
Metropolia University of Applied Sciences
Institute of Technology
Degree Programme in Media Engineering

 Tadhg Clancy

Re-Designing a Company Website: Creating a Website

Administration

 Bachelor’s Thesis: 19 November 2009

 Instructor: Inka Niteplõd, Liikkunen Owner

Supervisor: Harri Airaksinen, Lecturer

2

Abstract

Author

Title

Number of Pages
Date

Tadhg Clancy

Re-designing a company website: creating a website
administration

44
19 November 2009

Degree Program Media Engineering
Instructor
Supervisor

Inka Niteplõd, Liikkunen Owner
Harri Airaksinen, Lecturer

The goal of the final year project was to redesign a website Liikkunen.fi for the
company Liikkunen, so that the owner could maintain the site. The existing site was
developed with VBScript, therefore for updates to precede one needed to have
knowledge of VBScript.

The solution was a redesigned, PHP and MySQL based site with an administration
area. The site was completely redesigned so that the layout would be clearer and
consequently the user could navigate more easily. Problems were encountered with
regular expressions for names and also for converting the site into Unicode; both
problems were solved so a satisfactory level where the site operates without hindrance.
The administration area allows the owner to add, modify and delete the site content
without having to search or pay for a third party’s involvement. It also lists the
company’s customers and all their details in manageable lists. The main problem found
was comparing Scandinavian letters in queries such as ‘ä’ to ‘ä’. Only by converting
the page format and the character encoding to UTF-8 was the desired outcome attained.

Encoding the site from scratch may have been made easier by using a prebuilt system
such as a content management system (CMS). However the site posed a challenge and
the owner is satisfied with it. One change that could have been made would be to
include the course date for the registration. This would enable sorting through the
course name and course date. Furthermore it would have made it easier for the owner
as there would not have to be a new course made to accommodate the second or third
dates for a course and its registration. The site could also be further developed so that
the owner could create their own links and develop new pages for their site.

Keywords web design, site administration, PHP, MySQL

3

Contents

1 Introduction 4

2 Existing Site 5

2.1 Initial Reactions 5

2.2 Logo Placement 6

2.3 Links 7

2.4 Extra Features 7

3 Designing the User Interface 8

3.1 Design 8

3.2 The use of Object Oriented Programming PHP 12

3.3 MySQL and SQL queries 16

3.4 Cookies 19

3.5 Regular Expressions 20

3.6 Browser Compatibilities 21

3.7 Multilingual Sites 23

4 Designing the Administration Interface 25

4.1 Design 25

4.2 Admin Usage of OOP PHP 27

4.3 Security 30

4.4 Admin Site Multilingual Problems and Solutions 31

4.5 Adding – Modifying – Deleting Data 33

5 Conclusions 36

Refrences 37

Appendix 1: 39

Further Examples of Linking Discrepancies 39

Appendix 2: 41

Various Code. 41

4

1 Introduction

Liikkunen, the company, was only bought January 2009; at the time there was an old

site present created in ASP where the owner had to call the original builder to make any

changes to the site. Inka Niteplõd, who is the new owner, wanted to have a new website

where she could update the site without having to go to a third party. This in turn would

also save the company money; there would be no more third party dealings. Liikkunen

is a gymnastics company aimed at families; they deal with Expectant Mothers,

Newborn’s and Mothers, Toddlers and Parents, Children and finally Adults.

There were two choices of programming languages for this project, PHP, or XML with

MySQL. PHP was chosen because Nebula, Liikkunen’s web-host, was unable to host

XML based sites, but was able to host PHP with MySQL. The site would allow the

customer complete control of the site and all its features; she could create, delete and

modify everything.

This thesis will cover the creation of the new site, from its first mock-ups to the final

version. Section 2 will detail some of the main flaws that existed in the current site from

the Logo to the links. Section 3 deals with the initial design, the use of PHP and

MySQL with the problems occurring due to Regular Expressions, Cookies and

Multilingual sites, included in this is the issues with Browser Compatibilities. Section 4

is the administration where Security and Multilingual Site problems occur. This will

also detail how to add / modify / delete courses and other information to the site.

Finally, in Section 5, there will be the conclusions where the site will be assessed and

further improvements of changes could / can be made.

5

2 Existing Site

2.1 Initial Reactions

Upon first inspection of the Liikkunen website it was presumed that the site was created

for children. Upon further inspection one realised that the site was for Mothers-to-be,

new Mothers, etc. The point of the site was unknown to me, it looked like a child’s site

to learn different information, such as counting and colours, I had to think. The best

method a site can use is giving its audience the point of the site straight away. At first

glance without scanning or reading a site is supposed to give the user its meaning, if it

does not then the site’s purpose is lost. It makes you think [1]. Figure 1 is the front page

of the site.

Figure 1. Liikkunen front page.

The site was originally written in VBScript which is a Microsoft scripting language [2].

This was discovered when the front page ‘paasivu.asp’ was opened up in Notepad++.

Figure 2 shows the first line for every .asp page that was used in the site.

6

Figure 2. First line from ‘paasivu.asp’

Due to the site being coded with VBScript, the site was locked into using an outside /

third party to update the site. Also enforcing this issue was the fact that there was no site

administration. Due to there being no administration, the owner had to call the original

maker to insert / modify / change the text. This over time would cost the site owner

valuable capitol which could be used for other endeavours.

