

Niilo Säämänen

Building a cognitive gaming platform

 User centric gaming experiences with organic movement

Helsinki Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

1.03.2013

Abstract

Author(s)
Title

Number of Pages
Date

Niilo Säämänen
Building a cognitive gaming platform: User centric gaming expe-
riences with organic movement
106 pages
1 March 2013

Degree Master of Engineering

Degree Programme Information Technology

Specialisation option Media Engineering

Instructor(s)

Matias Palva, CEO Neuroware Group
Harri Airaksinen, Head of Line

The increasing focus on efficiency and optimizing the way people think and work has led to
a new area of serious gaming – cognitive games. The rise of modern web rendering tech-
nologies has enabled the creation of visually interesting cognitive games on browser
based technologies. The goal of this study was to assess the applicability of using modern
browser technologies to create a user centric cognitive gaming platform and the use of
mathematical formulas in organic rendering.

The approach discusses the current market situation and the products and methods of
cognitive gaming as well as the technologies involved. The user centric approach is stud-
ied through user experience design as well as graphic design and animation aspects. The
reference implementation is project CCA; a user centric cognitive gaming platform built on
top of Adobe Flash that uses seemingly organic movement rendering.

The technical implementation is discussed from the platform client-server aspect as well as
an overview of the structure of the front end architecture. The rendering engine methods
go through the 2D –based rendering of mathematical formulas, the use of continuous
Bezier curves in organic movement and the creative ways of using Perlin noise to generate
textures as well as movement. Optimization of complex rendering and platform building is
an essential part of the process.

The results show the viability of using modern browser based technologies in the creation
of a cognitive gaming platform. Through the use of optimization and creative mathematical
solutions, as well as tending to user experience needs a successful product is built. The
project platform is used in medical trials, as well as the Science Changing the World Exhi-
bition shown in science centers around Europe. This study stands as a testament to the
possibilities of cognitive end user training and a guide on the aspects of building a suc-
cessful gaming platform.

Keywords cognitive gaming, user experience, organic rendering

 Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Niilo Säämänen
Kognitiivisen pelialustan rakentaminen: käyttäjäkeskeinen
pelikokemus luonnollisella liikkeellä
106 sivua
1.3.2013

Tutkinto Master of Engineering

Koulutusohjelma Information Technology

Suuntautumisvaihtoehto Media Engineering

Ohjaajat

Matias Palva, CEO
yliopettaja Harri Airaksinen

Tehokkuuden optimointi on johtanut muutoksiin ihmisten ajattelu- ja työtavoissa.
Kognitiiviset pelit kehittyivät vakavan pelaamisen alalajiksi vastaamaan tehokkuuden
asettamiin tarpeisiin. Samaan aikaan nykyaikaiset selainteknologiat ja renderöintitekniikat
ovat kehittyneet sille tasolle, että niillä voidaan luoda visuaalisesti näyttäviä kognitiivisia
pelejä. Opinnäytetyön kohteena oli arvioida nykyaikaisten selainteknologioiden sopivuutta
käyttäjäkeskeisen kognitiopelialustan luomiseen ja matemaattisten kaavojen käyttöä
luonnollisen liikkeen ja muodon renderöinnissä.

Tutkimuksen lähtökohtana oli nykyinen markkinatilanne kognitiopelaamisen alueella sekä
siihen liittyvät tuotteet ja teknologiat. Käyttäjäkeskeistä lähestymistapaa tutkittiin
käyttökokemussuunnittelun sekä graafisen suunnittelun ja animaatioiden kautta.
Referenssitoteutuksena kehitettiin projekti CCA, käyttäjäkeskeinen kognitiivisen
pelaamisen alusta, joka pohjautuu Adobe Flash-teknologiaan. CCA:n renderöintiteknologia
perustuu luonnollisen liikkeen optimointiin.

Pelialustan tekninen toteutus on modulaarinen palvelinintegroitu ratkaisu, jonka
tarkoituksena on olla mahdollisimman muokattava taustajärjestelmän kautta. Renderöinti
perustuu matemaattisten kaavojen 2-ulotteiseen ilmaisuun, jatkuvien Bezier-käyrien sekä
erilaisten Perlin-kohinoiden luoviin käyttötapauksiin. Optimointi on elintärkeä osa
monimutkaisen renderöintialustan rakentamisessa.

Opinnäytetyön tulosten mukaan nykyaikaisilla selainteknologioilla voidaan rakentaa
onnistunut kognitiivinen pelialusta. Optimoinnin ja luovien matemaattisten ratkaisujen sekä
käyttäjälähtöisen suunnittelun ja toteutuksen avulla luodaan onnistunut tuote. Projektin
tuote on käytössä kliinisissä kokeissa Suomessa ja Virossa, ja siitä eriytetty
moninpeliversio kiertää tiedekeskuksissa ympäri Eurooppaa. Opinnäytetyön lopputulos on
esimerkki käyttäjäkeskeisten kognitiopelien mahdollisuuksista ja toimii ohjeena
selainpohjaisen pelialustan kehittämiselle.

Avainsanat kognitiopelit, käyttäjäkokemus, orgaaninen renderöinti

Contents

1 Introduction 1

2 Research problem background: Project CCA 3

2.1 Introduction and history 3
2.2 User walkthrough 5
2.3 Target user group 7
2.4 Project lineage 7
2.5 Technology choices 12
2.6 Challenges and key concepts 15

3 Cognitive gaming 18

3.1 History and definition 18
3.2 Current market situation and future 19
3.3 Products and competition 20
3.4 Common test types 26
3.5 Game engines 28

3.5.1 Static game engines 29
3.5.2 Dynamic game engines 29

4 The User Experience approach 31

4.1 Definition 31
4.2 User experience in gaming 32
4.3 Unified visual style 33

4.3.1 Typography 33
4.3.2 Composition and the use of space 37
4.3.3 Elements 40
4.3.4 Colors 42

4.4 Motion and visual narrative 44
4.4.1 Timing and flow 45
4.4.2 Tweening and easing algorithms 46
4.4.3 Movement patterns 48
4.4.4 Overrides in code based animation 49

4.5 Visualization of data 51

5 The CCA project platform 53

5.1 General architecture 53
5.2 Client server communication and data management 56
5.3 Game generation 58
5.4 Game rendering event 60
5.5 User reaction tracking 62

6 Rendering engine 63

6.1 Basic principles 63
6.2 Creature shape rendering 65

6.2.1 Overview of creature rendering 65
6.2.2 Creature formulas 67
6.2.3 Path wrapping 69

6.3 Path creation and path finding 70
6.3.1 Continuous Bezier curves 72
6.3.2 Path interpolation and frame path 74
6.3.3 Path finding and target location generation 75

6.4 Background rendering 77
6.4.1 Perlin noise 77
6.4.2 Luminance in path generation 78
6.4.3 Treshholding Perlin Noise for pattern backgrounds 80

7 Performance optimization 82

7.1 Basic principles 82
7.2 Platform optimization 85

7.2.1 Approach 85
7.2.2 Creature optimization 87

7.3 Flash specific optimization 89
7.3.1 Overview 89
7.3.2 Function calls and language specific libraries 92
7.3.3 Bitwise operators 93
7.3.4 Drawing solutions 94

8 Results and future implications 96

8.1 Current situation 96
8.2 Clients and users 96
8.3 Heureka multiplayer version 98

8.3.1 Introduction 98
8.3.2 Multiplayer 99
8.3.3 AIR platform 101

8.3.4 Testing, long uptime, automatic start up and maintenance 102
8.4 Future 103

9 Conclusions 105

References 107

1 (113)

1 Introduction

Humanity as a whole has seen increased focus on optimizing the way we work, the

way we consume, and the way we think. This need for ever improving performance has

made us consume smarter, perform more efficiently at work and waste less time.

During recent years, the world of gaming and digital entertainment has seen a growth

in a new area, one that was not focused solely in time consuming entertainment; the

coming of so called “brain fitness”. Gaming suites and platforms offering rather simple,

basic mechanics that provided the user various activities they could do to train their

brains. The central tenet in these games was that through exercise powered by game

related reward models one could improve the way one thinks, and track that improve-

ment as well.

The brain games became very popular, and spread throughout the entertainment eco-

system from mobile phones to modern console platforms. The games varied from sim-

plistic memory exercises to the ones based on largely theoretical premises, and offered

actual data as back up of their effectiveness. For the most part the games have been

shown to increase your ability to memorize things, but the actual science proven bene-

fit is still under much debate.

Aside from the more mass market oriented products, the world of science started to

take interest in the inherent interest / reward models and game environments and how

they could be used in rehabilitation and analysis of different diseases and medical con-

ditions that affect our cognitive functions. Cognitive gaming is based on the concept of

neuroplasticity; the ability of the brain to physically adapt to new stimuli.

At the same time, the front end tools for web development have improved to a level

closer to full desktop experience. The introduction of RIA (Rich Internet Applications)

technologies like Adobe Flex and Microsoft Silverlight, in addition to the rising support

for the next W3C standard HTML5 and CSS3 have enabled high production value, fully

fledged user experiences across platforms within the browser.

This study focuses on the key issues in building a user oriented gaming platform, and

the applicability of organic movement and shapes with mathematic formulas in cogni-

2 (113)

tive gaming. The reference implementation is a consumer oriented platform for cogni-

tive gaming built for Neuroware Group; a browser-ran application to measure, improve

and develop cognitive abilities. The goal of this thesis is to study how to develop a ren-

dering system for seemingly organic movement, and a fully-fledged cognitive gaming

platform with a user experience focus for improving people’s lives using modern web

front end technologies.

The present study does not explore the medical theories of cognitive gaming, nor is it a

study of software engineering methods themselves. This study focuses mostly on the

front end platform implementation, where the game logic and rendering lies, and only

has an overview of the backend system of project CCA.

The first part of the study focuses on the basis of the reference project, the setup of the

research question and key factors and challenges. The second part provides an over-

view of brain gaming and introduces the user experience needs and specifics in con-

sumer market oriented platform building, as well as details on CCA platform implemen-

tation. The third part introduces the technological core of the platform, rendering engine

specifics, optimization approach and implementation and how the challenges were

overcome.

After going through the theory and reference implementation, the final part discusses

the merits, accomplishments and future of the project CCA. From current user base

and use cases to possible future uses, as well as the related branch of the project cur-

rently presented at the Science Changing the World exhibit.

3 (113)

2 Research problem background: Project CCA

The reference project is collaboration between the concept owner and CEO of Neuro-

ware Group – Matias Palva, PhD, and Niilo Säämänen, the author of the present the-

sis. Neuroware Group is an innovative small company focusing on neuro-gaming and

cognitive training games that are based on theoretical research on the fundamental

workings of the human brain.

2.1 Introduction and history

The project began based on the research done by Satu and Matias Palva at the Uni-

versity of Helsinki, Neuroscience center. Matias Palva had started a prototype of the

creature rendering system on the LabView platform to test the possibilities of making a

consumer oriented cognitive game based on his research. The project CCA started in

2008, on the 18th of December with a meeting with Matias Palva. Based on the proto-

type idea a consensus on the viability of creating the platform with modern web tech-

nologies was found.

The aim of the project was to create a consumer oriented platform for cognitive gaming

based on the research done by Satu and Matias Palva on neuroplasticity and the appli-

cation of organic shapes and movement in the realm of brain fitness. The target was to

make a browser based solution, with a fairly large portion of the platform logic and con-

trols coming from the back-end solution, enabling a modular and extendable solution

for brain training.

4 (113)

Figure 1. CCA project funding

Figure 1 shows the approximate funding partners and their relative contributions to the

project during its lifetime. The project had Tekes funding for the initial prototype and

development. Development was started without certainty about future budget options.

During the development additional funding was acquired as a grant from the Runar

Bäckström Foundation, and closer to the final stages of the project, the trials with Her-

moPharma funded further development. The approximate total external funding in pro-

ject CCA was 70 000€.

The projects first release version was finished during the spring of 2011, after 2 years

of development. Since the 1st release version, the platform has been further developed

and optimized. The main goals of the project have been achieved, and the whole plat-

form had been heavily reworked and evolved to a point of maturity.

The project work was delegated as follows: The front end platform development, ren-

dering engine development and UX-design by Niilo Säämänen, graphic design by Mik-

ko Häkkinen and the game design, mathematical theorems and back-end solution by

Matias Palva. Mostly the project was an intense collaboration between Matias Palva

and Niilo Säämänen.

43 %

22 %

35 %

Funding

Tekes

Runar Bäckström Foundation

HermoPharma

5 (113)

2.2 User walkthrough

The reference project is a cognitive gaming platform for consumer use. The tool is

meant to be used by end users of all ages and trades, and to be easily approachable

and trustworthy tool for measuring and improving cognitive processing efficiency. From

a user’s perspective, the platform is a web-browser based game system with user au-

thentication and personal, account based training programs.

Figure 2. CCA user flow diagram

The general user flow in CCA is straightforward; users either have an account, or regis-

ter for one, and log in to the game platform. The users have free choice over which

order they plays their games in, and can choose from various available games to them

6 (113)

as seen in Figure 2. The different game modes depend on the users account and tar-

gets. Each user has a specific user account based training program that allows for

them to play a certain amount of games per day.

Most games last around one minute and in each day a different set of games is played.

The total duration of a training program is approximately 30 minutes per day. The

games vary depending on the type, but contain various amounts of moving or static

visual objects, called creatures.

The users’ task is to perceive and/or memorize creatures or the target visual states

thereof according to the instructions. The target state of a creature is a brief contrast-,

color-, and/or shape-change. In some of the game modes, the target state change is

relative based on a calibration round played before the actual measurement portion.

Calibration changes the size of the target state so that the subject detects around 60-

90% of the changes in a two creature game phase. The detected amount of target

states is expected to get better with training.

When the target state is perceived, there is a limited window of opportunity for reaction,

within which the user must react by pressing a key. (Configurable, but by default it is

the space bar) The platform measures the hit rate and reaction time of the user per

target state per creature on screen. The hit rate (HR) is the main measurement used in

CCA to define user capability.

After a successful play, the users are given a summary of their performance. The per-

formance metrics shown are based on the hit rate and reaction time of the user. The

main numerical feedback given is called capacity. Capacity is defined as C = 1/m Σ HRi

* Ni, where N is the number of creatures. Capacity is given as a total value for the play-

through and as a separate value for each phase of the game.

In addition to the numerical metrics, the users are also given trophies, achievements

and stars based on their performance. These categories provide user friendly feedback

on how well the users are doing without the need for detailed metrics. The detailed

metrics are available, but not shown as the default content. The purpose behind the

trophies is to empower the user and give them solid, clear and maintainable goals for

their training.

7 (113)

After the game end screen, the user returns to the main interface of the CCA platform,

where he can see his statistics, review his achievements, change his information and

play another game.

2.3 Target user group

The projects target user groups were divided into two sections: The general public, and

the clinical trials.

The general public users were divided into two sections: Elderly citizens whose inter-

ests would be to both test attention and working memory as well as train to improve

them, and school aged children who would benefit from attention disorder testing with

an automated platform. The current methods for testing and diagnosing attention disor-

ders is work intensive and expensive, and automating the testing would yield significant

savings. These users focus was on daily life, and they suffered from no known disrup-

tions in their cognitive capabilities.

Because of the scientific nature of the platform, and the precise data collected from our

users, the platform could be used as a reference in clinical trials, to see how and if

people improve their performance with the use of a medicine. This is important in stud-

ies of new medicine and helping people with brain trauma. The platform enables a way

of measuring and making training programs specific to studying the target groups’ dif-

ferences with medicine and without.

Since a portion of potential users is visually challenged, significant emphasis was put

on making the platform visually appealing and simple to use. The focus was on pleas-

ant user experience, instead of pure efficiency. To make the users feel safe with the

program, and to trust it, a solid user experience was necessary.

2.4 Project lineage

The work started soon after the first meeting, and the focus was on creating a proto-

type of the basic rendering mechanics as a proof of concept. This was necessary as

the rendering power of browser based solutions is still far behind native language

8 (113)

based compilers, and it was needed to see if it was possible to create the rendering

engine on such platforms.

Figure 3. CCA Project phases

As seen from Figure 2, CCA was a comprehensive project spanning many years. The

project was divided into separate phases, each phase consisting of a number of

sprints. The first priority was in the rendering and game engine construction to make

sure it was viable to build a full scale platform with the technologies chosen. After a few

weeks of development, a first prototype of the rendering engine was developed and

published. After some tweaking of parameters and bottleneck analyzing, it was consid-

ered to be a viable solution, and a sufficient base for building the platform.

Phase 4:
Science
changing
the world
version

• Initial AIR standalone
• Multiplayer mode
• Game end and multiplayer

combinations for 4 players
• Performance optimization
• Bug fixing and debugging

Phase 3:
Game GUI,

statistics

• Charts for statistics
• 2nd iteration of GUI
• Live indicators for reaction time

and capacity
• Game end view
• Game time indicator
• Background bubble animation

Phase 2:
GUI and

Game Logic

• Initial GUI Version
• Language versioned XML texts
• Game modes: Multiple creatures
• Game modes: Feeding and

playground
• First round of bug fixing for

rendering engine

Phase 1:
Initial

engine

• Initial prototype rendering
engine

• Creature rendering engine
• Path rendering engine
• Path bending and creature

rendering combination
• Initial Game Logic

Phase 8:
Finalizing

CCA

• Fine tuning the GUI
• Finalizing engine code
• Polishing user experience
• Cleaning up XML files and making it

more coherent for future use
• Final performance overpass
• Language versioning finalizing

Phase 7:
Trophies,

Achievements
and GUI
tuning

• Addition of trophies, achievements
and stars

• Game end redo
• Trophy rendering engine and

combinatory XML based icon building
• Trophy gallery
• Adding background perlin noise

generation to the engine

Phase 6:
Training

programs and
game modes

• Addition of training programs based
on user accounts

• Game mode: Continuous change
• Game mode: Memory / Static

creatures
• Engine tuning and improvements
• Major code refactoring of engine
• Changing the way target states are

calculated in time

Phase 5:
Engine

improvements
& medical
specifics

• Path finding with target locations built
on more intricate logic

• Creature rendering improvements
• Medical imaging indicator for

mechanical tests
• GUI improvements, new indicators for

performance
• Major code refactoring of UI

9 (113)

Figure 4. First CCA output

Figure 4 shows the first version of the platform rendering engine. The result contained

only one stationary creature, comprised of a nominal amount of points, rendered just so

one could see how it would work and what the possible performance bottlenecks were.

The initial version rendered the stationary creature with barely 30 FPS, and was quite

heavy on the CPU.

After the POC was finished, the full development of the platform began. Development

was done in an agile way, with sprints of 2-4 weeks [1], where one aspect of the plat-

form was tackled at a time. Since the most difficult part of the project was the rendering

engine itself, the first 4-5 months were spent solely on creating, optimizing and fine

tuning the first version of the core rendering engine.

