

Mobile web apps as an alternative to native

mobile apps

The future of mobile web apps on the competitive marketplace

Kim Hellbom

Degree Thesis

Film och TV / Online Media

2013

EXAMENSARBETE

Arcada

Utbildningsprogram: Film och TV, Online Media

Identifikationsnummer: 4315

Författare: Kim Hellbom

Arbetets namn: Mobile web apps as an alternative to native mobile apps

Handledare (Arcada): Owen Kelly

Uppdragsgivare:

Mobila webbapplikationer har funnits på marknaden i flera år, men de har inte lyckats

tävla med nativa applikationer i form av kundnåbarhet och användarupplevelse. Nativa

mobilapplikationer har varit konsumenternas primära val, tack vare deras väl utvecklade

distribueringssystem och för att människor helt enkelt inte har hört om mobila

webapplikationer.

I mitt arbete kommer jag att undersöka ifall mobila webbapplikationer kommer att kunna

tävla med nativa mobilapplikationer inom den förutsebara framtiden. Jag kommer att

jämföra nativa, webb och hybrida mobilapplikationslösningar i form av kundnåbarhet,

utvecklingskostnader, utvecklingshastighet och produktionsmiljöer.

En hybridlösning som heter PhoneGap möjliggör uppladdningen av en mobil webbappli-

kation till en digital distribueringskanal och denna lösning kommer att jämföras med

webb och nativa utvecklingslösningar. Eftersom arbetet inte är en teoretisk studie, baserar

sig studierna på erfarenhet jag fått från att utveckla en mobil webbapplikation med Phone-

Gap ramverket. För att få en bild över konsumenternas åsikt om mobila webbapplikat-

ioner, kommer en intervju att hållas i slutet av denna studie.

Resultat från denna studie visar att mobila webbapplikationer sannerligen har en möjlig-

het att tävla med nativa mobilapplikationer i när framtiden. Konsumenterna är beredda

på att börja använda mobila webbapplikationer istället för nativa mobilapplikationer, så

länge användarupplevelsen är lika bra. För mobila webbapplikationer att nå samma

mängd konsumenter som nativa mobilapplikationer gör, kommer en digital distribu-

eringskanal att vara oundviklig.

Slutligen kommer jag att sammanfatta resultaten och presentera min slutsats samt idéer

för vidare undersökning inom området.

Nyckelord: Mobile web applications, native apps, PhoneGap, BUILD

Sidantal: 50

Språk: Engelska

Datum för godkännande:

DEGREE THESIS

Arcada

Degree Programme: Film and TV

Identification number: 4315

Author: Kim Hellbom

Title: Mobile web apps as an alternative to native mobile apps

Supervisor (Arcada): Owen Kelly

Commissioned by:

Mobile applications developed with web technologies have been around for some time, but

they have not yet been able to compete with native applications in form of consumer reach

and user experience. Native applications have been the number one choice for consumers,

mainly because of their powerful distribution channels and also because very few people

actually know what a mobile web app is.

In this thesis I will find out if mobile web apps will be able to compete with native appli-

cations in the foreseeable future. I will compare native, web and hybrid mobile application

solutions in form of customer reach, development cost, development speed and production

environments. A hybrid solution called PhoneGap that enables mobile web app developers

to wrap their app in a native container and upload it to an app store will be compared to

web and native solutions. This will not be a theoretical study. Research made for this thesis

will be based on the experience I got while developing a mobile web app with the Phone-

Gap framework. To gain an understanding on what consumers think of mobile web appli-

cations, an interview will be conducted in the end of this thesis.

Results from this study show that mobile web applications will have a chance of competing

with native mobile applications in the near future. Consumers are ready to start using web

apps over native apps, as long as the user experience is good. A digital distribution platform

is inevitable if mobile web applications are to have the same reach of customers as native

applications.

Finally I will summarize the results and present my conclusion and ideas for further study

on the subject.

Keywords: Mobile web applications, native apps, PhoneGap, BUILD

Number of pages: 50

Language: English

Date of acceptance:

CONTENTS

1 INTRODUCTION ... 7

1.1 Background ... 7

1.2 Statement of the problem .. 8

1.3 Purpose of the thesis ... 9

1.4 Delimitation .. 10

1.5 Structure of the thesis ... 9

1.6 Terminology ... 10

1.6.1 Abbreviations and acronyms ... 11

1.7 Summary ... 12

2 Technical Specification ... 12

2.1 Different solutions .. 12

2.1.1 Native... 13

2.1.2 Web application ... 14

2.1.3 Hybrid .. 14

2.1.4 Middleware .. 14

2.2 HTML5 ... 15

2.2.1 Future of HTML5 ... 16

2.3 PhoneGap ... 16

2.3.1 History.. 18

2.3.2 Features .. 18

2.4 Flexibility .. 19

2.5 Power .. 21

2.6 Summary ... 22

3 Production .. 23

3.1 Historic examples .. 23

3.2 Development speed... 24

3.2.1 Add hardware acceleration .. 26

3.2.2 Pre-compiled templates ... 26

3.2.3 Keeping the markup minimal ... 26

3.2.4 The correct way of using user interface frameworks ... 27

3.2.5 Summary ... 27

3.3 Developing with PhoneGap ... 27

3.3.1 Set up .. 28

3.3.2 Coding ... 31

3.4 Cost efficiency ... 33

3.4.1 Time and money .. 33

3.5 Summary ... 34

4 Cosumption .. 34

4.1 Acceptance and market reach ... 35

4.2 Perceived professionalism .. 36

4.3 Summary ... 37

5 Interview ... 37

5.1 Method ... 37

5.2 The Apps ... 38

5.3 Results ... 42

5.3.1 Questions .. 42

5.4 Summary ... 44

6 Conclusion ... 45

6.1 Summary and findings ... 45

6.2 Ideas for further study ... 46

References .. 46

Appendices ... 50

Figures

Figure 1. Differentiations between the Web, Native, Hybrid and Middleware

development solutions .. 12

Figure 2. The cycle of the PhoneGap process .. 17

Figure 3. How PhoneGap Build works ... 29

Figure 4. Swiping to the left on the Financial Times web app will move the user to the

next news category ... 39

Figure 5. Frontpage of the Guardian native app to the left and the Financial Times web

app to the right. The Guardian only shows the titles and keywords of the articles, when

the Financial Times shows the title and the first 100 characters of the article. 40

Figure 6. Article view. The Guardian to the left and the Financial Times to the right. Both

applications have similar functionality except for the possibility to favorite and comment

on articles in the Guardian.……………………………………………………………40

Tables

Table 1. Glossary .. 10

Table 2. The most used Mobile web browsers and their rendering engine 20

Table 3. Interview questions……………………………………………………………50

7

1 INTRODUCTION

This chapter will introduce the main research topic and present essential background in-

formation on the central theme. The purpose, structure and method of the thesis will be

defined and because of the wideness of the topic, a chapter on delimitation will be intro-

duced. Finally, terminology used in the thesis will be presented.

1.1 Background

Smartphone usage vastly increased during the last couple of years in hand with mobile

applications. According to Mary Meeker (2012) there are now over 1 billion global

smartphone subscribers, a 42% growth from last year. Meeker points out that even though

the tremendous ramp of the smartphones that has occurred, the smartphone user adoption

rate is still far behind from mobile phones, that stand on a steady 5 billion global users.

Mobile Applications have taken a very central role in our daily life. Nowadays, they are

the key to smart phone user experience. We use them to read news, listen to the radio,

watch television and play games. The bigger the usage base grows, the more applications

are developed. In February 2013, Apple had 800 000 applications in their App Store. It’s

an impressive number if compared to last year when they only had 475,000 applications

available (148 Apps, 2013).

Mobile applications have largely been based on native development platforms such as

C++, JAVA and Objective-C. When developing for a native platform, there are limita-

tions that are important to take into account. These include for example: cross platform

incompatibility, code management and the need of special expertise, just to name a few.

What if there would be a possibility to write an application that could run on all mobile

devices, not being dependent on what operating system the device is using or what screen

resolution it has. That is possible, thanks to HTML5, the catch-all term used to describe

the latest web standards, HTML, CSS and JavaScript. Therefore, as long as the target

device has a web browser, it will be able to run the application.