2.2 Logo Placement

Site Logo placement is one of the most effective methods to dictate to the user where

they are; that they have not left the site. Unfortunately for the Liikkunen site, one can

only see the logo on the front page, figure 1 demonstrates this. The other pages do not

display the logo, appendix 1 figures 1 and 3 show this.

On top of having the logo seen on all pages the logo should be placed in a location that

is both natural and fixed. For Europe and other Western countries, we read from left to

right. Therefore, it would be common for the user to look at the top left of the site or

header for the logo [3]. The logo on the Liikkunen paasivu is neither at the top nor in

the header; it is located in the main text area of the site.

The site logo is like a building name. Once one enters a shop they know where they are

until they leave, unlike the web. The web provides links to different parts of the site.

One will not know they are still on the same site unless they see the site logo on every

page that they visit [1]. If a site does not have a logo, one could be transported to

another area of the Internet, the only way they know where they are would be the URL.

If the URL remains constant, it means they are on the same site; if it changes, they

know they have moved to a different area of the web.

7

2.3 Links

Links should be in a different colour or format from the normal text to indicate that they

are links. Customers are left baffled as knowing to what is, or is not, clickable content if

link are not clearly defined. There are many instances in the site where this is not

adhered to. The general look of a link is that its colour is blue and / or underlined. It is

the default colour unless changed. On the Liikkunen site the links look like normal text

until they are highlighted.

Figure 3. Unknown links

Figure 3 shows the difference in the linking system that is used in this site. One cannot

tell straight away if it is a link or not until one hover’s the mouse over it. Appendix 1

demonstrates more examples of this, including a full scale image of the current page

(jumpat_mamma.asp). The best method for links would be to have them either another

colour (preferably blue) and underlined [4]. On this site neither is done, links look like

the normal text so that one does not know what is clickable or not.

2.4 Extra Features

A surprising feature of the site is when one hovers over the “chalk” at the bottom of the

“black board”. The site background colour changes to the colour of the chalk. Also,

when one covers over the “duster / sponge”, the background reverts back to the original

colour. If one has a colour select from the chalk it does not stay for new pages, the

background once again reverts to the original colour. If the site was to be consistent, the

new background colour should have stayed for all pages.

8

A further and time consuming problem is when a new / existing client signs up for a

course, the information is sent via email to the owners email. The owner then has to

copy / paste all the client’s information into an Excel file. This process can take hours

every week for the owner to complete. A site administration would streamline this

process.

3 Designing the User Interface

3.1 Design

During the first few meetings between the customer and I, we checked out the

competitors’ sites and also some sites that the customer was interested in or thought

looked “nice”. After a few weeks, we sketched a few mock-ups and then implemented

these mock-ups in HTML and CSS. Figures 4 and 5 represent the basic ideas that we

had both envisioned. Figure 5 is the closest mock-up to the actual site.

Figure 4. First Mock-up

9

Figure 5. Second Mock-up

Websites have some basic needs, a container, header, main navigation, content and

footer. The entire site should reside between these areas [3]. The container will hold

everything; it also sets boundaries for the designers work. The 975px would be the

container for the whole site. The header as stated in section 2.2 would reside in the top

left hand corner and along with the header, the main navigation would be to the right of

it. The main navigation could also be defined as persistent navigation where it remains

almost always constant. It also gives confirmation to the user that they are still on the

same site [1]. Since the site would only be 975px wide, having the links with the header

was the most logical choice.

Next piece of navigation, secondary navigation, would be the course type links. Due to

there possibly being tertiary navigation, and there is, having the links underneath the

header was the only viable option. The tertiary links are the course links; these would

change depending on what course type would be selected. As can be seen from figure 4,

the basic of what has just been outlined is present.

Figure 5 is a much more refined version of the site; here the content area of the site is

much more clearly defined. The content would hold all the course specific information.

Content is not a design issue, but it does transcend design; no matter how good or bad

looking a site is if there is nothing of value, content wise, to offer the user they will

leave [4].

10

The overall width of the site was decided to be 975px. The reason being firstly, through

my own experience of resolutions in both laptops and desktops the lowest resolution I

have personally used was 1024*768. This on an old laptop which was used a number of

years ago. Secondly the lowest resolution that is available in desktops is also 1024*768

[5]. Even amongst the gaming community the lowest resolution is 1024*768 [6]. As for

laptops the only type of laptops that may not be able to view the entire width of the site

are the mini laptops, Netbooks. Netbooks have smaller then normal screen sizes, such as

12.1” or smaller displays. These displays may only have 800*600 or fewer pixels [7].

Another reason for the site being less the 1000px is that the scroll bar in browsers will

use up the remaining pixels that are left. If the right div was any larger, the right div

would drop down below the images at the bottom of the site.

At first the customer wanted to keep the original colours since they already had some

business / payment cards made and felt that it may be too expensive to renew the cards

again. Figure 6 displays the original colours of the Liikkunen site and the business

cards. But this was to change when a friend of the customer, a graphic designer,

designed a new logo with new colours. He also created what was to be, in conjunction

with our brainstorming, the general layout for the Liikkunen site. Figure 7 is the design

for the new Liikkunen logo and the general look of the Liikkunen site.

