

TECHNOLOGY AND TRANSPORT

Industrial Management

BACHELOR’S THESIS

INTEGRATING MASTER DATA APPLICATION IN A GLOBAL ENTERPRISE

Author: Juhana Murtola
Supervisor: Juhani Rajamäki
Instructor: Mikko Strömberg

Approved: November 26, 2009 Juhani Rajamäki

Senior Lecturer

ABSTRACT

Name: Juhana Murtola

Title: Integrating Master Data Application in a Global Enterprise

Date: November 26, 2009 Number of pages: 65 p. + app. 17 p.

Degree Programme:

Industrial Management

Instructor: Juhani Rajamäki, Senior Lecturer

Supervisor: Mikko Strömberg, IT Manager, Konecranes

An increasing number of applications are used by organizations to support their business

processes. All these enterprise applications store similar information regarding business

objects, such as customers or suppliers. The information may thus become fragmented as

it is distributed across the organization. Therefore separate applications need to be inte-

grated to share information with each other. Properly functioning integrations enable com-

prising a unified view of the core business objects, the master data.

Integrating stand-alone applications is usually not a simple task as they may share noth-

ing in common. This study introduces different ways of approaching such a complicated

issue. The ultimate goal was to create instructions on how to integrate the master data

application of Konecranes with other enterprise applications within the company. The final

outcome is a step by step roadmap that can be applied to suit varying integration projects.

Instead of just considering the concrete implementation of integrations, this study also

discusses the gained benefits. It is proved how integrations contribute to the platform ar-

chitecture of Konecranes. Another important aspect is explaining the relationship between

business reporting and master data management. All in all, this study provides a glance at

how integrations can be utilized to rationalize enterprise architecture.

Keywords: Enterprise Application Integration, middleware, Master Data Manage-

ment, Business Intelligence

TIIVISTELMÄ

Työn tekijä: Juhana Murtola

Työn nimi: Master data – järjestelmän integrointi globaalissa yrityksessä

Päivämäärä: 26.11.2009 Sivumäärä: 65 s. + 17 s. liitteitä

Koulutusohjelma:

Tuotantotalous

Työn valvoja: lehtori Juhani Rajamäki

Työn ohjaaja: IT-päällikkö Mikko Strömberg, Konecranes

Nykypäivän organisaatioissa on käytössä yhä kasvava määrä erilaisia järjestelmiä liike-

toimintaprosessien tarpeisiin. Näissä järjestelmissä ylläpidetään hyvin samankaltaista

liikekumppaneihin liittyvää tietoa. Tämä tieto on kuitenkin usein puutteellista ja se on ja-

kautunut epätasaisesti ympäri organisaatiota. Siksi erillisten järjestelmien on kyettävä ja-

kamaan tietoa keskenään. Integraatioiden avulla näiden järjestelmien sisältämästä tiedos-

ta on mahdollista koostaa yhdenmukainen näkymä, jota kutsutaan master dataksi.

Itsenäiset järjestelmät voivat olla keskenään hyvin erilaisia, joten niiden integrointi on

usein vaikeata. Tämä tutkimus esittelee erilaisia lähestymistapoja tähän aiheeseen. Pää-

tavoitteena oli luoda suunnitelma Konecranesin master data – järjestelmän integroimiseksi

muiden yhtiössä käytössä olevien järjestelmien kanssa. Lopputuloksena on yleispätevä

ohjeistus, jossa käydään askel askeleelta läpi integraatioprojektin vaiheet.

Tämä tutkimus käsittelee järjestelmäintegraatioiden käytännön toteutustapojen lisäksi

myös niistä saavutettavia hyötyjä. Tutkimuksessa osoitetaan, miten Konecranesin arkki-

tehtuurimallissa hyödynnetään integraatioita. Toisekseen siitä käy ilmi, miten liiketoiminta-

raportointi ja master datan hallinta ovat erottamaton osa toisiaan. Kaiken kaikkiaan tutki-

mus tarjoaa katsauksen integraatioiden hyödyntämisestä organisaatioiden kokonaisarkki-

tehtuurissa.

Avainsanat: järjestelmäintegraatio, väliohjelmistot, master datan hallinta, liiketoi-

mintatiedon hallinta

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

TABLE OF FIGURES

INTRODUCTION 1

1.1 Background 1

1.2 Objectives 2

1.3 Scope 2

1.4 Structure 3

1.5 Client 4

2 BUSINESS INTELLIGENCE 6

2.1 Enterprise Data 6

2.2 Master Data Management 7

2.3 Data Warehousing 8

2.4 Application Integration and Business Intelligence 9

3 ENTERPRISE APPLICATION INTEGRATION 11

3.1 Application Integration Approaches 11

3.1.1 Information-Oriented Application Integration 11

3.1.2 Business Process Integration-Oriented Application Integration 14

3.1.3 Service-Oriented Application Integration 15

3.1.4 Portal-Oriented Application Integration 16

3.2 Middleware and Middleware Models 18

3.2.1 Logical Models 18

3.2.2 Physical Models 21

3.3 Types of Middleware 23

3.3.1 Remote Procedure Calls 24

3.3.2 Message-Oriented Middleware 25

3.3.3 Distributed Objects 26

3.3.4 Database-Oriented Middleware 27

3.3.5 Transactional Middleware 28

4 THE PLATFORM ARCHITECTURE OF KONECRANES 31

4.1 Data Repository Layer 33

4.2 Application Layer 35

4.3 Data Warehouse Layer 37

4.4 Presentation Layer 39

4.5 Integration Layer 40

5 ROADMAP FOR MASTER DATA APPLICATION INTEGRATION 44

5.1 Organization 46

5.2 Documentation 48

5.3 Data Cleansing 49

5.4 Design 51

5.5 Implementation 54

5.6 Testing 57

5.7 End-User Training 58

5.8 Launch 60

6 DISCUSSION AND CONCLUSIONS 61

REFERENCES 64

APPENDICES

TABLE OF FIGURES

Figure 1. Master data distribution. 7

Figure 2. Data refining chain. 9

Figure 3. Information-Oriented Application Integration. 12

Figure 4. Data replication. 12

Figure 5. Data federation. 13

Figure 6. Interface processing. 14

Figure 7. Business Process Integration-Oriented Application Integration. 14

Figure 8. Service-Oriented Application Integration. 16

Figure 9. Portal-Oriented Application Integration. 17

Figure 10. The point-to-point model. 19

Figure 11. The integration hub model. 20

Figure 12. Queued communication. 22

Figure 13. The model of publishing and subscribing. 22

Figure 14. The Principle of Remote Procedure Calls. 24

Figure 15. Message-Oriented Middleware. 25

Figure 16. Distributed object technology. 26

Figure 17. The Model of Call Level Interface. 28

Figure 18. Transactional middleware. 29

Figure 19. The platform architecture of Konecranes. 32

Figure 20. An example of trading partner record in GCM. 34

Figure 21. A sample of Konecranes application portfolio. 36

Figure 22. Cognos reporting samples. 39

Figure 23. Konecranes integration layer high-level overview. 41

Figure 24. WebSphere Message Broker overview. 42

Figure 25. GCM integration project template. 45

1

INTRODUCTION

Large organizations can have a number of applications meant to fulfil certain

business needs. There may be their own distinct systems for supply chain

management, customer relationship management, human resources, and mas-

ter data management, just to point out a few examples. Typically, it is not ap-

propriate to replace them with just one major enterprise resource planning

software. Still, stand-alone applications should be able to share information

with other parties. This study discusses application integrations that enable

separate systems to communicate with each other.

1.1 Background

The information of applications in large organizations is often not synchro-

nized and is distributed across the organization. Master Data Management

(MDM) refers to the management of core information, such as information

about customers, suppliers, or products. MDM aims to bring this information

together so that all details about customer A or product B, for example, can

be found in one place. MDM has become increasingly popular as it enables

the organization to understand business entities in a more complete and holis-

tic manner.

Data integration is a fundamental requirement for any successful MDM im-

plementation, both for moving the data and ensuring its quality. Data integra-

tion consists of several technologies. These technologies do basically two

types of things; they either move information from one place to another or

they assure the validity of the data. This paper is concentrated on the first-

mentioned aspect.

Enterprise Application Integration (EAI) is the integration of various appli-

cations so that they are able to share information and processes. EAI supports

moving information by allowing applications to communicate with each

other using standard interfaces. From the MDM perspective, EAI can be used

to gather data from several applications and merge it into a single database, a

master data repository. This paper mainly focuses on EAI itself.

2

1.2 Objectives

The main objective for this study is to create a roadmap for an application in-

tegration project. It should include specific instructions on how to integrate

Konecranes’ master data application Global Company Master (GCM) with

any enterprise application that is used within the company. GCM is used for

storing and distributing master data across the organization. In practice, the

integration roadmap describes a set of steps that needs to be taken during a

well-designed integration project.

In addition to the main objective, there are also few secondary objectives set

for this paper. It is supposed to give an overview of application integration

and especially master data application integration. A lot of research has been

done regarding application integration in general but there is not too much in-

formation on what the special characteristics of a master data application in-

tegration project are. Another objective is to represent different patterns and

technologies to approach application integration with. It is possible to recon-

sider and enhance the current integration environment on the basis of that re-

search. It may appear that some things could be done more efficiently. Un-

derstanding alternative solutions makes it easier to design the whole integra-

tion architecture. The third secondary objective is to give a high-level repre-

sentation of the current platform architecture of Konecranes.

1.3 Scope

In most sources, the term EAI is used when talking about organizations’ in-

ternal application integrations. Sometimes, however, the A2A (Application-

to-Application) integration is referring to the same issue. This is to separate

internal integrations from B2B (Business-to-Business) integrations. B2B in-

tegration means that organization’s application is integrated with a third-

party application in order to share information across organizational bounda-

ries.

The study is focused on internal application integration. As the main goal is

to create integration roadmap for Konecranes’ internal master data solution,

there is no need to examine the special features of B2B integrations in this

3

context. There are many similarities between EAI and B2B integration meth-

ods but this study is written from EAI’s point of view. From now on, EAI is

the abbreviation that is used in this study to describe application integrations.

The theory of this paper emphasizes in introducing general integration design

patterns and approaches, as well as different models and types of middle-

ware. It is also utterly important to understand the basics of MDM to see why

it is applied in the majority of large enterprises. Together with Data Ware-

housing (DW), MDM is the basis of Business Intelligence (BI) solutions.

Bundling up all those terms proves why integrations are built in the first

place.

Technical details are not included in the theory sections of this study. A

closer look is taken at some integration tools and technologies but integra-

tions are mainly examined at more general level. When illustrating Kone-

cranes’ integration environment, technical elements come up more clearly.

The purpose is to write documentation on how the system environment has

been implemented and what products have been used.

1.4 Structure

Sections 2 and 3 form the theoretical basis of this study. These two sections

include information about all buzzwords that are under discussion throughout

the paper and link them together tightly. Section two represents the principles

of BI and different ways of implementing it. When utilized correctly, BI has

several business benefits. To achieve those benefits, one must know how to

gather and store data and how to assure its quality. That is why DW and

MDM are important parts of BI and thereby this study.

Section 3 is the most central part of theory in this study. EAI enables organi-

zations’ stand-alone applications to share information with each other. First,

EAI needs to be defined to understand what it actually stands for. When the

meaning is clear, it is investigated why EAI is applied in many organizations,

what is required to make it work, and what are the challenges it addresses.

There are several approaches to EAI. Section 3 focuses on introducing and

comparing those approaches. It is not always obvious how to start building

4

integration architecture. Thus, the characteristics of different EAI approaches

need to need to be known. In addition to the theory of EAI, section 3 also

concentrates in middleware, the software that facilitates the requests between

integrated applications. Middleware models and different types of middle-

ware are introduced to be familiar with the technology that enables EAI.

Middleware selection is an essential part of application integration design and

cannot be bypassed.

Sections 4 and 5 form the empirical part of the study. In section 4, the current

platform architecture of Konecranes is illustrated. It is examined what layers

belong to it and how they are connected to the other ones. Other important

questions are what Konecranes expects to gain with its MDM solution and

why it is integrated with other applications. It is also assessed what are the

EAI approaches that Konecranes is using and how the middleware models fit

into the big picture. Section 5 is the main output of this study. It depicts the

exact steps that need to be taken in order to integrate GCM with any enter-

prise application within Konecranes application portfolio. Even though the

roadmap is universally applicable, it still aims for describing the steps in de-

tail.

Section 6 is the summary of the study. It summarizes the project and evalu-

ates how the contents match with what was planned in the beginning. The

outcome of the study is matched against the main objective and the secondary

objectives.

1.5 Client

Konecranes is a Finnish company specialized in the operations of the manu-

facture and service of cranes. It is a world-leading lifting equipment manu-

facturer that serves mostly manufacturing and process industries as well as

shipyards and harbours. Nowadays, Konecranes has production facilities and

sales and service locations in 43 countries. (Konecranes Corporation 2009: 6)

Its growth has been fast and several acquisitions have been made in recent

history. The new organizations have been tried to absorb into the parent

5

company as well as possible. Still, some heterogeneity remains in both busi-

ness processes and applications.

The company consists of three business units: Service, Standard Lifting, and

Heavy Lifting. (Konecranes Corporation 2009: 6-7) All business units have

their own system architecture and there is huge variety of applications in use.

Lots of effort has been made to standardize the system structure within the

enterprise and common master data repository is one step towards the correct

direction. To be able to create a consistent view of the business entities and to

attain certain data quality level, all applications have to be integrated with the

master data repository.

This study is written while working in the Integration Services team of Kone-

cranes Group IT unit. The unit acts in the subordination of Konecranes

Headquarters as a common IT service support provider for the whole corpo-

ration. The business units also have their own IT teams and Group IT works

hand in glove with them.