8

HTML5 has been around for quite a while now but it was not until 2009 when people

really started talking about developing web apps using HTML5, thanks to Steve Jobs

praise on how awesome web apps are (Killian Bell, 2011) and Google’s successful im-

plementation of HTML5-based apps (Alex Chitu, 2010).

There are several reasons why web apps have not yet boomed in the wide world of con-

sumers. The lack of notifications, HTML5 does not provide an API for accessing the

devices native functionality, such as the battery status or file storage and there is no cen-

tral payment system for the platform. These functionalities are currently under develop-

ment of the Device APIs working group, a group under the World Wide Web Consortium

(W3C) international organization and might end up as a feature in our browsers in the

near future (Frederick Hirsch, 2013). But before that day is upon us, we have to get crea-

tive. Luckily there is a hybrid solution, a framework called PhoneGap.

An API is a set of instructions that makes it possible for two pieces of software or web

applications to communicate with each other.

1.2 Statement of the problem

Will web apps be able to compete with native apps in the marketplace in the foreseeable

future?

The inescapable truth is that most people think of web apps as just another bookmark in

the browser, and not as an experience. It is a trivialization that is occurring and it is not

fair but that is just how peoples mind think of web apps these days (Matt Gemmel, 2011).

“As mobile devices are taking the center of stage as computing devices, there will be less investment in

improving Web technologies if it is not seen as relevant on mobile devices.(W3C, 2013)”

It is important that the web keeps evolving and expanding at the same phase as mobile

operating systems and native development code bases. Native application distribution

channels are controlled by single commercial entities, pushing the mobile experience on

risk of censorship and monopoly. The web was made to be open, and it should stay that

way. New APIs for accessing native functionalities are being developed, but the process

is slow because of the multiple phases. Fingers are being pointed at W3C that administrate

and make sure that HTML constantly gets updated with new APIs and other functionali-

ties. The problem is not only the administrative organization but also the browser vendors.

9

They choose when and what HTML APIs they include in their web browser software.

Some vendors are faster on deploying and some take more time. The evolution of HTML

is also affected by the mindset of consumers and developers.

1.3 Purpose of the thesis

The purpose of this thesis is to find out if web apps will be able to compete with native

applications in the marketplace in the foreseeable future. The debate between the power

of web and native application development is fiercer than ever. While native apps provide

a more fluent and delicate experience than web apps, the development process is longer

and requires special expertise. And even then when the native application is at a stage of

deployment, it can only be deployed on one operating system, for example iOS or An-

droid. Web applications are developed using standard-based web technologies HTML,

CSS and JavaScript. They only require a web browser to function, which means that every

device on planet earth that has a web browser can run the application. For example smart

fridges, smart televisions, smartphones and desktop computers. Developing web apps can

save time and money and the app will be deployable on several operating systems.

Hypothesis 1: Web apps can be able to compete with native apps in the coming years if

they are visually attracting.

Will the experience and customer reach be greater if the web application is wrapped in a

native container and uploaded to an app store? Will consumers ever be convinced on the

quality and the positive aspects of web applications? Can PhoneGap provide the same

experience as native applications or will it only clash with the standards of the open web?

1.4 Structure of thesis and method

The thesis will start by presenting background information on the development of mobile

web applications, and how developing web apps differ from native app development. It

will then continue to examine why consumers have a different mindset on web apps than

native apps. With this background information the aim is to justify that demand on mobile

applications is overwhelming and mobile web apps need to find their place in between

10

native and hybrid applications. Further on the thesis will go into detail on how creating

hybrid apps with PhoneGap differentiates in comparison to web apps, and how the two

development solutions differ from each other.

To be able to answer the main research question, an inductive approach to collect quali-

tative empirical knowledge on how consumers view mobile web applications was used.

The author of this thesis talked to over 60 people during the whole research process, ask-

ing what they know and what they think of mobile web applications. This helped portray

a broad picture of consumers understanding on the subject. To support the empirical

knowledge and consumers unawareness about mobile web apps, short interviews were

conducted at the end of this study.

To gain a deeper understanding on the possibilities web applications and its core technol-

ogy HTML5 offer and how it matches native applications, a hybrid mobile web applica-

tion was developed as a part of this study. The development process and results is pre-

sented in detail and work as a valuable source of information for the final theoretical

conclusion.

After analyzing and presenting data collected from articles and journals and the experi-

ence gained when developing a web application, data collected from the interviews will

be presented, with the goal to analyze on how consumers value different aspects in mobile

web apps compared to native applications. Finally, based on primary and secondary re-

search, a theoretical conclusion will be presented. There will be a brief summary at the

end of each chapter to recap the main points discussed.

1.5 Delimitation

While the thesis will address differences between natively developed mobile applications

and web-based applications, it will not compare the two physical ways of programming

the applications on a deeper level such as benchmarking and other relating techniques to

prove the power of raw programming language. Neither will it explain the basics on how

HTML, CSS or JavaScript work.

11

When comparing and talking about the different operating systems, the thesis will mainly

be focusing on iOS, Android and Windows Phone.

This thesis will focus on web applications and their possible strengths in comparison to

native based mobile applications and how consumer power will shape where web apps

will be in the foreseeable future.

The functionalities and properties of the mobile web application developed as a part of

this research will not be presented. This is due to it not being relevant to the thesis main

research question and its goals.

1.6 Terminology

1.6.1 Abbreviations and acronyms

Android Operating system made by Google

API Application Programming Interface

App stores Digital distribution platform for applications

Apps Shorter and commonly used word for Applications

CSS Cascading Style Sheet

Eclipse IDE for Android Operating system

HTML Hyper Text Markup Language

IDE Integrated Development Environment

iOS Operating system made by Apple

JavaScript A used to make web pages interactive and dynamic

JIT just-in-time compilation

jQuery Mobile Web application user interface framework

OEM Original equipment manufacturer

OS Operating System

PhoneGap An open source Framework

SDK Development Kit

Sencha Web application user interface framework

Skia Open Source graphics library owned by Google

12

UI User Interface

UX User Experience

Web app Web Application

Xcode IDE for iOS Operating system

Table 1. Glossary

1.7 Summary

This chapter has introduced the main research topic, presented background facts on the

central theme, the purpose of the thesis and delimitation of research data. The following

chapter will present more in depth about the different technological development solu-

tions currently on the market.

2 TECHNICAL SPECIFICATION

This chapter will present possible technical advantages and disadvantages between the

different solutions that currently are, and will be competing with web apps on the market

in the foreseeable future. Information about competing mobile application development

solutions are crucial to take into account to fully understand the history and future devel-

opments within this field. The thesis will then more closely interpret the core program-

ming languages used for developing web apps. After the interpretation of the program-

ming languages and frameworks available, possible advantages in flexibility and speed

between web and native technologies will be discussed.

2.1 Different solutions

Numerous aspects must be taken in to account when choosing the optimal solution for a

mobile application. The optimal solution principally depends on what the main purpose

of the application is, will it be able to run offline, who is the target audience, with what

devices do people access current services and what is the budget for the project. Even

after answering the questions above, the final decision may still widely vary from com-

pany to company. The final decision depends on the company’s strategy such as making

13

beautiful experiences tailored as native applications exclusively for each and every oper-

ating system or concentrating on openness and delivering something for everybody.

Figure 1 shows how each solution has its pros and cons. The difference between a hybrid

and a web solution is the cost, and between a web and a middleware solution it is agility.

Figure 1. Differentiations between the Web, Native, Hybrid and Middleware development solutions

2.1.1 Native

Native applications are designed to run on the operating system level. This means that the

application is developed using native programming languages, for example if developing

for the Windows Phone platform, the language used is C#. Native applications are down-

loaded and installed on the device through an OEM app store like the Apple App Store

or the Google Play Store. Native apps usually provide a more fluent and delicate experi-

ence than for example web apps, due to their tighter integration with the operating system.

The disadvantage for developing native applications is their limited reach of customers.

This is due to the fragmentation between the different operating systems code bases, for

example a native app developed for iOS devices can only run on a device using iOS op-

erating system. If the developer later decides to port over the app to Android OS, the app

has to be rewritten in JAVA from scratch using the SDK provided by the OEM, in this

case Google.