Figure 6. Liikkunen Cards

11

Figure 7. Designers Mock-up

Figure 8 is the final design that is used in the Liikkunen site. It is a combination

between Mock-ups 2 and 3; figure 5 and figure 7.

Figure 8. Final Design, Kurssit.php.

12

Figure 8 has a header in the recommended position and it is also a link back to the

homepage of the site [3]. The navigation is persistent throughout the site [1]. Also the

navigation is clearly defined as it is in a different colour from the normal text and it is

underlined when not a part of the main navigation [4]. The content area is defined with

a lighter colour background so that the user can see the information clearly [3].

Although there is advertising on the site, it only accounts for approximately 25%, the

rest is for the content [4].

3.2 The use of Object Oriented Programming PHP

PHP was chosen as the basis of my thesis as the language can easily manipulate

database query results into the desired format. The PHP would be used to display all the

required information needed for the site. It would also allow the customer to redefine

the information once the site is complete.

Object Oriented Programming (OOP) in PHP first appeared in PHP 3 and was then

improved in PHP 4 [8]. OOP PHP had a number of deficiencies in PHP 4 such as, an

unorthodox object-referencing methodology, no standard convention for naming

constructors and absence of object destructors [9]. In 2004 a new version of PHP was

released PHP 5 and this version eliminated all the previous problems and added new

OOP features.

There are different approaches to take with PHP when creating a website / web-

application, one is a Procedural Approach and another is the Object Oriented approach.

In a procedural approach you first have the Data Definitions and then the Manipulation

Code. For the object oriented approach both the Data Definitions and the Manipulation

Code are grouped together. Example:

Procedural Approach

1) Data Definitions

a. Data definitions for X

b. Data definitions for Y

13

2) Data manipulation code

a. Code for X

b. Code for Y

Object Oriented Approach

1) X

a. Data Definitions

b. Manipulation Code

2) Y

a. Data Definitions

b. Manipulation Code

Both versions will have their own positives and negatives and it is in the end up to the

designer / code to decide which approach best suits them [10]. I chose the object

oriented approach.

OOP PHP uses Classes to define and manipulate the code, for this Constructors and

Methods are created. Code example 1 shows a Class.

<?php

class Form {

 private $formMethod;

 private $formAction;

 private $formEnctype;

 function __construct($nFormMethod, $nFormAction, $nFormEnctype){

 $this->formMethod=$nFormMethod;

 $this->formAction=$nFormAction;

 $this->formEnctype=$nFormEnctype;

 }

 public function getForm($content){

 $response = "<form action=\"".$this->formAction."\"

 method=\"".$this->formMethod."\"

 enctype=\"".$this->formEnctype."\">\n";

14

 $response .= $content;

 $response .= "</form>";

 return $response;

 }

}

?>

Code Example 1. Form Class.

For this Class, Form, has three private variables. The first function constructs the Form

object and the public function displays the full class when called with:

Classes such as this can easily be called again and again without being edited. It can

also reduce the work flow. Other Classes used in this project include Select, Input and

MySQL, each have their own functions and can work together seamlessly.

$form = new Form($method, $action, $enctype);
echo $form->getForm($code);

15

Figure 9. Example Form.

Figure 9 represents how each of the Classes work together:

1) A query is sent to the database, the results depend on the ID that is sent via the

URL. The mysql Class first displays the course name, in this case

“Mammajumppa2”.

2) Another query is sent for the first select option, “Valitse ensin kurssi”. The

mysql Class the returns a row(s). The row data is then used to populate the

16

options, which is created by the Select Class. The number of courses in the list

is determined if they are open for registration.

3) The Input boxes are then created with the Abstract Input Class and its Extended

Classes InputText or InputTextArea. Depending on the “course type” will

determine the Input that the user must fill.

4) The second select option “Valitse maksu” is created using the same method as

the first drop down list

5) Next the payment information is displayed. First a query is sent to the database,

second the result is then processed by the mysql Class, and lastly the result from

the mysql Class can then be displayed on the page. This result is dependent on

the course. Different courses have different payment information.

6) Finally the Form Class is called and all the resultant code is then embedded in a

Form.

3.3 MySQL and SQL queries

MySQL is an open-source relational database. Static HTML pages provide no viable

means of instant updates; one can only open the file and recode the new information.

MySQL along with PHP provide that answer; using both together one can update their

website on the fly without having direct access to the source code. Data is stored in

tables which can be accessed at any time using queries. Structured Query Language

(SQL) is used to manipulate this data. SQL is a standard language that is used in almost

all databases [11]. MySQL was chosen for this project as it was the cheaper option for

the Liikkunen business, Microsoft SQL was available but it would have been too

expensive.

Figure 8 Final Design used the database more then any other page. It displays all the

course information, general pictures, dynamic links and banners. Other pages do not use

17

the database to such a degree. Figure 10 display’s the tables that are used for this page

and for the course registration.

Figure 10. Kurssit.php Database tables

Each of these tables allow for the direct manipulation of the data that is displayed. Each

course can have its own teacher, time, date, place and day. If there are multiple dates for

a course each can be displayed separately. The course ‘Mammajumppa’ has such a

feature. There are three different dates that the course is running, so instead of having

three different courses there is only one. Figure 11 demonstrates this.