6

2 BUSINESS INTELLIGENCE

Many organizations have faced a situation where basic enterprise applica-

tions are not able to fulfil demanding information analysis and reporting

needs. There is a huge amount of data available which has to be controlled to

make the most out of it in decision-making. The data of enterprise applica-

tions is stored behind the boundaries of business units and applications. The

solution is to gather all data into a separate centralized database where vari-

ous analysis and reporting tools can utilize it. (Hovi et al. 2009: IX-XI)

BI systems are designed to help organizations understand their operations and

key business measurements. This information is used to make decisions on

organizational direction. (Oracle Corporation 2008: 1) There are three foun-

dations to a complete BI solution. The first one is the MDM solution for en-

suring that quality data under enterprise applications and hierarchies is sup-

plied to the data warehouse. Secondly, there is the data warehouse itself for

holding the operational history. The third foundation is formed by BI tools

that utilize the data warehouse and the master data repository to get clean au-

thoritative information to everyone in the organization that needs it. (Oracle

Corporation 2008: 12)

This section introduces the different types of data that an organization holds

to explain why different methods are needed to control them. The roles of

MDM and DW are also discussed and especially how they connect with the

complete BI solution.

2.1 Enterprise Data

An organization has three types of actual business data: master data, transac-

tional data, and analytical data. The master data represents the business ob-

jects that are shared across several enterprise applications. The transactions

are executed around these business objects. Master data does not include any

information regarding transactions. It consists solely of basic information

such as company name, address, VAT number, and phone number. (Oracle

Corporation 2008: 1-2)

7

An organization’s operations are supported by applications that automate key

business processes. These include areas such as sales, order management,

manufacturing, and purchasing. The enterprise applications require enormous

amount of data to function properly. In addition to the data about the objects

that are involved in transactions, the applications also need transaction data

itself. For example, the transactional data can be the time, place, and price of

a sale transaction. (Oracle Corporation 2008: 1-2)

The analytical data is used to support the organization’s decision-making.

Customer buying patterns are analyzed and suppliers are categorized, based

on analytical data. This data is stored in large data warehouses that are de-

signed to support heavy queries. (Oracle Corporation 2008: 1-2)

2.2 Master Data Management

The master data is some of the most valuable information in an organization.

It represents core information about the business; customers, suppliers, and

products, for example. However, the master data is often kept in many over-

lapping systems and it lacks of quality. Fixing poor data quality at its source

and managing constant change is what MDM is all about. MDM is a modern

method to eliminate poor data quality under heterogeneous IT application

landscapes. MDM refers to the disciplines, technologies and solutions that

are used to create and maintain consistent and accurate master data for all

stakeholders across the organization. (Dreibelbis et al.:2008) In figure 1,

master data repository distributes master data to connected parties.

Figure 1. Master data distribution.

8

The MDM data model is unique in that it represents a superset of all ways

master data has been defined by all attached applications. It holds all neces-

sary hierarchical information, all attributes needed for duplicate removal and

prevention, as well as cross-reference information for all attached enterprise

applications. Hierarchy information is invaluable for proper rollup of aggre-

gate information in the BI tools. MDM holds the official hierarchy informa-

tion used by the enterprise applications. An important part of an MDM solu-

tion is mechanism for finding duplicate records. A primary technique is to

configure a rules engine to find potential matches using a large number of at-

tributes. MDM also holds the organizational cross-reference information for

enterprise applications. It maintains the ID of every connected system and at-

taches them to the ID of the particular master data object. When the data

warehouse uses the master cross-reference data, it correctly combines the

separate entries for accurate reconciliation. This is the key for accurate re-

porting and analysis. If the data is not recognized as the same entity to the BI

tools, it can lead to misleading results. (Oracle Corporation 2008: 4-7)

2.3 Data Warehousing

In many organizations, the central problem of data management is that the

data is fragmented across enterprise applications. Also, the data may not have

been mapped and people are not fully aware of what each field in a database

consist of. It is usual that there is not any common data model of the data

content of different enterprise applications. The data fragmentation makes it

difficult to create reports and analyses on the basis of the data in several sepa-

rate applications. They are usually not easily connectable with each other and

the general view is not clear enough. (Hovi et al. 2009: 5-6)

To get full advantage of the data in enterprise applications, it is necessary to

have an own separate database for reporting and analysis purposes. This da-

tabase is called data warehouse. It supports BI tools especially well if the da-

tabase is particularly designed and built only for this use. Getting detailed re-

9

ports out of the raw data in enterprise applications requires well-tuned refin-

ing chain as illustrated in figure 2. (Hovi et al. 2009:14-15)

Figure 2. Data refining chain.

The first step is to modify the extract of raw data from enterprise applica-

tions, transform it into a suitable format, and load it into a data warehouse.

This procedure is called an Extract, Transform, Load (ETL) process. When

the data is in the data warehouse in consistent format, the BI tools are able to

create reports and analyses on its basis. (Hovi et al. 2009:14-15)

2.4 Application Integration and Business Intelligence

A comprehensive and unified operating mode is the main target of a BI sys-

tem. That is why enterprise applications cannot be used in isolation. Building

a corporate-wide EAI infrastructure requires the integration of many different

enterprise applications. EAI is essentially the ability to communicate with all

the applications and data sources across the organization. Such integration

supports unified views of information and lets end-users update information

in real-time across systems. Decision-makers can view information at a

global level being sure that one application’s information is synchronized

with the rest of the organization’s applications. Using EAI as the layer of

glue attached to each application provides an interface from each application

to an external integration system. This approach guarantees the appropriate

information to be forwarded to the BI system. (Thierauf 2001: 157-158)

Applications should not only be able to react to their environment but also to

affect their environment in a proactive way. These applications within a BI

10

system should help decision-makers change the ways of working and to rein-

vent the organization if necessary. For enterprise applications, this means be-

ing able to share information in real-time. Solutions must give decision-

makers the capability to analyze information and draw conclusions based on

this information. As organizations use EAI technologies to link previously

stand-alone applications the opportunity to implement real-time capabilities

increases significantly. The real-time response provides decisions-makers

with a better understanding and insight into their operations. (Thierauf 2001:

159)

11

3 ENTERPRISE APPLICATION INTEGRATION

Many organizations are using an increasing number of applications and ser-

vices to solve specific business problems. Usually, these applications and

services have been built over a long period of time to face new business

needs that were identified. Consequently, they probably were written by dif-

ferent people using different languages and technologies, reside on different

hardware platforms, use different operating systems, and provide very differ-

ent functionality. Now, organizations are facing the challenge of providing a

method by which these applications can work together to address business

goals that are constantly evolving. Many applications may have very little in

common at all, resulting in isolated functionality and multiple instances of

the same data. (Microsoft Corporation 2003: 1-3)

3.1 Application Integration Approaches

Application integration is a combination of problems. Each organization has

its own set of integration issues that must be solved. Thus, it is often difficult

to find a single technological solution set that can be applied universally.

That is why each application integration solution requires different ap-

proaches.

Approaches to application integration vary significantly but some general

categories can be defined: Information-Oriented Application Integration,

Business Process Integration-Oriented Application Integration, Service-

Oriented Application Integration, and Portal-Oriented Application Integra-

tion. This subsection concentrates on these four application integration ap-

proaches.

3.1.1 Information-Oriented Application Integration

Most application integration projects are focused on Information-Oriented

Application Integration (IOAI). It is the basis of application integration as it

provides a simple mechanism to exchange information between two or more

systems. IOAI allows information to move between source and target sys-

tems. The data could come for example from a database, an Application Pro-

12

gramming Interface (API) or a peripheral device. It is important to under-

stand that IOAI deals with simple information instead of processes or appli-

cation services. (Linthicum 2003: 25)

Figure 3. Information-Oriented Application Integration.

Figure 3 illustrates the basic model of IOAI. Data is simply transferred from

one application to another. The information-oriented approach is the correct

solution in many cases. Accessing information within databases and applica-

tions is a relatively easy task. It can be done with few changes to the applica-

tion logic or database structure which is a major asset. Even though IOAI is

quite straightforward it is not always that simple. Migrating data from one

system to another requires detail understanding of all integrated systems, and

application semantics make this problem even more complex. The semantics

in one system are not usually compatible with other systems and sometimes

they are so different that the systems cannot understand each other. That is

why IOAI is not just about moving information between data stores, but also

managing the differences in schema and content. (Linthicum 2003: 26) There

are three main types of IOAI; data replication, data federation, and interface

processing. They are introduced the next.

Data replication means simply moving data between two or more databases

as shown in figure 4.

Figure 4. Data replication.

Figure 4 shows that data replication is the simple exchange of information

between databases. The basic requirement of database replication is to be

able to handle the differences between database models and schemas by pro-

13

viding the infrastructure to exchange data. The advantages of data replication

are simplicity and low cost. It is easy to implement and the technology is

cheap to purchase and install. However, data replication does not suit to such

environment where methods need to be bound to the data or if methods are

shared along with the data. (Linthicum 2000: 28-29)

In Figure 5, data federation means the integration of multiple databases and

database models into a unified view of the databases.

Figure 5. Data federation.

Data federations are certain kind of virtual enterprise databases that are com-

prised of many physical databases. The advantage of using data moderation

software is that it can bind many different data types into a single model that

supports information exchange. It allows access to any connected database in

the organization through just one interface. (Linthicum 2000: 29-30)

Interface processing solutions use application interfaces to focus on the inte-

gration of both packaged and custom applications. In other words, interface

processing externalizes information out of applications into an application in-

tegration engine, such as integration broker for example as illustrated in fig-

ure 6.

14

Figure 6. Interface processing.

The main advantage of using application interface-oriented products is the ef-

ficient integration of many different types of applications. However, there is

little regard for business logic and methods within the source or target sys-

tems. Those may be relevant to a particular integration issue and application

interface-oriented integration is not the correct option in such case. (Linthi-

cum 2003: 9)

3.1.2 Business Process Integration-Oriented Application Integration

Business Process Integration (BPI) is the mechanism of managing the invo-

cation of processes in the proper order. It supports the management and exe-

cution of common processes that exist between applications.

Business Process Integration-Oriented Application Integration (BPIOAI) in-

troduces another layer of centrally managed processes. The layer is set on the

top of an existing process and data contained within a set of applications as

illustrated in figure 7.

Figure 7. Business Process Integration-Oriented Application Integration.

In brief, BPIOAI is the ability to define a common business process model.

The model can address the sequence, hierarchy, events, execution logic, and

information movement between systems in the same organization. The idea

15

of BPIOAI is to provide a single logical model that covers many applications

and data stores. (Linthicum 2003: 10-12)

BPIOAI is a strategy as much as a technology. It increases organization’s

ability to interact with any number of systems by integrating entire business

processes within the organization. It is important for BPIOAI technology to

be flexible as it deals with many systems using various metadata, platforms,

and processes. Moreover, the BPIOAI must be able to work with several

types of technologies and interface patterns. (Microsoft Corporation 2003:

18-19)

The use of common process model that spans multiple systems in the above

mentioned domains can provide many advantages such as modelling, moni-

toring, optimization, and abstraction. Modelling means the ability to create

common process between computer systems. It enables all information sys-

tems to react in real time to business events. Monitoring allows analyzing all

aspects of the business and organization to determine the current state of the

process. Optimization is the ability to redefine the process at any time in sup-

port of the business. The goal of optimization is to make the process more ef-

ficient. Abstraction hides the complexities of the enterprise applications from

the business users. Business users are then more easily able to work with the

common set of business semantics. (Linthicum 2003: 64-65)

3.1.3 Service-Oriented Application Integration

When using an application service, common business logic or methods are

utilized instead of simply extracting or publishing information to a remote

system. This application service is usually abstracted into another application

known as a composite application as shown in figure 8.

16

Figure 8. Service-Oriented Application Integration.

Service-Oriented Application Integration (SOAI) allows organizations share

not just information, but also common application services. This sharing is

accomplished either by defining shared application services or by providing

the infrastructure for such sharing. Application services can be shared by

hosting them on a central server or by accessing them inter-application. The

goal of SOAI is a composite application made up of many application ser-

vices. (Linthicum 2003: 16-18)

A common set of methods among organization invites reusability that re-

duces the need for overlapping methods and applications. Utilizing the tools

of application integration enables sharing those common methods. Thus, the

applications are integrated so that information can be shared while providing

infrastructure for the reuse of business logic. The downside of SOAI is its

expensiveness. As well as changing application logic, there is the need to

test, integrate, and redeploy the application within the organization. Before

choosing SOAI instead of IOAI for example, organizations must clearly un-

derstand the opportunities and risks. (White 2005: 19-20)

3.1.4 Portal-Oriented Application Integration

Many end-users have to access more than one system to answer a specific

question or to perform a single business function. Portals aggregate informa-

tion from multiple sources into a single user interface or application. (Hohpe

and Woolf 2003: 5-6) The idea is illustrated in figure 9.

17

Figure 9. Portal-Oriented Application Integration.

Portal-Oriented Application Integration (POAI) can be a very effective way

of integrating applications. It allows multiple applications to be presented as

a single cohesive application, often using existing application user interfaces.

(Microsoft Corporation 2003: 23) POAI avoids the back-end integration

problem by extending the user interface of each system to a common user in-

terface, typically a web browser. Thus, it does not directly integrate the ap-

plications or databases within organization. (Linthicum 2003: 99)

 The use of portals to integrate applications has many advantages. Back-end

systems do not have to be directly integrated which decreases the associated

costs and risks. POAI is usually faster to implement than real-time informa-

tion exchange between back-end systems. The technology that enables POAI

is mature enough and has proved to be reliable. There are also lots of case

examples available to learn from existing solutions. POAI also has its disad-

vantages. Information does not flow in real time and it requires human inter-

action. It means that systems do not automatically react to business events.