14

2.1.2 Web application

By choosing web as the platform for a mobile application, the mobile app will be fully

based on web technologies such as HTML, CSS and JavaScript. Web apps run in the

browser and are only accessible through a web address. It is not possible to install a web

app physically on the phone, although it is possible to cache a web app for offline access,

with for example the Application Cache interface (Mozilla Developers, 2013). Web apps

can be bookmarked to the devices home screen, which will give them more of a native

application feel.

When Apple launched the first iPhone in 2007, they did not provide a SDK for native

development. Instead, they offered a Web SDK that would give developers the chance to

make apps that work directly in the browser. At that time Steve Jobs praised web apps for

their openness and easy development. This shows that already in 2007 web apps were

considered as a possible substitute for native apps.

2.1.3 Hybrid

Hybrid applications are mobile web apps placed in a native container that enable them to

access the devices native functionality. This is done with the framework called PhoneGap.

Hybrid solutions are most suitable for projects with lower budgets but still require access

to the devices native functions. Web applications using the PhoneGap framework can be

deployed to several different operating systems with the same code base. Hybrid apps are

faster to develop than native applications, they provide more functionality than a Web

app and they can be uploaded to an OEM app store.

2.1.4 Middleware

Middleware mobile applications are apps used in the enterprise environment. They are

built on a server that collects and organizes data from different sources in an enterprise

back-end network. Data delivered through the server is then presented either as a web

experience (web app) or a native application. This type of applications work well for

larger enterprises or universities that have a complex back-end data network that needs to

be able to communicate easily through a mobile optimized user interface. Thanks to their

15

integrated iOS and Android libraries, middleware apps are able to directly compile into

native applications.

Kurogo is an open source mobile middleware application platform that collects raw data

from different back-end data sources and delivers them through the requested UI provider,

which can either be a native mobile application or a mobile optimized website. The plat-

form has been highly popular within University’s and Hospitals. Some web apps made

with the Kurogo platform are the Universität St.Gallen: http://app.unisg.ch/home/ and St.

Edwards University: http://m.stedwards.edu/.

2.2 HTML5

HTML5 is the fifth revision of the HTML markup language and also works as a term to

describe the latest web technologies HTML, CSS3 and JavaScript. With these technolo-

gies, HTML5 can provide rich features and APIs for vibrant and desktop app like experi-

ence. Together, these web technologies give developers the possibility to build apps and

websites with speed, functionality, performance and experience like desktop applications

(HTML5Rocks, 2013).

The first draft of HTML5 was made public in 2008, but it was not until 2011 when

HTML5 got released by the World Wide Web Consortium (W3C). At launch, support

from different browser vendors for the new standard was still very poor, but it attracted a

lot of attention and people were really excited about using it. Today all major browsers

(Chrome, Firefox, Safari, Opera and IE) support HTML5, except older versions of IE

(Christian Vasile, 2013).

When HTML5 was released in 2011, it was perceived as a dream come true for web

developers. Rounded corners could now be done with CSS3, video content could easily

be displayed on all devices with the new <video> element and updated forms gave the

ability for validation straight in the HTML code.

HTML5 is still under development and the HTML Working Group is trying to get a rec-

ommendation status for the final HTML5 specification from W3C in 2014 Q4. The rec-

ommendation status means that it is a ready standard. The objective of W3C is not only

ship the HTML5.0 standard, but also an HTML5.1 specification in 2016 (W3C, 2012).

16

The reason for splitting the 5.0 specification into two versions is clear. Due to the tight

schedule of delivering the 5.0 specification in 2014, W3C wants to defer any new issues

that are raised until HTML5.1 and concentrate only on issues that can be taken care of

without major changes to the 5.0 specification.

2.2.1 Future of HTML5

Exciting APIs like getUserMedia and Web Intents will give web applications access to

the target devices physical camera and the ability to pass rich data back and forth between

web apps. These two examples are just a couple of the working drafts that are currently

under the development by the W3C Device APIs group.

“The mission of the Device APIs Working Group is to create client-side APIs that enable the develop-

ment of Web Applications and Web Widgets that interact with devices services such as Calendar, Con-

tacts, Camera, etc. (W3C)”

Below is a list of current working drafts active at the W3C Device APIs Working Group.

 Battery API

 HTML Media capture

 Network information API

 Proximity events

 Vibration API

 Web Intents

 Pick Media Intent

 Pick Contacts Intent

The development of numerous APIs show that HTML5 is taking huge steps and there is

no sign of it slowing down. There is no exact date on when these APIs will be added to

the HTML specification or to what version.

2.3 PhoneGap

PhoneGap is an open source framework that offers web developers the chance to develop

native mobile apps with a set of standardized web APIs that gives control of the operating

systems native functionality such as the camera and the accelerometer using JavaScript.

17

Apps are wrapped in a native container, so they can then be installed on a device as a

natively developed application. The application UI is entirely rendered with HTML, CSS

and JavaScript. Developers only need to write the application logic in JavaScript and the

PhoneGap API takes care of the communication with the native operating system.

Most applications downloaded from app stores are natively developed, but the stores also

contain a large number of web apps (Apple Corporation). This means that some applica-

tions have been developed using native code and a SDK provided by the OEM, and some

have been developed with standard-based web technologies such as HTML, CSS and

JavaScript. In September 2011, 4% of all apps in the Apple Apps store were built with

PhoneGap (Atrice,2012). It is believed that this number has radically grown.

Figure 2. The cycle of the PhoneGap process. Image Phonegap.com

Web apps that are being deployed to an app store need to have a native container wrapped

around, otherwise they will not be accepted. This layer is what PhoneGap offers. Even

though after wrapping a native container around the web app, it is not guaranteed that app

stores will accept applications made with PhoneGap. Apple particularly, keeps high

standard applications in the App Store. According to Andrew Trice who is a technical

evangelist at Adobe Systems, applications might get rejected from app stores due to the

following reasons:

 "2.12: Apps that are not very useful, unique, are simply web sites bundled as Apps,

or do not provide any lasting entertainment value may be rejected"

 "10.3: Apps that do not use system provided items, such as buttons and icons,

correctly and as described in the Apple iOS Human Interface Guidelines may be

rejected"

18

 "10.6: Apple and our customers place a high value on simple, refined, creative,

well thought through interfaces. They take more work but are worth it. Apple sets

a high bar. If your user interface is complex or less than very good, it may be

rejected"

 "12.3: Apps that are simply web clippings, content aggregators, or a collection of

links, may be rejected"

This signifies that the most common reasons for apps being rejected from the app stores

are bugs, poor implementation of the UI and not following the human interface design

principals provided by the OEM.

2.3.1 History

Development of PhoneGap first started at the iPhoneDevCamp in San Francisco 2008.

One year later in 2009 PhoneGap gained attention from several medias and won the Peo-

ple’s Choice Award at O’Reilly Media’s 2009 Web 2.0 Conference. In 2011 Nitobi, the

original software developer of PhoneGap was acquired by Adobe and the code got con-

tributed to the Apache Software Foundation under a new project called Apache Cordova.

In 2012 PhoneGap announced BUILD, a new service that allows developers to upload

and compile their web app code directly in the cloud. BUILD then generates packages of

the application for all supported operating systems that can be directly downloaded and

installed on the device. Currently PhoneGap is able to package applications to the follow-

ing operating systems: iOS, Android, Windows Phone, BlackBerry, WebOS and Sym-

bian.

2.3.2 Features

The main feature of PhoneGap is to link together native functionalities through its API

with JavaScript calls. The process has three stages. Firstly, PhoneGap initiates a native

WebView class (UIWebView on iOS devices). The WebView class is used to display

web pages in native applications, (Apple Corporation, 2012). From the native code

through the WebView class JavaScript is then called. When a connection has been estab-

lished with the JavaScript in the web app and the WebView class, native functionalities

19

can then be executed, for example search for contacts or see what network the device is

currently using.

The PhoneGap documentation provides a full list of native functionalities that can be used

through the PhoneGap API:

 Accelerometer – Provides access to the devices motion sensor

 Camera – Capture photo’s using the devices camera

 Capture – Provides access to the audio, image, and video capture capabilities of

the device.