Once the basic engine was built, a fast pass over visual style was done for the project,

an initial GUI for test users and funders to see and test the progress. Work was started

also on doing reusable UI components for various user prompts and game information

needs. Beyond the GUI needs, the first game mode logic was coded, and the first ac-

tual play through of CCA was possible.

10 (113)

Figure 5. First version of the CCA UI

As depicted in Figure 5, the first GUI version took the metaphor of the circles quite far,

and was oriented around cells that contained smaller cells. The first version of the UI

was fully implemented, and contained growth animations for chosen cells and a small

amount of fluid dynamics, however it was quite confusing to use, and more of a game

in itself.

After the initial GUI pass, the focus turned to the game modes of the system. The final

version of CCA supports 4 different game modes for cognitive gaming; from a single

creature reaction observing to feeding multiple creatures. In addition to building the

initial game modes, the first bug fixing and improvements for the rendering engine were

implemented.

Once the game modes were done, a sprint was dedicated for properly introducing a full

GUI to the platform, and further separating UI components. After the initial logic and

games and UI were done, the focus was on Login and register functionality as well as

11 (113)

user support mechanisms such as account handling and performance graphs and in-

formation graphics in general.

Figure 6. The Beta release of CCA

After the phase three of the project, the official Beta release of CCA was ready. The

beta interface can be seen in Figure 6. The platform supported all the basic game

modes, user accounts, a full play through experience and statistics to prove it. Once

this version was done, the work for the Heureka science exhibition called Science

Changing the World started. It was a separate version, completely independent from

the back-end and running a local copy of the rendering engine modified for 4 player

multiplayer needs.

After the Heureka version the phase 5 concentrated more on improving different parts

of the platform at a time. The addition of medical imaging indicator helped automated

testing of the platform, the improved target location in path finding enabled smoother

movement and the GUI code had a thorough overhaul to separate it more from user

logic.

12 (113)

Phase 6 was the 2nd major round of refactoring and improvements for the platform. The

introduction of training programs changed the way the platform worked, and the new

game modes added a lot of variety to the package. Engine code refactoring helped

further development of game modes especially, and the target state calculation change

was done in order to make it more manageable for the server to fine tune the user ac-

count based training regime.

In Phase 7 the way users were rewarded and progress communicated got a much

needed overhaul, changing the direction of the feedback to a much more user friendly

result. In Phase 8 the release version of the platform was finalized, the final GUI was

put in place, the performance was verified and the user experience perfected.

There were a lot of features and ideas in the beginning, some of which were discarded

along the way as unviable for us to implement with our schedule and needs, among

those features were evolutionary algorithms in creature generation.

2.5 Technology choices

The technologies enabling browser based heavily mathematic rendering for the front

end were evaluated before the project begun, and a choice was made in the beginning

on which platform to pursue the solution on. Since much of the projects core engine is

based on mathematics that are rather universally supported by the different platforms,

the porting of the platform to a different technology is not considered to be an impossi-

ble choice in the future.

13 (113)

Figure 7. Silverlight technology stack [2]

One of the technologies evaluated was Silverlight - the RIA solution from Microsoft. It is

a browser plugin similar to its main competitor Adobe Flash. An overview of the Silver-

light technology stack is seen in Figure 7. The runtime is based on the popular C# lan-

guage, and UI components are marked in the more human readable XAML. (Extensible

Apllication Markup Language) XAML is also used in Windows presentation foundation

(WPF) and .NET framework of which Silverlight is a sub sect of. Silverlight implements

the same version of the Common Language Runtime (CLR) as the .NET framework

3.0.

Silverlight offered similar performance to Adobe Flash, and being a part of the MS solu-

tion package, it comes with a wide range of solid development tools and support with

Visual Studio family of products. Silverlight supports the integration of multimedia,

graphics, animations and interactivity in a single runtime environment. Similar to Flash,

14 (113)

Silverlight also supports vector rendering in addition to the typical Bitmap based ren-

dering.

The main hindrance in Silverlight and one of the reasons it was not used is that it is far

behind Flash in adoption rates. Where the Flash Player 10 adoption is around 98.7% in

mature markets [3], Silverlight’s adoption rate was around 22% [4] at the time of the

project start. Whilst being impressive in its abilities, the Silverlight technology was ra-

ther young in 2009, and sorely lacking in features.

The technology chosen was the de facto standard for rich content online in 2009; the

Adobe Flash platform. As mentioned in relation to Silverlight, it is the most widely

spread browser technology in the world, and has a mature and solid development envi-

ronment and support. Flash supports vector rendering as well as bitmaps, and the

newest versions from 11 onwards support using OpenGL based GPU rendering as

well. When the project started the player version target was 10.1, but the release ver-

sion of CCA is targeted for the Flash Player 11 platform. [7]

Whilst requiring the installation of a plugin, the wide spread adoption of Flash made it a

clear and easy choice for a consistent user experience across platforms and browsers.

There are up–to-date versions of the player for Windows, Linux, OSX, and Android

platforms.

The heralded revolution of standards based online development – HTML5 – was not

around in a prominent way back in 2008. After studying the possibilities of using

HTML5 and Javascript based solution as an open alternative for the plugins, it was

found that the performance of Javascript VMs and especially the rendering perfor-

mance was subpar when compared with the plugin based technologies.

This has changed a lot from the year 2009, and the newest JIT(Just in Time) compiler

in Google Chrome is starting to surpass some of the plugin solutions in pure crunching

power. However, the rendering capabilities of browsers vary a lot based on the ver-

sions, and the adoption rate of new browsers remains one of the larger obstacles in

generating modern standards based rich solutions online.

Being a consumer mass market solution, we aimed at all three big players in the mar-

ket on consumer platforms: Microsoft Windows family, Apple OSX, and Linux based

15 (113)

operating systems needed to be supported. The support for our decided solution plat-

form – Adobe Flash, is wide and envelopes all our target platforms.

Figure 8. Target platform chart [6, 7]

The benefit of choosing a browser ran online platform was also the generic platform

independent nature of the technology. With a single solution, we could reach and deliv-

er a fully functioning solution to the whole user group. As seen in Figure 8, the project

supports the main versions of Microsoft Windows from XP onwards, OSX from 10.6

onwards and Linux Red Hat Enterprise 5.6 or later, openSUSE 11.3 or later and Ub-

untu 10.04 or later in both 32bit and 64 bit varieties [7].

2.6 Challenges and key concepts

In principle a two-person-project, the CCA was a significant undertaking. The viability of

using browser based technology for creating a complex mathematical rendering engine

for clinical and consumer use was something not many had done before.

The biggest challenges of the project were on the pure engine building level: The ren-

dering of creatures in real time without pre-rendering or cheating in the rendering pipe

line, and the performance of path finding logic and path wrapping. The mathematics

used were performance intensive, and the rendering of several creatures with hun-

dreds of rendering points and surfaces in addition to the path creation with continuous

Bezier curves was difficult for a CPU based rendering engine.

Windows

XP ->

•Chrome
•Opera 11 ->
•Internet Explorer 7 ->
•Firefox 4.0 ->
•Safari 5.0 ->

Apple

OSX 10.6 ->

•Chrome
•Safari 5.0 ->
•Opera 11 - >
•Firefox 4.0 ->

Linux
RHEL 5.6, openSUSE
11.3, Ubuntu 10.04 ->

•Chrome
•Firefox 4.0 ->

16 (113)

The goal of building a medical platform for consumer use had its own challenges. The

combination of a number based, mathematics oriented solution and attractive user ex-

perience provided many obstacles. Keeping the UI code separated from the engine,

and ensuring a solid separation of concerns was essential in building a working plat-

form.

On the platform front the separation of as much presentation and user logic to the back

end for control and data based optimization of training posed several challenges to

overcome. The parameterization of almost all UI elements and processes from game

modes and their configurations to even trophy icon generation was a complex issue to

solve.

Key concepts

Cognitive Gaming A type of gaming and exercise that is designed to help

and improve cognition. Used in the aid of recovering

from brain trauma, also used as recreational activity

believed to be beneficial to the mind.

RIA Rich Internet Applications. Browser based technolo-

gies that enable creation of desktop like features in the

world of internet. Example technologies include Flash

and Silverlight.

Modern Browser technolo-

gies

A technology stack that contains all browser ran tech-

nologies. HTML5&JS, Flash, Silverlight, Java (?)

Neuroplasticity The theory that the brain is capable of physical change

and improvement based on outside stimuli

Creature The main target in the project CCA. A collection of

mathematical formulas that are rendered based on a

path finding engine to represent an organic “creature”.

A single unit target of the platform.

Bezier curves Smooth parametric curves based on 2 control points

and a start point and an end point. Essential in project

CCA.

User experience A combination of usability, user interface, interaction

design, information architecture and animation to cre-

17 (113)

ate a complete use experience for a user.

Platform A combination of technologies that form a coherent,

reusable and deployable whole. An extensible combi-

nation of modules that works as a basis for building

content on top of.

Figure 9. Key concepts of the study

Key concepts used in this study are shown in Figure 9. They cover the areas of cogni-

tive gaming and modern browser based game development as well as the principle

technological choices in organic rendering.

18 (113)

3 Cognitive gaming

3.1 History and definition

Cognitive gaming is an exciting new area for consumers and scientists alike. There

have been various studies and trial projects about using games as platforms for ad-

vanced learning, learning through play and using virtual worlds as class rooms for

learning. Cognitive gaming takes the elements of gaming such as repeatable tasks,

reward models, user tracking and fun of play and combines them with medical research

and recuperative methods for a game experience that also benefits and improves cog-

nition.

The basis for all brain exercise, games and all is the concept of neuroplasticity, or brain

plasticity; the ability of the brain to change physically throughout life, in response to

stimuli. The times when changes happen in brains are in the beginning of life, when

injury hits the brain, and whenever something new is learned and memorized. [8]

Up until recently it was believed that the connections in brains remain fixed with age,

and physical changes are impossible. However, recent studies have shown that brain

keeps on changing through learning and stimuli throughout our lives [9]. As an example

when comparing professional musicians to amateur musicians and non-musicians, the

actual physical volume of grey matter in areas involved in music, such as motor re-

gions, anterior superior parietal areas and inferior temporal areas was larger with the

professionals who practiced over one hour per day. [10] These changes were also

greater when measured over time.

Another example came from a study done on extensive learning with German medical

students. They used medical imaging to monitor the brains of the students before their

medical exam and after, and compared the results to similar students who were not

studying at that time. The students’ brains showed anatomical changes in grey matter

in different areas of the brain, including the parietal cortex and posterior hippocampus,

parts of the brain known to be involved in learning and memory [11].

Despite the recent studies and interest in training programs to be used, there have

been very few long term studies in the effects of cognitive games and training. While

there are studies that show the short term implications of training [12], especially on

19 (113)

those suffering from early stages of cognitive impairment, there have not been suffi-

cient enough studies to show whether the training can postpone the effects of such

impairments as dementia [13].

3.2 Current market situation and future

In 2005, the size of the brain health market globally for software and biometric applica-

tions was estimated to be around 210 million dollars. The estimated value of the market

in 2012 is over one billion dollars, and by 2020 it is estimated to reach six billion dollars

in value. [14] This rapid growth comes in part from recent research, and in part from

many medical professionals and researchers trying out the possibilities of using their

research in helping people on the consumer market.

Figure 10. Estimated growth of the market per customer segment [14]

As seen in Figure 10, the biggest growth expected to happen in the growth of cognitive

gaming and brain fitness is the consumer market by a large margin. The growth of self

service training portals with training regimes directed for home use and self-

improvement are already growing fast, and are expected to do so in the future as well.

The other big growth area is in the area of insurance and health care as well as elder

living. The benefits of preventive training in age related deterioration are substantial, as

well as in the rehabilitation of people with brain related injuries. The savings generated

0

500

1000

1500

2000

2500

3000

3500

2005 2012 2020

M
ill

io
ns

 o
f d

ol
la

rs

Customer segments revenue by year

Consumers

Healthcare, insurance
and senior living

School systems

Employers

20 (113)

by such actions could be monumental. Aside from the main growth areas, the uses of

cognitive games in school systems as well as employee care are expected to grow.

The cognitive game market is divided into 2 different parts, the pure software products

and the biometric (applications that require actual hardware to measure physiological

responses) applications. Examples of biometric products include products that meas-

ure hart rate variability or brain activity through EEG (Electroencephalography), the

recording of the brain’s electronic activity over a short period of time through the scalp.

Our reference project belongs to the software category, and does not need any hard-

ware to function.

3.3 Products and competition

In the area of cognitive games the reference project lies, the focus on perception, at-

tention and working memory, there are various competitors and products on the mar-

ket. To keep the subject more valid and tied to the subject of this study, the focus is on

online, browser based cognitive gaming platforms and their use cases, technology and

popularity.

The biggest company in the online cognitive gaming market in 2012 was the Lumosi-

ty.com. Lumosity is partnered with researchers at Berkley, Harward and Columbia and

works with numerous health care organizations to help create cognitive gaming experi-

ences. The service has over 25 million users, and it provides comprehensive and per-

sonalized training programs based on user accounts. [15]

21 (113)

Figure 11. Lumosity gaming platform view [15]

As seen in Figure 11, Lumosity online training program conveys facts and scientific

information about what the tasks you are performing at the moment provide, and man-

ages to create a solid user experience with enough information and play to make it

interesting. The training program is fitted to your needs based on a simple question-

naire. The first steps in Lumosity are free, but after a few games you get to a point

where you cannot benefit from the service without subscribing.

Technology wise the frontend base portal of Lumosity is based on standards based

HTML5 and CSS3, providing the general test framework and admin functionality in the

portal. The actual games themselves are made with Adobe Flash technology, similar to

the reference project. The games are rather simple in function, and are very event

based in nature. In addition to the web interface, Lumosity also has a mobile applica-

tion available for the Apple iOS platform.

22 (113)

Figure 12. Lumosity game application comparison [15]

From a user experience and game design point of view, the portal comes across more

as a collection of different games and a framework that ties them together, as seen

from Figure 12. The different games use different visual cues and styles based on the

subject matter, and are not uniformly under the same visual design aspect as the main

Lumosity portal. However, they do contain repeating elements in the introductory con-

trols, to provide similar functionality across games.

23 (113)

In addition to providing a cognitive gaming service, Luminosity has scientists actively

working in the field of research and finding out how to best use cognitive gaming to

benefit the human condition. In a recent study, it was shown that there was improve-

ment in the working memory and visual attention of the target group when using a web

based training application outside of a clinical trial setting [16].

The other competitive platform taken as an example in this study is the My Brain Solu-

tions portal at www.mybrainsolutions.com. Similar to Lumosity, the portal provides a

brain assessment in the beginning, based on which it generates a user profile and a

training program for you to follow. Unlike Lumosity, the brain assessment is a quite a

comprehensive test of memory, comprehension, emotion and other cognitive function-

ality, and lasts around 30 minutes up front. [17]

Figure 13. My Brain Solutions portal [17]

24 (113)

As seen from Figure 13, the My Brain Solutions contains a personalized training solu-

tion, as well as charts on how the users brain and performance range on the variety of

test subjects. In addition to points which Lumosity used, in this platform the user also

has badges, a reward mechanism similar to achievements to convert the arbitrary

numbers and progression into more human readable terms. The platform allows you to

set your own goals and encourages you to set actions for yourself to keep you busy.

Technology of the My Brain Solutions follows that of Lumosity and others, the main site

is a web portal built on web standards, while the individual games are based on Adobe

Flash technology. In addition to the web portal, My Brain Solution has various applica-

tions for different mobile platforms, targeting a specific feature, such as MyCalmBeat

that focuses on lessening stress and increasing focus through slow breathing.

Figure 14. My Brain Solutions UX example [17]

In comparison to Lumosity, My Brain Solutions has a more unified gaming platform,

with all the games showing similar introduction screens, button layout and statistics / in

game information when doing tasks. As seen in Figure 14, the different games all feel

as if they are of similar family and go well together visually with the main visual identity

25 (113)

of the portal. From initial testing, the games seem to have more complex interactions in

them as well.

From the more entertainment oriented area of gaming recent years have shown in-

creased popularity for titles such as Brain Age (2005) for the Nintendo DS console that

sold over 18.96 million copies, as well as its sequel Brain Age 2 (2005,2007) 14.83

million copies to date. [18] While these products were very popular, and studies have

been done in order to evaluate their possibilities [19], Nintendo has distanced itself

from the use of scientific proof of benefit in the games. [20]

Figure 15. Brain Age 2 from Nintendo

An example of the Brain Age line of games can be seen in Figure 15. In the Brain Age

games the user is expected to play a small amount each day, according to a training

program. This is a common approach to brain fitness, and is employed in the reference

project as well. The tasks a user performs orient around simple calculations and math-

ematical questions, memory exercises, Stroop tests as well as Sudoku puzzles.

26 (113)

3.4 Common test types

The cognitive gaming platforms focus on a certain set of games, each targeted for

training different parts of the cognitive system. These areas are close to the ones used

in clinical neuropsychology, but understandably are not as exact or as precise due to

the consumer market approach. These target areas can be roughly divided into three

categories: memory, attention, and executive function. Some platforms such as My

Brain Solutions also contain tests related to emotion and human understanding.

Memory games test and train our ability to memorize items, words, patterns and other

objects. There are different variations of memory games; a commonly used one in-

volves working memory or short term memory. These tests are called N-back tests

where a user is presented with a sequence of objects, and the task is to react when the

current object matches the one shown N objects before [21]. The N-factor can be ad-

justed to make test more or less difficult. Short term memory tests are well suited for

consumer market testing; the test gameplay does not take overly long and the results

are parsed live. An example of an N-back game is seen at the top in Figure 12, as well

as another type of memory exercise seen in the middle.

Attention games focus on our ability to perceive and react to our perception in a given

controlled environment. The idea of attention tests is to train the cognitive processes of

focus and visual search as well as long term attention. The tests often focus on pattern

recognition as well as visual attention. The way to test attention implemented in the

project CCA is to have multiple moving objects on screen that the user has to follow,

and react whenever the object achieves target state. Target state is a change in the

shape, colour, contrast or form of the object. Numerous examples of attention tests are

found in the reference project platform, as well as the example game at the bottom of

Figure 12.

27 (113)

Figure 16. Example of an executive function game [17]

Executive function is an umbrella term used for various cognitive processes and sub

processes working together.

Executive functions are those involved in complex cognitions, such as solving
novel problems, modifying behaviour in the light of new information, generating
strategies or sequencing complex actions. [22]

In the reference platforms for brain gaming, the tests for executive function include

games related to arithmetic, quantitative reasoning, planning, verbal fluency and task

switching. An example of an executive function test can be seen in Figure 16. This task

is about connecting a series of nodes with as much area as possible without ending in

a dead node, a task that requires both planning and reasoning.

The reference project is mostly based on various attention games, as well a testing

mode for N-back tests to improve your working memory and a continuous change

mode that falls in part into the domain of executive function.