18

Figure 11. Mammajumppa Course

When first coding this page, a separate SQL query was generated for each of the

Ajankohdat, Paikka, Päivä, Aika and Ohjaajat. This in turn ended up with more code

than what would normally be required, about 6-8 different query statements were

generated. The solution found was ‘LEFT JOIN’. LEFT JOIN will return all rows from

one table even if there are no matches in the second (right) table [12]. Once this query

was employed it reduced five different queries into one powerful query. The full query

can be seen in appendix 2.

Figure 12. General Database Tables

19

Figure 12 represents the remaining tables that are used for this site. Some of these

tables, such as banners are accessed more often than others. The customer expressed the

desire to add more advertisements to the site and wished to have a means to add them.

Other tables are page specific; they will only be accessed once their respective page has

been called by the user.

3.4 Cookies

Cookies are commonly used in websites. They are used for a variety of purposes such

as: user’s navigation through your site, authorization, encrypting and deleting [10]. For

this site only cookies on one page, Kurssit page, were used. The reason being is that

when a user goes to a specific type of course the links on the left of the page are

dynamic. They change depending on the type of course selected.

The links needed to be available for the user. When the user views a course the general

information disappears and the course specific information replaces it. Also without

cookies the links disappear, this would also happen if the user has cookies turned off in

their browser.

$ID = $_GET['course'];// getting the course ID and keeping it in the browser;

if($ID == 0){

}else{

 setcookie ('coursetype', $ID, time()+ (3600));

}

Code Example 2. Cookes Kurssit.php

For the cookies on this page, code example 2, the course type_id, which is a number, is

passed, and it is then stored in a cookie named “coursetype”. This is than held for one

hour. The reason for one hour is that there should be no one still on the page after an

hour; therefore, setting the expiration longer would not be necessary. Cookies were

deemed not to be necessary for any other page since the links do not change and any

changes for those pages would be in the database.

20

3.5 Regular Expressions

PHP supports two kinds of regular expressions, POSIX (Portable Operating System

Interface for Unix) and Perl. Regular expressions can be used to match input data

according to predefined constraints [9]. The PHP community is now currently moving

over to Perl as the standard for Regular Expressions since POSIX has been deprecated

as of PHP 5.3 and will be removed from PHP 6.0 [13]. For this project user input had to

be checked for problems that could occur; this was then matched to a predefined regular

expression.

Various problems were encountered such as

1) Individuals had “-“, in either their Forename(s) or Surname(s)
2) Individuals using two first names without “-“
3) Having multiple names in one field, such as a parent signing in three children into
one course or two adults singing into a course with their child, or a combination of both.

 The original predefined Regular Expression:

(preg_match("/^[a-öA-Ö]+(-[a-öA-Ö]+)?$/", $LapNimi))

This expression could not handle what was necessary for the site. A new expression was

created so that it could handle all cases of Finnish names:

(preg_match("/^([a-öA-Ö\+-]+([a-öA-Ö\-,]+))*$/D", $LapNimi))

21

3.6 Browser Compatibilities

Browser Compatibility is the rendering of a website on many different browsers (such

as Internet Explorer (IE) and Firefox) to see how the site appears. What may work on

for one browser may not work for another. When using Cascading Style Sheets (CSS)

items such as “a:link” work with all browsers but others such as “max-width” do not.

Different browsers have CSS implemented in different ways. IE 7 and 8 both use

correctly max-width but IE6 will not, the CSS version for IE6 can be best described as

buggy. Not all the usual CSS classes or id’s work. Other examples are float, h1 + p, etc

[14].

Throughout coding, site checks had to be made in order to see how the site reacted in

different browsers. The browsers used were Firefox 3.5, Internet Explorer 8, Opera and

Chrome. The biggest issued was on the Yhteystiedot page. The image that is used did

not appear correctly in all browsers. Only in Firefox did it appear correctly. At first

div’s and CSS were used to set its position, Firefox was the only success; the other

browsers pushed the image below the text. Finally a table was used to set the position.

Figure 13. Internet Explorer - Yhteystiedot.

22

Figure 14. Firefox – Yhteystiedot.

Further testing includes how browsers render the normal “text” and “colour”. Every

browser has its own rendering engine. As can be seen from figure 13 and figure 14 the

text and line spacing in IE is larger the in Firefox. Also from the image the Image in IE

is darker then in Firefox. Since there is no one, common, rendering engine nearly all

browsers are using different engines. Firefox uses the Gecko rendering engine, and

Trident for IE. Each engine will display the content slightly different from the other.

23

3.7 Multilingual Sites

In today’s modern Internet not only is English used, but also Finnish, Swedish, Chinese,

and other various languages that are Latin and non-Latin based. As the Internet ascends

to a multilingual society, websites must also become multilingual, or at least have the

capacity to display these languages. There is already the ISO-8859-1 character set

which included all Latin based characters but also adds support for Finnish ä and ö, and

other characters from other languages such as ü from German. Unfortunately, not all

character sets were cross compatible such as ASCII – English characters only or ANSI.