 Compass – Obtains the direction the device is pointing

 Connection – Gives access to the devices cellular and WiFi connection infor-

mation

 Contacts – Provides access to the device contacts database

 Device information – Device specific hardware and software information

 Events – PhoneGap detects native events like “volumebuttondown” and “back-

button”

 File storage – Hook into the native file system

 Geolocation – Access to device location

 Globalization – The globalization object obtains information and performs oper-

ations specific to the user's locale and timezone.

 InAppBrowser – A web-browser shown inside the app

 Media – Record and play back audio files

 Notifications – Applications can push notifications to the device

 Splashscreen – Loading screen for the application

 Storage – Create and maintain a local database

2.4 Flexibility

The catch with web apps using the PhoneGap framework is, that even though they are

installed as native apps, they are still just web pages. This means that the same techniques

used to optimize and speed up websites, will also work on web apps installed on mobile

devices. Caching, image optimization, CSS and JavaScript minification scripts all make

20

an impact on the performance of the web app. These are common ways of optimizing the

performance of a website. Optimization techniques were only briefly mentioned to show

the different possibilities developers have.

Native applications can also be optimized in many different ways, however require sig-

nificantly more knowledge from the developer in that specific area to accomplish the

same results.

The main advantage web apps have over native apps is their cross-platform availability.

But at the same time, it is also their weakness. Every smartphone has a web browser,

meaning that every smartphone regardless of what operating system they are running on,

can access the same web application. However, different operating systems have different

default web browsers and they all render webpages and web apps a bit differently.

Web browser Rendering Engine

Safari WebKit

Google Android WebKit

Firefox Browser Gecko

IE Mobile Trident

Chrome Blink

Opera Mini Presto (moving to Blink)

Table 2. The most used Mobile web browsers and their rendering engine (Netmarketshare, 2013)

The way in which web browsers render webpages differ amongst vendors. The differen-

tiating factor is the rendering engine and how they are used by each vendor. Differentia-

tions can be noticed in how text is being rendered and placed and the support of CSS

properties may also vary. As it is visible from the table above, most browsers have im-

plemented the WebKit rendering engine. The first thought would be “then they all prob-

ably render the web pages the same way”. Unfortunately that is incorrect. Even though

the browsers use the same rendering engine, they still have different APIs implemented

and differentiating ways of rendering text and graphics.

Paul Irish who works with the Google Chrome development relations has listed up some

of the components that modern web browsers use to function:

21

 Parsing (HTML, XML, CSS and JavaScript)

 Layout

 Text and graphics rendering

 Image decoding

 GPU interaction

 Network access

 Hardware acceleration

Of these components, only the top two are shared between WebKit-based browsers. The

other components are handled differently on each WebKit port. A WebKit port is a dif-

ferent software that has been branched from WebKit and been modified. Most known

WebKit ports are: Chrome (Chromium), Safari and Android Browser.

“For example, if you specify a flat colored button with specific border radius, well WebKit knows where

and how to draw that button. However, the final actual responsibility of drawing the button (as pixels

on the user’s monitor) falls into CoreGraphics. As mentioned above, using CG is unique to the Mac

port. Chrome on Mac uses Skia.” (Paul Irish, 2013)

CoreGraphis is a C-based framework used to display lightweight 2D rendering with un-

matched output fidelity (Apple Corporation). The reason for going in to such depths on

rendering engines and the WebKit engine is that web developers have to be aware of the

issues and be prepared to perform detailed testing in a wide range of browsers. Preferably

also the same browsers but with different WebKit versions.

2.5 Power

On iOS devices, HTML5 and JavaScript performs faster in a mobile web browser than

inside a natively wrapped web application. This is because the JavaScript engine is faster

in a mobile web browser than in the WebView (UIWebView for iOS) class that native

applications use to display websites (Ali Saffari, 2012). Tests made by Ali Saffari show

that the difference is minimal, but other research results disagree.

As mentioned earlier, when developing web apps with PhoneGap for iOS devices, the

HTML and JavaScript is viewed through the UIWebView class. The UIWebView class

has the same Safari mobile rendering engine but it does not have a JIT enabled JavaScript

engine that the Safari mobile web browser has. JIT stands for just-in-time compilation

22

and it makes the running of JavaScript based applications much faster. As the name sug-

gests, it compiles the code “on the go” while the application is running. This makes the

application quicker and more optimized (Oracle Corporation, 2008). Apple does not al-

low third-party developers access to the JIT enabled compiler and the Nitro JavaScript

engine, according to Apple this is due to security issues. It is reported that the UIWeb-

View class can be up to two times slower than the rendering engine used in the Safari

mobile web browser (Ariya Hidayat, 2012).

What is interesting here is that the Google made Chrome browser for iOS devices was

released last spring and Google said during the announcement that the application is run-

ning through the UIWebView class, which should make it slower than the Safari browser.

And it surely is (Frederic Lardinois, 2012). Tests made by Michael Simon shows that the

Google Chrome browser for iOS is nearly 50% slower than Safari on all JavaScript tests.

It fails to outrun the native Safari browser on all fronts (Michael Simon, 2012).

These tests do not show the overall performance of a web app using the PhoneGap frame-

work. They portray the raw performance of the JavaScript engine, for example how fast

the engine can render a 3D canvas. Once a webpage has been loaded and cached, the

speed between the UIWebView and a native web browser is nearly identical.

Most PhoneGap apps are quite simple and light and do not include tasks that involve

heavy computation. The matter of JavaScript engine speed is something that should not

be taking too seriously. Even though web technology will never run as fast as compiled

native code, it still provides a decent performance.

2.6 Summary

This chapter has introduced the different technical solutions that are available when de-

veloping mobile apps, what HTML is and where it is going, the opportunities PhoneGap

offers, compatibility issues in web apps and how JavaScript rendering engines can com-

pete against natively compiled applications.

23

3 PRODUCTION

This chapter will introduce the different phases during web app development using the

PhoneGap framework. Cost efficiency and speed of development are important factors to

take into account when developing mobile applications. Possible advantages and disad-

vantages for web apps in that area will be discussed. As a part of this research a web

application with the PhoneGap framework was developed. The observations from the de-

velopment process are intended to complement the research and analysis in this chapter.

This chapter will also introduce historic examples of cross platform mobile app develop-

ment.

A short part of the sub chapter Coding will require some basic understanding of HTML

and JavaScript.

3.1 Historic examples

It has never been easy to port a native application to several different operating systems.

Native apps are built using the preferred technology for one specific device and OS, so if

one choses to develop a Windows Phone application, that application will only be able to

run on a Windows Phone device. This means that iOS, Android and Windows Phone all

have own preferred technologies to work with.

Sun Microsystems once created the slogan “Write once, run anywhere” (WORA) for the

programming language JAVA to demonstrate the cross-platform benefits from the pro-

gramming language. In an ideal world, it would mean that a program is written once, after

which it is then able to run on all different devices with a JAVA Virtual Machine, the

runtime environment that interprets compiled code and performs the requested actions.

The purpose is to save on development costs and make it easier for developers to reach

out to a larger volume of devices with the same code. Much of the same goals that HTML5

is aiming for.

The mindset of WORA is growing and it is good to see that web apps have this area

already covered. In an interview made by Goldman Sachs, Microsoft reveled that they

are pushing their operating system forward to make development of apps for all Windows

devices the same. Developers will be able to release the same application for PCs, tablets

24

and smartphones. Microsoft is also supporting the creation of PhoneGap apps for the

Windows 8 operating system thanks to the Windows Library for JavaScript.

This is important because it indicates that what HTML5 is now trying to accomplish is

what JAVA and many other always have had as their goal.

3.2 Development speed

In the middle of 2012 Facebook announced a native mobile application for iOS devices.