28 (113)

3.5 Game engines

The term game engine came to be around mid-1990s in reference to 1st person shooter

games such as Doom by ID Software. Game engine is a platform for game develop-

ment that employs data driven architecture to create reusable software components,

such as a three-dimensional graphics rendering system, collision detection system and

a physics simulation. [23] The line between an engine and a game is often blurry, and

to date there are few engines that can adapt to more than a few genres of games.

The engine defines how the game is rendered on screen, and influences a lot of the

design around the core concept of the game. Some game engines include tools for

building the actual game content on top of them, such as Unity, Unreal Engine or

CryEngine [24,25,26]. This is often called scripting, since it is most often done using a

scripting language. Many of the engines contain their own scripting language [26], or

use a set of commonly supported high level languages; Unity includes support for C#,

Javascript and Python based Boo [24]. Some engines provide only the actual rendering

engine for abstracting the hardware level, such as Ogre. [27]

Game building in general has gone through a renaissance of sorts, where the middle

ware is increasingly important in creating game experiences in the industry as well as

in the education of game development [28]. A large portion of games today use mid-

dleware such as Bink video [29], Havok physics engine [30] or the Adobe Flash har-

nessing Scaleform [31] for game user interface building. These middle ware programs

provide a necessary relief from the complexity of building a modern game, each solu-

tion doing its part, providing a polished and optimized way of handling one aspect of

the game.

In the field of medical and cognitive gaming, some are using the same game engines

as entertainment oriented gaming uses [32], while many use their own engines based

on a higher level programming environment such as Flash, Silverlight or Java to create

their own base engines. Many cognitive games are not yet complex enough to have the

need for specific engines, but with the increase in demand, development budget and

competition, it is only a matter of time.

When talking from a more conceptual level of how game interaction and gameplay is

handled, there are two types of game environments; static and dynamic. In the context

29 (113)

of this study this distinction is defined as the way game events are controlled in the

game, and the way the engine handles rendering and interaction.

3.5.1 Static game engines

The traditional game engine is static, as in everything in the engine is defined by an

artist or a developer, every move you make is the result of a careful calibration, itera-

tion and concepting. Static engines allow for absolute control for the games designers,

and are in many cases more optimal from rendering and calculations point of view. In

the comparison products Luminosity, My Brain Solutions and the Brain Age all fall into

the static game engine section. They are all also very event based in their approach,

everything happening in the games is not based on real time calculations, but on spe-

cific events happening at specific times and the reaction to those events.

The downside of static game engines is that in controlling everything they lose the ele-

ment of surprise in some ways. When everything is designed, there are no happy acci-

dents, nor odd gimmicks that a player can find that cannot be reproduced, and every-

thing in general works as it does, always the same reliable way. Many static engines

also employ a basic physics model with hard-body physics. In such an engine the

physical values are tweaked and set by the designers in a way it replicates some sim-

ple form of physics, but does not really allow for proper surprises.

3.5.2 Dynamic game engines

While being more obscure, and harder to control, dynamic game engines base the

world they render on a set of rules. These rules may be physics, different path algo-

rithms and so forth, but they all have in common the lack of direct control over what

happens inside. In a dynamic engine the game designer gives the objects targets, cre-

ates behavior and sets up boundaries, but how the engine executes these is left for the

engines internal system to decide.

Some games use the dynamic game building in ways to create randomized environ-

ments, procedural content based on a set of rules. Games such as Diablo [33] and

Minecraft [34] have used procedural generation to create whole levels, or in the case of

MineCraft, a whole planet. The traditional problems with computer generated content in

30 (113)

games have been the repetition of content and unnatural and uninteresting combina-

tions. Some newer games use this dynamic or procedural generation in the generation

of items for the player to use, such as the weapons in Borderlands and Borderlands 2

[35].

In gaming physics, a more solid way of doing physics in a dynamic way is called soft-

body physics, where a physical object is a collection of its sub parts physics. This is

immensely heavy in calculation, and is only now emerging with the new Cryengine 3

[25] and other new game engine platforms. The project CCA is not in a world of fully

fledged physics, nor is the world building in any way overly complex, but the engine

and the way the creatures work is entirely dynamic.

31 (113)

4 The User Experience approach

4.1 Definition

User experience (UX) has many different definitions, depending on the subject matter it

is related to. A classic example is from 1996, from the first annual ACM Interactions

Design Awards:

“By “experience” we mean all the aspects of how people use an interactive prod-
uct: the way it feels in their hands, how well they understand how it works, how
they feel about it while they’re using it, how well it serves their and how well it fits
into the entire context in which they are using it.“ [36]

The Nielsen-Norman group define user experience as:

"User experience" encompasses all aspects of the end-user's interaction with the
company, its services, and its products. The first requirement for an exemplary
user experience is to meet the exact needs of the customer, without fuss or
bother. Next comes simplicity and elegance that produce products that are a joy
to own, a joy to use. True user experience goes far beyond giving customers
what they say they want, or providing checklist features. In order to achieve high-
quality user experience in a company's offerings there must be a seamless merg-
ing of the services of multiple disciplines, including engineering, marketing,
graphical and industrial design, and interface design. [37]

In principle, UX is everything a user feels, sees, experiences when in contact with a

company and/or a product. The point Nielsen-Norman make is to go beyond the needs

of the user, the realization that UX is far more than providing the user with what they

need, but how they experience it as well. The joy of use, aesthetics and message all

combined in a thought out package.

User experience design (UXD) is an umbrella term that covers the different facets of

expertise required to create a wholesome UX. The roots of UX design come from Hu-

man Centred Design (HCD). HCD can be summarized as:

- Positioning the user as a central concern in the design process
- Identifying the aspects of the design that are important to the target user group
- Developing the design iteratively and inviting users’ participation
- Collecting evidence of user-specific factors to assess a design [38]

In addition to the methodology of HCD, UXD builds on top of HCD with more complex

cultural and business factors. While traditional HCD based usability factors were about

performance and smooth operation, UXD brings along aspects of social interaction, the

importance of aesthetics, both very culturally complex and context requiring concepts.

32 (113)

Since both UX and UXD are very broad subjects, in the context of this study, the focus

of UX is confined to how our project platform uses UXD to create a suitable UX within

the platform itself. The areas presented in relation to the reference project are interface

design / aesthetics, interaction design / movement, information design / communica-

tion, and playability in the cognitive gaming context. There are also various UX con-

cepts such as presence, immersion, flow, fun, involvement and engagement that try to

describe the UX in games. [39] These theories, while important, are not discussed with-

in the scope of this study.

4.2 User experience in gaming

What the success of iOS and mobile platforms has taught us; user experience matters.

People are willing to pay for better suited and thought out solutions. The wake-up call

provided by the mobile markets sudden rise has not gone unnoticed in the world of

gaming. Especially in large companies there has been a surge of focus on hiring user

experience designers and front end designers to focus on the neglected parts of

games, the game UI, and the interactions with it.

Games have been on the forefront of human computer interaction for the past 20

years, as the playability of a game, essential to the overall experience is uniquely a

quite complex endeavor from a user experience point of view. But while focusing on

playability inside the engines and games themselves, they often forget the first thing a

user sees when they enter a game, the user interface of the game itself. The naviga-

tion, settings and save/load; these top level controls affect a lot on how one perceives

the game experience.

Often these are badly designed, riddled with flaws, inconsistencies and hiding of infor-

mation. It is not uncommon in games that you are not sure what will happen when you

adjust a setting, or a parameter. The inclusion of UXD methods and experts has made

games more user-friendly and easy to use. In building a platform for cognitive gaming,

the unified UX for the games within the platform as well as the overarching user inter-

face was an important part.

33 (113)

4.3 Unified visual style

As has happened throughout time, the advance of technology and tools for creating

visual communication have changed and evolved at a rapid rate in recent decades.

Despite this change, the essence of graphic design remains unchanged; to bring order

to information, form to ideas, and expression and feeling to artefacts that document

human experience. [40]

The international typographic style has been a significant and influential style in graphic

design for the past 50 years. Its origins come from Switzerland and Germany in the

1950’s and it is also known as the Swiss Design. The visual characteristics of the style

thrive for unity though a solid mathematically based grid, objective photography, sans-

serif typography and a solid copy that presents information in a clear and factual man-

ner. [40] More than pure style, the importance of the international typographic style lies

in the attitude and approach its early pioneers adopted. The role of graphic design was

formed more towards shaping information and communication then personal expres-

sion and artistic eccentricity.

This clarity of style and information is a basis of much of modern online communica-

tion, and it is the basis for the style in CCA as well. In addition to a clear and unified

visual communication, in CCA the focus was also on the visual narrative: animations,

movement and flow that affect how a user perceives a product.

4.3.1 Typography

Typography is the art of type, the act of arranging to make language visible. In the

modern day the term envelops many crafts, from the traditional typesetters and com-

positors to graphic designers and artists. In the context of this study, the term is used to

mean everything we do with type in a digital platform; Font, sizing, characters and legi-

bility.

Typography exists to honor content
Like oratory, music, dance, calligraphy – like anything that lends its grace to lan-
guage- typography is an art that can be deliberately misused. It is a craft by
which the meanings of a text (or its absence of meaning) can be clarified, hon-
ored and shared, or knowingly disguised. [41]

34 (113)

In modern digital communication, the use of solid typography to create a unified and

visually attractive, legible message is an essential part. It is used to both communicate

efficiently, as well as to add a feel, personality and grace to the communique.

The technological choice in CCA, the Adobe Flash Platform is a good choice for work-

ing with typography, as it contains a much more advanced text rendering and font sup-

port engine than the traditional browser solutions. With the support of fully embeddable

type, the platform could take use of proprietary fonts with full fidelity and control. With

the recent advances in CSS type support it is even possible to use proprietary or spe-

cial fonts on standards based online communication. [42]

In project CCA the main typography is provided by the fairly common Myriad Pro, origi-

nally developed by Adobe in 1992 and widely used by companies such as Apple,

Walmart and Wells Fargo. [43]

35 (113)

Figure 17. Myriad Pro Regular Font rendering

Myriad Pro is a versatile sans-serif font family designed for mostly digital use. The fami-

ly contains a wide variety of weights and widths to suit the needs of the CCA platform.

It is a simple, elegant font with excellent readability. An overview of Myriad Pro font

rendering with examples can be seen in Figure 17.

It is often a problem for digital platforms to provide similar design and typography in

different languages, as the Latin based languages have their own typography, and the

Chinese, Arabic and various other languages have their own typeset. Rare fonts sup-

port even the whole plethora of European language typesets, from Cyrillic to Greek.

Myriad Pro is a good choice for a language versioned platform, since it provides a

36 (113)

complete support for Greek and Cyrillic characters, which enables the use of same

visual fidelity across languages.

The Flash Platform also provides the tools to embed different character sets for the use

of completely different language characters, such as having Myriad Pro for Latin based

languages, and a specific font for the Chinese market. Which font to use is decided

during runtime when dynamic content is loaded, based on the character sets involved

in the UTF-8 encoded content.

Figure 18. Font sizes in project CCA

As seen in Figure 18, CCA uses Myriad Pro in two different weights, regular and bold.

The main headers for each screen are 36 points big, allowing for a clear distinction

from the sub headers and regular copy text. As CCA is not a very text heavy platform,

the most used texts are the buttons and sub headings. All elements that indicate some-

thing that can be activated or form a separate section of information are bolded for ef-

fect. All regular text, information notices, explanations and such are in a readable 14 pt

size.

37 (113)

4.3.2 Composition and the use of space

In interface design the essential glue that keeps a view, a page, a dialog together is the

composition, also known as the page layout. Composition can be thought of as the link

between art and mathematics, the use of relations, numerical patterns such as the

golden section, and geometric shapes to create a formula that organizes content in a

meaningful and clear way. [44] Composition can be based on various styles, from a

single visual to perhaps the most used element of composition - grid theory. An effec-

tive tool is also to use Gestalt Laws of grouping, the principles of how the mind organ-

izes visual data, in creating coherent compositions. [45]

Figure 19. CCA centred layout example

In CCA the whole composition is based on a centred grid with a focal point always at

the horizontal and vertical centre of the display area. All content containers and con-

trols as well as all UI-elements are aligned based on the centre point. As seen in Figure

19, the centre based composition is followed by the main playground, the user menu at

the bottom, and the game menu at the top, as well as the main information dialog at the

38 (113)

start of the game. During the actual game, the main visual time indicator is at the cen-

tre point as the most obvious visual element for a user.

An important aspect of composition is the use of spatial relationships. The space can

be created by content - using images, texts, icons, lists, logos or just plain text – or it

can be created by the space between content, called negative space or white space.

The space can be actively used to create a point, or it can be passive, there just be-

cause the layout process requires it. [44] The use of negative space is essential in giv-

ing air and increasing legibility in digital design. It can be divided into two categories,

macro white space – the distance between major content elements – and micro white

space – the distance between elements within content elements, such as lists.

A challenge in composition in a digital medium is the dynamic nature of the viewer set-

ups. The layout can be viewed with a screen from 1024*768px up to 2560*1440px, with

varying pixel density (DPI). This creates quite unique issues for the use of white space,

and the arrangement of elements. The traditional approach in digital design is to set a

certain target resolution, a compromise that contains reasonable resolutions and pro-

vides a good enough result for those not matching the target resolution.

Figure 20. StatCounter screen resolutions in Europe [46]

39 (113)

As Figure 20 shows, the most popular screen resolution of users in Europe has grown

from 1024*768 to 1366*768 in the last 4 years. Beyond just the resolution, the size to

resolution ratio or DPI (Dots per Inch) has also grown and diversified. The rapid change

in resolution, as well as the fragmented size variance has resulted in a situation where

designing for just a single base resolution is not a preferable option anymore. This is

true even without taking into account the boom in mobile browsing and devices with

smaller physical size and screen resolutions.

As a response to the ever growing resolution and varying DPI, the modern way of do-

ing digital layouts is in a state of transition; an ever larger amount of platforms and

front-end technologies enable the use of adaptive or responsive layouts. A responsive

layout adapts to the viewing area by resizing, reorganizing and resampling the infor-

mation presented to the user. [47] It is often based on set of steps within which the con-

tent scales, and when a step changes, the content arrangement, and / or organization

itself changes.

A key challenge in CCA was the requirement of being completely resizable upwards

from a minimum size (1024*800px). The elements must fit the screen from the mini-

mum onwards, while maintaining a suitable space and visual feel to them. A part of the

solution for this was the center-based grid design. Because the platform can be resized

both vertically and horizontally, basing the user controls in the middle of the screen

enabled efficient use of both axes.

In CCA the whole viewport scales based on user resolution, but the game area itself

has a minimum and a maximum stop for both performance and playability reasons. The

size of the game area affects how big an area the user has to visually scan in order to

notice changes. This area cannot be too large, otherwise it starts affecting users per-

formance scores.

In addition to the scaling layout size, all the main views in the UI of CCA can be

dragged around the screen by the user as needed. This empowers the user to arrange

the UI in efficient ways, depending on their own resolution. It also helps solve the prob-

lems of using extra space in the GUI. Each element has an active drag area every-

where where there is no control, or content presented. The dragging works with slight

simulated physics, calculating a primitive velocity of the object when a user drags and

40 (113)

releases it, and using a static coefficient for friction, decreases the elements velocity

until it comes to a stop.

4.3.3 Elements

An important part of understandable GUI-design is the use of repeatable, recognizable

visual controls and containers, also known as elements. The use of repeatable controls

is also of benefit from the development point of view, as it is substantially less time

consuming to create base classes for repeatable elements such as a content container

or a button and button sub type. Repeating elements are also essential in creating a

coherent user experience, where the user can predict how a certain view behaves, and

how to interact with controls.

Figure 21. Elements and general containers in CCA

CCA contains a set of containers and controls for the users to use that is largely based

on drag able containers that automatically centre on screen when created, and later on

allow the user to place them wherever they please. As seen in Figure 21, the main con-

41 (113)

tainer is the base of every content element. It is vector based, stretchable and contains

the drag-enhanced functionality.

Other common elements for most of project CCAs layouts are the main header, the

general button element and the close button. In prompts, the close and the general

button provide the same functionality, with different messages. From these base ele-

ments most of project CCAs views have been built.

Aside from the floating elements, a typical CCA UI contains the user control menu. This

element attaches itself to the bottom of the game screen and displays user specific

information such as the account name and the amount of points the user has, as well

as providing logout functionality. During a game play the UI also has a game related

menu, with information about the game you are playing, as well as controls to get back

to the main UI.

Figure 22. Button elements in project CCA

For proper interaction, every element needs three basic states for a solid user experi-

ence; normal, hover / active and clicked / reaction. Examples of project CCA button

elements three states can be seen from Figure 22. They all follow the same logic, hav-

42 (113)

ing a subtle highlight specific for the type of the button, and a full fill, recognizable ac-

tion state that is clearly indicated. Providing these states allows the user to always be

in control, to have a predictable response to every interaction.

CCA contains also elements that are not meant for interaction by the user, but for mere

show of information. During the game there is a large clock displaying how much time

is left in the current game, and how many sections are included in it. Another element

that a user can view is the indicator for performance in the current game. The symbols

stars and crosses show the user how well he is doing during the exercise, whilst being

inconspicuous enough not to distract the exercise. Examples of the clock and the

star/cross performance indicator can be found in Figure 53.

4.3.4 Colors

Colors contain a lot of meaning. The selection of colors for a user interface, and espe-

cially for branding of a platform is an important step. Colors, while being culturally de-

pendent and highly subjective, offer a lot of meaning and interpretation and can greatly

enhance the user experience and aesthetics of a system. Whilst there is a plethora of

articles about color in physics, psychology and other disciplines, in the context of this

study color is used to discuss the merits of the use of color in the reference project

from a user and artistic point of view.

Figure 23. Color themes and main colors in CCA

Figure 23 shows the main color themes in CCA. The main color is a green shade (R:

184, G: 227, B: 115), normally used in a radial gradient with multiple stops between the

end and start points. The gradient form is to create a feeling of enlightenment, a subtle

43 (113)

focus on the content in the middle. The green background and color scheme is used

throughout the buttons and modal dialogs wherever something related to the main

game is encountered. The blue (R: 91, G: 166, B: 218) theme is used in information

and statistics, where there is a need for more contrast with the elements and a distinct

visual appearance.

Other than the dominant background and highlight colors, the main color for text in

CCA is always white, with a subtle drop shadow to bring it forward from low contrast

backgrounds. In buttons and other interact able controls, the active color is always dark

grey or black, to highlight the change and alert the user to an action.

In addition to the use of color in the platform interface, the games themselves have a

specific use of color. Each creature in the game has its own color scheme, containing

various hues and shades to create an organic “creature”.

The use of shapes and colors in the game relies on feature integration theory; a theory

of attention suggesting that perceiving stimuli can be divided into two separate tasks:

features and objects. Features can be registered fast and in parallel, whereas objects

are slower and separately identified. Visual searches regarding these two tasks are

called feature search and conjunction search. Feature searches are fast sweeps target-

ing only one feature, such as color or shape, while conjunction searches work with a

combination of features. [48]

In CCA, there are game modes targeting both types of visual search. The game types

focusing on multiple creatures on a neutral light grey background focus on the use of

feature search where the target mode of the creature is a change in contrast, color and

/ or shape. The game platform also has a mode for rendering a specific Perlin noise

background matching the color set of the active creature, aimed at the use of conjunc-

tion search. The use of a background where the creature easily blends in forces the

user to focus on finding the shape by combining color and shape information. The task

of separating the object from the background layer is called figure-ground separation.