Some of these character sets were only available to particular Operating Systems –

ANSI for Windows and MacRoman for Apple. Some of the characters in both of these

character sets are not available in each other or in ISO-8859-1 [15]. From this mess of

different character sets Unicode was born. Unicode provides a unique number to every

character – unline the old old sets which may have different numbers for the same

character – so that every Operating System or program will have the exact same

character set [16].

While creating the Liikkunen site the character the ISO-8859-1 was used, this encoding

has been used on many websites without issues. The predominant issue that arose was

during the creation of the administration. This reason will be dealt with in section 4.4;

because of this issue the site was changed into Unicode – UTF-8 as the site character

set.

When changing over from the ISO-8859-1 to Unicode (UTF-8) the characters were at

first not displaying correctly. Instead of ä or ö, � was rendering instead; all other

characters – ASCII character set – worked perfectly. It was not until further research

that I discovered that Notepad++ – the editor of choice – encoded pages in ANSI. So on

top of changing the “charset´” in the head of the HTML document, the pages of the site

had to be re-encode to UTF-8 so that the Scandinavian letters would render as they

should.

24

Upon re-encoding the pages a new problem was discovered; all the Scandinavian letters

were rendering – when the page was viewed in Notepad++ and also when viewed in any

browser – were replaced by other characters. Figure 15 represents the new characters

after the encoding.

Figure 15. Characters after UTF conversion.

On the left is the new Unicode characters, and the right has the original characters. The

only way to have these “new” characters removed was to manually retype all of them

for every page. Once this was completed, the pages would render correctly in Firefox or

IE.

25

4 Designing the Administration Interface

4.1 Design

The general design of the administration is virtually the same at the General User

Interface. The main differences are: no banners at the right or bottom of the screen, a

wider interface and more links at the top of the site. There are several reason for this, it

is firstly: since it’s the administration, there was no need for the banners due to the fact

that only the site owner would see this part of the site. Secondly, a wider interface was

needed to allow for the extra information that would be available to the customer so that

there would be no table that would be displayed outside the general borders of the

administration. Lastly, more links so that the customer can change any part of the site

that she wishes. All aspects of the site are at her disposal. Figure 16 displays the general

layout for the administration.

Figure 16. Liikkunen Administration

26

As can be seen from figure 16 the general lay has been kept, one of the main reasons for

this is that the customer knows that she is on the same site and has not been directed

elsewhere on the Internet [1]; also it keeps the continuity of the site flowing. The main

reason for having the site wider then on the User Side is to show some of the basic

information in the “Kurssit Ilmoittautuminen” page. Figure 17 shows the reasons for

having a large width.

Figure 17 Kurssit Ilmoittautuminen.

The biggest contributing factor for having the width is that individuals’ emails can show

their first.surname@somewhere.com. On top of the email is the number of columns that

much be shown. The page will only display certain columns depending on the course.

Since Vauvajumppa will have both parent and child, both need to be displayed. The

reason for this is that the customer wanted to be able to make quick lists of who is in the

course without having to resort to another file for sorting the lists, deleting the excess

fields to be left with the same fields presented in figure 17.

One of the main design challenges was deciding on how to proceed with the adding /

modifying / deleting of material. One way was to keep everything in the same interface

where one proceeds to a new page to edit the site. Keep the current interface and open a

new window where changes can take place. I chose the second option, one of the main

reasons for doing so is that you can see straight away any changes that take place. If

27

something is modified and when the page reloads after pressing submit the parent page

reloads with the changes while the windows stay open. As stated one can see the

changes happen straight away but also one does not have to navigate away from the

current page to a new area of the site to do any modification.

4.2 Admin Usage of OOP PHP

As stated in section 3.2 OOP PHP uses classes to call and display the information that is

required. There is no difference in between the General User Interface OOP PHP and

the administration OOP PHP. A connection is made to the MySQL site through a

connection string which holds the username, password, database location and database

name. This connection is converted into an object via the mysql class.

For the mysql class first before a query can be sent, can a connection be made to the

MySQL server; if successful then next is to determine if the required database can be

selected. When both of these are successful a query can be made. As stated earlier, the

mysql class created an object from the connection string, the exact same process is

applied to the SQL statement / query. Once the desired query is created, the connection

string creates an object from the query and sends the query to the MySQL database

through the mysql class.

When the query is sent to the database and can be confirmed to be a valid, query the

output can be processed in the mysql class. Once the output is determined, it can finally

be displayed. Figure 18 demonstrates the process that takes place.

28

Figure 18. OOP PHP process.

29

The biggest issue’s that were found was in modifying the Input and Form Classes.

When creating textarea’s for the site so that the customer could add or modify

information, the textarea was not displaying correctly. Since a textarea needs both

opening, and closing tags and not just one self closing tag (as is the input tag), the

textarea needs different arguments to the input. Input, when creating it, only needs the

length, while a textarea needs clos and rows as input arguments for its creation. Code

example 3 and code Example 4 show the differences in how they are created.

$pDate = new inputText(“date”, “30”);

$code .= $pDate->getCode();

Code Example 3. Creating an Input field

$pDate = new InputTextArea(“message”, “40”, “10”);

$ code .= $pDate->getCode();

Code Example 4. Creating a Textarea

Once the textarea was showing as required, the next issue was how to display

information in the textarea that would be modified. The issue was with the Input Class

itself and not any where else.