The native application was going to be “blazing fast” and it would also be replacing their

current web-based application. Mark Zuckerberg reviled in an interview that the biggest

mistake Facebook did was betting too much on HTML5. He explains that HTML5 “just

wasn’t there”. After Zuckerberg made this announcement, rumors started circling on the

internet that the problem was not actually HTML5, but the lack of expertise inside the

Facebook development team. (Matt Asay, 2012)

Developers of the Sencha mobile web app framework made a copy of Facebook’s web

app called “Fastbook”, to prove that the problem was the Facebook developers, not

HTML5. The application made by the Sencha team was significantly faster and more

efficient than the one Facebook made.

While the process of developing web apps can be relatively faster than native app devel-

opment, if not done correctly by following documentation, the results can be underper-

forming and sluggish.

One of the most important factors in a mobile application is speed. Research has shown

that consumers expect their application to launch within three seconds or less (Compu-

ware). Speed is something that web apps have always been good at, at least when the web

app stays fairly simple. Accounting software startup Xero announced 18.3.2013 that they

will be moving away from their web-based application to a native version because of

resource intensive maintenance work and difficulties in further development of their web

app. They continue on explaining that developing a complicated mobile application in

HTML5 is hard and that it takes a lot of time and testing to bring the HTML5 app to the

native level of performance.

25

If the goal with the web app is to give the exact same feel and performance as a native

application, it is wiser to choose a native development technology right from the begin-

ning, as Matt Vickers explains.

“Our view is that HTML5 technologies can deliver as-good-as-native experiences…but the lesson from

Fastbook is that it’s hard work – you don’t get those experiences out-of-the-box. And the lesson we’ve

learnt over the last 12 months has been that the cost in time, effort and testing to bring an HTML5

application to a native level of performance seems to be far greater than if the application was built with

native technologies from the get-go. (Matt Vickers, Xero 2013)”

A very important part with mobile app development is to do proper research before start-

ing development. The target audience has to be identified, a market reach plan and a

strategy for the coming five to ten years has to be made. This research will help to portray

who the target audience is and which technological solution might be the best fit.

At the moment mobile web applications are ideal solutions for simple and lighter projects,

even though PhoneGap offers endless opportunities for the creation of high demanding

applications. To develop a complex web app that will perform and look as a natively

developed, it will take much more time and resources to produce it then choosing native

technologies directly from the start. That is at least to which conclusion the startup firm

Xero came to. Research made for this thesis shows that it mostly depends on the devel-

opers set of skills.

As explained in the chapter about Power, the most substantial difference in speed between

web and native applications on iOS devices is the reduced accessibility for third party

applications to use the JIT enabled JavaScript rendering engine. Web apps using the

PhoneGap framework are generally slower than natively developed applications. This is

mostly due to the amount of feature-heavy transitions, effects and user interface frame-

works that are being implemented in web apps. For example when a button is pressed

with the action to show an overlay dialog, the DOM needs to alter itself in order to show

that overlay. These changes use the browsers resources and JavaScript engine, which on

mobile devices are less powerful than on desktop browsers. The more complex HTML

and CSS3 markup that is being added to the web app, the more it will drain on the per-

formance. By following the tips listed below, the performance of the web application can

be increased.

26

3.2.1 Add hardware acceleration

By adding the CSS translate3d property to a HTML class, the scrolling and transitions

will be smoother on iOS devices. The code below enables hardware acceleration on de-

vices using a WebKit powered browser. Translate3d will normally transform elements on

the page but if the parameters are left empty, it will only enable hardware acceleration.

On Android devices this code can cause some unpredictable behavior. It is not suggested

to be used on that OS. Transform3d is supported on WebKit Browsers and Firefox.

div.yourClass {

 -webkit-transform: translate3d(0,0,0);

}

3.2.2 Pre-compiled templates

The use of logic-less templates like Handlebars.js and Dust.js can make significant boost

in the web applications performance. Greg Avola explains how they managed to make

their PhoneGap app “Untapped” two times faster thanks to the Handlebars.js semantic

templates (Greg Avola, 2013).

“We settled on using HandlebarsJS because it offered us the ability to add logic into our templates and

the ability to pre-compile the HTML templates into JavaScript-optimized versions for better perfor-

mance. Through compiling, we were able to increase page rendering by two times compared to the time

taken to page render pages that were not pre-compiling.”

Templating will require more advanced JavaScript skills. The web application developed

as a part of this research, did not use templating due to limited resources.

3.2.3 Keeping the markup minimal

When developers write code in a hurry, unnecessary classes and tags can surface and

make the code more complex than it really needs to be. Always remember the WORA

term. For example when writing a simple list populated by hyperlinks instead of looking

like this:

 Stuff

27

It could look like this:

 <li onclick=”doSomething();”>

 Stuff

By leaving out the hyperlink anchor tag, the markup is simplified. Here it might not look

like it would make a greater impact, but when the app in question has a lot of data and

many pages, everything can make a difference.

3.2.4 The correct way of using user interface frameworks

JQuery mobile and Sencha are powerful user interface frameworks to use with web apps.

They provide ready to use components and flexible theming systems. When these frame-

works are used together with PhoneGap, they can cause performance issues if not imple-

mented properly. JQM has listed up some tips and recommendations in their documenta-

tion that can help when developing web apps with PhoneGap and JQM (jQuery Mobile,

2013).

3.2.5 Summary

By following the tips mentioned, the performance of the web application can be im-

proved.

Currently the issues for mobile web apps in regards of speed is the lack of resources in

web browsers and device hardware. Resources meaning cache size limits and slower ren-

dering engines, compared to desktop browsers. With the rise of quad core processor pow-

ered mobile phone devices, the problem with limited resourced device hardware can

hopefully soon be tackled.

3.3 Developing with PhoneGap

Getting started with the process of developing web apps using the PhoneGap framework

requires the developer to firstly set up a proper development environment. There are dif-

ferent ways this can be done, mostly depending on what operating system the application

is targeted for and the developers background as a designer or developer. As Andrew

28

Trice, technical evangelist at Adobe Systems points out “Since PhoneGap applications

are really just editing HTML, CSS & JavaScript, you can use whatever editor you want”

(Andrew Trice, 2013). People who come from a development background might prefer

larger-scale IDEs, because they tend to offer richer languages/features. But any light-

weight HTML editors works as well. An IDE is a programming environment that usually

consist of a code editor, debugger, compiler and a GUI for building graphical interfaces,

like for example a mobile app. These environments can be very powerful thanks to their

versatility and broad library of extensions and plugins. IDEs can be very expensive and

that is why they are more used within companies rather than private persons. There are a

few catches for using IDEs. For example when the web app reaches the stage of deploy-

ment (not using the cloud service BUILD), it has to be deployed using the IDE for a

particular platform that is being targeted. So for example if the app is developed for iOS

devices, the Xcode IDE has to be used and if the app is developed for Android devices,

then the IDE is Eclipse.

Dreamweaver is a preferable choice for developers who do not want to be dependent on

a specific operating system. Dreamweaver offers a rich WYSIWYG editor and an inte-

grated BUILD plugin from where the app can be directly uploaded to the cloud where it

then gets compiled to all different operating systems. Developers already familiar with

Dreamweaver should notice how nice and fast it is to use with PhoneGap. There is also a

jQuery Mobile plugin for Dreamweaver, which makes developing web apps extra neat if

the jQuery mobile framework is preferred.

3.3.1 Set up

In this subchapter I will switch to the first person to report on my personal experience in

different ways of setting up a development environment. These personal observations are

intended to complement the research and analysis in the rest of the thesis.

When I started developing apps with PhoneGap, instead of using the BUILD cloud com-

piling service, I decided to try installing respective OS IDEs with SDKs. SDKs are pack-

ages that contain the necessary building blocks for developing the application such as

headers, libraries and frameworks. SDKs are used within IDEs to make the use of SDKs

more user friendly.

29

So when I started developing a Windows Phone app, I had to install Visual Studio 2012,

which was a pretty easy thing to do since the installation of the SDK was very straight

forward. After successfully making a Windows Phone app, I then moved on to building

an app for the Android OS. Setting up the development environment was much trickier.

To develop Android apps Google uses a software called Eclipse, an open development

platform developed and maintained by the Eclipse Foundation. When installation of

Eclipse was done, the next step was to set up the correct repositories from where you can

download the Android Phone SDK. Eclipse is a software that supports development on a

vast range of platforms. That is why setting up the correct environment can take a lot of

time and effort. To develop HTML and JavaScript files in Eclipse, a specific plugin for

Web development had to be installed, which I was not really fond of.