Another POAI related problem is that information must be abstracted through

a new application logic layer which adds complexity to the solution. The ex-

tra layer can also turn out to be a performance bottleneck. POAI may have

problems with security issues too when organization data is being extended

to users over the web. (Linthicum 2003: 19-22)

18

3.2 Middleware and Middleware Models

The previous section concentrated on different types of EAI approaches. The

next sections are devoted to middleware, the technology that makes EAI pos-

sible. Ruh, Maginnis, and Brown (2000: 52) define middleware as ‘a type of

software that facilitates the communication of requests between software

components through the use of defined interfaces or messages’. Middleware

also provides the environment to manage the requests between those software

components.

Middleware has certain advantages that have made its use popular when im-

plementing EAI. It is able to hide complexities of the source and target sys-

tems. For example, the use of common middleware API hides the details of

APIs, network protocols, and platforms of both the target and the source sys-

tem. Middleware can also serve as an additional layer of security and data in-

tegrity to the data transfer across the organization. (Linthicum 2000: 119-

120)

Middleware models can be categorized into two types: logical and physical.

Those two models and their divisions are discussed the next subsection.

3.2.1 Logical Models

The logical middleware model depicts the concept of how the information

moves throughout the organization. Understanding the content of the logical

model requires comparing point-to-point middleware to integration hub type

of middleware. The communication models need to be also examined.

The simplest way to start building application integration is to use point-to-

point model.

19

Figure 10. The point-to-point model.

In figure 10, it consists of a decentralized structure in which each application

communicates directly with the other applications. However, the limits of

point-to-point model become evident soon when integrations are needed to

built between more than just few applications. In case an organization is us-

ing n number of applications and information needs to be shared between all

of them, the total amount of required connections can be calculated as fol-

lows:
2

)1(−nn
. It is typical for point-to-point integrations that they are cre-

ated one by one as business needs arise. This approach causes consistency

problems because each solution may have been developed by different person

using different technologies. Point-to-point implementations are also difficult

to maintain when changes are directed at the applications. All existing inte-

grations have to be checked separately and if they are poorly documented, no

one may be able to evaluate what has to be reconfigured. (Tähtinen 2005: 65-

66)

The integration hub is an alternative middleware model. It provides a central-

ized structure, in which an integration hub is placed between the applications.

Each application communicates with the hub and not directly with the other

applications as shown in figure 11. Thus, they need only one interface and

connection, the ones that are for the integration hub. (Tieturi Oy 2009: 72-73)

20

Figure 11. The integration hub model.

Scalability is the main advantage of an integration hub environment. In figure

11, a single connection is needed to the integration hub instead of several

others when using point-to-point model. A large-scale organization may have

hundreds of applications and it is impossible to create individual interfaces

for all of them. It is also much easier to modify or update elements if mid-

dleware is based on the centralized model. However, if there are a couple of

applications to be integrated and they are relatively simple, it might be too

expensive or technically difficult to use this approach. (Microsoft Corpora-

tion 2003: 9)

When designing application integration solution, it is important to consider

how the applications communicate with each other. There are two possibili-

ties, synchronous and asynchronous communication. Usually, the final solu-

tion is a combination of the both methods. (Microsoft Corporation 2003: 28)

Synchronous communication is basically a communication where one appli-

cation converses with another. It is an interface between two applications

where an invocation results in a response once the requested processing is

completed. (Kanis 2003: 4) Synchronous communication best suits in such

situations where the application must wait for a reply before it continues to

processing. (Microsoft Corporation 2003: 28)

21

Asynchronous communication simply means that one application sends a

message to another. (Kanis 2003: 4) It usually guarantees better performance

than synchronous communication as applications are not waiting for a re-

sponse all the time. Also, the connection is not continuously maintained

which does not overload the network. Asynchronous communication is

mostly used when the application can continue processing after it sends a

message to the target application. (Microsoft Corporation 2003: 28)

3.2.2 Physical Models

The physical middleware model depicts both the actual method of informa-

tion movement and the technology employed. There are several messaging

models under the umbrella of physical models. These messaging models are

covered in this subsection.

In connection-oriented communication, two parties connect and exchange

messages. The parties do not disconnect before the exchange is fully com-

pleted. This model usually utilizes the synchronous process but it can also be

done using the asynchronous one. (Linthicum 2003: 120) Connectionless

communication means that the source application just passes messages to the

target application. It is possible to send messages to both directions but it is

not guaranteed that the messages are delivered. The target application re-

sponds only if it is required by the source application. (Linthicum 2003: 120)

Direct communication refers to a model where middleware accepts the mes-

sage from the source application and passes it directly to the target applica-

tion. Synchronous processing is commonly used in the direct model. (Linthi-

cum 2003: 121)

Queued communication means that the source application sends the message

to a queue and the target application reads the message from the queue as il-

lustrated in figure 12.

22

Figure 12. Queued communication.

A queue manager is typically required to place a message in a queue. It is

possible for the target application to retrieve the message from the queue

whenever it is ready. If the target application is required to verify the mes-

sage or data content, it sends verification back to the source application

through the very same queuing mechanism. Compared to the direct commu-

nication model, the queued communication has an advantage of enabling the

target application to be inactive while the source program sends the message.

Also when using a queue, the applications can proceed with processing while

they do not have to wait for attention of each other. (Linthicum 2003: 121)

In figure 13, publishing and subscribing means that the source application, a

publisher sends out the message to the middleware layer without addressing

the target application.

Figure 13. The model of publishing and subscribing.

The publisher does not even have to know anything about the receiver. In-

stead, a topic name of the message is provided by the publisher. Potential tar-

get applications, subscribers register with the middleware and announce what

topics they are interested in. (Microsoft Corporation 2003: 111) After the

23

message has been sent, the middleware redistributes the information to any

interested subscribers on the basis of the topic. As a result, the subscribers re-

ceive only the desired information. (Linthicum 2000: 137-138) The proce-

dure is clarified in figure 13. Publishing and subscribing can be used in situa-

tions where a reply is not necessary and the target application is determined

by the content of the request. (Ruh, Maginnis, Brown 2000: 47) Another ad-

vantage is that applications can be added or removed at any time because the

publisher does not need to know who is listening. (Microsoft Corporation

2003: 112)

Requesting and replying means that the source application sends a request to

the target application and waits until the reply is received. The source appli-

cation does not do any processing while waiting for the reply. However, it is

possible to set a timeout parameter that defines a certain amount of time in

which the request is resent. Using requesting and replying requires the two

applications to understand each other. That is why common process seman-

tics and data format have to be agreed beforehand. (Microsoft Corporation

2003: 110) Requesting and replying type of approach is typically used when

the reply is expected to contain information that is necessary for the source

application to continue processing. A problem occurs when the target appli-

cation is unattainable and the source application is not able to finish its task.

(Ruh, Maginnis, Brown 2000: 43)

Firing and forgetting allows the source application just to send a message

and not to worry if anyone receives it or not. It can be used to broadcast mes-

sages to a large number of target applications without checking the content of

the message or waiting for a reply. This type of approach suits if the message

is wished to attain many target applications but it does not matter if someone

misses it. (Linthicum 2000: 139)

3.3 Types of Middleware

As mentioned before, middleware is software which enables applications

with different communication protocols and message formats to communi-

cate with each other. Nowadays, there are various middleware solutions

24

available for organizations to choose from. The solutions are all based on dif-

ferent approaches and this section concentrates in examining what are the

characteristics of those approaches. At the moment, five basic middleware

types are recognized: Remote Procedure Calls, Message-Oriented Middle-

ware, distributed objects, Database-Oriented Middleware, and transactional

middleware (Pinus 2004: 1-5)

Each of the above-listed types of middleware has been developed to solve a

problem of sharing information between applications that do not understand

each other. The logical and physical middleware models are closely tied to

the middleware selection. (Ruh, Maginnis, Brown 2000: 53) For example,

some middleware types support either synchronous or asynchronous commu-

nication more naturally than others. Different types of middleware are dis-

cussed in the next subsections.

3.3.1 Remote Procedure Calls

Remote Procedure Calls (RPCs) represent the oldest middleware type as they

were introduced in the 1970s. RPCs are perhaps the easiest middleware type

to understand and implement too. RPCs invoke a function within one applica-

tion, pass the shared data to another application, and invoke the function that

tells the server application how to process the data. In figure 13, a result is re-

turned to the client application on the basis of the processing.

Figure 14. The Principle of Remote Procedure Calls.

For the client application end-user, the procedure is hidden and it seems that

the function is executed locally. (Linthicum 2003: 125) RPCs are a good ex-

ample of synchronous communication. While the RPC is carried out, the cur-

rent program needs to be stopped until the result is received. If consecutive

RPCs are sent to several applications, it ties different systems into a knot.

25

Doing certain things in a particular order can make it difficult to change ap-

plications without affecting the other ones. (Hohpe and Woolf 2003: 51-52)

The advantages of RPCs are simplicity and relatively easy configuration.

Still, they are weighed against the disadvantages. Most RPC solutions are not

performing well and their functioning requires way too much processing

power. Furthermore, many exchanges must be done back and forth across a

network to carry out a request. Despite its weaknesses, the RPC technology is

still used in many organizations even though a modern EAI architecture can-

not be developed on its basis. (Ruh, Maginnis, Brown 2000: 53-54)

3.3.2 Message-Oriented Middleware

The weaknesses of RPCs were brought up in the preceding part. Those

weaknesses resulted in the creation of Message-Oriented Middleware

(MOM). In figure 15, traditional MOM includes basically queuing software

that uses messages to move information from one application to another.

Figure 15. Message-Oriented Middleware.

As the communication is based on messages, direct coupling with the mid-

dleware and the application is not needed. Decoupling allows the application

to function more independently than with RPCs. (Linthicum 2000: 123-124)

Point-to-point is another existing MOM model but message queuing is the

primary focus in this paper being far more popular and useful.

The asynchronous model of MOM allows the application to continue proc-

essing after sending a message to the middleware layer. The message is sent

to a queue manager which takes care of delivering the message to its correct

destination. Returning messages are handled when the application has free

26

time to process them. The asynchronous model makes MOM a better choice

than RPCs especially when available network and processing resources are

limited. MOM is also able to ensure message delivery from one application

to another by message persistence. It guarantees the messages to stay in a

queue until the target application is reachable. (Linthicum 2000: 124)

MOM is quite easy to understand as the principle is relatively simple. Mes-

sages are just byte-sized units that are easy to manage. They consist of two

parts; a schema that defines the structure of the message and data which

forms the actual content of the message. (Linthicum 2000: 124-125) MOM

also provides the ability to create, manipulate, store, and communicate mes-

sages without applications even having to know about it. For example, mid-

dleware layer can transform a message from one data type to another in order

to make the receiving application to be able to handle it. (Ruh, Maginnis,

Brown 2000: 55)

3.3.3 Distributed Objects

Distributed object technology is similar to RPCs but it is based on object-

oriented model. Distributed objects enable creating object-oriented interfaces

to new and existing applications that are accessible from any other applica-

tion. Interfaces are developed for applications that make software look like

objects. (Ruh, Maginnis, Brown 2000: 55-56) In addition, they provide a

standard mechanism to access the shared objects as seen in figure 16.

Figure 16. Distributed object technology.

Distributed objects make it possible to create both applications that share

common methods and composite applications that support method-oriented

application integration. Thus, using distributed object technology may lead to

sharing the whole common business logic. (Linthicum 2003: 161)

27

By applying distributed object technology an application makes an invoca-

tion on any object without being aware of its location. Software components

can thereby be moved, replaced, or replicated without affecting any other

components. Distributed objects are generally considered as synchronous

technology. Yet, it has also been extended to cover asynchronous communi-

cation. (Ruh, Maginnis, Brown 2000: 56)

It is a major task to change several applications to start using distributed ob-

ject technology and expose their methods for access by other applications.

Distributed objects do not fit for most application integration problem do-

mains as it is quite complicated method and requires many changes in enter-

prise applications. Sometimes however, distributed objects are the correct so-

lution. The biggest advantage is that they adhere well to many application

development and interoperability standards. Distributed object technology is

also continuing to mature and new features are introduced addressing its for-

mer shortcomings. As always, the most important thing is to calculate the

benefits that are expected to gain using certain technology and to compare it

to the required resources. (Linthicum 2003: 161-163)

3.3.4 Database-Oriented Middleware

Database access is crucially important part of application integration espe-

cially in the case of data-oriented application integration. There are lots of

simple solutions available to retrieve information from, or place it into a da-

tabase. However, Database-Oriented Middleware (DOM) has become more

complicated recently. It focuses on the exchange of queries, management of

results, connectivity to databases, pooling of connections, and other data

management related tasks. (Ruh, Maginnis, Brown 2000: 25) DOM has de-

veloped into a layer for placing data, a virtual database. It is possible to view

data using any model regardless of how the data is stored or what platform

the database exists upon. Such layer also enables accessing to any number of

databases. (Linthicum 2003: 169-170)

The before-mentioned DOM functionalities are typically achieved through a

single common interface such as Open Database Connectivity (ODBC) or

Java Database Interface Connectivity (JDBC). Using those technologies, one

28

can map any difference in the source and target databases to a common

model. As a result, integrating the databases is much easier. Both ODBC and

JDBC are categorized as Call Level Interfaces (CLIs) that provide a single in-

terface to a number of databases as shown in figure 17.

Figure 17. The Model of Call Level Interface.

CLIs translate common interface calls into as many database dialects as nec-

essary. Their job is also to translate the responses into a format that particular

application understands. (Linthicum 2003: 173)

The focus of EAI extends beyond data access capabilities. That is why DOM

is not usually appropriate as the core of integration architecture. Instead, it

may be a useful adjunct to other middleware solutions. (Ruh, Maginnis,

Brown 2000: 55) Many application integration products already contain the

required DOM middleware to access commonly used database types. The

main problem of DOM is that once links to databases have been created, ma-

jor renovations are needed to change databases. Still, it is relatively easy

method and provides can act as a starting point for organizations’ integration

learning curve. (Linthicum 2003: 169-176)

3.3.5 Transactional Middleware

A transaction is a single logical unit of work that is composed of subunits.