[49]

44 (113)

4.4 Motion and visual narrative

Motion is a powerful tool in the world of modern digital communication when creating a

unified user experience, especially for the consumer market. By creating a specific vis-

ual narrative, a repeating pattern of interactions and movement that builds upon the

visual style and reinforces it with suitable movement one can build a memorable and

effective user experience.

In the realm of traditional animation, there are 12 principles for believable movement

[50], of which the following are relevant to transitions in digital media and the CCA plat-

form:

• Anticipation

o To prepare the audience for the action and to make the action feel more

realistic

• Slow in and slow out

o To simulate most movement in the real world. Most of human move-

ment and gravity based movement have an in-out easing curve, it builds

up and it builds down.

• Arcs

o Trajectories are followed by most natural motion, most living creatures

have structures that enable them to move in certain ways, follow certain

paths. Emulating these trajectories creates organic looking movement.

• Secondary action

o A complementary animation that adds to the main animation enhances

its effect.

• Timing

o Correct timing makes objects more real, like they were following the

laws of physics.

• Appeal

o Anything the user sees and finds likeable, pleasant design, a quality of

charm, simplicity and communication. Originally about drawn characters

but applies to graphics as well.

45 (113)

The sections of movement and animation discussed in this study can be divided into

three categories: Timing and flow, movement patterns and easing and nonlinear mo-

tion.

4.4.1 Timing and flow

Timing is the part of animation that gives meaning to movement. [51]

The key in efficient visual narrative is twofold; timing and delays. Timing is the essence

of transactions, interactions and transitions within the platform. How long does an ele-

ment transition, how it appears, how it behaves. Delay is essential in combining differ-

ent views and states. With the combination of these two, the base structure of visual

narrative is achieved.

Figure 24. Timing and delays in common CCA objects

As Figure 24 shows, most transitions in the project platform last between 300ms and

600ms. In views, the time in is always 500ms, and the time out varies based on view,

but the change trigger is always 750ms; when a transition from a content state is initi-

ated the out animation call stack is started, and the 750ms delay timer is initiated at the

same time. Regardless of the time the view takes to animate out, in 750ms, the ani-

mate in of the new state is called and started. This overlap makes it possible for a user

Content
Views
In
• 500ms

Out
• 350ms - 600ms

Delay
• 100ms (Per

element)

Change
• 750ms

Windows

In
• 500ms

Out
• 600ms

Delay
• in :350ms + 100ms

(per element)
• out: 100ms (per

element)

Modal
Dialogs

In
• 500ms

Out
• animation: 250ms
• delay: 250ms

Icon
• in : 600ms
• out: 300ms
• out delay: 300ms

Content

In
• 400ms

Out
• 300ms

Delay
• 100ms (per element)

Buttons

General Button
• Hover In: 100ms
• Hover Out: 500ms
• Click: 300ms

Close Button
• Hover In: 550ms
• Hover Out: 550ms
• Click: 300ms

Menu Button
• Hover In: 350ms
• Hover Out: 650ms
• Click: 300ms

46 (113)

to interact during transition, and the loose coupling between view animations makes

the user always be in control.

On average, for a transition to be within acceptable limits it has to be between 100 and

1000ms. Immediate response for actions like clicking requires some indication of reac-

tion within 100ms of the action. If you go over the 1000ms limit, people will start to think

the system is sluggish and unresponsive. [37] In CCA, the times are based on itera-

tions of visual aesthetics, feeling of motion, and professional opinion. Motion is a rather

tender art, and the feel of a transition is based on the shapes, colours, graphics, ele-

ments, and the surrounding elements of the target. There is no unified rule that can be

quantified for every solution; it depends greatly on the context and surrounding plat-

form.

The buttons have the same click animation time always, to make the reaction based on

a user intent unified. The difference in animation in and out time is essential since the

shapes and means are different, in a menu button, the line, colour and shadow are

animated, in the close button the shape and colour are animated and in the general

button, the gradient, shadow and text colour are animated. All the buttons have differ-

ent hover state animations; however they are visually coherent and unified to represent

the same indication for the user.

4.4.2 Tweening and easing algorithms

Tweening, or inbetweening is a method of interpolating the change in value between

points A and B. A basic tween is linear, consisting of a predictable amount of points

between A and B. Dynamic tweening is adding acceleration and / or deceleration ef-

fects to animation by using easing algorithms [52]. The problem with static / linear

tweening is that the movement looks fabricated and clunky. Dynamic tweening solves

this problem by adding natural feeling movement patterns such as the slow in slow out

principle of animation.

47 (113)

Figure 25. Examples of most common easing algorithms [53]

In programmatic animation, easing algorithms enable the feeling people perceive in

physical movement. This effect is done by applying an algorithm to the interpolation of

movement of the object. In principle the ease affects how the steps of movement are

shown, where there are more steps and where less along the path of the animation.

Figure 25 shows the most common easing algorithms used in tweening libraries on

various platforms. Most are based on Robert Penners’ work on easing and tweening

[52].

In CCA, the use of easing algorithms is subtle, and a mix of the following:

- Content boxes

o Back.easeOut for background

o Quad.easeOut for fades

- Menu elements

o Quad.easeOut for fades and color

o Strong.easeOut for the line

- Countdowns

o Strong.easeOut for scaling

- Drag

o Based on inertia, a custom easeOut calculated based on mouse move-

ment and velocity

48 (113)

Most of the transitions are elegant, simple, based on the subtle curve of Quad based

movement. The parts where there is a need for highlighting movement, as in dialog

boxes and the pop out of elements, the Back based movement is used. For fast

movement, and to give the feeling of control, of pace, the Strong movement is used.

For user reactions, the easing type of easeOut is almost exclusively used in CCA. The

easeOut means the movement starts fast, and slows down as it decelerates in the end.

It works well for user reactions as the start of the movement is the user initiated action,

the response needs to be fast and clear, and easeIn algorithms tend to make the tran-

sition seem sluggish. EaseIn is only used when animating a background out with scal-

ing of the height of the element. Since the Back easing algorithm has the bounce ef-

fect, and the background is closing, it is visually appealing and logical to have it do the

bounce in the beginning.

4.4.3 Movement patterns

After timing and easing are taken into account, what is left to create a solid visual nar-

rative is the actual movement of objects. There needs to be a recognizable pattern of

movement that strengthens the visual branding and solidifies the feeling of the user

experience. In CCA different containers have different movement, but the general

movement patterns are very similar, and create a solid feeling of a unified platform.

The button animations all contain the same click effect animation and timing. When a

user clicks a button, the text or main shape of the button turn black in colour over

300ms. The menu button is a good example of the secondary action principle of anima-

tion. The main action is the colour animation to black; the secondary supporting anima-

tion is the line growing from the left to right underneath the text. The line animation

does not dominate the visual, but builds on the effect, and supports the feeling of high-

lighting. Examples of button visual states can be seen in Figure 23.

Dialogs and content views all appear in a similar fashion, the background animates in

first by scaling the height to 100% from 0, while animating the opacity of the element to

a full 1.0 form 0. These two combined make the background appear smoothly from thin

air. The content inside dialogs is animated in with a sequenced animation, fading in

elements and in the case of lists, also animating the x coordinates of the element from

49 (113)

–N to 0. (Where N is subjective to the size of the element) The sequence timings can

be found from the Figure 24.

The basic pattern of animation in user interface elements for project CCA is the fade in

/ fade out; the simple vanishing and appearance of objects. It is supported by second-

ary actions such as colour animations, movement, scaling of horizontal and vertical

size, depending on the object animated.

4.4.4 Overrides in code based animation

From development point of view, creating a visual narrative requires a specific way of

creating your user interface classes. When transitioning between states, many plat-

forms and systems make the mistake of queuing the transitions in a way that makes

the user wait for interactions between states. This breaks the narrative flow and length-

ens the response time of the system to the users’ frustration.

When creating a solid platform with UX in mind, it is necessary to plan in advance, and

to create methods for handling view states concurrently. In project CCA when states

are transitioned, every control taking part in the transition executes their hide / show

mechanic. There is a set delay between calling the next state when current state is

transitioning out and there is no queue. As soon as a control starts to form on the

screen, a user can interact with it. The user can stop the current transition and use an-

other control while transitions are in place as well.

Creating modern user experiences requires the developer to take this into account

when creating their solution. It saves time and effort to solve the issue of state handling

and transitioning between states already in the beginning or planning phase of the pro-

ject. When building individual controls it is beneficial to have a set template to start

from that contains all standard functionality needed for state handling. Whether to im-

plement this via inheritance or other methods is up to the developer.

50 (113)

Figure 26. View controls for all visual elements in CCA

In CCA every visual element from single controls such as a button or content views

such as the main menu to modal dialogs and user menus, all of them contain basic

functionality for handling their own view state. The repeated functionality in all visual

controls of CCA are show, hide and dispose, as seen in Figure 26.

A necessary requirement and in creating modern interfaces with programmatic anima-

tion is the ability to override on-going animations. Overriding enables the stopping tran-

sitions and interacting with controls mid transition to keep the user in control. Modern

UI technologies either contain suitable Tweening libraries in-built or one can use one of

the many open source alternatives out there. In CCA the library in use is an extremely

robust and extensive tweening platform called Greensock Tweening Platform [54] by

Jack Doyle (www.greensock.com). GSAP is available for Flash and HTML / Javascript

based platforms.

GSAP abstracts many of the verbose methods needed in creating programmatic ani-

mation, such as the setting of filters, timelines and sequencing by offering a simple, but

powerful syntax that allows for the tweening of any numeric property, alongside plat-

form specific properties such as CSS transformations. It is also quite robust, efficient

and contains a full open documentation. The platform is used by many of the top sites

and digital experiences in the world, such as big movie productions, big brands and art

projects. [54]

Toggles visibility and
activates the state of
an element

Initiates animation

Show
Toggles visibility and
deactivates the state
of an element

Initiates animation

Hide
Cleans up memory,
event handlers and
other references that
tie the class up with
other resources

If element is visible,
toggles hide state first
and then disposes
itself

Dispose

51 (113)

4.5 Visualization of data

One of the main concerns in good UX is to show meaningful data in a meaningful way.

Figure 27. Performance chart in CCA

In CCA there are two different systems for showing performance and ability. The user

has access to pure numbers and graphical visualizations of performance and numeric

data. The platform provides statistics on all game modes, as well as training program

based data for the user to analyze. The idea is to enable the user to transparently go

through how well he has done and how he has improved and draw his own correlations

about the program. Example of the histogram approach is shown in Figure 27.

The second way the user is communicated the importance and performance of the

data is via a very UX oriented method – achievements. The user is provided different

rewards in three different categories of achievements: achievements, stars and tro-

phies. The different rewards are all catering to a certain part of the measured data and

52 (113)

user response. Every achievement has their own icon and a badge the user can see

once they log in.

Figure 28. Achievements, trophies and stars in CCA

The achievements provide a very human understandable way of communicating com-

plex data oriented events. The user can for example get a trophy from doing better

than previous runs, or for having a perfect run where there were no missed reactions.

The rewards vary between the different game modes. In comparison to the raw data

shown by the histograms that do provide a valuable way of seeing visually where you

improve, the achievements allow the user to gain specific feedback for specific parts of

their game performance. Example view of achievements in CCA is seen in Figure 28.

53 (113)

5 The CCA project platform

CCA is a user experience driven cognitive gaming platform harnessing the power of the

Adobe Flash Platform in the front end implementation, and the LabVIEW system de-

sign software as the server side solution.

5.1 General architecture

Figure 29. Server-client software architecture

The general architecture of the platform is based on typical client-server architecture.

Overview of the architecture is seen in Figure 29. The client connects to the server and

authenticates the user account, after which the server sends a packet of data that de-

termines what options are available for the user with the account. The user interacts

with the options available, and a new request is sent to the server, to which the server

responds by providing wanted data, be it user account details or a list of games.

As is common for Flash based web applications, there are no page loads or page re-

quests during the application run. The state of the page is managed by the application

platform itself, and all interactions and reactions by the user are parsed, processed and

54 (113)

handled without the browser. As such the platform itself can be ran with a flash player

outside of browser environments as well.

Labview (short for Laboratory Virtual Instrumentation Engineering Workbench) is a

programming and system design platform built by National Instruments. It uses a data-

flow-based programming language, which enables users to program logic with the use

of graphical block diagrams. [55] The platform provides a very visual way of creating

functional systems.

The platform front end is based on Actionscript 3.0 (AS3). The Ecmascript based 3rd

iteration of the Actionscript language is an object oriented programming language run-

ning on the Actionscript virtual machine. The version of the virtual machine that sup-

ports AS3 was built from ground up to support the new OOP nature of the language. In

combination with the Flash development tools like Flash Builder and Flash CS5, the

AS3 is a powerful tool for interactive media.

The front end is built to be modular, and much of the control comes from the backend.

This data-driven architecture helps keep the platform modifiable for different purposes

and user programs without making changes in the front end implementation. [23] The

server side provides lists of menu items and games available, as well as statistics and

user account data. The front end has different tracks of interaction and progression

through the solution that are triggered by the server messages.

55 (113)

Figure 30. CCA front end platform packages

Figure 30 gives an overview of what packages, views and controls the CCA front end

platform contains. In AS3 projects, there is always a root stub that initiates the solution

when started. The main solution initiates the application model and main UI elements

and queries the server for language versioned UI definition XML. After that the naviga-

tion service handles user interactions and along with the UI state handler keeps the

visual and logical state of the application in sync.

The model package contains main application logic and data related functionality. The

application model handles application states with the navigation service, and holds

references to the different parts of the application. The navigation is integrated tightly

with the UI state handler that handles the UI state changes and controls what the user

sees. Data services handle all server communication and data parsing.

The creatures package is the home of the main rendering engine. All the heavy lifting

mathematics with path generation and creature drawing is done by the package. The

pathfinder handles the generation of new path points and general route handling. The

creature handles the algorithms, creature specific calibration and state information. The

56 (113)

brain is responsible for combining the input from path finder and the creature and to

pass off the necessary values to the renderer, which then does the actual plotting and

drawing of the creatures. A detailed description of how the rendering core works is in

Chapter 6 of this study.

The game handling package handles all game related logic. Once the game data has

loaded and parsed, the game handler initiates the correct game mode. The game

mode handles the states within the game; everything from info prompts to countdown

to the different phases of the game, data tracking, user performance and the end and

fail conditions. Each game mode has their own conditions for game complete and their

own goals.

The UI package contains all UI elements, views and controls. Essentially the GUI is

constructed via the UI package. The main UI class acts as an interface for the UI ele-

ments: initiating them based on UI states and disposing them as necessary. The game

related UI elements are contained in their own package, and are used and called from

the game handling classes. All controls are separated as usable entities, any view can

use any control as needed.

The utilities package contains all extra functionality and helper classes that the views,

game handling and data services need. It has sections for animation, data loaders and

handlers, algorithm parsing, various physics and inertia handlers as well as the core

Bezier classes. Utilities are used through the application model by any section of the

solution that needs them. Most utilities are initiated only once, and kept in memory to

be used as a static instance.

5.2 Client server communication and data management

The CCA platform was built to be highly manageable from the back end solution. Even

though the rendering engine and game logic resides in the rendering and game engine

in the front end platform, as much as possible of the configuration of the games and

rendering options were separated from the engine and interaction logic.

The communication between the front and the back end services is done using a fairly

standard REST API. Every interaction is based on HTTP POST calls with structured

XML Data. XML is an application profile or restricted form of SGML, the Standard Gen-

57 (113)

eralized Markup Language [56]. XML is a standards-based and well documented hu-

man readable format for communication and configuration, and a suitable choice for

the platform. Due to the nature of the game rendering engine, XML was also suitable

for conveying the mathematical formulas and sets of functions needed to create the

creature renders. The Flash platform also contains an in built support for E4X [57], the

extension for AS3 that makes XML a native primitive in the programming environment,

making the parsing and use of XML efficient.

Figure 31. Example process of logging in to CCA

When the user enters the platform, the front end queries the server for the latest lan-

guage information. After the user inputs his credentials, the server is queried with the

user information and a request for the main user interface details for said user. As seen

in Figure 31, the server parses the request, matches the user login information and

returns information regarding the user account. The front end platform constructs the

personalized user interface of the user based on said instructions.

The platform supports a user based exercise program that monitors how well the user

is doing and calibrates it to match the performance and improve it. When a user logs

in, they are greeted by a personalized message based on their previous performance.

User logs in
• Front end sends a

request xml with a
user id and a type
message

Server parses
xml and sends

back
information

• Matches user with
user id

• returns instructions
and language texts
based on the
message

Front end
parses

instruction xml

• Shows menu options
and welcome
message based on
server instructions.

• instantiates game
modes and exercise
program

58 (113)

The user has specific games based on his / her exercise program and a set amount of

exercised per game per day or a set time period he can perform. The program can be

managed and calibrated to each user’s needs, based on progression and scores from

the game.

Most of the data is served to front end only when needed. For example when the user

wants to see a certain performance graph it is loaded only on users request and ren-

dered with the latest data. Each view of the chart is requested per interaction to limit

the amount of data sent and to keep response times low. In principle everything in the

front end is based on the data transmitted from the back end services, except for the

rendering and game logic, and user interaction.

5.3 Game generation

The front end game logic is highly parameterized and the games are generated based

on the instructions sent by the server in a game XML.

Figure 32. Game initialization and play through process

Figure 32 provides an overview of a single game. In the initialization phase, the front

end fetches the game- and object parameters and initializes the correct game logic

engine, instantiates the creature renderers per creature in the configuration file and

sets the initial failure, success and timing of the game. During the game the front end

game logic handles all user interaction, game events and data gathering. In the event

of a game over, be it via failure or success, the game termination is triggered. The per-

formance data is sent to the server, and in return an analysis of the performance of the

Game
initialization

Get Game
and Object
parameters
from server

Task acquisition,
Training Game session

Game
termination

Send
performance

data to
server

Add reward
points to
players

reward pool

59 (113)

users in relation to their performance program is dispatched and shown in the front end

platform.

The game is initialized by using a set of configuration flags for the game logic and the

rendering engine via the game XML. The game information is parsed from the game

XML to a game value object. This VO is essentially the core of what a single game con-

tains, and it is used in the rendering and game logic engine.

Figure 33. Game XML configuration (without creature rendering details)

The game XML has 2 main parts: the game configuration, and the creature rendering.

The creature rendering is covered in detail in chapter 6. A simplified hierarchy of con-

figuration details in the game XML is shown in Figure 33. In principle the configuration

construes from 4 main sections: The user settings, game settings, optional configura-

tion and game object data. The game object is a simple set of variables that define the

user id, game name, game id and login id for the user session and game management

with the server.

