by subclassing the QThread class. The run

function on line 3 should be implemented on line 4 to make the thread usable.

49

4 Conclusion

This project has shown the introduction of Qt, as a major overhaul to the Symbian

based Smartphone and a practically better alternate to Symbian C++ programming,

gaining the upper hand over Symbian C++ in almost every category, from fast devel-

opment environment setup and easy and intuitive class and object implementation to a

simple UI designer and uncomplicated string implementation. Moreover, Qt can deliver

a fast and relevant user experience demanded by today’s end user.

Touch screen, interactive smart phones offer a fluid and fun experience to users. None

of the leading smartphone companies invented the touch screen but rather made inno-

vative use out of it. Such innovative design translates to the difference between a suc-

cessful brand and a slowly receding brand.

Technically speaking, Qt is being/will be wrapped around the existing Symbian OS plat-

form. Developers retain the choice of developing with Qt or dealing with Symbian OS

directly. As examined in this thesis, Qt offers the easiest development route. Qt may

not be the messianic framework that saves the Nokia smartphone, but its potential to

take Nokia to the next level is high.

50

References

1 Aubert, Michael. Quick recipes on Symbian OS. West Sussex, England: John Wiley

and Sons Ltd; 2008.

2 Qt4 graphical user interface [online].

URL: http://www.civilnet.cn/book/embedded/gui/qt4/pref04.html.

Accessed 10 April 2011.

3 Symbian.org [online].

http://developer.symbian.org/wiki/index.php/Using_Qt_with_Standalone_SDKs.

Accessed 10 August 2010.

4 Coulton Paul, Edwards, Reuben. S60 programming: A tutorial guide.

West Sussex, England: Wiley and sons; 2007.

5 Stichbury Jo. Symbian OS explained. West Sussex, England: Wiley; 2004.

6 QObject [online].

URL: http://doc.qt.nokia.com/4.6/qobject.html#details.

Accessed 3 November 2010.

7 Object trees [online].

URL: http://doc.qt.nokia.com/4.6/objecttrees.html.

Accessed 3 November 2010.

8 Qt for Symbian white paper [online].

URL: http://qt.nokia.com/products/platform/files/pdf/whitepaper-qt-for-the-symbian-

platform.

Accessed 3 November 2010.

9 QObject [online].

URL: http://cartan.cas.suffolk.edu/oopdocbook/opensource/qobject.html.

Accessed 5 November 2010.

51

10 Model-View introduction [online].

URL: http://doc.trolltech.com/4.6/model-view-introduction.html.

Accessed 6 November 2010.

11 S60 view architecture with UI Design [online].

URL: http://wiki.forum.nokia.com/index.php/S60_View_Architecture_with_UI_Design.

Accessed 6 November 2010.

12 QWidget [online].

 URL: http://cartan.cas.suffolk.edu/oopdocbook/opensource/widgets.html.

Accessed 8 November 2010.

13 QWidget [online].

URL: http://doc.qt.nokia.com/4.6/qwidget.html#details.

Accessed 8 November 2010

14 Blanchette Jasmin, Summerfield Mark. C++ GUI programming with Qt 4, Second

edition. Westford Massachusetts. Prentice Hall; 2008.

15 QString [online].

URL: http://doc.qt.nokia.com/4.6/qstring.html#details.

Accessed 20 November 2010.

16 QByteArray [online].

URL: http://doc.qt.nokia.com/4.6/qbytearray.html#details.

Accessed 20 November 2010.

17 Morris, Ben. The Symbian OS architecture source book. West Sussex, England:

Wiley; 2007.

18 Threads and processes [online].

URL: http://williamstallings.com/Extras/OS-Notes/h2.html

Accessed 20 November 2010.

52

19 Threads and processes [online].

URL: http://msdn.microsoft.com/en-us/library/ms684841(v=vs.85).aspx.

Accessed 20 November 2010.

20 Klemetti, Aarne. Symbian Programming [Lecture Slides].

Espoo, Finland. Metropolia University of Applied Sciences; 2010.