All subunits must be completed successfully in order for the transaction to be

successful. In information technology, the basic idea of transaction is the no-

tion of two or more processes which all must be successfully completed.

When updates occur in applications or databases for example, the updates are

29

treated as a single indivisible operation. The individual updates may occur at

different times based on the structure of the systems but all updates must be

completed before the transaction is determined to be completed. (Ruh,

Maginnis, Brown 2000: 107-109)

Transactional middleware is based on a centralized server capable of proc-

essing information from many different resources, such as databases and ap-

plications as illustrated in figure 18.

Figure 18. Transactional middleware.

Transactional middleware ensures information delivery from one application

to another and supports a distributed architecture. The main benefits of trans-

actional middleware are scalability, fault tolerance, and centralized applica-

tion processing. On the other hand, the cost of implementing such integration

solution is relatively high and Applications must be configured to take the

most of it. Despite its disadvantages, transactional middleware fits the best

for certain types of integration problem domains. Traditional MOM may be a

better option for simple information sharing between applications. However,

when there is a need to work at the application service level, transactional

middleware could be the correct choice. (Linthicum 2003: 138-139)

30

Transactional middleware is usually understood to be consisted of two main

categories: Transaction Processing Monitors (TPMs) and application servers.

TPMs represent traditional technology while application servers approach the

issue from a slightly different point of view. TPMs are a type of middleware

that preserves the integrity of transaction supporting features such as roll-

back, failover, auto restart, error logging, and replication. They allow transac-

tions to be formed by the sender and then ensure that it gets to the right place,

at the right time, and completed in the right order. (Ruh, Maginnis, Brown

2000: 56-57) Application servers not only provide a location for application

logic and interface processing but they also coordinate many resource con-

nections. Application servers take many existing enterprise applications and

expose them through a single user interface. (Linthicum 2003: 144-145)

The previous two sections consist of the theoretical part of this study. In sec-

tion 2, BI is examined to see why MDM and DW are needed in a global or-

ganization. Understanding the purpose of MDM is particularly important for

this study as it affects the choices that are made regarding integration archi-

tecture. Section 3 introduces technologies and patterns that are available to

complete the integration architecture of an organization. All the mentioned

approaches are not necessarily applicable in the case of master data applica-

tion integration but it

Now that it is clear why integrations are needed and what tools and ap-

proaches can be used in integration solutions, it is time to take consider how

they are being utilized in Konecranes. The next two sections form the empiri-

cal part of this study. Section 4 represents the platform architecture of Kone-

cranes and reveals how it has been built up. Section 5 introduces the integra-

tion roadmap and it is the most important output of this study. It gives de-

tailed instructions on what has to be made in order to enable integration be-

tween GCM and an enterprise application.

31

4 THE PLATFORM ARCHITECTURE OF KONECRANES

This section is dedicated to representing the platform architecture of Kone-

cranes. The architecture is needed to get various workings and processes to-

gether under a clear aggregate. This is also where integrations become bene-

ficial. The platform architecture of Konecranes includes BI tools, data ware-

houses and master data application, for example. These separate systems are

not able to communicate without common integration methods. This section

introduces how the systems are connected and what roles do they play in the

complete business reporting solution.

As told in section 2, there are three types of business data within an enter-

prise. To be able to create extensive reports and analyses, the data must be

governed in a systematic way. All different data types are managed in their

own dedicated systems to ensure the governing methods are chosen correctly

and particularly for certain data type. BI tools build up reports and analyses

based on that data. If some data is invalid, decision-makers cannot trust the

BI information and the whole BI structure is useless. Therefore, it is vital for

an organization to take care of the data quality. However, none of the data

types are useful as an island of information. The data needs to be bundled up

together, that is, to integrate the systems that contain data. That is what com-

monly-recognized platform architecture is needed for.

The platform architecture of Konecranes can be put to a layered model as il-

lustrated in figure 19. The platform architecture consists of five layers:

• Data repository layer

• Application layer

• Data warehouse layer

• Presentation layer

• Integration layer

32

Figure 19. The platform architecture of Konecranes.

The three first-mentioned layers hold the actual business data. Data reposi-

tory layer is where master data is stored and maintained. Application layer is

composed of number of enterprise applications that may have nothing in

common. Nonetheless, each of them is used for certain purpose and together

they hold all transactional data in the enterprise. Data warehouse layer is the

location of Konecranes’ analytical data and it is gathered by combining

transactional data and master data. Even though all business data lies in those

three layers, the platform architecture is not complete without the other two

layers. Presentation layer is the one that includes the tools needed for creating

reports out of the data warehouse contents. The analytical data itself is worth-

less without having proper BI tools to prepare it into elucidative form. Inte-

gration layer is the glue that ties other layers together. It enables separate lay-

ers to share different types of business data with each other. Thus, there is no

such BI solution or platform architecture that could function without care-

fully designed integrations.

33

This section concentrates on the five above-described layers and their roles in

Konecranes platform architecture. As this paper is about the integration of

master data application, the main focus is on the integration layer and the

data repository layer. Piecing together the big picture requires understanding

the other layers and that is why they are also discussed.

4.1 Data Repository Layer

Data repository layer forms the stone base of the Konecranes platform archi-

tecture. It is dedicated to storing and maintaining master data within the or-

ganization. At the moment, only customer and supplier data are considered as

master data and, for example, product data has been left outside the scope.

The purpose of master data is to have a single version of the truth for each

and every one of the customer and supplier records. In other words, there

should be only one global master data record for each customer and supplier

entity. Enterprise applications can all have their own record for the very same

entity but master data holds the best knowledge of what is the correct address

of some customer for example. The master record includes cross-references

to those enterprise applications that store the same entity. So the master data

application can distribute its data to the interested applications.

GCM is the global MDM solution of Konecranes. It contains basic informa-

tion regarding Konecranes’ customers and suppliers. Trading partner is the

common term for company entities in general. The most meaningful informa-

tion on trading partners is stored in three main tables in GCM database as

shown in figure 20: TRADINGPARTNR_TP, TRADPAADR_TD, and

TRADPARREL_TL.

34

Figure 20. An example of trading partner record in GCM.

The TP table includes very basic information on trading partners. This infor-

mation is used for separating entities out of each other. The most important

fields of the TP table are name, language, status, GCM ID, national ID, and

VAT number. The TD table is reserved only for contact information. There

are two types of addresses in GCM: core address and postal address. Contact

information is regarded as part of master data as it is not transactional and

can be expected to stay constant for relatively long period of time. The main

fields of the TD table are address type, street address, ZIP code, city, state,

country, and phone number. The TL table is needed for managing cross-

references to enterprise applications. That information reveals the relation-

ships between the master record and the records in tens of enterprise applica-

tions. The fields of the TL table include distribution type, local company ID,

and logical ID. The three tables are connected with common trading partner

ID.

When building integrations to GCM application, XML messages provide the

required interface for communication. There is a standard XML message

35

format in use to force every enterprise application integration solution to fol-

low the same pattern in GCM’s end. The previous section introduced the data

structure of a trading partner record. The same example is used also in this

part to see how it is transformed into the form of an XML message. The ex-

ample message can be found in appendix A.

GCM is integrated with the application layer and the data warehouse layer

using the integration layer to transfer and transform data from one layer to

another. The integration technologies by which this operation is performed

are discussed in section 4.5. Application and data warehouse layers need

master data to have the best possible information regarding the customers and

suppliers of Konecranes.

In practice, GCM integration is implemented so that every time when an end-

user creates a new record or updates an existing one in GCM user interface,

an XML file is sent to integration layer. The message includes everything

that is needed to distribute information to correct destinations. As seen in ap-

pendix A, the message contains all enterprise applications that share the same

trading partner entity. The master data record can be recognized by the enter-

prise application by local company ID that is also a part of the XML mes-

sage. Information in the message is examined by integration layer tools that

forward the trading partner information to all related enterprise applications.

Data is only distributed from GCM to other layers. GCM does not receive

any data regarding trading partners as the master records are solely main-

tained in the application itself.

4.2 Application Layer

All important enterprise applications have been brought to GCM by creating

a new logical ID for them. It requires a significant amount of manual work

for enterprise application administrators to maintain customer and supplier

information in both their own application and in GCM. As long as integra-

tions are not there to automate the process, the end-users really have to create

a record for the same entity twice. Integrations reduce the amount of extra

work and increase the quality of data by eliminating human errors.

36

Konecranes application portfolio consists of tens of heterogeneous systems

that are running on multiple servers around the world. Each business unit has

its own applications for different purposes because there has not been corpo-

rate-wide policy on tool selection. Lately, lots of effort has been made to re-

duce the number of applications across the organization. Still, the variety re-

mains considerably high as illustrated in figure 21.

Figure 21. A sample of Konecranes application portfolio.

The figure only shows the main applications of each business unit but there

are also minor applications in addition to this. Usually there are several in-

stallations of each application in use. For example, WennSoft and iLM have

more than ten installations in different countries and plants globally. Even

though the basic technology is the same everywhere, the installations are

sometimes slightly modified and it may cause problems when considering in-

tegrations. The application layer of Konecranes platform architecture consists

of all these enterprise applications.

The application layer of Konecranes platform architecture is integrated by

many different ways. As described earlier, all enterprise applications need to

37

be integrated with data repository layer. This paper concentrates particularly

on this matter. Konecranes Heavy Lifting application Movex has already

been integrated with GCM as the pilot solution. Other integrations solutions

have also been discussed and the main purpose of this paper is to support the

actual integration projects of those applications.

Application layer is also integrated with data warehouse layer. That integra-

tion is not related to integration layer but is created directly using ETL proc-

ess. Transactional data from enterprise applications is transferred to Kone-

cranes data warehouses. There are two data warehouses in use; one for cus-

tomers and one for suppliers. They will be covered in section 4.3 in more de-

tail. Also the integration between the application layer and the data ware-

house layer is taken a closer look at in the same section.

4.3 Data Warehouse Layer

The application layer of Konecranes platform architecture is formed by a

number of heterogeneous applications. Each of them holds significant

amount of data regarding purchase and sales transactions for example. It

would be possible to create reports based on their data system by system. The

problem is that they do not share the same data model and the technology is

different in each application and their separate installations. Thus, it would be

nearly impossible to combine all reports into one corporate-wide report that

covers business transactions all over the fragmented application portfolio.

Unconnected reporting would also require too much resources from BI tools

as it is very consuming to use so many data sources.

The solution for creating solid reports out of business transactions of the en-

tire corporation is to use a common data warehouse that gathers transactional

data from enterprise applications. The data warehouse has a commonly-

agreed data structure which makes it a lot easier to govern the reporting proc-

ess as a whole. The data warehouse also receives master data from GCM to

get a consistent view on customers and suppliers as business objects. Master

data does not only increase the reliability and quality of reporting but helps

with concluding the hierarchies and legal structures of Konecranes trading

38

partners. All in all, enterprise data warehouse is a necessity of consistent re-

porting and it maintains business critical data on which decision-makers can

rely on.

As illustrated in figure 19, Konecranes data warehouse layer consists of two

data warehouses. One is dedicated to supplier data and the other one to cus-

tomer data. The following technologies are used in the data warehouse solu-

tion of Konecranes: the IBM InfoSphere DataStage supplier data warehouse

and the Domino customer data warehouse

DataStage gathers data about the suppliers that Konecranes purchases mate-

rial from. The most important information is the spend volume to see how the

total spend amount is distributed. Domino performs the same duties on the

customer side. It holds sales transactions of the Konecranes and it is possible

to see who the most important customers are and what the amount of total

sales is.

Data warehouse layer is integrated directly with application layer. DataStage

and Domino are using different principles when gathering data from their

sources. DataStage follows the ETL process that was introduced in section

2.3. First, data is extracted from each enterprise application. Next, it is trans-

formed into such form that is fulfils the requirements of the DataStage data

structure. Finally, the data is loaded into DataStage where the maintenance is

done. Domino, however, is not operating according to ETL process. The data

is imported into Domino manually via user interface.

Integration takes place between the data warehouse layer and the data reposi-

tory layer. Both supplier and customer data warehouses take advantage of

master data that is kept up in GCM. Again, DataStage and Domino do not

share the same integration procedure. Even though the basic approach is in-

formation-oriented for both integration solutions, the exact method of imple-

mentation differs. DataStage makes use of data replication that was discussed

in section 3.1.1. It has direct access to GCM database. On the other hand,

Domino uses messaging as the integration method. An XML message is sent

to Domino every time when customer record is created or modified in GCM.

39

4.4 Presentation Layer

The purpose of the presentation layer of Konecranes platform architecture is

to provide decision-makers with comprehensive information on business op-

erations. There is so much raw data available that it must be refined into

more easily understandable format. The data is hidden in the background to

keep its extensiveness but the manner of representation is simplified to clear

up the high-level trends. Business management does not necessarily want to

know all little details behind the figures but it is also possible to dig deeper

into grass roots.

There is one common BI solution in Konecranes for creating spend and sales

reports. The product is IBM Cognos Business Intelligence that enables creat-

ing versatile reports and analyses based on the data in supplier and customer

data warehouses. It helps comprehending the big picture of the business

trends and finding bottlenecks within business processes. Common BI tool

also lightens the load of enterprise applications as the reporting does not have

to be built up one by one. Figure 22 shows few samples of what kind of con-

tent can be created using Cognos.

Figure 22. Cognos reporting samples.