User settings are related to the user account of the logged in user. The player infor-

mation is for UI notifications; mode contains game related data for the user. The mode

determines what kind of a game logic instance is created, and also contains infor-

mation about the delay and timing of the users abilities in reacting to stimuli. The mode

Game XML

User settings

Player mode

reaction
timing

calibration
details

Game
settings

Game
periods

period 1...N

time target
performance

target
creatures

Target timing

latencies &
ID arrays

Failure
condition Optionals

foto detector

size, color

game
background
generation

Perlin noise
configuration

baseX,
baseY color array seed,

octaves

Game object
data

name, id,
session

60 (113)

related user information also contains an optional calibration property that determines

the time and requirements of a calibration round before the actual game begins. Cali-

bration is done to ensure proper user difficulty in training.

Game settings define (alongside the failure condition) the structure of the game. The

periods contain, depending on the game mode, the different sections of the game.

Each section has a target time, performance and creatures that are used during that

period. The target timing contains an array of timestamps on when the rendering en-

gine displays a target mode effect that prompts the user to react. The target timing also

contains information on which creature said target timing affects.

The target timing was originally done in the game logic engine with only minimum and

maximum times for the frequency of the target event given by the server. But during

development and testing there arose a need for a more fine grained control over target

states, especially with the integration of the user training programs. With the server in

control of the target times, various iterations of the same game can be made without

affecting the front end platform codebase.

The optional settings include modules that are used in different game modes, and a

medical imaging and measurement helper. The foto detector is an indicator that shows

whenever a creature reaches a target state. Its size and color can be configured de-

pending on the use case. It is used when recording user activity via medical imaging

and other instruments as a synchronizing signal. The background generation defines

the needed values for the background Perlin noise generation, from the actual noise to

the color treshholding. More information about the background Perlin noise generation

is found in chapter 6.4.3.

5.4 Game rendering event

The system in game engines that controls the ongoing simulation is the main loop. It is

the representation of time in your engine, and the layer responsible for the game life

cycle [58]. In CCA the front end game engine is based on asynchronous events be-

tween different modules. The core of the rendering engine is the renderer class. Any

visual, interaction or module that requires a time based rendering pass - such as the

path, creature and target rendering and calculations - subscribe to the main rendering

class render event and base their rendering passes on it. The event is a custom event

61 (113)

with a unique rendering time key that is then employed in the various time based calcu-

lations in the rendering. Figure 34 shows the most important renderer event related

dependencies.

Figure 34. Renderer event relationship

The separation of direct calls gives the platform a manageable and simple way to add

new requirements on the render pipeline. During the development of the platform the

rendering core started from a simple mode of having creatures running free on the

screen, and slowly evolved to support dynamically moving bubbles for the background,

time rendering visualizations and calibration events all subscribing to the main render-

ing thread.

The separation also allows for an important feature for any gaming platform, the com-

plete control over the flow of time. With this control all forms of prompts, countdowns,

user feedback and result screens can be efficiently and smoothly incorporated to the

game designs at any time.

Renderer
tick

event

Creature renderer
•Formula plotting
•creature drawing

Path creator
•Path wrapping
•New path node
generation

Game play logic
• target states
• phase counters
• creature locations

Background
renderer
• perlin noise and
particle update

Time
indicator

62 (113)

5.5 User reaction tracking

In order to get a complete account of how a user performs during a game in the CCA

platform, all user reactions are tracked, even those that don’t end up showing any visu-

al signs in the user interface. Every reaction, be it valid or invalid is time stamped and

logged, alongside all creature target renders and game phase changes. The data is

held in memory during the game period, and after the game is over, it is sent to the

server for analysis.

Figure 35. Game data tracking in CCA

The game data tracked during a play is shown in Figure 35. The data contains events

divided into the game periods they belong to for precise analysis. Each event contains

the timestamp in the relative time of the game rendering process, type of the event

handled and possible tags related to the event. In addition, every reaction or target

state handled contains a list of all visible creature positions for further analysis. The

data also contains information about the actual rendering resolution of the game area.

Tracking enables the use of more detailed information about how people play, and the

strategies they employ in reacting optimally within the platform games. For example the

difference between a user trying to optimize hit percentage by reacting at a regular

interval, and a honest try at seeing the reactions can be taken into consideration with

the analysis of the reaction data, especially with comparisons to previous user account

performance.

Game data

User
reaction

Time Type

Game
action

Time Type Creature

ID Position

Rendering
data

Screen
resolution

63 (113)

6 Rendering engine

6.1 Basic principles

The core of project CCA is the rendering engine. It is a 2-dimensional engine, based on

a standard XY-coordinate system. The coordinate system starts from the top left cor-

ner, and expands to the bottom right corner. The whole rendering area is flexible and

user scalable, and the platform adapts to the user resolution by adjusting the speed

and size of the rendered creatures for optimal playability. For the sake of rendering

performance and playability, there are set minimum and maximum width and height

values for the scaling.

The engine is a so called black box system, where the game is generated based on set

rules and the engines own logic. This means that while being very controllable, the

engine does not mindlessly repeat control orders, nor does it follow a linear human

made path. The engine draws and moves the creatures based on their paths and tar-

gets, trying to find an optimum route, but does so within its own limits and algorithms.

Games often are made based on strict artistic control and very man made worlds, as it

allows for a more fine grained control and precisely deterministic outcomes, but it lacks

the surprising elegance of simulation based engines. A good example of some simula-

tion engines are the modern physics engines in games, especially the ones based on

soft body physics, instead of rigid body physics.

64 (113)

Figure 36. Basic diagram of a creature in CCA

The basic principles of the rendering engine revolve around the concept of a creature.

Each creature is an entity with its own path finding and rendering logic, and all game

types work with changes in the creatures. The core separation of the creature object is

the shape and path, as seen in Figure 36. The shape is the actual form of the creature,

the visual end result that the user sees on screen, calculated based on a series of

mathematical formulas and a set of parameters. The shape consists of the actual cal-

culations for solving the formulas as well as the rendering of said formulas on screen

with a set of colors and transparencies and possible dynamic movement. The shape

also takes care of wrapping the shape on the actual path, generated by the path part.

The path is the core movement of the creature itself. Each creature has its own path

generation, the role of which is to find out target locations for the creature and calculate

optimum movement paths between them. The path is based on continuous cubic bezi-

ers, and recalculates itself every time the creature reaches the end of an interpolated

target path and embarks on the next segment.

C
re

at
ur

e

Shape
Formula solving

Plotting

Target state

static formulas

dynamic
formulas

Path wrapping

Path

Path finding
Target locations

Distance / angle

Path calculation

Base path
calculation

Exact path
interpolation

65 (113)

6.2 Creature shape rendering

6.2.1 Overview of creature rendering

The rendering of the creatures on screen is based on two main parts; the plotting of the

stationary creature on its own and the path wrapping calculation and plot. The crea-

tures stationary calculation defines how the creature looks, is colored and how it per-

forms its target state. The path wrapping takes the end result of the stationary phase,

and integrates the creatures form into the shape of the path it is travelling on. The crea-

ture can also be rendered without the path as a stationary object, in its prime state.

During the project lifecycle, there were a couple of different ideas on how to render the

actual creatures. With the path generation separated, it was possible to use hand

drawn pieces of creatures and animate them on top of the path points to make them

look more artistic and use less rendering mathematics as well. But for pure organic

feeling and keeping full creative control in the hands of back end generation, it was

deemed better to go with the option of drawing the creatures completely with mathe-

matical formulas for full customizability.

Figure 37. Creature XML schema

The creatures are rendered based on a server served creature XML that contains set-

tings and configuration as well as the actual formulas for creature generation. Figure 37

Creature XML

Settings

Name Length Target state
length

Min / Max target
times

Calculations

Formula 1...N

A trigger for
time based /

dynamic
calculations

Number of
values

The start point
for plotting

The distance to
plot Formulas

X X2 Y Y2

Thickness of the
border line (0 for

none)

Color and
opacity of the

border line

Color and
opacity of the fill

surface

66 (113)

shows an overview of the creature generation. The settings define features that the

creature has as a whole, such as the target states and length of the creature. The cal-

culations contain the essence of the creature. Each formula has a set of configuration

attributes that explain how the particular set of formulas is rendered.

The formula settings define the look and feel of both the creature surfaces as well as

the creature main lines. In addition the values related to actual plotting of the formulas

are introduced; the amount of points to be rendered, the start value of the plot and the

distance the plotting is done on. Each formula is a set of two X and Y coordinate plots.

The main plot is the first XY pair, and the return plot is the XY2 pair; when these are

combined they form a surface with a fill that is a part of the creature.

The actual creature rendering is a stacked plotting approach to rendering mathematical

expressions, spreading them over a uniform scale, wrapping them up with return func-

tions to create surfaces and mirroring the end result to optimize rendering. The crea-

ture form is unified on both sides, so only one half of the creature form is calculated,

and then mirrored to create the actual creature.

Figure 38. A single creature is rendered from multiple algorithms

67 (113)

Figure 38 shows an overview of how a creature is rendered from the set of algorithms

provided by the creature XML. The first line shows the first formula being plotted, first

the initial plot of points without lines drawn is shown, then the fill with lines and shape.

Then the return formula (XY2) is plotted, and it forms a complex shape. Then the return

and the first formula are filled to create the end result. This is done for each formula

and drawn on top of each other on the creatures’ canvas, and the formula 4 line con-

tains the end result creature, built from the 4 mathematical expressions.

6.2.2 Creature formulas

The creatures are based on two types of formulas. The various formulas are plotted on

the screen and the 2d coordinate system with the time seed value from the rendering

event time loop.

The base of the creature and most of the formulas are static formulas. Static formulas

are plotted once per creature per formula. After the initial plotting of the formula, the

plotted points are stored in vectors (typed arrays of AS3) and used for path wrapping

and physics calculations, before finally being turned into visual renderings.

The amount of plot points is defined per formula, as are the values the formula is plot-

ted on. The definition of the target state is given as a separate formula to be rendered

when triggered. All the times of trigger and densities and colors and opacity levels are

configurable per formula.

<cal id="2" timeCal="0" valNum="14" valStart="0.0100" valDist="10.0000" lineThickness="1.000000" line

Alpha="0.7000" lineColor="0xDAA9A6" fillColor="0xEEBDBA" fillAlpha="0.6000">

 <x><![CDATA[(t*0.7377)*log(t*0.2000)*-0.6098-0.9492]]></x>

 <y><![CDATA[(t)*0.2262-0.2697]]> </y>

 <x2><![CDATA[log(t*0.1148)*-1.3574-4.2246]]> </x2>

 <y2><![CDATA[(t)*0.2262-0.1713]]> </y2>

</cal>

Figure 39. Example of a single static expression

As seen in in Figure 39, a single expression of a creature consists of a set of parame-

ters, followed by the initial and the return formula of the single shape to be rendered.

Each static formula has a variable that is plotted with the given attributes. This variable

is named (t) and it is parsed in the rendering engine into AS3 native value, along with

the text representations of the math functions.

68 (113)

In the example expression, the (t) is plotted from valStart to the distance provided by

valDist, over the course of the amount of points defined in valNum. After these have

been plotted, the points are stretched with the length factor of the creature XML. The

length factor is the length of the creature in ideal circumstances, and is adjusted as

needed based on the resolution of the game area during play.

<cal id="1" timeCal="1" valNum="9" valStart="0.0100" valDist="10.0000" lineThickness="1.000000" line-
Alpha="1.0000" lineColor="0x9E7EB9" fillColor="0xC2A2DD" fillAlpha="0.7000">
 <x><![CDATA[(t*0.7377)*log(t*0.2000)*-0.7140-1.3426]]></x>
 <y><![CDATA[(t)*0.1869-0.3188 + abs(sin(c * 0.2800 + 1.85))]]></y>
 <x2><![CDATA[log(t*0.2000)*-1.6033-4.1754]]></x2>
 <y2><![CDATA[(t)*0.1869-0.2697 + abs(sin(c * 0.2800 + 1.85))]]></y2>
</cal>

Figure 40. Dynamic expression

Some creatures based on rendering type and game mode also contain dynamic formu-

las. Dynamic formulas are plotted per render loop every time anew. This creates a rela-

tively significant overhead for calculations for the processor. Dynamic formulas are

used sparsely and mostly to add some flair or to make it harder to recognize the target

states of the creatures. Figure 40 is an example of a dynamic expression, the definition

in CCA for a dynamic variable is (c). Typically dynamic formulas are circular, so they

create repeating smooth movement.

<statecal id="4" timeCal="0" valNum="13" valStart="0.0000" valDist="10.0000" lineThickness="1.000000"
lineAlpha="0.8000" lineColor="0x7ACB38" fillColor="0xA3F461" fillAlpha="0.8000">
 <x><![CDATA[(t)*-1.0000]]></x>
 <y><![CDATA[abs(sin(t*2.0000+0.4098))*abs(cos(t*0.2800+1.8850))*0.2000]]></y>
 <x2><![CDATA[(t)*-0.9800-0.2000]]></x2>
 <y2><![CDATA[abs(sin(t*2.0000+0.4098))*abs(cos(t*0.2800+1.8852))*((abs(c-1)+1))*0.8852]]></y2>
</statecal>

Figure 41. Target state calculation expression

The third type of algorithm every creature contains is the target state calculation formu-

la (Figure 41). This formula decides the look of the creature when it reaches target

state, the state when a user is supposed to react to the change in the creature. The

target state is parameterized in size and effect based on the user accounts previous

score and calibration results. It is pre-calculated at the start of a game, and contains

only static formulas. The difference between a normal drawing function and the state

one is that the state is drawn for a set amount of time, as defined in the creature head

part of the creature XML.

69 (113)

Every formula the creature is based on was originally a one way formula, forming a line

but not a shape. After some development time there arose a need to make shapes, fills

and surfaces in the creatures to add visual fidelity and concretize the creatures some

more. To solve this need the ability to render return formulas for the various algorithms

was introduced.

<x2><![CDATA[(t)*-0.9800-0.2000]]></x2>
<y2><![CDATA[abs(sin(t*2.0000+0.4098))*abs(cos(t*0.2800+1.8852))*((abs(c-
1)+1))*0.8852]]></y2>

Figure 42. Return formula

In principle a return formula is plotted on the same time values as the initial formula,

and in the same scale. With the main formula it creates a complete shape or surface,

which then can be filled with color and opacity to make it more vivid. Adding the return

formula to the shapes enabled the creation of complex shapes, interloping with opacity

and colors for unique creature designs. An example of how the return formula forms

the body of the creature can be seen in Figure 38, and an example of the XML can be

seen in Figure 42.

6.2.3 Path wrapping

The creature formulas plotted on their various paths form the natural state of the crea-

ture. To create life and movement it needs to be integrated with the path provided by

the path creator. The integration of the creature to the path is called path wrapping.

Figure 43. Path bending example

Figure 43 shows a visual representation of the difference between the creature in its

natural state, and the path wrapped bended version of the creature. The red line at the

70 (113)

bottom is the interpolated target path of the path calculation for the creature. The target

path generation is explained in detail in chapter 6.3.2

When wrapping the formulas on the path, the formulas are plotted as usual to create

the natural stationary creature, but after that the whole plot is bent around the segment

path so that length-wise the center of the creature is on the current point of the path

rendering progression. Then both halves are calculated from the center onwards, up to

the point where the length of the creature ends. The interpolated target path is the size

of the creature, and contains a point for each plot point in the stationary creature plot.

After the target path is generated, the creature is wrapped around the path point by

point, calculating the angle at each step. This calculation is done per formula per crea-

ture; each formula is bent individually.

Figure 44. Principle of creature bending on the path

A simplified principle of the creature bending can be seen in Figure 44. First the inte-

gral of the segment, as well as the angle of the segment at any given point is solved,

while making sure that the angle doesn’t go over – or + pi. Then the position of the

creature is interpolated on the path, and the point is rotated based on the angle on the

frame path at the same point. The creature is wrapped, point by point on the ongoing

path, allowing it to react to every small change in the angle of the path individually, en-

abling the organic feel.

6.3 Path creation and path finding

The movement of the creature is based on the path generation created by the path

creator class. The path creator calculates the targets where the creature needs to go

and the path itself and then attaches the creature on the path. The path is based on

Angle
• Complex
Integral
interpolation of
current
segment

Location
• Interpolated
position on the
current
segment

Rotated
and

positioned
creature
points

71 (113)

continuous cubic Bezier curves, to create a harmonic organic movement of the crea-

tures while maintaining randomized movement paths.

Figure 45. Path creation rendered

A rendering of path creation in CCA can be seen in Figure 45. When the path is creat-

ed it consists of 5 sections of points, each section has a minimum amount of 100 points

between control points. A creature moves between the middle control points 3-4 and

whenever it hits the 4rd control point, a new control point is generated on the path and

the last control point is removed. When the game begins, first 2 points are generated

by random, and after that based on the same rules as the new points in the game.

Because the middle and ongoing segment of the path needs to be unchanged, every

decision reaction for the creature takes the time of going through the next 2 segment

paths. By making sure the length of the paths per segment is never longer than 0.5

seconds, preferably around 0.3-0.4s, the creatures reaction speed is between 0.6-0.8s

which is around the same as the reaction speed of an ordinary human being in a non-

trivial task.

72 (113)

6.3.1 Continuous Bezier curves

The paths are based on cubic Bezier curves. Every cubic Bezier curve has two control

points and a start and an end point. When making continuous Bezier curves the start

point of the next curve is always the end point of the previous curve. Making Bezier

curves that continue from each other is relatively simple and requires no complex cal-

culations. But when making smooth movement one needs to make continuous Bezier

curves that are smooth, and that means each curve affects the curve before it and after

it. An example curve can be seen in Figure 46.

.

Figure 46. Bezier curve in 2 segments with smooth movement

For the path finding and rendering system to work (And because calculating continuous

Bezier curves with the path wrapping isn’t cheap), the active creature path at any given

moment must be a static Bezier curve. The path will change only when the creature

reaches the end of the current path; then the next point on the path is calculated, and

rendering continues. Because of this requirement, the path needs to have the five

segments, or six points at all times.

73 (113)

Figure 47. Smooth continuous Bezier curve with control points shown in CCA

Once the point locations are generated, the path needs to be smoothed. Since the mo-

tion is continuous through the points, the movement cannot have jumpy or unsmooth

sections. To achieve this, the last control point of the previous curve needs to be on a

straight line to the first control point of the next curve as seen in Figure 47. (The line

goes through the control point and the path point)

For creating cubic Bezier curves, Flash contains a native library called BezierSegment.

It is a collection of four point objects that define a single cubic Bezier curve, and has

methods for getting the value of the curve at any point on the curve itself. [59] The solu-

tion in CCA is based on the BezierSegment class, and more specifically on the work

done by Andy Woodruff on the implementation of continuous cubic beziers with AS3

[60].