As was stated earlier an Input tag is self-closing, but the textarea tag has both an

opening and a closing tag. So, when setting the value for the Input it is naturally in the

tag, code example 5 demonstrates this, at first I was trying the same method with the

textarea.

$response="<input $dis $maxl $reado $nam $typ $val $siz /> \n";

Code Example 5. InputText Code from the Input Class

30

To achieve the favourable outcome for the textarea to display the text that was to be

modified, the $val had to be moved between the textarea tags. Code example 6 displays

the final version for the InputTextArea class.

$response="<textarea $dis $maxl $reado $nam $typ $rows $cols> $val </textarea> \n";

Code Example 6. InputTextArea Code from the Input Class

Along with this change, other values needed to be created, two private values for cols

and rows, and the class had to have their own constructor. The full Input Class can be

found in appendix 2 figure 2.

For further changes in the site the Form class had to be modified, so that a form name

could be passed. Only three lines of code were added, and the constructor had a new

value add. This was used so that a piece of JavaScript could be used to enable the

customer to use HTML tags. The JavaScript created HTML tags in the textarea so that

the customer could define her text. Some of the tags are H1, H2, strong, br and p.

Another piece of JavaScript was used for the “€” sign.

4.3 Security

Securing one’s website is just as simple as an on-off switch, such as, secure or not

secure. It is a scale on which a site can be measured on. The more secure a site is the

more checks need to be done; more code, more MySQL / server checks. More security

can also translate into reduced performance for both the user and administrator [16].

Authentication is also a valuable part of website security. The credentials of the user

should be checked; this is usually done via a username and password combination.

Once this has been inputted, the database can then be checked [17]. Once the user is

authenticated, sessions can begin. The session will hold the necessary data that can be

used when checking users’ rights on different pages [11].

31

One of the biggest security risks on the Internet is having one’s password stolen. If a

hacker gets access to a database, then they have access to all the information present,

including users usernames and passwords. One method of preventing this is by Hashing

the password. md5() function uses MD5 which is a hash algorithm that is often used for

creating signatures. MD5 is considered one-way hashing making it very difficult for the

original password to be dehashed [8].

For the General User Interface there is no login data to be retrieved. There are however

two different forms that the user can fill out: course registration and normal registration

(for news and updates). For the two forms, Regular Expressions are used as the main

security precaution. The regular expressions test the user input, so that it represents a

certain form. If the data is not of this form, an exception or error is produced and the

user must retype their input.

For the administration a login, sessions and authentication are used to check the users

details. Also the user’s password is hashed for the added security. The user can be

limited to only certain features depending on their level on access. The customer has

access to the entire site; she can add / modify / delete everything. The teachers on the

other hand have only access to the basic course list. They cannot add / modify / delete

user data.

4.4 Admin Site Multilingual Problems and Solutions

As stated in section 3.7 the Liikkunen site was converted over from ANSI, file

encoding, and the ISO-8859-1, character set, to Unicode. The main reason for this was

for comparing Scandinavian characters such as, ‘ä’ to ‘ä’, or ‘ö’ to ‘ö’. One of the

courses in the Liikkunen site is called “Vauvajumppa 2-7 kk- Ryhmä 2”; unfortunately

the Scandinavian “ä” could not be translated. A query was first used to retrieve the

name of the course. This result was then used to find the registered people in that

particular course.

When tested in the user interface for MySQL, phpMyAdmin, the query works, however

when called to the user interface, no results could be found. The database itself had to

32

be converted to Unico. The collation that was first used was latin1_swedish_ci, but this

proved to be inadequate for the needs of the site. There each table and every field had to

be converted from latin1_swedish_ci to Unicode_swedish_ci. Only then did the

registered user list appear.

When converting the files format from ANSI to Unicode, Notepad++ gives two

different options:

1) Encode in UTF-8

2) Encode in UTF-8 without BOM

If the file was encoded using option 1, Encode in UTF-8, the resultant output file would

have an error. Figure 19 shows a file Encoded in UTF-8.

Figure 19. File Encoded in UTF-8

33

BOM stands for “Byte Order Mark”; it consists of the character code U+FEFF. It can be

used to define the encoding for unmarked files [18]. Figure 8 displays the same file

when it is Encoded in UTF-8 without BOM.

An interesting consequence of converting the site and database into Unicode was that

the Scandinavian letters in the database appeared differently. But when they are called

from the database they appear as normal:

Ä = Ã„ example: Äiti ja vauva = Ã„iti ja vauva
ä = Ã¤ example: Odottava äiti = Odottava Ã¤iti
ö = Ã¶ example: myös = myÃ¶s
õ = Ãµ example: Inka Niitepõld = Inka NiitepÃµld

This, I attributed to Unicode and how it interprets letters from different languages.

4.5 Adding – Modifying – Deleting Data

Knowing how to Add, Modify and Delete data in the administration is a necessity. This

section will cover how to Add a full course and then Modify the said course. Figure 20

represents the first look for the Course Information – Kurssit Info.

Figure 20. Kusrrit Info page

As one can see from figure 20, the list of courses is present on the left of the screen.

These courses are not in alphabetical order but are in course type and course id order.

34

Clicking on any of the links will display all the selected course information that is

present in the database.