40

The presentation layer is not directly in touch with the integration layer as it

is not supposed to store business data itself. BI tools just utilize existing data

in data warehouses to run predefined reports. The presentation layer is only

integrated with data warehouse layer where the data has already been struc-

tured in the way that is supports reporting needs. Reports are created by mak-

ing queries directly to the data warehouses and picking up the desired infor-

mation. There are ready-made reports for most common purposes and they

can be examined by those who are eligible to access that particular informa-

tion.

4.5 Integration Layer

Konecranes application portfolio consists of tens of enterprise application in-

stallations that differ notably from each other. It would not be efficient to

build integrations one by one between all applications. The purpose of the in-

tegration layer is to enable integration of data across different systems and

applications in a standardized and managed manner. The integration is real-

ized through several functional concepts such as mediation, routing, trans-

formation, and queuing of messages between those systems. At the same

time, the integration layer enables standardization and manageability by in-

troducing standard patterns and centralized focus point for integration which

is monitored and operated according to well-defined processes.

Figure 23 shows the two main components which Konecranes integration

layer is based on. These components are WebSphere Enterprise Service Bus

and WebSphere Message Broker as figure 23 illustrates.

41

Figure 23. Konecranes integration layer high-level overview.

WebSphere Enterprise Service Bus (WESB) is designed to provide a middle-

ware for IT environments that are built on open standards and service-

orientation. It acts as a runtime environment that enables loose coupling of

service requestors and service providers. Using mediation flows, WESB sup-

ports protocol transformations, message transformations, and dynamic rout-

ing decisions. It runs on WebSphere Application Server which also leans on

open standards. WESB is authored using WebSphere Integration Developer

which makes it possible to use uniform invocation and data representation

programming models and monitoring capabilities.

The main focus of this paper is on the other integration layer component,

WebSphere Message Broker (WMB). All GCM related integrations are to be

built on WMB due to its flexible messaging services. It enhances the flow of

messages without the need to change either the Applications generating mes-

sages or the applications consuming them. In practice, WMB is a set of ap-

plication processes that host and run message flows. Those flows consist of a

42

graph of nodes that represent the processing needed for integrating applica-

tions. In addition to flows, WMB also hosts message sets including message

models for predefined message formats. The basic idea of WMB is illustrated

in figure 24.

Figure 24. WebSphere Message Broker overview. (Davies et al. 2007: 47)

When a message from an enterprise application arrives at WMB, it processes

the message before passing it on to one or more other enterprise applications.

WMB routes, transforms, and manipulates messages according to the logic

that is defined in message flows. WebSphere MQ is used as the transport

mechanism to communicate with the configuration manager, from which it

receives configuration information. As there can be several brokers within

WMB, the configuration manager is also needed to communicate with any

other associated brokers. Execution groups enable message flows within a

broker to be grouped together. Message flows are deployed to a specific exe-

cution group. WMB is configured using WebSphere Message Broker Toolkit.

The toolkit uses the configuration manager as the interface to access the bro-

ker.

43

The role of the integration layer has already been touched in previous sec-

tions. It acts as glue to combine the other layers of Konecranes platform ar-

chitecture. In this context, the most important task of the integration layer is

to receive XML messages from GCM and forward them to enterprise appli-

cations and data warehouses. The GCM data structure is discussed in section

4.1.1. The structure of an XML message which is sent from GCM is available

in appendix A. All distributions to enterprise applications are defined inside

the element TRADPARREL_TL. Based on that information, WMB is able to

conclude where that particular message needs to be forwarded to. For exam-

ple, code FI_HVK_DOM1 stands for Domino customer data warehouse and

FI_HVK_MVX1 for Heavy Lifting enterprise resource planning software

called Movex. WMB is configured to be familiar with all codes and it knows

where to route the incoming messages.

Besides routing the messages to correct addresses, WMB can also be used to

transform them. If some enterprise application needs to receive the message

in another format than XML, WMB can be configured to modify the file type

according to the needs of the receiver. It is also possible to restructure the

contents of the message too if receiving application needs some data trans-

formations. All this can be added to be done inside the broker message flows.

The idea is to hide these operations from the related applications because all

message routings and transformations are done in the single place.

44

5 ROADMAP FOR MASTER DATA APPLICATION INTEGRATION

GCM integration project begins when there is need to integrate GCM with an

internal enterprise application. Until now, there have not been common

guidelines to follow when starting to build a new integration solution. The

purpose of this section is to introduce a universal roadmap that can be util-

ized in the case of all GCM related integration projects. Even though the

roadmap needs to be universally applicable, it should also go into details as

much as possible. In figure 25, there are certain recurring steps that character-

ize this type of integration projects. As told in the introduction, representing

those steps in a logical order is the main objective of this paper. GCM inte-

gration can be divided into eight steps:

• Organization

• Documentation

• Data cleansing

• Design

• Implementation

• Testing

• End-user training

• Launch

45

Figure 25. GCM integration project template.

Organization step describes what roles need to be determined in order to en-

sure all aspects of an integration project are taken care of specifically as-

signed persons.

Documentation step cannot be underestimated when considering the main-

tainability and reparability of an integration solution. Each solution is imple-

mented in a slightly different way and they cannot be modified unless there

are proper documents available.

Data cleansing step describes the importance of data quality in a master data

application. As data accuracy is the most important value of such application,

GCM’s data needs to match the data of an enterprise application before inte-

gration solution can be launched. It requires data cleansing as there are al-

ways inconsistencies between the data of two separate systems.

Design step asks all questions that need to be answered to before actually im-

plementing the integration. What data is needed in the enterprise application

and in what form? How is the data transferred from GCM to the enterprise

application? Are some data transformations needed?

46

Implementation step explains in practice what must be done to enable inte-

gration successfully between GCM and the enterprise application. What are

the concrete actions behind an integration solution and who does them?

Testing step states the importance of testing in an IT project. The integration

solution is first implemented in development environment and it requires ex-

tensive testing to ensure everything is working as expected. After the solution

is found out to be flawless in that environment it is also tested in test and

production environments.

End-user training step is an utterly important part of a carefully-planned inte-

gration project. The quality of master data ultimately depends on the know-

how of end-users. They must be trained to feed the information into GCM

correctly and in systematic way. If the integration implementation changes

the working methods, those changes have to be pointed out as clearly as pos-

sible.

Launch step takes place when all previous steps have undoubtedly been suc-

cessfully finalized. The integration is launched in production environment

and end-users are informed about the new solution. This is the easiest step of

all if the previous steps have been conducted in a thorough manner.

5.1 Organization

When starting a new integration project, the first step is to arrange a project

start-up meeting and organize an integration project team. Each team member

is assigned responsibilities in a particular area. In GCM related integration

project, the following roles need to be defined:

• Project manager

• Integration architect

• Integration developer

• Application owner

• Application developer

47

The first three roles are stacked with people from the integration services

team of Konecranes Group IT. The latter two are from the IT department of

certain Konecranes business unit.

The main task of the project manager is to supervise the overall progress of

the integration project. He/she does not participate in the concrete creation of

the integration solution but is in charge of integration development. The pro-

ject manager understands the benefits that are expected to be gained with new

integration solutions and provides required resources for the project. He/she

also communicates the requirements and benefits to the business people in

the company.

Integration architect is the one who designs the integration solution in coop-

eration with the enterprise application owner. It is important for him/her to be

aware of different integration patterns and technological options that can be

chosen for various integration needs. Integration architect knows the charac-

teristics of GCM and how enterprise applications should be connected to the

corporate integration architecture. In addition to being responsible of integra-

tion design, the architect somehow participates in all eight project steps.

He/she makes sure the documentation is properly written, organizes data

cleansing together with the enterprise application owner and GCM key user,

and communicates the integration design to the integration developer. The in-

tegration architect also tests the integration solution from the GCM’s point of

view, arranges GCM end-user training with the GCM key user, and is present

when the integration is launched.

Integration developer concentrates on the true implementation of the integra-

tion. He/she fully knows the technical details and is familiar with the Kone-

cranes integration layer. The integration developer is in close contact with the

enterprise application developer. They are the two people who know the best

how to connect two applications together in practice. Of course, the develop-

ers participate already in the design step to make sure the designed solution is

possible to be implemented in a real life situation. Another important task of

the integration developer is to keep documentation up-to-date throughout the

project. An integration specification document is written about each solution.

48

Application owner is usually the key user of an enterprise application. As

mentioned, he/she designs the integration solution with the integration archi-

tect. The role of the application owner is crucial as he/she defines what the

possible technical options are that can be used in the case of this particular

enterprise application. Sometimes, changes need to be made to the enterprise

application to enable sharing data with GCM. Even a whole new interface

may have to be build for this purpose. As the integration architect has many

responsibilities on GCM’s side, the role of the Application owner is very

similar on the side of the enterprise application. He/she validates the docu-

mentation and arranges data cleansing, testing, and end-user training. The

application owner decides when the integration is ready to be deployed in the

production environment and informs the end-users about it. He/she also pro-

vides support if the end-users bump into problem situations while using ap-

plication according to new process.

As told in the previous part, changes may have to be made to the enterprise

application to make it fully compatible with GCM. This is when the applica-

tion developer comes forward. He/she knows everything about the enterprise

application and gives instructions to the application owner while the integra-

tion design is negotiated. This role can be compared to the role of the integra-

tion developer as the job includes filling in the integration specification

document and lots of testing to make sure the integration solution works per-

fectly.

5.2 Documentation

Proper documentation is widely recognized to be one of the most important

areas of an IT project. In practice, however, when working according to tight

project time scale, documentation is often neglected as too time-consuming

or unnecessary. This is not how it should be as lack of documentation makes

it impossible to maintain and develop a complicated IT solution. Application

integration project is a good example of a project in which documentation is

part and parcel of the final project outcome. This is because application inte-

gration always concerns at least two distinct systems and very few master all

related applications and technologies.

49

There is a document template that needs to be filled in the case of each GCM

integration solution. The template and an example case are available as ap-

pendix B. The example represents all technical aspects that should be in-

cluded in true integration project documentation too. There is very detailed

information regarding WMB configurations, routing settings, and the actual

implementation of integration. Some parts of the integration specification

document go so much into details that they are not even in the scope of this

study. However, as integration project documentation requires taking a look

at that detailed information, it is worthwhile to add the documentation tem-

plate itself as an appendix.

Filling in the integration specification template belongs to the integration de-

veloper and the application developer. They have enough knowledge to be

able to write thorough documentation about complex integration solutions.

Of course, integration developer has the biggest responsibility of the docu-

mentation because he/she works at WMB on daily basis and knows how to

configure it. Even though, he/she cannot take care of the whole documenta-

tion phase by him/herself. The application developer is an expert in the ques-

tions regarding the enterprise application. The integration architect and the

application owner may also be needed for reviewing new versions of the

documentation and the project manager is the one who approves the final

version.

Documentation step starts in the very beginning of an integration project.

Common procedure is that documentation is bunched together in rush after

the solution has already been implemented. The correct way is to complete

the integration specification document little by little while the project moves

on. As documentation should be treated as continuous process, there can be

several initial versions of the integration specification document. The final

version, however, is not ready before the whole project is completed.

5.3 Data Cleansing

Data is the actual capital of a master data application. Data is also the most

important aspect of the Konecranes master data application, GCM. Thus, data

50

quality is the best way to measure GCM’s value for the corporation. If the

data is consistent and accurate, decision-makers are able to trust it and draw

conclusions on its basis. On the other hand, if GCM contains incomplete or

even false information, reports and analyses cannot be fully trusted and the

whole application becomes useless.

In an integration project, data cleansing has to be taken care of before deploy-

ing the solution into production environment. If cleansing is done improperly,

it is difficult to do it afterwards because the applications are already con-

nected and changes affect other parties too. The target is to make the data of

GCM to exactly match the data of an enterprise application. There are usually

quite a few differences in the data of GCM when compared to the data of the

enterprise application. It is because the data has been manually typed into

both systems and some errors always occur.

The data cleansing step is divided into two phases. The first two weeks are

spent standardizing the existing data and making it as complete as possible.

Also the unnecessary and faulty data is cleared at this point. The second

phase takes place just before launching the integration solution. It is the last

check to assure the validity of the data. The second phase is also needed to

correct the flaws that have possibly been entered after the first data cleansing

phase.

The data cleansing is started by taking a batch out of the databases of both

GCM and the enterprise application. The batch should include all information

that exists in both databases even though the field names are probably differ-

ent. The next step is to match the field names with each other. For example, if

GCM’s field containing street address is called TDADR1, it should be

matched with corresponding field of the enterprise application. When all

fields are matched, the data is ready to be sorted. The sorting categorizes re-

cords into three classes. There are records that exist in both applications, re-

cords that only exist in GCM, and records that only exist in the enterprise ap-

plication. If a record exists in both applications, there is no need for further

actions. The record is identified using so called GCM ID number which is

unique for each record. It links the record in GCM with the record in the en-

51

terprise application and integration enables the changes in GCM to be auto-

matically updated into the enterprise application. If a record only exists in

GCM, the distribution to this particular enterprise application has to be de-

leted. The record is not in the enterprise application and there should not be a

distribution either. The third class is formed by those records that only exist

in the enterprise application. It may be because of someone has forgotten to

create the record in GCM or to create a distribution to the enterprise applica-

tion. Identifying the problem requires manual work as the GCM database

must first be gone through to check if distribution can be added to some ex-

isting record. If this is not possible, a whole new record must be created and

distribution to the enterprise application created.

Completing the data cleansing may require lots of time and manual work. It

is hard to be estimated precisely as it depends on the data quality in GCM

and in the enterprise application. End-users’ skills and motivation are of great

concern to this matter. If they have done a good job and updated information

in the both applications conscientiously, the data cleansing step could be car-

ried out in one day. However, enough time has to be reserved to be sure that

even the messiest of applications can be cleansed according to schedule. That

is why two weeks are booked for data cleansing in the roadmap. The data

quality is also rechecked on the last week of the integration project. It is pos-

sible to make last minute improvements and to make sure the data is exactly

the same between the two applications just before deploying integration solu-

tion.