One issue when using continuous Bezier curves as paths for movement is that when

the angles of the previous and next point collide in a straight line (on the x or y axis),

the line drawn is a straight line, and by default is calculated without any steps. To over-

come this in CCA the straight line situation is checked after the Bezier generation, and

74 (113)

a slight variation is added to the target point to get a proper curve between the points

for calculations.

6.3.2 Path interpolation and frame path

In CCA the continuous Bezier curve forms only the foundation for path generation, on

which the actual movement is built. Once the base path is generated, the active seg-

ment is resampled for smoother movement and simple physics.

Figure 48. Path creation explained

In Figure 48, the different parts of the path generation are shown. The RawInterpPath

is the path created by the smooth Bezier curve generation. After the RawInterpPath is

calculated, the active segment of the RawInterpPath is separated as its own entity,

called InterpPath. The actual path used by the creature for movement is made by cal-

culating the velocity and displacement of the InterpPath. This path is called a

FramePath.

75 (113)

Figure 49. Path creation flow

Figure 49 opens up the complex logic of creating the path. The actual FramePath is not

needed for the current segment of the creature for movement. For that a Fraction-

alFramePath is generated from the InterpPath, which contains a fractional index that is

used to find the actual movement point in the end. The FractionalFramePath index is

used by interpolating a point on the actual curve based on said index. In principle, the

FractionalFramePath is the creature location on the InterpPath.

The physics used in the game are fairly simple. The main use for physics as such is to

enable the creature to have different speeds based on its mood and the curvature of

the path it is on. This creates the feel of organic movement, as the creature slows down

to curves and speeds up when going long ways along a slightly curving path.

The path segment where the creature is currently moving on during the rendering is

never changed. Because of this, the physics and velocity of the creature are calculated

when the path is calculated. In general the path is calculated and physics applied to the

movement only at points where the path is recalculated – when the creature reaches a

new target location.

6.3.3 Path finding and target location generation

Aside from the mathematics of actual path generation, CCA also contains methods to

create path finding for the creatures and boundary methods to keep the creatures ren-

dered inside the actual game area.

There are two modes to the path finding; hunting and foraging. When foraging, the next

path point is generated without a specific goal, by using pseudo random logic. In forag-

ing mode, the creature finds its own way around the game area without specific incen-

tives. When in hunting mode, the creature has a target array of points where it aims to

RawInterpPath

• The whole creature
path: Continuous
Bezier.

InterpPath

• Active path segment
of the whole path

FramePath

• Interpolated from
Interppath

• Apply velocity and
displacement

FractionalFrame
Path

• 1 dimensional array
• Fractional indexes of

the InterpPath

Creature
segment

• Calculated on the
fractional index
location

76 (113)

move to, the closest target point is evaluated and an optimal path is generated towards

said point. With the closest one calculated, the path finder finds out if it is close enough

to nab it in this path, if not it’ll create one path segment towards it first and then redo

the calculation. If the target is gone, the creature falls back to normal foraging mode.

Figure 50. Path finding in CCA

Figure 50 shows a rough overview of how path finding logic works in CCA. The next

target location is generated by combining the orientation (between previous two target

points) with a randomized target angle and a speed based on creature length and the

angle of movement. The core idea is to have a similar direction of movement to prevent

too big, drastic changes in the creature direction.

If the next natural point in a creature’s path generation is outside the boundaries of the

game area, a bounce method is applied. The bounce calculates how far outside the

boundaries of the stage the creature was going for, and changes the angle of move-

ment so that the new point is inside the stage. This is done to ensure the creature is

always within the visible target area, and does not wander off the sides of the screen.

After the path generation and bounce factor have been taken into account, the distance

between the previous and the new point is calculated to make sure the points are not

too close to each other. In case of them being too close, a small speed fix is added to

the point’s location in order to keep the length of the path relatively uniform. The length

of the active path segment is set to be 1…2x the length of the creature to keep the re-

action times in check.

A
randomized
target angle

(0-180)
Orientation

speed(based
on creature

length)
New target

location

77 (113)

6.4 Background rendering

6.4.1 Perlin noise

Perlin noise is a procedural texture, or a pseudo random gradient that is used abun-

dantly in modern computer generated art and graphics for its unique attribute of seem-

ing organic and natural. The algorithm interpolates and combines random noise func-

tions into a single function that generates more natural-seeming random noise. Perlin

noise has been described as a “fractal sum of noise”. Developed by Ken Perlin back in

1980s for the movie Tron, Perlin noise has been used in CGI and had a huge impact

on computer generated graphics ever since. [61]

Aside from using Perlin noise to draw patterns or textures, it is also very useful for cre-

ating organic, smooth movement. The movement is achieved by using the luminance

values of a black and white Perlin noise and attaching it to the velocity of a particle en-

gine. Due to the nature of the noise, one can create the noise field once and then

change the offset of the x and y coordinate space of a single octave of the noise. With

this the noise moves without recalculating the whole noise while maintaining the same

visual similarity. Perlin noise is also quite optimized and suitable for performance use.

78 (113)

Figure 51. Perlin noise generated in black and white with random seed in CCA

Figure 51 shows a Perlin noise field used in project CCA to move the background par-

ticles around. This noise field is randomized on every application run, and resize event,

so the movement of the background pattern seems organic and never repeats itself.

Perlin noise is rarely used to just create visuals, but rather to blend other visuals to-

gether, or to generate objects, landscape and other items that benefit from natural

seeming patterns. [61]

6.4.2 Luminance in path generation

The way Perlin noise is used in the background rendering of the CCA system is quite

simple. Every resize and init event, a a 2-dimensional Perlin noise is generated to fill

the game background layer (no need to make it whole screen sized). It is restricted by

the same resolution restriction stops as the main game area, thus simplifying the sizing

issue to a single place. This Perlin noise is not visible to a user, and is used only to

generate movement.

The noise field is approximately the size of the gaming area, and it is populated with N

amount of particles. The amount of particles varies based on the user’s resolution, to

79 (113)

create an optimum look versus performance. The particles are simple, round shapes

with opacity, randomized to make them look like abstractions of bubbles. In the start

the particles are positioned randomly along the noise field.

As previously mentioned, the game has a single renderer that all time based actions

are performed on. On every render tick, the position of each particle is changed ac-

cording to a set offset that is unique to each instance of the particle.

Figure 52. Brightness of Perlin noise and its effect

The opacity, angle, speed and scale of the particle are calculated from the brightness

of the pixel at the new position of the particle (Figure 52). The brighter the noise at the

coordinates, the faster the particle moves, and the larger it becomes, and vice versa. In

addition to this noise based movement, each particle has a unique wander property

that affects the navigation of the particle to make the movement a little bit unique. With

the smooth, coherent noise we get from Perlin noise, it provides a unique and perfor-

mance efficient way to generate organic movement.

In addition to working as background organic movement and mood setting, the parti-

cles served another purpose. During gameplay, correct reactions triggered a coloring

effect on the background particles closest to the creature whose reaction was targeted.

There was a set radius around the active creature within which the particles had to be.

Brightness

Speed
• 0.1 +

btightness *
speed *
coefficient

angle
• brightness *

wander *
360

scale
• 0.1 +

brightness *
coeffecient

opacity
• brightness *

coefficient

80 (113)

The coloring was gradual; a smooth green shade with opacity stops per reaction was

introduced. An opposite effect was also introduced; when a user repeatedly triggered

reaction without a cause, outside of the reaction window of the target state, the parti-

cles were gradually colored with light shades of red. One could get an overview of a

game situation at a glance.

6.4.3 Treshholding Perlin Noise for pattern backgrounds

In addition to making movement with Perlin noise, Perlin noise is used in the reference

project as a creator of coloured, randomly generated backgrounds that fit the colour

scheme of the creatures. The colour match is important as it makes the spotting of

creature target states harder when there is less contrast between the background and

the creature itself.

Figure 53. Perlin noise pattern background in project CCA

Figure 53 shows an example of how Perlin noise is used in the backgrounds of certain

game modes. It was implemented by partially replicating the Perlin noise in use in the

81 (113)

background animator. The actual effect was developed in true to platform fashion in a

parameterized way, where the server provides a possible array of colours to be

mapped into the background noise with the creature XML. These colour values are

then mapped to the noise based on the brightness values of the noise.

The colours are mapped to the noise by first taking the highest and lowest brightness

values in the black and white noise, then mapping the colours to the noise by assigning

a brightness index per colour. In CCA a vector of values was used, since it is faster to

iterate through an array of bytes than to manipulate an actual bitmap object.

A small trick was used in the resizing of Perlin noise fields since they are quite heavy to

instantiate and generate, and there was a need to generate one anew every time the

stage was resized. In calculation or rendering heavy tasks, it is not viable to run them

every time a user or a program resizes the window, but rather set a small delayed call

to the refresh function, and overwrite that delay every time the resize gets called. With

this small optimization, one most of the time gets only one re-rendering round, even

when the user holistically drags the window around.

82 (113)

7 Performance optimization

Optimization should always be done holistically. Look at the big picture first and
then drill down until you find the specific problem that is slowing your application.
When you don’t optimize holistically, you risk fruitless optimizations. [62]

The amount of computing resources available to a game is finite. Optimizing code in-

creases the amount of work the engine can achieve per unit of computational power,

and maximizes the efficiency of the system. [62] In optimization there are many ways to

speed up the code, but it is essential to identify and solve the actual performance bot-

tlenecks within the laws of diminishing returns. The main trade-off to think about when

optimizing is the development time versus complexity.

In a project with strict performance requirements such as the CCA, one has to be quite

strict and diligent in handling performance bottlenecks. However, untimely optimization

leads to chaos and low quality code, it is imperative to find out exactly what needs to

be optimized before jumping in. Performance optimization is a balancing act between

readable solution code and pure performance gain.

7.1 Basic principles

There are many ways to approach optimization, but the fundamental basis of the opti-

mization lifecycle is testing, or benchmarking.

Figure 54. Optimization lifecycle [62]

Figure 54 shows the basic idea of the optimization lifecycle. When optimizing, the es-

sential point is to measure the gains. A benchmark is a point of reference in the game

Benchmark

Detect

Solve

Check

83 (113)

that serves as a comparison against future implementations. Benchmark should be

reliable, quick and it should represent an actual gaming situation. The main use of

benchmarks is that they enable relative comparisons.

After the comparison points are gathered, the detection step starts. The point of detec-

tion is to find the biggest return on investment for the optimization. In detection phase it

is important to start from the big picture, and analyse layer by layer to the finer problem

points until a suitable issue is found. After the detection, it is a matter of solving said

issue. Solving can be about fixing a bug, toggling a flag, rewriting the algorithm in-

volved or changing the data structure. [62]

Once the solving is done, the check phase begins. When checking, the benchmark is

ran again and measured to see if the solution changed anything in the performance.

After checking, it is all about repeating the same progress again until the biggest per-

formance gains are figured. The idea of this cycle is to find optimization hotspots and

bottlenecks. Hotspots are the points in your program that consume a lot of processing

power. Typically hotspots are small amounts of code with a big hit on performance.

Optimizing hotspots leads to significant performance benefits. Bottlenecks are particu-

lar points in the system execution that clog down the performance of the whole system.

Figure 55. Three levels of optimization process [62]

Optimization can also be approached on a broader level by dividing it into three catego-

ries (Figure 55). On system level optimization the focus is on the use of resources of

the target platform. The point is to find an implementation that utilises system re-

sources with balance and efficiency. System level optimization is about planning a plat-

form that utilizes the available resources without overusing in a sustainable way.

System

Micro

Application

84 (113)

Application level optimization can also be called algorithm level optimization. It is the

choices made in the data structures and algorithms that make up the platform. The

idea is to use a good profiler tool to find out call hierarchies and time and iteration

amounts of systems most used parts. Algorithm level optimisations are the crucial

backbone of optimizing code. The identifying of a key part of code that uses a lot of

processing time and optimizing it, or the node that calls it with a more efficient solution

is of the best return on development time.

Micro level optimizations are the most common stereotypical types of optimisation. The

small hacks on as low level as possible to get a bit of a performance boost out of a

specific thing. The optimization of inner loops or pixel rendering routines that are called

extremely often and that benefit from the most miniscule of an improvement because of

the sheer amount of times they are called during an application execution.

In project CCA the concentration on optimization was made on all three levels. A struc-

tural, planning oriented performance review was conducted in the initial phases of the

engine building. The algorithmic level was benchmarked and reiterated throughout the

application development cycle, and the low level micro approach with rendering and

mathematics was made in the engine building phase to smooth out the heaviest of op-

erations in the engine.

Beyond the processes of optimization one must be wary of the pitfalls along the way. It

is easy to get stuck on assumptions about performance problems and optimizing

prematurely without knowing if it is a big performance sink. Optimizing based on your

own machine, or with debug builds gives misleading results, as debug builds are often

slower and riddled with processes not found in the final release build. In CCA during

development there was a point where the focus was on micro optimizations on the en-

gine rendering loop for too long, and without the aid of a profiler the real optimization

pitfalls would have remained hidden.

A common trait in game rendering engines is to render only what is needed and reduce

the level of detail dynamically whenever possible. In fact many games could not func-

tion without such optimizations due to the sheer size of the game worlds and the

amount of rendering. In CCA the amount of rendering is relatively small compared to

many of the 3-dimensional engines, but due to the measurements and the nature of the

85 (113)

medical side of the platform it was necessary to render everything on screen without

any reduction of rendering quality or level of detail. Because of this, in the creation of

the rendering engine it was necessary to try and use all the tricks possible with a man-

aged language to make it as fast as possible.

7.2 Platform optimization

7.2.1 Approach

A good approach to optimizing holistically is to focus on detecting and solving issues

on the system level whenever possible, then the algorithmic level, and only if no solu-

tion is found resort to micro level optimization.

Figure 56. Optimization approach in CCA

The optimization of the platform can be divided into 3 main sections seen in Figure 56.

In data optimization, the focus was on the issues of latency and communications with

the client-server architecture. The point of data optimization was to minimize the laten-

cy of backend calls and limit the amount of data sent between the back and front end

platforms. The front end requests data for a view, be it the main user interface, a data

Data
optimization

Connection

Data format

Responsiveness

Application
optimization

Engine
separation

Initialization and
disposing

GUI elements

Micro
optimization

Mathematics

Operators

Function calls

86 (113)

visualization component or a single game, only when initializing the view for the first

time.

When non changing data such as the main user interface localization and configuration

is loaded, it is cached on the front end and not re-fetched until the user next logs in

again. When a response from the system takes between 200ms and 1000ms a user is

prone to lose the feeling of flow and the user experience of the system is hampered.

[37] For the sake of responsiveness and continuous feedback, the user interface shows

a loading indicator whenever a data request takes longer than 400ms. The indicator is

not shown on shorter loading times to keep the user flow uninterrupted.

When optimizing the application level, the focus was on making the rendering engine

and game logic separate, and to manage garbage collection and memory handling with

specific initialization and dispose functionality. The separation of the engine and the

game logic optimized not only the development time of the platform, but the way re-

sponsibilities were divided between the two.

The initialization of objects in managed languages is costly, and can easily cause varia-

tion in the FPS of the system, as well as random hangs in program execution. Also the

disposing of objects for garbage collection (GC) can cause the GC to run at times when

the user is performing an important part of the platform. The ways of observing

smoothness in a system are somewhat immaterial, and cannot be found purely from

profilers. Extensive testing and visual assessing is needed to make sure the user expe-

rience flow remains unaltered. More information about garbage collection and GUI el-

ements can be found in the Flash specific section 7.3.

The deepest iteration of optimization was done on the micro level; thinking about the

mathematics used and testing different operators and in lining function calls and other

hacks that produce less readable code but provide a performance boost in a time criti-

cal section of the platform. Mostly micro optimizations were done in the core rendering

engine, on the calculation and drawing of the creatures and their movement.

87 (113)

Figure 57. Flash Builder profiler with project CCA

The way to find important performance issues in project CCA was done with using the

Flash Builder profiling tool for performance profiling (Figure 57). Profilers are the most

common tools for optimization, gathering information about resource usage, most often

the CPU load during a session. Profilers typically provide information about the amount

of calls, self-time and total time of function calls as well as memory used in them. [62].

In CCA the profiler helped in generating memory footprints and locating high resource

hogging sections of the rendering code, as well as finding bugs in disposing of objects.

7.2.2 Creature optimization

In CCA the creature rendering model is a very versatile implementation of a data driven

architecture. The creature parameters define how they each formula in them is plotted

on screen and the detail level of each creature can be adjusted per formula as well.

Each mathematical formula has an amount of points that are calculated and plotted to

render out its true form, and these can be adjusted and manipulated with relative ease.

The lower the amount points rendered on screen, the less fidelity in the creature, but

on low end machines, or situations where there are many creatures on screen, it in-

creases performance smoothly.

88 (113)

Figure 58. Variance in fidelity by dot rendering change

Figure 58 shows the clear difference in rendering quality based on the amount of con-

trol points or dots used in the creature generation. The overall shape and visual style of

the creature is the same between the fill render and the 4x fill render, but the subtle

details of the creature are more smooth and round in the 4x fill render than the normal

fill render. The dot render shows the inflated dots generated by the plotting of the for-

mulas, the dots themselves are used in the rendering only as the control points for the

lines that shape the creature itself.

Figure 59. Performance change in dot rendering

The difference in cumulative CPU calculation time in milliseconds between the 1x and

4x dot renders is shown in Figure 59. The values benchmarked by using the Flash

Builder profiling tool set show that the rendering of 4x the amount of points on the

same creature increase the calculation time approximately 32%. The difference is to be

expected, as the fidelity increases, so does all the major computation in the creature

0 1000 2000 3000 4000 5000 6000 7000 8000

1x Points

4x Points

1x Points 4x Points
Bending 1443 2065
Predraw 1788 2368
Render 2043 2526

CPU Performance (ms)

89 (113)

rendering and path bending. More difference could be obtained by adding a formula for

the creature generation itself instead of adjusting the points of the formulas calculated.

Different creatures can have different dot amounts for visual fidelity. Some formulas

work better with low amounts of dots, while others require much more to look and be-

have properly. When the creatures are moving, the tighter turns they take, the more

clear the complexity of the creature; if the creature consists of a low amount of dots,

the lines between start to show when doing above 90 degree turns quite visibly. There

is a small implementation in the path creator that tries to optimize creature movement

in a way that it never does such high degree turns.

Due to the data centered design of the rendering, the creatures can be optimized

based on user accounts, and user machine performance to create the best possible

outcome. For most formulas in CCA, the conversion of the formulas to native code

could be done in the initialization and the calculations for the necessary values out of

them only once, and then reuse the plotted model of the creature in all the path bend-

ing operations without recalculating the plot. The performance gains were significant. In

addition to the fidelity of the creatures, additional features can be optimized, such as

the background Perlin noise particle animation can also be toggled as needed.

7.3 Flash specific optimization

7.3.1 Overview

The Flash platform, or more specifically the Actionscript 3.0 (AS3) execution model, is

single threaded. Because of the lack of threading, all sufficiently heavy actions on the

UI thread slow down or stop the rendering of the whole UI layer. While being robust for

a web technology, it is a severe limitation of processor use. AS3 is also a managed

language, interpreted by a runtime, which leads to system managed memory and gar-

bage collection.