When adding a new course, the user is brought through four different stages. Each stage

will ask you for different information pertaining to the course:

Stage 1: Course Name, Description, Duration, Type and Status.
Stage 2: Date, Place, Day, Time, Teacher
Stage 3: Payment Information
Stage 4: Price(s)

The reason for having so many different stages is that the owner may not know certain

aspects of the course until later on. Example: When will a course start? Until it is known

only Stage 1 would need to be completed. Once the Date, Place, etc are known, then the

course can be filled with all the necessary information. The only stage where one may

have to revisit is Stage 4. Some courses may only have one price while others may have

many different pricing schemes, therefore, it was decided that only one price could be

inserted at a time.

For the Modifying of a course the same process would be undertaken as in Adding.

Different stages would represent the various aspects of the course. There would only be

one difference between them, Stage 4 would not exist. The reason being is that it would

be normal to add / delete a new price instead of modifying one. Figure 21 shows when a

course is fully developed and displayed.

35

Figure 21. Full course information

The same processes (add / modify) can be used for all the information present in the

administration. The only different section to the rest is the Kurssit Ilmoittautuminen.

Here one can see the basic information that is there for each course registrant, so the

customer can see who has registered and can make a quick reference list from those

who are registered. There is a link above and below the table that houses the

information. This link opens in a new window and will display all the information that

the people have registered: Name, email, address, phone, etc.

36

5 Conclusions

The aim of the project was to redesign the Liikkunen website so that the owner could

update the site without having to contact a third party. The objectives were met. The old

site needed to be updated to allow for standardised linking system and logo placement.

The lack of these two basic needs prevented people from knowing where they were on

the site and reduced the usability. Also the extra features which could confuse the user

are no longer present. The new site design presented the user with a standard interface,

for all pages, and it conforms to website standards.

The administration allows the customer to update the site in all aspects. It also increases

the work efficiency of the owner as they do not have to deal with emails detailing user

data for the course, because all data is presented in structured tables. The administration

also gives the teachers the chance to retrieve the course lists without contacting the

owner.

The site is robust enough to handle the addition and modification of any new course that

the owner can consider. It also enables courses to have many different dates displayed;

unfortunately this is also a weakness. Due to the manner of construction, a course

cannot be split into its different dates. A new course would have to be constructed for

this new date. Another weakness of the site is that the owner cannot create a new page;

an outside party would have to employed to do so. To further increase productivity in

the creation process a prebuilt content management system (CMS) could have been

used. This would have reduced the time taken for the site to be built.

37

Refrences

1 Krug S. Don’t make me think: a common sense approach to web usability.

Berkeley, CA: New Riders Publishing; October 2000.

2 Microsoft. What is VBScript? [online]. United States Microsoft.
URL: http://msdn.microsoft.com/en-us/library/1kw29xwf%28VS.85%29.aspx.
Accessed 16 October 2009.

3 Garrison G. How to make a website’s logo pop [online]. Los Angeles. Five
Finger Coding.
URL: http://www.fivefingercoding.com/web-design/how-to-make-a-website-
logo-pop. Accessed 5 November 2009.

4 Bluejay M. Web design tips [online]. Austin, TX. Website Helpers; 2001
updated
February 2009.
URL: http://websitehelpers.com/design/. Accessed 3 November 2009

5 Prismo. Evaluation display and window survey [online]. Switzerland: Prismo

URL: http://www.prismo.ch/surveys/evaluation.php. Accessed 19 August 2009.

6 Steam. Steam hardware survey: September 2009 [online]. Washington: Steam;
September 2009
URL: http://store.steampowered.com/hwsurvey/. Accessed 19 October 2009.

7 Prismo. Notebook LCD display comparison [online]. Switzerland: Prismo.
URL: http://www.prismo.ch/comparisons/notebook.php. Accesses 19 August
2009.

8 The PHP Group. History of PHP [online]. The PHP Group.

URL: http://fi2.php.net/manual/en/history.php.php. Accessed 12 October 2009

9 Gilmore W. Beginning PHP and MySQL: from novice to professional, 3rd ed.
 Berkeley, CA: Apress; 2008.

10 Converse T. Park J. Morgan C. PHP5 and My SQL Bible. Indianapolis, IN:
 Wiley Publishing, Inc; 2004.

11 Davis M. Phillips J. Learning PHP and MySQL, 2nd ed. Sebastopol, CA :
 O’Reilly: 2007

 12 W3Schools. SQL LEFT JOIN Keyword [online]. W3Schools

 URL: http://www.w3schools.com/sql/sql_join_left.asp. Accessed 01 August
 2009.

38

13 The PHP Group. ereg [online]. The PHP Group.

URL: http://fi2.php.net/manual/en/function.ereg.php. Accessed 13 August 2009

14 Westciv Wiki. CSS compatibility for current browsers [online]. Westciv Wiki
 URL:
http://westciv.com/wiki/CSS_compatibility_table_for_current_browsers#Class.
Accessed 23 October 2009.