5.4 Design

Successful application integration is all about understanding the requirements

of connecting parties. Each integration solution needs to be designed indi-

vidually as applications often differ from each other in many ways. They

have different data structure, interfaces, and operations model for example.

Thus, out of the box solution does not fit into varying integration needs. In-

stead of trying to create a ready-made solution for application integration,

one should concentrate on drawing common guidelines to ease the integration

design process. This subsection introduces few viewpoints that the integra-

52

tion architect must consider. To help designing an integration solution, com-

mon issues are put together. These are the issues that need to be considered in

order to be able to take all related aspects into account.

The first issue is about the number of connecting parties. It must be clarified

how many applications are included in the integration solution. This paper

concentrates on GCM integrations meaning that there are only two connect-

ing applications by default. GCM is the one that sends messages and some

enterprise application receives them. Despite that, the whole truth is not quite

that simple. As mentioned, most enterprise applications have many installa-

tions across the world. Different business units, factories, and sites may have

their own installations of the same system. When integrating those separate

installations with GCM, it has to be decided whether it is practical to inte-

grate them one by one or if they can be bundled up somehow. Each installa-

tion is always considered as a unique application by GCM but sometimes the

integration logic can be shared between the installations of the same enter-

prise application product. When integrating several installations at once,

more attention has to be paid to those little differences they have. It is worth

the effort if it supports more simple integration architecture.

An important issue to be solved is whether the messaging is implemented

synchronously or asynchronously. It must be decided if GCM needs to wait

for a response before continuing processing or not. In this particular integra-

tion case, the answer is certainty. The solution is built using transactional

processing and if an error occurs, it is rolled back to a previous phase. An-

other way to secure successful delivery of messages is the usage of message

queues. The queue is set to be persistent which means that messages will stay

there until they have been read from the queue. All these choices refer to

asynchronous messaging. The response time of an integration solution de-

pends on how often messages are read from the queues. In GCM integrations,

the message queues are read as soon as a message appears. In practice, there

is basically no delay.

The next design issue concerns transformation. It depends on the connecting

enterprise application whether the data need to be transformed before it can

53

be passed to its destination. That is, if the enterprise application does not un-

derstand the original message format, it has to be modified in the integration

layer. It must also be considered if it is enough just to do simple mapping be-

tween the different fields of databases or if some complex logic is required.

GCM sends messages out in XML format. Most applications are able to

process those messages but some may need the same data in different format.

If such situation occurs, WMB is configured to transform the message in an-

other format. Even though the receiver could read XML messages, there is

always mapping to be done. For example, the trading partner name element

in the XML message is TPNAME. However, the receiver does not know

what it means. The enterprise application must be told that this field corre-

sponds to its field named COMPANY_NAME. All elements in the XML

message must be gone through and mapped to match the fields of the enter-

prise application in question.

Correct routing of messages is a crucial part of integration design. The rout-

ing decision is done between two options; static and dynamic. The answer

depends on whether the messages can always be routed to the same enterprise

application or if they need to be routed according to message contents. Again,

in the case of GCM integrations, the answer is simple. A trading partner re-

cord can have tens of distributions to different enterprise applications and

data warehouses. Every time a record is updated, a new message needs to be

sent to all of those applications. The XML message includes the distribution

information as seen in appendix A. Therefore, WMB reads the message to

conclude where the message should be forwarded. Each enterprise applica-

tion has its own logical ID and WMB sends the message in correct format to

all those applications that are mentioned in the original message.

The last issue concerns volumetric and other non-functional requirements. It

needs to be defined how many messages need to be transmitted per day, what

is the size of a GCM originated XML message, and what is the urgency level

of these messages. The number of transmitted messages is hard to estimate as

it grows as integrations go along and bring more traffic. When talking about

single integration solutions, they should be prepared for handling few thou-

54

sand messages a day. The size of an XML message varies from a couple of

kilobytes to few tens of kilobytes depending on its contents. The size is so

small that it will not become a problem with current amounts. As told, GCM

originated message gets to enterprise application almost instantly. The end-

users can see updates in their local applications right after a GCM record is

modified.

5.5 Implementation

The previous section introduced the most important viewpoints on the design

of GCM integrations. As well begun is half done, the design phase must be

carried out carefully. It eases up the actual implementation phase if all details

are well-designed. However well an integration solution is designed, it is im-

possible to be prepared for unexpected flaws. That is why implementation is

started already when the design phase is still ongoing. Thereby those flaws

can be discovered in practice and there is enough time to fine-tune the design

accordingly.

In typical GCM integration project, there are three parties involved. Data re-

pository layer sends messages that contain master data. Integration layer

takes care of routing the messages to correct enterprise applications, trans-

forming the message formats, and modifying the message contents according

to receiver’s needs. Application layer provides an interface for the integration

layer to distribute the messages to. This section examines the tasks of those

three parties. What needs to be done in each layer in order to enable master

data delivery from GCM to enterprise applications?

There is not much to be done in GCM when new integration solution is im-

plemented. GCM’s biggest workload is related to the data cleansing step

which is its own, separate step. The actual implementation requires just creat-

ing a new logical ID and defining its interface. Let us use take an enterprise

application as an example to show how it is defined in GCM. The following

configurations should be used: Logical ID = FI_HVK_ENT1, Interface Name

= WMQ, and Interface Instance Name = KCI.GCM.FI_HVK_ENT1.IN.

55

The logical ID consists of three pieces: the country code for the local office,

the code for that particular site, and the code for the enterprise Application.

In the above example, FI stands for Finland, HVK for Hyvinkää, and ENT1

for an enterprise application. Interface name should always be set to WMQ.

GCM integrations have been decided to be done using message queues so it

is the same for all. Interface instance naming is also standardized which

means that only the logical ID item changes. The interface instance name is

equivalent to the queue name in WMB. It ends with IN because everything is

thought from WMB’s point of view and traffic from GCM is considered to be

incoming.

GCM sends messages to WMB using a single message queue. WMQ is al-

ready installed on GCM application server so it does not bring more work at

this point. Another constant particle is the outgoing XML message. GCM al-

ways sends the message in the same format that can be found in appendix A.

Both of these aspects justify the use of the integration hub model in GCM in-

tegrations. Everything does not have to be recreated when integration need

arises. The basic infrastructure already exists.

Usually, the implementation step requires the most effort in the integration

layer. WMB is at the centre of events as it reads XML messages from a mes-

sage queue, modifies their contents and transforms them into another file

type, and distributes them to the correct enterprise applications. On the other

hand, a basic, standardized integration solution is not that complicated if the

enterprise application is able to understand the XML message in the raw.

GCM sends as many messages to WMQ as there are distributions in a record.

WMB then reads the messages from WMQ and sorts them into their correct

incoming queues inside the broker. The sorted messages are then transformed

according inbuilt logic and passed to outgoing queues inside WMB. All these

functions inside WMB are done by dedicated message flows. Those flows de-

termine what is done to certain messages and all enterprise applications have

their own flows in WMB. The modified messages are then distributed to en-

terprise applications using whatever technology. The most common solution

is to use WMQ between WMB and enterprise applications. In that case,

56

WMQ reads the messages from WMB’s outgoing queues and enterprise ap-

plications pick them up from their dedicated WMQ.

When implementing new GCM integration, the first step is to set up incom-

ing and outgoing queues inside the broker. Their naming follows the same

rules as the interface instance naming in GCM. The difference with the out-

going queue is that it ends with OUT instead of IN. Another task is to create

message flows that are used to receive, transform and forward messages.

There are four types of message flows in use: main flows, sub flows, map-

ping flows, and service flows. An example of message flows is in the integra-

tion specification document model which is available as appendix B.

An enterprise application is the third involved party in an integration project.

Even though most of the integration solution is standardized, there are still

some selections that need to be made on the basis of the enterprise applica-

tion. The complexity of integration is heavily affected by its capabilities. If

the enterprise application supports XML messages, then it is enough just to

install WMQ client on its application server and to use message queuing. If it

needs messages in another format, then a flow has to be created to change the

message type to suit the needs of the enterprise application. However, the

connection can be established using ODBC for example. These decisions

have to be made in the design phase already but the point is that the enter-

prise application has to provide an interface for WMB to distribute master

data. That is the main task to be completed from the side of the application

layer.

Integration architect handles the tasks in the data repository layer in coopera-

tion with GCM key user. The integration layer is the specialty area of integra-

tion developer. He/she is able to organize message queues and message flows

to match the integration design. The application layer is mastered by the en-

terprise application developer who knows how to create an interface towards

WMQ or other connecting technology.

57

5.6 Testing

In addition to documentation, testing is another project step which is often

not paid enough attention to. Whereas documentation is needed to enable

maintainability and modifiability of an integration solution, testing ensures

the current functioning of the solution. One has to be sure that all features of

integration are functioning properly before it can be introduced. There are

three different environments in which the functioning has to be tested: devel-

opment environment, testing environment, and production environment.

The development environment is meant to be used by the integration project

team to develop and unit test integration solutions. The governance of the de-

velopment environment is relatively loose and it can be used for testing and

prototyping new ideas and approaches. Even though the working principles

in the development environment are not that tight, the solution must be de-

veloped into its final design already at this point. Only then it can be trans-

ported into environments that are higher in the hierarchy. By default, all per-

formance testing should take place in the development environment,

The testing environment is primarily used for functional acceptance testing of

integration solutions. The governance of the testing environment is tighter,

and the namespaces and repositories should only contain real objects. In long

term, the testing environment should be a copy of the production environ-

ment. This is to guarantee the testing environment corresponds exactly to the

circumstances of the production environment.

The production environment is only used for running production-usage inte-

grations. At this point, the integration solution has already been found out to

be work as expected. However, to be absolutely sure, the solution must be ex-

tensively tested in the production environment too. The environment is

strictly governed and only accessible by certain persons.

The purpose of GCM integration is to distribute master data to enterprise ap-

plications across the whole enterprise. This is also the starting point of the

testing step. When thinking of what tests need to be performed to ensure the

integration works properly, the possible use cases can be considered. At least,

58

the following scenarios have to be gone through in GCM user interface when

testing the integration solution:

• Create a customer record.

• Create a supplier record.

• Create a record with both customer and supplier distributions.

• Add a customer distribution into existing record.

• Add a supplier distribution into existing record.

• Modify all Core tab fields of an existing record.

• Modify all Postal tab fields of an existing record.

• Modify all Hierarchy/D&B tab fields of an existing record.

The above list describes just the basic use cases. There is much more beyond

them and testers have to pay attention to all little details that matter the most.

Are the special characters transferred correctly? Is the number of characters

limited in some fields? Does the delay stay in predicted level? These are just

to mention few possibilities. Testing is done to find hidden flaws and to make

sure they are eliminated. All possible failures cannot be expected and taken

care of in the design and implementation steps.

Testing takes place in all three involved layers. The integration architect

helps the GCM key user to enter information into GCM and to make sure

everything is carefully tested. The integration developer is in charge of the

integration layer to see if something goes wrong with WMB or message

queues. The application owner and the application developer are the ones

who monitor the enterprise application.

5.7 End-User Training

At least two local administrators are nominated for each enterprise applica-

tion installation to create and update trading partner records in GCM. There

59

are own administrators for customer and supplier records. The number of

administrators depends on the amount of information to be fed in. The best

way to affect the quality of data is to devote to end-user training. Unless the

administrators know how to maintain consistent and complete master data,

there is too much to be cleansed afterwards. End-user training sessions are ar-

ranged on a regular basis. Still, when an integration solution is about to be

launched, it is essential to train all administrators of that particular enterprise

application once again. It reminds them of the importance of paying attention

to every little detail in GCM data input process.

In practice, end-user training is arranged using Konecranes’ internal video-

conferencing equipment, or if there is not one available, Microsoft Net-

Meeting does the same thing. Sometimes, it is reasoned to have on-the-spot

training session in some of Konecranes’ local offices. In such situation, for

example, when it is possible to assemble large number of local administrators

in one place at the same time. Integration related end-user training always

takes place just before taking the solution into production environment. There

can be several sessions during the last week of the integration project to make

sure everyone is able to participate within the limits of their schedules. Also,

the difference in time has to be considered.

GCM key user arranges the training sessions in cooperation with the integra-

tion architect and the enterprise application owner. Together, they cover all

three layers that are involved in the integration solution. When a new integra-

tion solution is introduced, a typical training session consists of such subjects

as why MDM is needed in the first place, why the administrators’ work is

important, how GCM is linked with corporate decision-making, and, of

course, how master data is correctly maintained following predefined proc-

esses. Naturally, the administrators have to have enough knowledge to create

and update records in GCM. However, it is equally important to motivate

them to take the job seriously. There are several tasks that may seem insig-

nificant at first sight but actually contribute to the data quality notably. Such

tasks include merging duplicate records, maintaining organizational hierar-

chies, and specifying address information.

60

5.8 Launch

Launching an integration solution does not require much concrete work. Al-

most all hands-on tasks have been taken care of in the previous project steps.

The solution has been taken into production environment and once more

tested to be flawless. The only thing is to send an email to the administrators

of that particular enterprise application to announce the exact time when the

integration is planned to go live.

Launch step includes also being ready to take action if something goes wrong

after all. If the problem is found out to cause too much trouble to continue,

the project must be rolled back to the previous phase. This means basically

postponing the integration introduction and to keep on testing to solve the

problem. Documentation comes in handy in this situation when developers

try to find out what has gone wrong in the design or implementation step.

After the integration solution is successfully launched, the system mainte-

nance begins. It is an ongoing process that includes regular message and sys-

tem monitoring, end-user training, and support towards the local GCM ad-

ministrators.