There are various issues when profiling with managed languages, the nature of the

byte code leads to more native level calls than pure native languages. The way AS3

handles array actions is more involved than native languages; every array is imple-

mented via a generic data structure, so every array load means hitting that data struc-

90 (113)

ture and querying it for type information. [62] Because of the cost of even basic opera-

tions can be much more varied than in native code, it is beneficial to set a good base-

line for performance data to know what to avoid.

Figure 60. Array versus Vector operations in AS3 [63]

The basic approach in optimizing for AS3 is to always use strictly typed operators eve-

rywhere in your code; it provides a significant runtime performance boost. Another way

of optimizing what is needed in AS3 came with the Flash Player 10 release. Flash had

no history of supporting typed arrays before the introduction of Vectors in FP10. Vec-

tors have a significant overhead in declaring and wiping them, but they are extremely

robust when iterated over significant amounts of values. [63] The difference between

array and vector use is significant, as seen from Figure 60. The reading speed of vec-

tors is roughly 40% faster than with traditional arrays. The writing speed difference is

even greater, roughly 170%.

0 500 1000 1500 2000 2500 3000

Array

Vector (fixed)

Vector dynamic)

Array Vector (fixed) Vector dynamic)
Read 835 599 595
Write 1912 698 714

Array vs Vector in AS3

91 (113)

Figure 61. Object pooling in AS3 [64]

In AS3 the construction of new objects is very costly. When creating the creatures and

parsing the formulas from XML to AS3 native math functions, it was useful to use a

technique called object pooling. In object pooling you declare your objects only once

and store them in a list. Instead of creating new objects when you need them, you use

the objects already declared and stored from the list (Figure 61). The benefits of object

pooling are greater when using more complex primitives; the increase in performance

is 5x when using a basic type such as a Point, and over 80x when using a complex

Sprite type. [62] In CCA each creature is object pooled, but so is each set of formulas

that form a part of the creature.

To prevent the UI from slowing down in CCA, the initialization of objects into the object

pool was also optimized. In the game handling initialization the creature classes be-

longing to the game are instantiated; The Perlin noise backgrounds are created, as well

as all the creatures. When creatures are not on screen or do not belong in the current

play mode, they are hidden from view and removed from the display render loop. Since

92 (113)

the game core is about constant perception of the target moving, it is imperative not to

have high changes in frame rate, on average even if the rendering frame rate is not the

full required 30fps, the users aren’t as phased by the difference as long as it maintains

a steady pace.

Alongside the optimizations mentioned here, there are great many smaller point solu-

tion optimizations used in CCA and available for the Flash platform. Links to further

reading on the subject can be found from the associated references in the end of this

thesis.

7.3.2 Function calls and language specific libraries

One of the basic optimizations to do is to remove loop invariant code. When doing

large quantities of iterations, the cost of declaring iterators within loops and inner loops

can be quite high, especially in managed languages such as AS3. It is useful to try and

minimize the amount of variables declared inside loops when it is not necessary, even

pre-declaring the loop iterators, let alone variables used in the loops saves perfor-

mance. [62, 64]

Another optimization that tends to be bad for code readability, but that can help opti-

mize code that is heavily used during rendering is the inlining of functions in your code.

When moving functions inline, one must be wary of the cost for code readability, it sig-

nificantly hampers the future development of the code base. Inlining calculation heavy

functions can amount to a performance increase of 400% in AS3. [64]

Other uses for micro optimization are the manual redo of language specific mathemati-

cal libraries. There are many ways to solve basic things; such as the absolute of a

number, via casting to int or using a ternary operator that can be faster than using the

platform inbuilt Math.abs(). Small optimizations in AS3 can also be gained by using the

right iterators for the right loops, for example when doing while loops it is faster to loop

through in reverse order than forward looping. [64]

In CCA the micro level optimizations were used solely in the core rendering and path

finding engine. There was an effort to keep the unmanageable only in the areas identi-

fied by profiling to require significant tuning and optimization. Function inlining is used

in some processor heavy mathematical operations and reimplementation’s of things

93 (113)

like Point.distance() and Math.abs() to improve low level efficiency. For most of the

platform code algorithm and system level optimizations were preferred.

7.3.3 Bitwise operators

Another way of optimizing performance heavy bottlenecks in calculations and iterations

is to use bitwise operators instead of verbose solutions. Since computers operate in

binary, using bitwise operators can be a powerful programming tool. Often a few quick

operations can easily replace what would otherwise be complex and heavy code. In

certain situations, using bitwise operators can even amount to clearer code. [62]

Figure 62. Common bitwise operations in AS3 [65]

Common bitwise techniques in AS3 revolve around using the inherent quality of binary

operations; multiplying and dividing by the power of two, integer conversions, sign con-

versions, modulo, absolute value, minimum and maximum seeking and color conver-

sions. Figure 62 shows common alternatives to operations in AS3 by using bitwise op-

erators for efficiency.

94 (113)

Figure 63. Performance benefit estimations for using bitwise operations in AS3 [65]

Performance benefits for using bitwise operators in AS3 can be immense. Figure 63

shows the benefits of using bitwise instead of natural logic in common logical opera-

tions. The benefit is especially clear when using the bitwise method instead of the

Math.abs(), an increase of roughly 2500% can be achieved. Basic functions such as

multiplication and dividing run around 300-350% faster than the basic solution. When

testing the modulus of a number the performance is around 600%, similar to testing if a

number is even or uneven.

When optimizing the CCA rendering engine the approach was to benchmark key ren-

dering situations, and find out the most performance intensive mathematical operations

and optimize them. The most used and heavy functions were optimized with various

micro optimizations, including removing loop invariant code, declaring variables togeth-

er and bitwise operations.

7.3.4 Drawing solutions

Flash supports both Vector (Not to be confused with the Vector of typed arrays in

Flash) and bitmap rendering. Both of them have their own benefits; drawing with vec-

tors enables crisp, smooth and scalable rendering, as well as quite handy tools for

handling the graphics. Whereas drawing with bitmaps allows for easy manipulation and

0 500 1000 1500 2000 2500 3000

Absolute

Even/uneven

Multiply

Divide

Modulo

Bitwise operator performance benefits

Traditional Bitwise

95 (113)

bitmap specific filters such as PixelBender, and especially with complex and large

graphical content, performance benefits. [64]

There are many ways to optimize the drawing of content in Flash. One good tool is to

use the redraw regions debug option to visibly observe what regions of the screen are

“dirty” and redrawn on every frame. Even though content is opaque, if it is on the dis-

play list it can still trigger hit tests and other runtime performance hogging tests as long

as its visibility is set to true. One can also set the platform level toggle on movie quality

to a lower amount; this affects antialiasing, smoothing of scaled bitmaps, fonts and

animations.

Other performance heavy operations in native Flash drawing are the use of filters and

blend modes. Filters such as drop shadow and blur need to be applied on the whole

object they affect during render time, unless specifically set to cached. Efficient use of

cached effects and minimizing the amount of alpha blending can also help rendering

performance, especially on lower end hardware.

Most vector content in Flash can be cached as bitmaps and reused, even changing the

objects x and y coordinates does not affect the caching benefit. However caching can-

not be used for any content that needs to be redrawn every frame, such as the crea-

tures in CCA.

In CCA both bitmap and vector based drawing methods were studied. The target was

to find which would be most ideal for rendering the CCA creatures. Vector based ren-

dering gives one smooth controlled geometrics in a fully scalable way, enabling graph-

ical fidelity and an ease of creation. As opposed to vectors, bitmap rendering is purely

pixel based, and as rendering goes, it is typically significantly faster than vector based

rendering. Handling bitmap rendering is somewhat trickier than doing it in vectors, es-

pecially if you go with just pixel painting, since you need to manually take into account

antialiasing and corners of the creatures

Since the creatures are plotted from mathematical formulas into vector shapes in CCA

as the basis of rendering, using pure vector based rendering on the Flash platform lev-

el was an obvious choice. In the initial engine tests, there were no significant increases

in performance from using bitmap based rendering over vector based rendering, as

most of the CPU power went into path finding and creature calculations.

96 (113)

8 Results and future implications

8.1 Current situation

After the past two and a half years of development project, CCA is a mature, bug free

platform and currently deployed in clinical trials as well as touring the Science Chang-

ing the World Exhibit. It has proven to be a useful tool for cognitive gaming; in pre-

clinical alpha version testing, users were generally pleased with the tool. There were no

harmful effects or discomfort reported, and 20 users out of 21 found the game appeal-

ing.

Despite the fact that the project got off to a good start, it was a large piece of software

for two people to handle. There were many ideas, presentations and funding rounds to

try and ramp up a company built around it to make it a viable consumer market plat-

form for cognitive gaming, but none of them have succeeded so far.

Regardless of it not being as big as originally hoped it would be at this point, it is a solid

work of engineering, user experience, science and hard work. CCA has performed well

under tests and clinical trials. It is currently being translated to other languages and has

been developed to be fully multilingual, based on different language resource XML files

that are easily configured via the server interaction. There is a single simple API for

language versioning that can be triggered on any back end call, so users can change

the language at any point during platform use.

After the current clinical trials, there have been rough plans and ideas about the possi-

bilities of reworking the core engine for mobile platforms, as well as ventures into the

world of 3D, but the future of the platform remains open. The online version of CCA can

be found at www.mybraincapacity.com.

8.2 Clients and users

The current version of project CCA is being used mainly in ongoing clinical trials in con-

junction with HermoPharma (www.hermopharma.com), in their amblyopia studies.

There have been plans for a mass market version and an open account creation, but

for now the plans for large scale deployment are on hold.

97 (113)

Possible uses for the project CCA platform range from helping aged people hone their

cognitive abilities to helping the rehabilitation of people after experiencing brain trauma.

It has proven its capability as a cognitive gaming platform, and can be used for accu-

rate user statistics and ongoing analysis of user’s progress, as well as measuring the

effectiveness of drugs, by providing detailed data about gameplay and improvement.

The on-going clinical trial at the moment of writing this Thesis is related to ambylopia,

also known as the lazy eye. A fairly common disorder characterized as vision deficien-

cy in an eye that is physically normal and able. Ambylopia is estimated to affect the

lives of between 1-5% of the population [66]. Hermopharma are in the process of de-

veloping a drug based on antidepressants to prevent or heal damage caused by amby-

lopia (www.ambylopia.fi).

Figure 64. Amblyopia.fi campaign for HermoPharma study [67]

In the trials, project CCA is being used as a measurement and a training program for

the test users to gain accurate information about how the medicine works, and to see if

the training of the affected is efficient in improving results. Figure 64 shows the cam-

paign for the clinical trial. In addition to being used as a measurement device for the

actual clinical trials, a standalone implementation of a single game mode was made to

98 (113)

support testing for one eye at a time. The purpose for this version was to act as a cam-

paign game for people interested in the possibility of amblyopia affecting their lives,

giving them a preview of what the trial was about and to raise interest and awareness

for it.

8.3 Heureka multiplayer version

8.3.1 Introduction

Figure 65. Science Changing The World Exhibition [68]

On top of the main game platform build, we were approached by Heureka

(www.heureka.fi) to do a multiplayer version of the game for a new exhibition called

Science changing the world they were doing in conjunction with 3 other leading science

centers. The exhibition is a testament to science; a playful series of exhibits to interact

with, and learn about new things in science and the ways health, life quality, even the

planet can be improved with scientific methods. The show started at Heureka from

15.4.2010 (Figure 65) up until 15.1.2011. After that it has toured the Museon, the

Hague in 2011, the Cité des sciences, Paris in 2011-2012, and it is in the Pavillion of

Knowledge in Lisbon until 15.7.2013. After Lisbon, the exhibition is up for rent.

What Heureka wanted was an offline version of the rendering engine, with a specific

game type and about 10 different game configurations and creature combinations. It

differed from the main game in a few important aspects; It was not a training schedule

99 (113)

based system, having no server interaction or user accounts, but a pure front end im-

plementation, and it was to be played by up to four people at the same time, competing

in cognition around who achieves the highest score. The game was also in 3 different

languages, and the whole user interface of the game was redone to fit the resolution

and language requirements.

Due to the modular nature of the platform and engine code, it was possible to separate

the rendering engine with a game logic part and implement the new multiplayer re-

quirements without too much trouble on top of the custom version. It was mutually ben-

eficial, as some of the improvements made in the Heureka version ended up being

ported back to the main game platform.

An additional other challenge of the Heureka version was that it was run on a 46” touch

screen on a full high definition television (1920*1080px). That meant that the whole

game area that the game runs on was relatively bigger than the typical CCA platform

game area (around 1280*800px). Because of this it required extensive optimization and

calibration of the points rendering and creature styles to make it perform well enough

for show use.

8.3.2 Multiplayer

The multiplayer mode was a single mode of the N-object capacity test; the game fea-

tured 1 to 5 creatures at the same time on screen, and the users had to react to each

target state of any of the creatures within a set time frame. Each successful reaction

per player was colored with its unique shade of color glow around the creature the re-

action affected to keep it clear on who did the reaction.

100 (113)

Figure 66. Heureka multiplayer version

Example gameplay of the Heureka CCA version can be seen in Figure 66. The game

was played in a customized stand, with the 46” screen facing upwards. All controls for

users were abstracted from the traditional keyboard, and each player had an arcade

style control button to use to react. The custom controls were connected to a keyboard

input, and could be mapped into the CCA Flash application via normal keyboard

events.

In addition to the changes in the game mechanics, the multiplayer mode required its

own user interface. In the multiplayer version, there were between 1 to 4 players, and

the game needed be playable with any number of people between that range. The UI

had to work in four directions, matching the four player slots around the stand.

101 (113)

To enable the users to play at the same time, a separate UI based on the same logic

and graphical design of project CCA was implemented. The UI was built so a separate

instance of for each direction was created and shown based on user participation.

Each side of the game had an initial information screen informing the users about what

they are supposed to do, and the game started by anyone pressing the start button.

The game allowed hot seat style multiplayer, where anyone could jump in during the

game and start reacting to the creatures, albeit coming in later would affect your score

in the end of the game.

Only the players who were active during the game run were shown the game end

screen with detailed information about how they did. In addition to the statistics, a

crown reward system was implemented; the best user was rewarded with a gold crown,

the second player a silver one, 3rd player got a bronze crown and the 4th one had to

settle for nothing.

8.3.3 AIR platform

As opposed to the online version of the main platform, the Heureka version had to be a

standalone installed package, with everything needed inside a single installer file. To

do this with traditional Flash was impossible, and third party extensions were not relia-

ble enough. Luckily Adobe itself had come up with a solution to the problem. Adobe

AIR or the Adobe Integrated Runtime is a wrapper for the Flash player that allows it to

handle native functionality, from file system access to running its own instance. [69]

Adobe AIR enables the use of web standard HTML and Javascript, as well as Ac-

tionscript 3.0/Flash to create native applications for all major desktop environments, as

well as Android, iOS and certain smart TVs. [69] It is widely used in creating casual

games for mobile platforms, as well as a lot of entertainment and ad campaign applica-

tions. Air has full support for Stage 3D OpenGL API for accelerated graphics, as well

as a lot of native integration to iOS and Android services.

Developing for AIR brought about some small changes to the CCA codebase because

it handles certain things like stage events and window events as well as keyboard in-

teraction a bit differently, but all in all around 90% of the code could be ported to AIR

within days. The in-built installer, application visuals such as icons and automatic up-

102 (113)

dating functionality made the AIR version completely stand-alone, and enabled a solid

experience for the people keeping up the show at the various science centers.

8.3.4 Testing, long uptime, automatic start up and maintenance

The biggest issue to solve in the Heureka version was the requirement for the game to

run on its own for a minimum of 16 hours in a row. The game was automatically started

at the beginning of a day, and the whole machine was shut down at the end of a show

day. The application needed to be maintenance free during uptime, and it should be

trustworthy and robust throughout the whole life time of the show.

The approach to the Heureka version required a lot of profiling and optimization. Before

deploying the build in the actual environment, a series of test scripts were implement-

ed. The scripts made the game play itself for a long time, changing the game parame-

ters and reactions to simulate a real user situation. A logging of memory footprint and

performance details was also implemented. These features enabled the testing of the

game before actual deployment.

But as optimizations go, it is rarely beneficial to test only in development environments,

as was the case in Heureka. Using the scripts the game seemed to work fine for the

required 16 hours without memory leaks or slowing down, but during the actual show

run, it started to show problems. We kept getting reports that the game randomly

crashes after 2+ hours, depending on how many users have been using it and the rate

of use during the day.

Al lot of time was spent trying to track down what caused this elaborate bug; by the

Flash logs it showed to be running fine, and that memory use was not stacking up and

rendering times were normal. But from the OS point of view, the app slowly ate away at

the memory space allocated and crashed in the end when it had consumed too much

of the system memory.

The reason this fatal bug was not noticed in the internal tests was because the tests

always ran the game to completion, to the end screen, and then began a new round. It

became apparent that the crash happened when time the game was started, but aban-

doned mid-way through without playing it to the end numerous times. (The game had a

103 (113)

timeout function, if it was not played for a bit, it started showing instructions on what it

does and encouraging people to play).

In the end after some serious time spent with the profiler and taking memory snapshots

in different benchmark situations, a memory leak was found. A creature rendering class

in the core engine rendering system was being reset for garbage collection with a call

to not the correct level of inheritance, but the super class of it. This left the game with a

small amount of assets each game creation that weren’t being cleaned up and slowly

started to eat away at the memory available.

This problem had not been found during the main CCA engine development, due to the

fact that the main game was never supposed to be used for more than a maximum of

about an hour at a time. A lesson was learnt here; profiling and being rigorous about

testing the memory footprint is imperative and extremely valuable when creating con-

tinuous running software.

Despite the problems during the development, and the rework needed to create the

Heureka version, it is up and running around Europe at the moment. The branching

was a success, and even if nothing else big will come of the project CCA, at least it got

to educate people around Europe about science and cognition.

8.4 Future

At the writing of this thesis, Matias is doing the clinical trials with HermoPharma, and

the language versioning system enables fast and easy porting to other language areas.

The Heureka version is still circling Europe. The current version is complete, but there

are a few routes that have been pondered about for where to take CCA next.

One obvious platform for brain gaming and cognitive use that appeared during the de-

velopment of the CCA platform and that offers lucrative amount of users and more im-

portantly users that might benefit from the platform is the mobile space, especially the

rise of the tablets. Tablets fit perfectly with the way the project CCA core works, and

could be easily a good place to start spreading out to.

Due to the fact that Flash platform is not available for mobile except for Android, it is

not a viable option for creating the project CCA for mobile. Even though the Air platform

104 (113)

would support building to mobile environments, the computing power required on top of

the managed language would most likely be too high for mobile CPUs. The heavy ren-

dering and calculations required would need a native application to be built for CCA

platform. On the other hand the core of the CCA engine is reasonably easily converted

since it is very mathematics based.