The attraction to develop hybrid apps for Android devices is that the operating system is

open source. When your application is at a stage that you need to test and debug it on a

real device, Apple and Windows Phone requires you to register the phone you want to

debug on, that means you have to pay the annual developer fee of 99$ (for Android it is

25$). If you are just interested in starting to develop apps for mobile devices and want to

give the platforms a go without paying the subscription fee, Android is the right choice.

If you later on decide that you want to submit the app to the Google Play store, then you

can pay the registration fee.

All these steps can be skipped if you choose to use BUILD, a cloud service made by

Adobe and PhoneGap. BUILD lets you upload your HTML, CSS and JavaScript files to

the cloud service where they are then compiled and packaged into app-store ready appli-

cations.

30

Figure 3. How PhoneGap Build works. Image from build.phonegap.com

This is a very powerful service. It lets developers concentrate entirely on the code itself,

not spending ridiculous amount of time trying to set up the development environment and

then keeping the SDKs up to date. BUILD is free to use with up to one private application.

Private application means that nobody else can see the application you are developing. If

the app is open source and hosted at a GitHub repo, there is no limit on the application

amount.

As mentioned earlier, Adobe made a powerful plugin for Dreamweaver that lets you di-

rectly upload your HTML, CSS and JavaScript files to the BUILD cloud service. As with

all development, debugging is an important part of the process and PhoneGap has not

forgot about it. They have included a web-based remote debug mode in to the BUILD

cloud service. The debugger detects when a device is running the application and can then

interactively modify the application. The service is similar to the Chrome developer tools

and the Firefox Firebug.

Getting started developing PhoneGap powered web apps with the BUILD service was

significantly faster and easier than developing using a physical SDK and a native devel-

opment environment. The native development environment does have a superior ad-

vantage with the integrated Debug emulators. Developers are able to test their web app in

31

all different emulators, ranging from low resolution phones with an old version of An-

droid to high resolution tablets with the newest version of the OS. So it highly depends

on the purpose of the application.

PhoneGap offers a prototype Emulator that is powered by Ripple, a web-based emulator

that can be installed as a Chrome extension. The Ripple emulator enables developers to

quickly test how their application works and feels on different screen sizes. The emulator

can be used for JavaScript debugging, HTML DOM inspection, automated testing and it

also supports a wide range of PhoneGap APIs.

When the development environment is all set up and the HTML file is communicating

with the PhoneGap API, the next steps are to start developing the app.

3.3.2 Coding

Once the development environment has been set up and a new project has been created,

the developer will be able to focus their attention on HTML, CSS and JavaScript. This

thesis will not explain how to create a new project since it varies a lot from platform to

platform. PhoneGap offers detailed documentation on how to get a project up and running

(PhoneGap, 2013). The first thing PhoneGap will do when the app is launched is listen

for the event “deviceready”. When this event is called, that means that the application has

been fully loaded.

”PhoneGap consists of two code bases: native and JavaScript. While the native code is loading, a custom

loading image is displayed. However, JavaScript is only loaded once the DOM loads. This means your

web application could, potentially, call a PhoneGap JavaScript function before it is loaded. ” (Phonegap)

When this event fires, it means that JavaScript has established a connection with the na-

tive UIWebView class and that it is now safe to call PhoneGap JavaScript functions.

A normal setup for an HTML PhoneGap application will look like this:

<!DOCTYPE html>

<html>

 <head>

 <title>PhoneGap Device Ready Example</title>

 <script type="text/javascript" charset="utf-8" src="phonegap-1.0.0.js"></script>

 <script type="text/javascript" charset="utf-8">

 // Call onDeviceReady when PhoneGap is loaded.

 //

 // At this point, the document has loaded but phonegap-1.0.0.js has not.

http://docs.phonegap.com/en/1.0.0/phonegap_device_device.md.html#Device

32

 // When PhoneGap is loaded and talking with the native device,

 // it will call the event `deviceready`.

 //

 document.addEventListener("deviceready", onDeviceReady, false);

 // PhoneGap is loaded and it is now safe to make calls PhoneGap methods

 //

 function onDeviceReady() {

 // Now safe to use the PhoneGap API

 }

 </script>

 </head>

 <body>

 </body>

</html>

The JavaScript found below is a very simple and basic way of getting the device geo-

graphical location and then presenting the values through an alert. As you can see in the

“onSuccess” function:

<script type="text/javascript" charset="utf-8">

 // Wait for Cordova to load

 //

 document.addEventListener("deviceready", onDeviceReady, false);

 // Cordova is ready

 //

 function onDeviceReady() {

 navigator.geolocation.getCurrentPosition(onSuccess, onError);

 }

 // onSuccess Geolocation

 //

 function onSuccess(position) {

 var element = document.getElementById('geolocation');

 element.innerHTML = 'Latitude: '+ position.coords.latitude + '
' +

 'Longitude: '+ position.coords.longitude + '
' +

 'Altitude: '+ position.coords.altitude + '
' +

 'Accuracy: '+ position.coords.accuracy + '
' +

 'Altitude Accuracy: '+ position.coords.altitudeAccuracy +

'
' + 'Heading: '+ position.coords.heading + '
' +

 'Speed: ' + position.coords.speed + '
' +

 'Timestamp; + position.timestamp + '
';

 }

 // onError Callback receives a PositionError object

 //

 function onError(error) {

 alert('code: ' + error.code + '\n' +

 'message: ' + error.message + '\n');

 }

 </script>

When the code is at a stage that it needs be tested on a real device, there is a couple of

different ways to do it as mentioned earlier in this chapter. The easiest and fastest way is

to upload the files to the BUILD cloud service where they will be compiled and packaged

ready for download and installation on the device.

http://docs.phonegap.com/en/1.0.0/phonegap_events_events.md.html#deviceready
http://docs.phonegap.com/en/1.0.0/phonegap_events_events.md.html#deviceready
http://docs.phonegap.com/en/2.5.0/cordova_inappbrowser_inappbrowser.md.html#addEventListener
http://docs.phonegap.com/en/2.5.0/cordova_events_events.md.html#deviceready
http://docs.phonegap.com/en/2.5.0/cordova_geolocation_geolocation.md.html#geolocation.getCurrentPosition
http://docs.phonegap.com/en/2.5.0/cordova_geolocation_geolocation.md.html#Geolocation
http://docs.phonegap.com/en/2.5.0/cordova_geolocation_geolocation.md.html#PositionError

33

3.4 Cost efficiency

Due to the proliferation of different browser versions especially on Android, the WORA

term for web apps has changed its real meaning to WOOE, Write Once Optimize Every-

where. The continuously evolving web market introduces new browser vendors and de-

vices with different screen sizes at a tremendous pace, which requires developers to test

and optimize their web application for a wide range of different devices. When the target

audience is getting more dispersed out with different mobile phone operating systems and

browsers, more testing and optimization is required which results in more expenses.

When developing native applications for the iOS platform, all target users have the same

operating system. With less target devices and more controlled versions of the operating

system, there is a possibility that natively developed applications for iOS devices require

less optimization than web apps developed for their fragmented market. Android and

Windows Phone devices share the same dilemma as web apps. They have a lot more

different sized devices with different technical specifications. Windows Phone is a bit

more controlled with their OS versions 7.5 and 8 but Android has over six active versions

of their OS running on peoples mobile phones around the world.

3.4.1 Time and money

Let us say that company X has decided that they want to provide a sleek and powerful

mobile UX for their company’s website. Before they can even start developing any kind

of application, they have to do proper research on who their target audience is. They also

have to know what the consumer does on their website and with what devices they are

currently accessing it. When they have the answers to the questions above they can start

thinking on what kind of solution would works best for them. Native, web or hybrid?

Will the application be made for a shorter marketing campaign that only last a couple of

months with a goal of reaching all the people around the world or will it be made as the

main way for consumers to access the company’s services with a superior UX?