61

6 DISCUSSION AND CONCLUSIONS

The main objective of this study was to create a roadmap for integrating the

global master data application of Konecranes with various existing enterprise

applications within the company. Integrations are needed to enable distribut-

ing solid and consistent master data across the whole organization. Until

now, there have not been common guidelines on how to manage an integra-

tion project. The implementation method of integration solution always de-

pends on the requirements of connected parties. Thus, it was not realistic to

aim at creating specific instructions for all possible scenarios. Instead, the

purpose was to outline general directions that support the development of

each individual integration solution. The integration roadmap is premised on

the basis of eight steps. These steps are to be followed in order to success-

fully integrate stand-alone applications with each other. The steps are divided

into time period of six weeks. The timescale is drawn up loosely by design to

make it possible to stretch some phases in the case of problem situations.

In addition to the main objective, there were three secondary objectives to be

fulfilled within the limits of this study. The first secondary objective was to

give an overview of application integration. This subject is not covered in

any particular section but throughout the entire study. The intention is to pro-

vide the reader with general impression on why integrations are needed in the

first place, what integrations are used for, and what the most typical ways of

implementing integrations are. The emphasis is particularly on master data

application integration to introduce the special characteristics of such integra-

tion solution in which a master data application is involved. Another secon-

dary objective concerned application integration patterns and technologies.

Fulfilling this objective forms a major part of the theoretical section of this

study. Often, integration technologies have been chosen case-specifically

without considering the big picture. This may be due to the lack of knowl-

edge of available options. It easily leads to fragmented integration environ-

ment and point-to-point integration development. Introducing alternative ap-

proaches makes it easier to choose integration patterns and technologies that

support the organization’s integration architecture and centralized structure.

62

The third and final secondary objective was to represent the current platform

architecture of Konecranes. It is crucial to understand what has been done in

the past and what the environment looks like at the moment. Illustrating the

platform architecture also helps to see how the apparently disconnected lay-

ers are actually interconnected with each other. Besides the integration road-

map, representing the platform architecture forms the other half of the em-

pirical section of this study. The architectural layers and their purposes are

discussed as well as how the layers are connected with the other ones.

In total, there were one main objective and three secondary objectives set for

this study. Creating the integration roadmap was the most important task of

all. The outcome is an eight-step guideline on how to organize an integration

project. Most steps are described in general level although some parts are de-

scribed in more detail. For example, the implementation step is written giving

some specific instructions on how to modify certain configurations. On the

other hand, design step only advices what aspects need to be considered.

Only one pilot enterprise application has been integrated with the master data

application so far. If there was more experience in such integrations, it could

have helped improving the roadmap. Now, it mostly remains a high-level de-

scription of the phases of integration project. Improving it would require

more concrete approach to the subject.

On average, the secondary objectives were reached quite well. The biggest

improvement would be needed in focusing the theoretical sections on master

data application integration in particular. The theory is written in too general

level, not concentrating enough on the essential parts. Still, the theory exten-

sively covers the most common integration techniques and proves the impor-

tance and versatile uses of application integrations. Maybe the most success-

fully fulfilled objective was representing the current platform architecture of

Konecranes. There are plenty of system documentations available in the

company but this one clarifies the complicated environment into understand-

able format. Even though the representation is has been done in simplified

manner, it still includes exact information.

63

This study can be used for several purposes in Konecranes Group IT. It acts

as a text book about application integration patterns and technologies as well

as a basic guide to BI, DW, and MDM. While the theoretical merits of the

study are unarguable, the most valuable information lies in the latter part. Ex-

amining the platform architecture representation is an easy way to become

familiar with the system environment of Konecranes. The integration road-

map helps integrating internal enterprise applications with GCM. It provides

a standardized way to enable distributing organization’s core information to

all interested parties therefore improving data quality across the company.

64

REFERENCES

Davies, S., Birkler, K., Heite, R., Klein, U., Mäkelä, M., Matsuki, C.A.,

Parizek, P., Sall, A., Schefencaker, S., Sulzmann, R., and Wilms, T. (2007)

Connect WebSphere Service-Oriented Middleware to SAP.

http://www.redbooks.ibm.com/redbooks/pdfs/sg247220.pdf (Accessed Aug

13, 2009)

Dreibelbis, J., Hechler, E., Milman, I., Oberhofer, M., van Run, P., and Wolf-

son, D. (2008) Enterprise Master Data Management: An SOA Approach to

Managing Core Information. US: IBM Press.

Gable, J (2002) Enterprise Application Integration

http://findarticles.com/p/articles/mi_qa3937/is_200203/ai_n9019202/ (Ac-

cessed Jul 8, 2009)

Hohpe, G. and Woolf, B. (2003) Enterprise Integration Patterns: Designing,

Building, and Deploying Messaging Solutions. US: Addison-Wesley.

Hovi, A., Hervonen, H., Koistinen, H. (2009) Tietovarastot ja Business Intel-

ligence. Porvoo: WS Bookwell.

Kanis, P (2004) The Asynchronous- Synchronous War: Much Ado about

Nothing. http://www.addc.com/articles/sync-async%20wars.pdf (Accessed

Jul 8, 2009)

Konecranes Corporation (2009) Annual Report 2008.

http://www.konecranes.com/attachments/investor/annual_reports/annual_rep

ort_2008/konecranes_annualreport2008.pdf (Accessed Jun 26, 2009)

Linthicum, D.S. (2000) Enterprise Application Integration. US: Addison-

Wesley.

Linthicum, D.S. (2003) Next Generation Application Integration: From Sim-

ple Information to Web Services. US: Addison-Wesley.

65

Microsoft Corporation (2003) Guidelines for Application Integration.

http://download.microsoft.com/download/8/d/a/8daa6e7f-eee5-4e85-b8fd-

14d72bd00729/EAIArch.pdf (Accessed Jul 14, 2009)

Oracle Corporation (2008) Better Information through Master Data Man-

agement – MDM as a Foundation for BI. http://www.oracle.com/master-

data-management/better-information-through-master-data-management-

mdm-as-a-foundation-for-bi.pdf (Accessed Jul 14, 2009)

Pinus, H. (2004) Middleware: Past and Present a Comparison.

http://userpages.umbc.edu/~dgorin1/451/middleware/middleware.pdf (Ac-

cessed Jul 8, 2009)

Ruh, W.A., Maginnis, F.X., and Brown, W.J. (2000) Enterprise Application

Integration: A Wiley Tech Brief. US: John Wiley & Sons.

Thierauf, R.J. (2001) Effective Business Intelligence Systems. US: Quorum

Books.

Tieturi Oy (2009) Järjestelmäintegroinnin valmennusohjelma 4.0 Training

course and material.

Tähtinen, S (2005) Järjestelmäintegraatio: tarve, vaihtoehdot, toteutus. Jy-

väskylä: Talentum Media Oy.

White, C (2005) Data Integration: Using ETL, EAI, and EII Tools to Create

an Integrated Enterprise.

http://download.101com.com/tdwi/research_report/DIRR_Report.pdf (Ac-

cessed Jul 21, 2009)

APPENDIX A 1 (2)

APPENDICES

Appendix A Sample of an XML Message

<?xml version="1.0" encoding="UTF-8"?>

<SYNC_TRADINGPARTNER_040>

 <ROW>

 <TPLANG>en</TPLANG>

 <TPAD2NUM>1</TPAD2NUM>

 <TPAD7VAR></TPAD7VAR>

 <TPSTATUS>ACT</TPSTATUS>

 <TPNAME>Model Company</TPNAME>

 <TPDUNSNO></TPDUNSNO>

 <TPAD1NUM>1</TPAD1NUM>

 <TPGCMID>1425147</TPGCMID>

 <TPORGNO>845647588</TPORGNO>

 <TPVATREGNO>12548534</TPVATREGNO>

 <TPSHNAME></TPSHNAME>

 <TPAD2TIM></TPAD2TIM>

 <TPGLULGCM></TPGLULGCM>

 <TPGLULDUNSNO></TPGLULDUNSNO>

 <TPDOULGCM></TPDOULGCM>

 <TPDOULDUNSNO></TPDOULDUNSNO>

 <TPLEPAGCM></TPLEPAGCM>

 <TPLEPADUNSNO></TPLEPADUNSNO>

 <TRADPAADR_TD>

 <ROW>

 <TDADRTYP>BY</TDADRTYP>

 <TDPHONE>5418646163</TDPHONE>

 <TDADRNO>1</TDADRNO>

 <TDNAME></TDNAME>

 <TDCTRY>US</TDCTRY>

 <TDADR1>Testing Street 10</TDADR1>

 <TDADR2></TDADR2>

 <TDCITY>Test City</TDCITY>

 <TDSTATE>021</TDSTATE>

 <TDZIP>52294</TDZIP>

 </ROW>

 <ROW>

 <TDADRTYP>DP</TDADRTYP>

 <TDPHONE></TDPHONE>

 <TDADRNO>1</TDADRNO>

 <TDNAME></TDNAME>

 <TDCTRY>US</TDCTRY>

 <TDADR1>Testing Street 10</TDADR1>

 <TDADR2></TDADR2>

 <TDCITY>Test City</TDCITY>

 <TDSTATE>021</TDSTATE>

 <TDZIP>52294</TDZIP>

APPENDIX A 2 (2)

 </ROW>

 </TRADPAADR_TD>

 <TRADPARREL_TL>

 <ROW>

 <TLASRTR>0</TLASRTR>

 <TLRELTYP>SUPP</TLRELTYP>

 <TLCUSUNO>8798546</TLCUSUNO>

 <TLSHWATP>ATP</TLSHWATP>

 <TLAD1NUM>0</TLAD1NUM>

 <TLSUCUNO>US_SPR_WEN1</TLSUCUNO>

 <TLAD3VAR></TLAD3VAR>

 <TLINPATY>CUST</TLINPATY>

 </ROW>

 <ROW>

 <TLASRTR>0</TLASRTR>

 <TLRELTYP>CUST</TLRELTYP>

 <TLCUSUNO>FR_VER_ILM1</TLCUSUNO>

 <TLSHWATP>ATP</TLSHWATP>

 <TLAD1NUM>0</TLAD1NUM>

 <TLSUCUNO>48646841</TLSUCUNO>

 <TLAD3VAR></TLAD3VAR>

 <TLINPATY>CUST</TLINPATY>

 </ROW>

 </TRADPARREL_TL>

 </ROW>

</SYNC_TRADINGPARTNER_040>

APPENDIX B 1 (11)

Appendix B Sample of an Integration Specification Document

INTEGRATION INTEGRATION INTEGRATION INTEGRATION SPECIFICATIONSPECIFICATIONSPECIFICATIONSPECIFICATION

GCM GCM GCM GCM –––– Enterprise Enterprise Enterprise Enterprise ApplicationApplicationApplicationApplication

Current Version: 1.0

Owner: Konecranes

Date Last Updated: 19.08.2009

Last Updated By: Application Developer

Author: Integration Developer

Date Created: 03.05.2009

Reviewed By: Juhana Murtola

Approved By: Mikko Strömberg

Approval Date: 22.08.2009

Revision History

Version

Number

Date Up-

dated

Revision Au-

thor

Brief Description of Changes

0.1 03.05.09 Integration

Developer

Initial version

1.0 19.08.08 Application

Developer

Version for review

Referenced Documents

Reference

Number

Document Name Version URL/File Name etc Target Source

1 Operational Handbook 0.7 Operational_Handbook.doc

2 Architectural Overview 1.0 Architectural Overview.doc

3 Governance Model 0.9 Governance_Model.doc

APPENDIX B 2 (11)

Table of Contents

1. Introduction ... 3

1.1 Background ... 3

1.2 Document Purpose ... 3

1.3 Audience ... 3

1.4 Scope ... 3

1.5 Notation .. 3

2. System Overview .. 4

2.1 General Info of Enterprise Application .. 4

2.2 General Info of GCM... 4

2.3 General info of Integration Layer .. 4

3. Summary of Interfaces ... 5

4. Integration Configurations .. 5

4.1 Installed Software ... 5

4.2 MQ Channel Definitions .. 5

4.3 MQ Process Definitions... 5

5. MQ Queue Definitions .. 6

5.1 MQ Security Definitions... 6

5.2 Flows Used in This Integration ... 6

5.3 Message Sets Used in This Integration ... 6

6. Integration Implementation ... 7

6.1 Main Flows .. 7

6.2 Sub Flows ... 7

6.3 Map Flows ... 7

6.4 Service Flows .. 7

7. Routing Implementation ... 8

8. Sequence Diagrams .. 9

8.1 IN Interfaces .. 9

8.2 OUT Interfaces .. 9

9. Deployment Guidelines .. 9

10. Agreed Policies for Development .. 10

10.1 Documentation of Development Projects .. 10

10.2 Naming of MQ Queues ... 10

11. Test Methods .. 11

12. Error Processing ... 11

APPENDIX B 3 (11)

1. Introduction

1.1 Background

This documentation has been gathered to update and document the current situation of Konecranes inte-

gration layer integrations. It also works as template for new integrations to be developed.

1.2 Document Purpose

Integration Specification for GCM – Enterprise Application brings together all the information necessary for

transition, testing, and further development of integration concerning the integration between GCM and En-

terprise Application including the interfaces of GCM and Enterprise Application.

The purpose of this document is to function as a detailed integration service specification for maintenance,

development, testing, bug fixing, and to:

• Describe the high-level structure of the integration

• Describe the responsibilities, relationships, and interactions of components

• Explain how application/technical parts of the system are related

• Specify how existing, acquired, and developed components are related

• Define the components that have to be placed on the operational model, that is, that have

to execute and be managed on the target platforms

• Help organizing the development project

• Reduce complexity through the encapsulation offered by a component

1.3 Audience

The target audience for this document includes Konecranes IT managers, integration architect, integration

developer, enterprise application owner, and enterprise application developer.

1.4 Scope

The scope of topics covered in this document is to present specific technical information about the integra-

tion solution between GCM and Enterprise Application.