The other way aside from mobile platforms is to evolve the CCA forwards towards the

3D space. The same engine would not work in a similar fashion in 3 dimensions, as it is

currently a very much 2 dimensional solution, but the same ideas and approach could

be viable in 3D. The serious gaming around platforms such as Unity (www.unity.com)

is growing at a significant pace, enabling efficient solutions for beautiful yet useful gam-

ing.

There are some initial steps towards looking into the possibility of building a next ver-

sion of CCA with the Unity engine toolkit. Unity would provide a unified platform for all

native computers, as well as a way into consoles and mobile gaming. Then again the

advances in web standards and the rise of WebGL could enable a remake of CCA with

Javascript and HTML5 Canvas based approach. The future remains open.

105 (113)

9 Conclusions

Cognitive gaming is a rising area of serious gaming. The approach that a brain can be

trained and moulded to perform better at tasks we perceive to be meaningful is a excit-

ing thought. In this day and age efficiency is one of the top most factors working life

focuses on, and the ability to improve not only working methods or tools, but people

themselves provides valuable and genuine possibilities.

With the rising popularity of mobile platforms and the improvements in traditional web,

the focus has shifted from creating features to providing good user experience and

servicing user needs. Going beyond usability, the importance of brand and aesthetics

are also gaining ground in realizing products and experiences in the online world. User

experience matters.

The approach to cognitive game platform building in this thesis is generable to serious

game platforms as a whole. The issues solved relate to common, real world problems

when creating performance heavy online implementations, and provide ways to over-

come obstacles in the creation of good user experience as well as system perfor-

mance. The project approach emphasizes a focus on user experience and solid soft-

ware engineering.

The reference project is a complete cognitive gaming product; a feature rich user expe-

rience oriented platform for measuring attention and working memory. It is based on a

data driven architecture with proper separation of concerns for rendering, game logic

and user interface elements. The modular approach allows good controllability and

modifiability without changing the front end platform code.

The rendering engine provides organic movement and creatures with a natural feel in

endless combinations based on mathematical formulas. It is optimized on the algorith-

mic and micro level to provide pleasing visuals and fast enough rendering for attention

games. Due to the separation of game logic and rendering, as well as the heavy em-

phasis on mathematics in the rendering, the engine is easy to export to different plat-

forms in the future.

The project was a success, and is being used in clinical trials in Finland and Estonia as

well as in the Science Changing the World Exhibit around Europe. User feedback has

106 (113)

been encouraging during the alpha and the current medical trials. The future remains

open, but the direction is towards mobile and tablet use, as well as employing 3D as a

means for more immersed gameplay.

This study and the reference project stand as an example of the viability of modern

web technologies in creating complex serious gaming platforms. It is a testament to the

possibilities of cognitive end user training and serves as a guide on the approaches

necessary to accomplish a successful cognitive gaming project.

107 (113)

References

1 Agile software development with scrum. Ken Schwaber, Mike Beedle, Prentice
Hall, 2002.

2 Silverlight technology stack
http://msdn.microsoft.com/en-us/library/bb404713.aspx

Accessed 27.12.2012

3 Flash Platform statistics
http://www.adobe.com/products/flashplatformruntimes/statistics.displayTab3.html

Accessed 27.5.2012

4 Silverlight statistics
http://www.statowl.com/silverlight.php?&timeframe=custom|2009-01|2011-01

Accessed 27.5.2012

5 Flash Platform overview
http://www.adobe.com/devnet/flashplatform/articles/flashplatform_overview.html

Accessed 28.12.2012

6 Apple OSX versions and release dates
http://support.apple.com/kb/HT1159

Accessed 28.12.2012

7 Flash Platform technical details
http://www.adobe.com/fi/products/flashplayer/tech-specs.html

Accessed 28.12.2012

8 The Sharp Brains Guide to Brain Fitness: 18 Interviews with Scientists, Practical
Advice, and Product Reviews, to Keep Your Brain Sharp. Alvaro Fernandez,
SharpBrains (April 30, 2009)

9 The Brain That Changes Itself: Stories of Personal Triumph from the Frontiers of
Brain Science. Norman Doidge (Penguin, 2007).

10 The musician’s brain as a model of neuroplasticity.Munte TF, Altenmuller E &
Jannke L Nature Reviews, Neuroscience (2002)

11 Neuroplasticity: Changes in grey matter induced by training. Draganski B, Gaser
C, Busch V, Schuierer G, Bogdahn U & May A Nature (2004)

12 A Cognitive Training Program Designed Based on Principles of Brain Plasticity:
Results from the Improvement in Memory with Plasticity-based Adaptive Cogni-
tive Training Study. Smith et al. Journal of the American Geriatrics Society, April
2009

http://msdn.microsoft.com/en-us/library/bb404713.aspx
http://www.adobe.com/products/flashplatformruntimes/statistics.displayTab3.html
http://www.statowl.com/silverlight.php?&timeframe=custom|2009-01|2011-01
http://www.adobe.com/devnet/flashplatform/articles/flashplatform_overview.html
http://support.apple.com/kb/HT1159
http://www.adobe.com/fi/products/flashplayer/tech-specs.html

108 (113)

13 Immediate and delayed effects of cognitive interventions in healthy elderly: A
review of current literature and future directions. Papp, Walsh, & Sny-der. Alz-
heimer’s & Dementia (2009).

14 Sharp Brains 2012 Market Report
http://www.sharpbrains.com/executive-summary/

Accessed 28.12.2012

15 Lumosity
http://www.lumosity.com/

Accessed 16.12.2012

16 Enhancing visual attention and working memory with a web-based cognitive train-
ing program. Hardy, J. L., Drescher, D., Sarkar, K., Kellett, G., & Scanlon, M.
Mensa Research Journal, 42(2), 13–20 (2011).

http://static.sl.lumosity.com/pdf/hardy_drescher_sarkar_kellet_scanlon_2011.pdf

Accessed 29.12.2012

17 My Brain Solutions
https://www.mybrainsolutions.com/

Accessed 29.12.2012

18 Nintendo Annual Report 2011
http://www.nintendo.co.jp/ir/pdf/2011/annual1103e.pdf

Accessed 29.12.2012

19 "Nintendo brain-trainer 'no better than pencil and paper'. Adam Sage London:
Times Online (January 2009)
http://www.thetimes.co.uk/tto/technology/article1862089.ece

Accessed 29.12.2012

20 Is it worth going to the mind gym? Lawton, Graham. New Scientist (01-12-2008)

21 Cognitive Neuroscience: The Biology of the Mind Gazzaniga, Michael S.; Ivry,
Richard B.; Mangun, George R. 2nd edition (2009)

22 Executive functions and their disorders. Elliot R. British Medical Bulletin (2003).
http://bmb.oxfordjournals.org/content/65/1/49.full.pdf+html

Accessed 30.12.2012

23 Game Engine Architecture. Jason Gregory & Jeff Lander. A K Peters (July 10,
2009)

http://www.sharpbrains.com/executive-summary/
http://www.lumosity.com/
http://static.sl.lumosity.com/pdf/hardy_drescher_sarkar_kellet_scanlon_2011.pdf
https://www.mybrainsolutions.com/
http://www.nintendo.co.jp/ir/pdf/2011/annual1103e.pdf
http://www.thetimes.co.uk/tto/technology/article1862089.ece
http://bmb.oxfordjournals.org/content/65/1/49.full.pdf+html

109 (113)

24 Unity 3D
http://unity3d.com/

Accessed 30.12.2012

25 CryEngine Version III
http://mycryengine.com/

Accessed 30.12.2012

26 Unreal Engine
http://www.unrealengine.com/en/features/

Accessed 30.12.2012

27 Ogre 3D
http://www.ogre3d.org/

Accessed 30.12.2012

28 No More Reinventing the Virtual Wheel: Middleware for Use in Computer Games
and Interactive Computer Graphics Education. Anderson, Eike. Eurographics
2010 - Education Papers. Pages 33 - 40.
http://www.academia.edu/237502/No_More_Reinventin_g_the_Virtual_Wheel_Mi
ddle-
ware_for_Use_in_Computer_Games_and_Interactiv_e_Computer_Graphics_Edu
cation

Accessed 30.12.2012

29 Bink Video
http://www.radgametools.com/bnkmain.htm

Accessed 30.12.2012

30 Havoc physics
http://www.havok.com/products/physics

Accessed 30.12.2012

31 Scaleform
http://gameware.autodesk.com/scaleform

Accessed 30.12.2012

32 Use of Unity in serious games and virtual reality
http://blogs.unity3d.com/2012/04/26/unity-authored-projects-win-top-honors-at-
serious-games-and-virtual-reality-conferences-2/

Accessed 30.12.2012

33 Diablo II
http://us.blizzard.com/en-us/games/d2/

http://unity3d.com/
http://mycryengine.com/
http://www.unrealengine.com/en/features/
http://www.ogre3d.org/
http://www.academia.edu/237502/No_More_Reinventin_g_the_Virtual_Wheel_Middleware_for_Use_in_Computer_Games_and_Interactiv_e_Computer_Graphics_Education
http://www.academia.edu/237502/No_More_Reinventin_g_the_Virtual_Wheel_Middleware_for_Use_in_Computer_Games_and_Interactiv_e_Computer_Graphics_Education
http://www.academia.edu/237502/No_More_Reinventin_g_the_Virtual_Wheel_Middleware_for_Use_in_Computer_Games_and_Interactiv_e_Computer_Graphics_Education
http://www.academia.edu/237502/No_More_Reinventin_g_the_Virtual_Wheel_Middleware_for_Use_in_Computer_Games_and_Interactiv_e_Computer_Graphics_Education
http://www.radgametools.com/bnkmain.htm
http://www.havok.com/products/physics
http://gameware.autodesk.com/scaleform
http://blogs.unity3d.com/2012/04/26/unity-authored-projects-win-top-honors-at-serious-games-and-virtual-reality-conferences-2/
http://blogs.unity3d.com/2012/04/26/unity-authored-projects-win-top-honors-at-serious-games-and-virtual-reality-conferences-2/
http://us.blizzard.com/en-us/games/d2/

110 (113)

Accessed 30.12.2012

34 Minecraft
https://minecraft.net/

Accessed 30.12.2012

35 Borderlands 2
http://www.borderlands2.com/us/

Accessed 30.12.2012

36 Quality of experience, Alben (1996)
http://mx1.albenfaris.com/downloads/pdf/quality.pdf

Accessed 31.12.2012

37 The Nielsen-Norman group
http://www.nngroup.com/

User Experience definition by NN group
https://www.nngroup.com/about/user-experience-definition

NN group response times article
http://www.nngroup.com/articles/response-times-3-important-limits/

Accessed 31.12.2012

38 User Experience Whitepaper
http://www.allaboutux.org/files/UX-WhitePaper.pdf

Accessed 31.12.2012

39 Evaluating User Experience in Games: Concepts and Methods. Chapter 3: Pre-
cence, Involment and Flow in Digital Games. Regina Bernhaupt.(ed.) (2010)

40 A History of Graphic Design. Philih B. Meggs. (1983)

41 The Elements of Typographic Style. Robert Bringhurst. 3rd edition (2004).

42 The W3C Working Draft for CSS fonts module level 3
http://www.w3.org/TR/css3-fonts/

Accessed 02.01.2013

43 Adobe Myriad Pro
http://www.adobe.com/type/browser/pdfs/MyriadPro.pdf

Accessed 22.09.2012

44 A Practical Guide to Designing for the Web. Mark Boulton (2009)

https://minecraft.net/
http://www.borderlands2.com/us/
http://mx1.albenfaris.com/downloads/pdf/quality.pdf
http://www.nngroup.com/
https://www.nngroup.com/about/user-experience-definition
http://www.nngroup.com/articles/response-times-3-important-limits/
http://www.allaboutux.org/files/UX-WhitePaper.pdf
http://www.w3.org/TR/css3-fonts/
http://www.adobe.com/type/browser/pdfs/MyriadPro.pdf

111 (113)

45 Gestalt Principles Applied in Design
http://sixrevisions.com/web_design/gestalt-principles-applied-in-design/

Accessed 02.01.2013

46 StatCounter Global Online Statistics
http://gs.statcounter.com/#resolution-eu-monthly-200903-201301

Accessed 14.01.2013

47 A List Apart – Responsive Web Design. Ethan Marcotte (May 25, 2010).
http://www.alistapart.com/articles/responsive-web-design/

Accessed 02.01.2013

48 A feature-integration theory of attention. Anne Treisman and Garry Gelade. Cog-
nitive Psychology, Vol. 12, No. 1, pp. 97–136. (1980)

49 Figure-ground perception
http://www.scholarpedia.org/article/Figure-ground_perception

Accessed 17.1.2013

50 The Illusion of Life: Disney Animation. Thomas, Frank; Ollie Johnston Hyperion
(1981, reprint 1997).

51 Timing for Animation. Whitaker, Harold; John Halas. Focal Press (2002).

52 Robert Penner's Programming Macromedia Flash MX, chapter 7. Robert Penner.
(October 24, 2002)
http://www.robertpenner.com/easing/penner_chapter7_tweening.pdf

Accessed 02.01.2013

53 Tweener easing transitions plot
http://hosted.zeh.com.br/tweener/docs/en-us/misc/transitions.html
‘
Accessed 02.01.2013

54 Greensock animation platform V 12
http://www.greensock.com/v12/

Accessed 03.01.2013

55 LabVIEW product site
http://sine.ni.com/np/app/main/p/docid/nav-104/lang/fi/

Accessed 03.01.2013

56 XML Specification
http://www.w3.org/TR/REC-xml/

Accessed 04.01.2013

http://sixrevisions.com/web_design/gestalt-principles-applied-in-design/
http://gs.statcounter.com/%23resolution-eu-monthly-200903-201301
http://www.alistapart.com/articles/responsive-web-design/
http://www.scholarpedia.org/article/Figure-ground_perception
http://www.robertpenner.com/easing/penner_chapter7_tweening.pdf
http://hosted.zeh.com.br/tweener/docs/en-us/misc/transitions.html
http://www.greensock.com/v12/
http://sine.ni.com/np/app/main/p/docid/nav-104/lang/fi/
http://www.w3.org/TR/REC-xml/

112 (113)

57 Ecmascript for XML (E4X) specification
http://www.ecma-international.org/publications/standards/Ecma-357.htm

Accessed 04.01.2013

58 Game Coding Complete, 4th edition. Mike McShaffry & David Graham Course
Technology PTR; 4 edition (March 5, 2012)

59 Adobe Actionscript 3 BezierSegment definition
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/fl/motion/Be
zierSegment.html

Accessed 13.01.2013

60 Continuous Bezier path with AS3
http://www.cartogrammar.com/blog/actionscript-curves-update/

Accessed 13.01.2013

61 Ken Perlin on Perlin Noise
http://www.noisemachine.com/talk1/

Accessed 13.01.2013

62 Video Game Optimization. Eric Preisz. Course Technology PTR. (1st edition
March 1, 2010)

63 AS3 Vector vs Array
http://jacksondunstan.com/articles/636

Accessed 16.1.2013

64 Adobe Flash Platform Optimization
http://help.adobe.com/en_US/as3/mobile/flashplatform_optimizing_content.pdf

Accessed 16.1.2013

65 Bitwise operators in AS3, speed and examples
http://lab.polygonal.de/?p=81

Accessed 17.1.2013

66 Amblyopia: Prevalence, Natural History, Functional Effects and Treatment. .
Webber, JL; Wood, Joanne. Clinical and Experimental Optometry 88 (6): 365–
375 (2005).

67 Amblyopia campaign
http://www.amblyopia.fi/

Accessed 18.1.2013

http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/fl/motion/BezierSegment.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/fl/motion/BezierSegment.html
http://www.cartogrammar.com/blog/actionscript-curves-update/
http://www.noisemachine.com/talk1/
http://jacksondunstan.com/articles/636
http://help.adobe.com/en_US/as3/mobile/flashplatform_optimizing_content.pdf
http://lab.polygonal.de/?p=81
http://www.amblyopia.fi/

113 (113)

68 Science changing the world exhibit information
http://www.sciencechangingtheworld.net/index.php?option=com_content&view=a
rticle&id=347%3Apay-attention&catid=53%3Alm&Itemid=212&lang=en

Accessed 27.5.2012

69 Adobe Air
http://www.adobe.com/fi/products/air.html

Accessed 19.1.2013

http://www.sciencechangingtheworld.net/index.php?option=com_content&view=article&id=347%3Apay-attention&catid=53%3Alm&Itemid=212&lang=en
http://www.sciencechangingtheworld.net/index.php?option=com_content&view=article&id=347%3Apay-attention&catid=53%3Alm&Itemid=212&lang=en
http://www.adobe.com/fi/products/air.html

	1 Introduction
	2 Research problem background: Project CCA
	2.1 Introduction and history
	2.2 User walkthrough
	2.3 Target user group
	2.4 Project lineage
	2.5 Technology choices
	2.6 Challenges and key concepts

	3 Cognitive gaming
	3.1 History and definition
	3.2 Current market situation and future
	3.3 Products and competition
	3.4 Common test types
	3.5 Game engines
	3.5.1 Static game engines
	3.5.2 Dynamic game engines

	4 The User Experience approach
	4.1 Definition
	4.2 User experience in gaming
	4.3 Unified visual style
	4.3.1 Typography
	4.3.2 Composition and the use of space
	4.3.3 Elements
	4.3.4 Colors

	4.4 Motion and visual narrative
	4.4.1 Timing and flow
	4.4.2 Tweening and easing algorithms
	4.4.3 Movement patterns
	4.4.4 Overrides in code based animation

	4.5 Visualization of data

	5 The CCA project platform
	5.1 General architecture
	5.2 Client server communication and data management
	5.3 Game generation
	5.4 Game rendering event
	5.5 User reaction tracking

	6 Rendering engine
	6.1 Basic principles
	6.2 Creature shape rendering
	6.2.1 Overview of creature rendering
	6.2.2 Creature formulas
	6.2.3 Path wrapping

	6.3 Path creation and path finding
	6.3.1 Continuous Bezier curves
	6.3.2 Path interpolation and frame path
	6.3.3 Path finding and target location generation

	6.4 Background rendering
	6.4.1 Perlin noise
	6.4.2 Luminance in path generation
	6.4.3 Treshholding Perlin Noise for pattern backgrounds

	7 Performance optimization
	7.1 Basic principles
	7.2 Platform optimization
	7.2.1 Approach
	7.2.2 Creature optimization

	7.3 Flash specific optimization
	7.3.1 Overview
	7.3.2 Function calls and language specific libraries
	7.3.3 Bitwise operators
	7.3.4 Drawing solutions

	8 Results and future implications
	8.1 Current situation
	8.2 Clients and users
	8.3 Heureka multiplayer version
	8.3.1 Introduction
	8.3.2 Multiplayer
	8.3.3 AIR platform
	8.3.4 Testing, long uptime, automatic start up and maintenance

	8.4 Future

	9 Conclusions
	References