If for example a bank is planning on developing a mobile application from which their

customers can access their personal internet banking services through, the obvious choice

for the bank would be to make a native app. Banks like the Bank of America and Barclays

34

Bank do offer lighter web-based versions of their online banking services. But for the

full-fledged service, they provide native applications. W3C is improving the security in

HTML5 in upcoming releases, but for services like banking, extra layers of encryption

and firewalls is still needed to securely protect the data.

Web apps are more efficient for certain tasks but if the main arguments for the mobile

app is to be extra secure, have a proper payment system and provide a delicate experience,

then the choice would be native.

3.5 Summary

As HTML5 continues to evolve and introduce new and powerful APIs, so will also the

processes of developing web apps. Getting started using PhoneGap with web apps can

require a bit of patience, especially if choosing an IDE as development environment.

Luckily that is something that is going to get easier and easier, as we have seen with the

support Adobe is showing for PhoneGap with their BUILD service. It is important to

remember that web apps should look like and act like web apps. If the world is to be

persuaded that web apps are here to stay, then developers have to start thinking like that

as well.

4 COSUMPTION

In order to get consumers to use more web apps instead of native apps, developers have

to start creating web apps with beautiful UI and a good UX. Research and interviews

made for this thesis show that most consumers don’t have a clue on what a web applica-

tion is. People simply refer all kind of activity done in the mobile web browser to as

surfing on a mobile optimized website, which web apps in some consent are, but add

some PhoneGap functionality and make it downloadable from an app store and nobody

will know it is an application based on web technologies. According to the results from

the interview in Chapter 5, the consumer doesn’t care and doesn’t need to know that they

are using an app based on web technologies, as long as it is fast and they enjoy the expe-

rience.

35

4.1 Acceptance and market reach

Web apps are based on the same web technologies as any other website which makes

them accessible through any web browser. A big substantial difference between native

and web apps in form of market reach, is that web apps do not have an ecosystem as

native apps do. Native applications are uploaded to a digital distribution platform often

referred to as an App store, from where consumers can then download the applications.

The name App Store is an official trademark registered for the Apple Corporation. OEM’s

have branded their app stores under different names. Apple’s is the App Store, Google’s

is Google Play and the Windows Phone app store is called the Marketplace.

The question is, how will web apps be able to have the same global reach as native apps?

In the beginning of the year 2013, Apple had around 780 000 applications in their app

store, Google’s Play store had around the same amount and the Windows Phone Market-

place had 130 000 applications (148 Apps, 2013). That is an impressive number if it is

compared to the year 2012 when Apple only had 475,000 applications in their app store.

The app stores are there to make it easier for consumers to find new apps, read reviews

and also offer developers an easier way of monetizing their apps.

In 2010 Google launched the Chrome Web Store, an attempt to make web apps more

accessible and easier to find. The Chrome Web Store is a web app store from where peo-

ple can download web apps that run in the browser. Currently all web apps found in the

Chrome store are for desktop computer web browsers only. Google has not given any

indication on if it will start populating the web app store with mobile web apps as well

(Erik Kay, 2010). Apple and Firefox are following Google’s step with the launch of their

own web app stores. Although big corporate giants like the ones recently named, show

great support for web apps, the selection of mobile web apps in these stores is still sparse.

Mobile web app stores are a must if web apps are to reach the handsets of consumers.

People will have to be able to view, search, review and of course download the apps. With

a digital distribution platform, the global reach of consumers would be much greater.

36

To help consumers find mobile web apps on the Windows Phone OS, a company called

Sydience developed the app WebApps. The app has a collection of web apps designed

for mobile phones. Users can browse, review and pin apps to the start screen, much of the

same functionalities that are already found in OEM app stores. The biggest difference

between WebApps and the actual app store is that applications can’t be installed on the

device, since they are web apps that are running in the web browser. WebApps have taken

care of this problem intuitively by letting users keep their own collection of their favorite

web apps inside the app. This gives the feeling that the web apps are actual native appli-

cations. (Sydience, 2013).

The only feature this app is missing is an integrated payment system. Nevertheless, this

is the right direction for HTML5 and this kind of solutions will definitely help attract

more people to using web apps.

4.2 Perceived professionalism

BlackBerry (formerly known as RIM) has lost more than 30 percent of its market share

to competitors iOS and Android in the United States. Their market share is expected to

be around 1.8% in the United States, 30 percent lower than it was three years ago (Forbes,

2013). The biggest problem Blackberry faces today is how they can attract new people to

jump over to their ecosystem. One key factor that affects the consumers choice of mobile

ecosystem is the amount of apps the platform offers. BlackBerry has tried to tackle the

matter with offering at launch of their new BlackBerry 10 operating system 70 000 appli-

cations, from which 1000 will be premium apps from top developers. That number seems

quit big for a totally new operating system, if it is compared for example with the Win-

dows Phone ecosystem that just managed to cross the 130 000 application mark in their

Marketplace. It certainly makes people think “wow they have really put a lot of effort to

please us, the consumers”. But the thing is, that that number is not totally correct. Every

fifth application found in the BlackBerry app store is a ported Android application. Black-

Berry 10 has the ability to run Android applications as they were BlackBerry ones. The

BlackBerry 10 operating system uses an emulator to simulate an Android OS from which

they can then run Android applications. People who have had the chance to test the Black-

37

Berry 10 operating system and its ported Android applications have reported that the ex-

perience offered through this Emulator is not as fluent as with native BlackBerry appli-

cations.

Matt burns writes how BlackBerry might have caused a momentum around their OS with

this tactic but for the platform to really succeed, proper native and web-based applications

are needed for the OS (Matt Burns, 2013).

BlackBerry could have tried to attract web developers to port over their PhoneGap pow-

ered web apps instead of Android applications that would have a bad performance. How

would the reaction have been if one fifth of the applications would have been a PhoneGap

powered web app? It could have been a good opportunity for BlackBerry to show their

support for the open web and web apps in general. They chose not to do that because they

wanted to port well known Android apps that already had large user bases like for exam-

ple Skype.

4.3 Summary

This chapter explained how a digital distribution platform would help consumers explore

a broader collection of web apps and how BlackBerry chose to port over Android apps to

their new operating system.

5 INTERVIEW

In addition to the web application that was developed as a part of this research, qualitative

research was obtained through consumer interviews. This method helped portray a picture

view on how consumers view and react to web apps and a possible mobile web app store.

5.1 Method

Four semi-structured face-to-face interviews were conducted with people aged between

22 and 26, all of which were active smartphone users. The goal of conducting interviews

was to find out if consumers know about web apps and how they value different aspects

in web apps compared to native app.

38

The interviews were semi-structured so that the interviewees could easily elaborate and

share their own opinions and knowledge on the matter to gain deep qualitative insight.

Questions chosen for the interviews were inspired by a study made by Compuware in

2012 and the findings in chapter three. The chosen questions were constructed to encour-

age the interviewees to express their own personal experience. This would provide more

in depth knowledge from each individual respondent. Themes for the questions included

the web app UI, UX in web apps compared to native apps and what value a digital distri-

bution platform brings. In the beginning of each interview, a short introduction about

what a web app and native app is was made.

The interviews were not intended to produce a statistically valid quantitative survey. The

goal was to gather consumer opinions on web apps and their usage of web apps. The

questions can be found in table 3.

An iPod Touch was used as a demo device. The Financial Times web app was book-

marked to the home screen and the native Guardian app was pre-installed on the device.

The interviewees were asked to play around with the two applications.

After the interviewees had explored and used the mobile applications for five minutes,

they were asked questions listed in table 3. The interviews were recorded with the re-

spondent’s acknowledgement and allowance.

5.2 The Apps

The Financial Times and the Guardian were chosen as demo applications because of

their opposite strategic paths. In 2011 Financial Times decided to drop their native mo-

bile application in favor of a web-based. One of the reasons for them moving away from

a native application to a web-based was Apple’s newly announced 30% cut of in in-app

subscriptions. This would mean that every time a new person signs up as a Financial

Times subscriber, Apple would take 30% of the payment. According to Financial

Times, this was not the only reason for switching platforms. A web-based application

would also allow them to maintain a direct relationship with the consumer and to be

able to quickly scale across different devices and platforms. (Mobithinking, 2012).