1.5 Notation

Term Description

GCM Global Company Master

Enterprise Application A model application

WMB IBM WebSphere Message Broker

MQ IBM WebSphere MQ

APPENDIX B 4 (11)

2. System Overview

The integration includes the following systems:

• GCM

• Enterprise Application

This section documents each back-end system and their features.

2.1 General Info of Enterprise Application

Back–end System Name Enterprise Application

Contact Person/Owner Application Developer

System Description A model application

System Role An enterprise application in some Konecranes business unit

2.2 General Info of GCM

Back–end System name GCM

Contact Person/Owner Key User

System Description The global company master data solution of Konecranes

System Role To store and share company master data

2.3 General info of Integration Layer

Back–end System Name Konecranes Integration Layer

Contact Person/Owner Integration Developer

System Description The integration Layer of Konecranes

System Role To enable integrations between the layers of Konecranes platform

architecture

APPENDIX B 5 (11)

3. Summary of Interfaces

Name of interface From using

technology

Format To using tech-

nology

Format Description

GCM to Enterprise

Application

MQ .xml MQ .xml Master data

from GCM to

Enterprise

Application

4. Integration Configurations

4.1 Installed Software

The following products have to be installed and started:

DB2 Enterprise Database version 8.2

WebSphere MQ Server version 6

WebSphere Message Broker version 6.0.0.3

WebSphere Message Broker version 6.0.0.3 bug fix(IC49793)

4.2 MQ Channel Definitions

For GCM integration, a Server-Connection Channel is needed. The Server-Connection's name is used in all

clients that connect to the Queue Manager.

Channel definition

Using WebSphere MQ Explorer select Queue Manager's Channels node, right click and create Server

channel with the name “FI_HVK_ENT1.SVR”.

Using command line (example from test environment):

1. runmqsc KONECRANES_TEST

2. DEFINE CHANNEL(FI_HVK_ENT1) CHLTYPE(SVR)

4.3 MQ Process Definitions

Process explanation Process definition

Process for reading queue FI_HVK_ENT1 PR.FI_HVK_ENT1

APPENDIX B 6 (11)

5. MQ Queue Definitions

Within the Queue Manager, create the queues required for the integration. Queues creation script is in the

distribution package in mq/populate.conf. Queues can be created manually via WebSphere MQ Explorer,

however the recommended way is to use command line:

runmqsc KONECRANES_TEST <populate.conf

Queue definitions

MQ is the default protocol for the data interchange for the solution. The following queues are defined:

• KCI.FI_HVK_ENT1.IN

• KCI.FI_HVK_ENT1.OUT

5.1 MQ Security Definitions

There are no specific security recommendations, or implemented security features in the Konecranes inte-

gration layer at this time.

5.2 Flows Used in This Integration

Main Flows:

MAINFLOW_KCI.GCM.FI_HVK_ENT1.IN

MAINFLOW_KCI.FI_HVK_ENT1.OUT

Sub Flows:

SUBFLOW_DISPATCHER.msgflow

SUBFLOW_SWITCH_MSG_TYPE.msgflow

SUBFLOW_ERROR_NOTIFICATION.msgflow

SUBFLOW_MONITOR_DB.msgflow

Map Flows:

MAPFLOW_GCMTOENT.msgflow

Service Flows:

SERVICEFLOW_EMAIL.msgflow

SERVICEFLOW_MONITOR_QUEUES.msgflow

5.3 Message Sets Used in This Integration

Message sets:

messageSet.mset

APPENDIX B 7 (11)

6. Integration Implementation

The basic idea is to transfer a file (.xml) generated by GCM to Enterprise Application environment. The

transfer procedure goes as follows:

• GCM sends an xml file to MQ (KCI.GCM.FI_HVK_ENT1.IN).

• WMB reads the file from the queue and makes necessary transformations.

• WMB send the file to MQ Queue (KCI.FI_HVK_ENT1.OUT)

• Enterprise Application reads the file into its own database

6.1 Main Flows

The integration solution uses message queues to determine the message's source system and to fetch the

correct destination for the message. Both Enterprise Application and GCM uses the message queues for

data interchange.

Therefore the integration solution uses at least two message queues for Enterprise Application. The queues

are:

• Incoming queue from GCM to receive messages addressed to Enterprise Application.

• Outgoing queue to Enterprise Application instance to send GCM originated messages addressed to

Enterprise Application.

6.2 Sub Flows

The group of message flows which are invoked from any type of flows is called sub flows. A sub flow can be

invoked from all sub flows except itself. That is because of the nature of sub flows: they are copied into

flow-invoker.

6.3 Map Flows

Map flows deal with Enterprise Application specific transformations. However, that is only for a one-way

transformation. Thus, if an enterprise application uses two-way communication with GCM, then two map

flows are required.

6.4 Service Flows

Service flows are autonomic message flows which are not directly dependent on the general framework and

processing flows. Certain functionality is implemented by service flow which usually involves interaction be-

tween a message queue and external data source (database, file system, e-mail).

APPENDIX B 8 (11)

7. Routing Implementation

This section describes the integration specific values and implementation in DB2 database.

Integration data is stored in a DB2 database with MQ_GCM alias under ROUTE namespace. The data is

used to map incoming queue name to source message type, target message type, target message queue

and complimentary data (email-address, etc.).

Table INTEGRATION: specifies relations between queue and message type. Additional information like e-

mail address is also stored in the table. The columns are:

Column name Column type Column description

KEY_INTEGRATION INTEGER The primary key for the record

SENDER_CODE VARCHAR2(14) The name of incoming queue

MESSAGE_TYPE VARCHAR2(48)

The type of incoming/outgoing message format. Label

name is created using <incoming message

type>_TO_<outgoing message type>

MAIL_ADDRESS VARCHAR2(40)
The Email address if, accordingly to business logic, the

destination is e-mail, not MQ queue

APP_SPEC VARCHAR2(48)
The logical id of an enterprise Application (FI_HVK_ENT1

for example)

Table ROUTE specifies many to many mapping between incoming and outgoing queues and message types.

The table's columns are:

Column name Column type Column description

KEY_INTEGRATION INTEGER
The ID of a row in INTEGRATION table which corresponds

to incoming data

KEY_ROUTING INTEGER
The ID of a row in INTEGRATION table which corresponds

to outgoing data

QUEUE_MANAGER VARCHAR2(48)
The name of queue manager where outgoing queue

resides in

QUEUE VARCHAR2(48) The name of outgoing queue

View V_ROUTE aggregates senders (INTEGRATION) and receivers (INTEGRATION) using ROUTE.

The view's columns are:

Column name Column relation

MESSAGE_TYPE_INTEGRATION SENDER.MESSAGE_TYPE

MESSAGE_TYPE_ROUTE RECEIVER.MESSAGE_TYPE

SENDER_CODE_INTEGRATION SENDER.SENDER_CODE

QUEUE_MANAGER ROUTE.QUEUE_MANAGER

QUEUE ROUTE.QUEUE

MAIL_ADDRESS_ROUTE RECEIVER.MAIL_ADDRESS

APP_SPEC RECEIVER.APP_SPEC

APPENDIX B 9 (11)

Table MAIL_MAP maps local system, country, and region to system administrator's e-mail address. It is

used when GCM sends an update of company information and the update has to be sent both to message

queue and to local administrator’s e-mail. The table's columns are:

Column name Column type Column relation

LOGICAL_ID VARCHAR2(48) The logical id of a system (FI_HVK_ENT1 for example)

COUNTRY VARCHAR2(48) The country code of a local administrator

MAIL_ADDRESS VARCHAR2(48) E-mail address of a local administrator

8. Sequence Diagrams

8.1 IN Interfaces

No IN interfaces (messages to GCM’s direction) are included in this integration.

8.2 OUT Interfaces

Sequence diagram/tables are used for giving the developer a quick view on the whole end-to-end integra-

tion chain. The diagram/tables should include following information:

• Sending system

• MQ queue (sender)

• WMB flows for message

• MQ queue (receiver)

9. Deployment Guidelines

In GCM integration, deployment into Konecranes environment follows the following configurations:

Instance Instance value

Server-Connection Channel ENT1_IN

Database instance MQ_GCM

ODBC Source MQ_GCM

Database schema ROUTE

Database tables INTEGRATION, ROUTE, V_ROUTE, MAIL_MAP

Execution groups ENT_APP, GCM_MAINFLOWS

APPENDIX B 10 (11)

10. Agreed Policies for Development

There are some common policies regarding the development of GCM related integration solutions. Those

policies are introduced in this section.

10.1 Documentation of Development Projects

All integration development projects use this document template for documenting new integrations.

This is in order to secure consistent documentation and best practices in all integration development.

10.2 Naming of MQ Queues

By default, all data interchange with WMB goes through message queues. Thus, each enterprise application

deals with multiple queues. Each queue is dedicated to certain enterprise application. This means that no

queues are used by multiple enterprise applications for data interchange with GCM. It is very important to

specify unique and understandable names for each queue to facilitate system administration and support.

In case of new enterprise application integration, at least two queues are added to WMB:

1. KCI.GCM.FI_HVK_ENT1.IN incoming queue from GCM to receive messages addressed to Enterprise Ap-

plication

2. KCI.FI_HVK_ENT1.OUT outgoing queue to Enterprise Application to send GCM originated messages ad-

dresses to Enterprise Application

Besides the Enterprise Application and GCM queues, there are also queues that are used by WMB:

1. KCI.GCM.OUT message queue is used to pass messages from all enterprise applications to GCM.

2. KCI.EMAIL.QUEUE message queue is used to receive messages from WMB. Special service flow proc-

esses this queue and emails its content to system administrator.

3. KCI.DISK.QUEUE message queue is used to receive messages from WMB. Special service flow proc-

esses this queue and saves its content to the file system.

4. KCI.ERROR.QUEUE message queue is used to receive messages from WMB. Special service flow proc-

esses this queue and emails its content to system administrator.

APPENDIX B 11 (11)

11. Test Methods

If possible, include input and output file used for testing, as well as location where these files can be

found. Minimum amount of test cases have been considered to be one test case per integration per use

case. For CGM integration, the use cases are:

• Create a customer record.

• Create a supplier record.

• Create a record with both customer and supplier distributions.

• Add a customer distribution into existing record.

• Add a supplier distribution into existing record.

• Modify all Core tab fields of an existing record.

• Modify all Postal tab fields of an existing record.

• Modify all Hierarchy/D&B tab fields of an existing record.

12. Error Processing

Possible error causes include:

• GCM operation process error

• WMB to Enterprise Application link does not function

• WMB error

• Message format error

Available error handlers are:

• Default handler: An error message is returned using response channel (queue, web service, HTTP lis-

tener).

• Reserve handler: Used when link to Enterprise Application does not function or Enterprise Application

does not support error information. In this case, any other way of communication must be used.

There is an integration monitoring solution available. Broker flows include settings for Tivoli monitoring inte-

gration specific flows.

APPENDIX C 1 (4)

Appendix C Definitions

Application Programming Interface (API)

 An interface that enables different applications to communicate with each

other.

Asynchronous Communication

Communication by which sending and receiving applications do not need to

be available simultaneously.

Business Intelligence (BI)

A process for exploring and analyzing information to discern business

trends or patterns, thereby drawing conclusions.

Business Process Integration-Oriented Application Integration (BPIOAI)

 Approaching application integration by controlling information flow and

service invocation through a business process.

Call Level Interface (CLI)

A programming interface to access several different databases.

Composite Application

A composite application has the appearance of a single application but is, in

fact, composed of multiple, independently designed applications.

Data Warehouse

A storage architecture designed to hold data extracted from enterprise appli-

cations and other external sources.

Data Warehousing (DW)

The process of managing data warehouses.

APPENDIX C 2 (4)

Enterprise Application

A software product designed to take care of some core operation of an or-

ganization, such as sales, accounting, or manufacturing.

Enterprise Application Integration (EAI)

Technologies that allow the exchange of information between different ap-

plications within an organization.

Extensible Markup Language (XML)

A standard for defining descriptions of structure and content in documents.

Provides context and gives meaning to data.

Extract, Transform, Load (ETL)

Tools for extracting data from one data store, transforming the structure and

content of this data, and loading the transformed data to another data store.

Global Company Master (GCM)

Konecranes’ master data application that includes information about the

customers and suppliers of the company.

IBM WebSphere Message Broker (WMB)

An information broker that allows business information to flow between

disparate applications across multiple hardware and software platforms.

Information-Oriented Application Integration (IOAI)

An approach to application integration where the source and target systems

exchange information in real time.

Integration Hub

A middleware model that provides centralized communication method be-

tween applications.

APPENDIX C 3 (4)

Java Database Connectivity (JDBC)

A CLI programming interface that provides connectivity between Java plat-

form and a range of database management systems.

Master Data

The core information for an organization, such as information about cus-

tomers, suppliers, or products.

Master Data Management (MDM)

An approach to reducing the amount of redundantly managed information,

and providing information consumers with master data.

Message-Oriented Middleware (MOM)

Middleware for connecting applications, most commonly through the use of

message queuing.

Middleware

Software that facilitates the communication between applications.

Open Database Connectivity (ODBC)

A vendor-neutral CLI programming interface to access database manage-

ment systems.

Point-to-Point

A decentralized middleware model that consists of individual communica-

tion solutions between two parties.

Portal-Oriented Application Integration (POAI)

Approaching application integration by aggregating the information con-

tained in many back-end systems within a portal.

APPENDIX C 4 (4)

Remote Procedure Call (RPC)

A mechanism that extends the notion of local application procedure calls to

a distributed computing environment.

Service-Oriented Application Integration (SOAI)

The process of joining applications together by allowing them to share ser-

vices between them.

Synchronous Communication

A form of communication that requires the sending and receiving applica-

tions to be running concurrently.