15 Wood A. Differences between ANSI, ISO-8829-1 and MacRoman character set
 [online].
 URL: http://www.alanwood.net/demos/ansi.html. Accesses 24 October 2009

16 Ullman L. PHP 6 and MySQL 5. Berkeley, CA: Peachpit Press: 2008

17 Schlossnagle G. Advanced PHP Programming. Toronto, Ontario: Sams
 Publishing: 2004

18 Unicode. Inc. UTF-8, UTF-16, UTF-32 & BOM [online]. Unicode Inc.

 URL: http://unicode.org/faq/utf_bom.html#bom1. Accessed 11 October 2009.

39

Appendix 1:

Further Examples of Linking Discrepancies

Figure 1. jumpat_mamma.asp (full)

40

Figure 2. lukujärjestys links difference.

Figure 3. lukujärjestys – lukujarjestykset.asp (full)

41

Appendix 2:

Various Code.

$query="SELECT
 course_date.date_dates,
 course_place.place_name,
 course_days.days_dayname,
 time.time,
 course_teachers.teach_name
FROM
 course_date
LEFT JOIN

course_place_alt
ON
 course_date.date_id = course_place_alt.date_id
LEFT JOIN
 course_place
ON
 course_place_alt.place_id = course_place.place_id
LEFT JOIN
 course_days_bridge
ON
 course_date.date_id = course_days_bridge.date_id
LEFT JOIN
 course_days
ON
 course_days_bridge.days_id = course_days.days_id
LEFT JOIN
 time_bridge
ON
 course_date.date_id = time_bridge.date_id
LEFT JOIN
 time
ON
 time_bridge.time_id = time.time_id
LEFT JOIN
 teach_bridge
ON
 course_date.date_id = teach_bridge.date_id
LEFT JOIN
 course_teachers
ON
 teach_bridge.teach_id = course_teachers.teach_id
WHERE
 course_id = $ID ;
";

Code Example 1. Sourse Code for using LEFT JOIN to reduce five queries to one single
query – Kurssit.php

42

<?php
abstract class Input{
 protected $accept;
 protected $align;
 protected $alt;
 protected $checked;
 protected $disabled = false;
 protected $maxlength;
 protected $readonly = false;
 protected $size;
 protected $src;
 protected $type;
 protected $value;
 protected $cols;
 protected $rows;

 function __construct($nType, $nName) {
 $this->type = $nType;
 $this->name = $nName;
 }

 public function setDisabled(){
 $this->disabled=true;
 }

 public function setMaxlength($len){
 $this->maxlength=$len;
 }

 public function setReadonly(){
 $this->readonly=true;
 }

 public function setValue($val){
 $this->value=$val;
 }
}

class InputText extends Input {

 function __construct($nName, $nSize) {
 parent::__construct("text", $nName); // call the constuctor of the Input class
 $this->size = $nSize;
 }

 public function getCode(){
 if ($this->disabled)
 $dis = 'disabled="disabled"';

 if (isset($this->maxlength))
 $maxl = 'maxlength="'.$this->maxlength.'"';

 if ($this->readonly)
 $reado = 'readonly="readonly"';

 if (isset($this->value))
 $val = 'value="'.$this->value.'"';

 $nam = 'name="'.$this->name.'"';
 $typ = 'type="'.$this->type.'"';

43

 $siz = 'size="'.$this->size.'"';

 $response="<input $dis $maxl $reado $nam $typ $val $siz /> \n";
 return $response;
 }
}

class InputTextArea extends Input{

 function __construct($nName, $nCols, $nRows){
 parent::__construct("textarea", $nName);
 $this->cols = $nCols;
 $this->rows = $nRows;
 }

 public function getCode(){

 if ($this->disabled)
 $dis = 'disabled="disabled"';

 if (isset($this->maxlength))
 $maxl = 'maxlength="'.$this->maxlength.'"';

 if ($this->readonly)
 $reado = 'readonly="readonly"';

 $nam = 'name="'.$this->name.'"';
 $typ = 'type="'.$this->type.'"';
 $rows = 'rows="'.$this->rows.'"';
 $cols = 'cols="'.$this->cols.'"';
 $val = $this->value;

$response="<textarea $dis $maxl $reado $nam $typ $rows $cols> $val </textarea> \n";

return $response;
 }
}

class Submit extends Input {

 function __construct($nName, $nValue) {
 parent::__construct("submit", $nName); // call the constuctor of the Input class
 $this->value = $nValue;
 }

 public function getCode(){
 $nam = 'name="'.$this->name.'"';
 $typ = 'type="'.$this->type.'"';
 $val = 'value="'.$this->value.'"';

 $response="<input $nam $typ $val /> \n";
 return $response;
 }
}

class Hidden extends Input {

 function __construct($nName, $nValue) {
 parent::__construct("hidden", $nName); // call the constuctor of the Input class
 $this->value = $nValue;
 }

 public function getCode(){
 $nam = 'name="'.$this->name.'"';

44

 $typ = 'type="'.$this->type.'"';
 $val = 'value="'.$this->value.'"';

 $response="<input $nam $typ $val /> \n";
 return $response;
 }
}

class Passwd extends Input {

 function __construct($nName, $nSize) {
 parent::__construct("password", $nName); // call the constuctor of the Input class
 $this->size = $nSize;
 }

 public function getCode(){
 $nam = 'name="'.$this->name.'"';
 $typ = 'type="'.$this->type.'"';

 $response="<input $nam $typ /> \n";
 return $response;
 }
}

?>

Code Example 2. Full Version of Input class.