39

Thanks to their new HTML5 mobile web app, smartphone users have increased by over

52%, while tablet users are up 70% (Lauren Indvik, 2013).

The Guardian has chosen a different route. They have developed a native version of their

app for every major mobile operating system. A native version of the Guardian is found

on iOS, Android, Windows Phone, Kindle and BlackBerry. For none smartphone users

they offer a mobile optimized website.

It is noticeable that the Guardian has invested in a more native user experience. The

Guardian app lets users customize the front page with specific news categories, choose

what content is cached for offline reading, the possibility to mark articles as favorites and

set up goal alerts for football live coverage. From the features listed above, offline reading

is the only feature that is also available on the web-based Financial Times app. However,

as the Financial Times is a web app, it offers cross-platform access and the possibility to

deploy app updates seamlessly on-the-go. Technically all the features available on the

Guardian app could also be implemented in the web-based Financial Times, except for

the Goal alert which uses notifications that are not yet available with web technologies.

After analyzing these two applications, as a designer and developer, The Guardian is a

more stable and polished application that offers a more delicate experience with more

functionality.

During testing, the Financial Times app did occasionally crash and scrolling through ar-

ticles did sometimes cause flickering on the screen. As a web developer, these are com-

monly known issues with web technologies, but not for a consumer who will think of

them as bugs. One functionality that made FT more interesting over the Guardian was the

possibility to scroll through news categories by swiping to the left or right on the screen

(see figure 4).

40

Figure 4. Swiping to the left on the Financial Times web app will move the user to the next news category. Image

source: Screenshot taken with an iPod touch.

For the reader the biggest differences in form of content consumption is that the Financial

Times require you to be registered as a subscriber in order to read the full articles. When

the Guardian offers a free trial of 14 days. The Guardian has on the front page a lot more

content directly visible than the Financial Times app.

41

Figure 5. Frontpage of the Guardian native app to the left and the Financial Times web app to the right. The

Guardian only shows the titles and keywords of the articles, when the Financial Times shows the title and the first

100 characters of the article. Image sources: Screenshots taken with an iPod touch.

Figure 6. Article view. The Guardian to the left and the Financial Times to the right. Both applications have similar

functionality except for the possibility to favorite and comment on articles in the Guardian. Image sources: Screenshots

taken with an iPod touch.

42

5.3 Results

5.3.1 Questions

Do you know what a web app is?

Respondent 1: “No, not entirely sure. I think it is something that you click on to go into

something like Google Play, like a link.”

Respondent 2: “No.”

Respondent 3: “Yes, it’s kind of just a web page that you can bookmark to your screen.

The webpage is optimized to the device.”

Respondent 4: “Yes, it pulls in the mobile website from the web and shows it as an appli-

cation on your phone.”

What do you like and dislike with the Financial Times web app?

Respondent 1: “I like that the articles are on the front page directly and you can read a

short glimpse of what the article is about. I don’t really know how to use this, too much

information confuses me.”

Respondent 2: “Firstly I don’t like how they have too much information on the front page.

It would be better if they only showed the titles from the articles and then there would be

the option to read more.”

Respondent 3: “It feels a bit weird, it takes a long time for it to load the news and images.

I like how everything is on the front page, it’s quite clear. The sideways scrolling between

the news categories is really cool. I would not notice that this is a web app, the only thing

is that is a little bit slow. The biggest difference is that the app does not have a “home”

button that apps usually have. I would not have realized that you can scroll through the

news categories by swiping to the left or right if I would not have done it accidently.

There is nothing that shows how the app itself works.”

Respondent 4: “Yeah it’s cool, the updated one looks nice. It’s good that it’s always up

to date. It’s better than the Guardian app because it’s faster and does not crash as often.

It looks more like a website which is good because people are used to how articles are

displayed on their website.”

What do you like and dislike with the Guardian native app?

Respondent 1: “Because it’s less information on the page, it feels easier to navigate then

the FT app. I know what to do.”

43

Respondent 2: “Everything is more clearer. I can choose between news categories easily

with the buttons on the lower toolbar. Commenting and favoriting is unnecessary, I just

want to read the news.”

Respondent 3: “I think it’s a good idea to have a 14 day trial. That will probably attract

more people to buy the subscription.”

Respondent 4: “I like how the videos are also on the front page. I like to see news as a

video. It is cool that you can favorite news articles and maybe later on continue reading

them or showing some friends.”

Could you see yourself using any of these apps?

Respondent 1: “Yes I could, but I don’t really read the Financial Times or the Guardian.”

Respondent 2: “I don’t read the Financial Times, but yes it works all right so I guess I

could use it on a daily basis if it would be a news source that I actually read.”

Respondent 3: “I would not read it daily, but if it would be something interesting like

Mashable I probably would.”

Respondent 4: “Yes.”

What does an app store mean for you?

Respondent 1: “To find apps. See what is being mostly downloaded.”

Respondent 2: “Find apps.”

Respondent 3: “Find apps mostly. You can see what other people are downloading, what’s

trending.”

Respondent 4: “I guess it means that you know the apps found there can be trusted. You

get recommended stuff. It’s more like a browsing experience. With web apps you have to

know what exist.”

Does an app store bring more value to the app?

Respondent 1: “Easier to update the apps”

Respondent 2: “Yes it feels safer.”

Respondent 3: “For me it feels like I would rather download the app from an app store

than bookmark a web app on my home screen. It just feels like you can do more with a

native app, like favorite articles and so on.”

Respondent 4: “Apps are more trustable.”

Would it make any difference for you to be browsing new apps through a web link

or through an app store?

Respondent 1: “No. As long as the experience is good, then I will use it.”

44

Respondent 2: “I’d rather download it from an app store. I guess it’s more organized that

way.

Respondent 3: “I don’t think it makes any difference. If both web and native apps can be

bookmarked to the home screen then it’s equally fast to access them.”

Respondent 4: “it’s more like somebody has to tell you about the web app for you to find

it. The app store is good for you random browsing around looking for apps.”

5.4 Summary

The interviews showed that normal smartphone users don’t know what a web application

is. Respondents of the interview had heard about them, but mostly referred to them as

bookmarks, links or mobile optimized websites. When asked about mobile web app

stores, three out of the four respondents considered them to be very important for the

future of web apps. Respondent 4 pointed out that without a digital distribution platform,

the only way for normal consumers to find new and interesting mobile web apps would

be via links shared through friends. Respondent 4 raised the point that if a web app store

would not exist and web apps would only be shared as links, scam web app links could

easily be generated by viruses and Trojans. A mobile web app store would feel more

secure, respondent 2 answered.

All four interviewees thought that app stores are important because they feel secure and

the applications found there are generally more reliable because of other user’s reviews

and ratings.

All interviewees considered speed as one of the most important factors in a mobile appli-

cation. Two respondents thought that web apps felt faster and more stable than native

apps in general, and that an always updated app is more convenient than a native app that

manually needs to be updated.

Regarding the UI and UX on mobile web apps, all respondents agreed that normal con-

sumers would not notice any difference between a well developed web app and a native

app. Respondent 3 and 4 especially liked the coherent UI between the Financial Times

web app and their main website. They commented that it is good to have familiarities in

form of coloring, navigation placement and the use of icons throughout all their medias.

45

The native Guardian application was considered by all interviewees to feel more stable

than the Financial Times app. This was due to better performance, animations and ele-

ments more familiar with native applications.

The general response of the interviews show that even though web apps can feel a bit

choppy, most of the time they were faster than native apps, and speed is something con-

sumers value the most. As long as the web app looks good and the UX of the web app is

good, respondents of the interviews would gladly use web apps over native apps.

The results from the interviews reveal that consumers have interest towards web apps and

do not necessarily see them as a poorer choice to native apps, instead they found them

useful and faster. For mobile web apps to be able to reach more consumers and let devel-

opers start monetizing on their apps, a mobile web app store of some kind has to be made.

6 CONCLUSION

6.1 Summary and findings

HTML5 has been hitting the headlines in various mediums since it was pre-launched in

2009, and that will continue to be the case the following years. The web technology is in

a continuous development with new standards being released every two to four years.

Web apps are here to stay, but it will take some time before they will be more widely seen

on mobile devices. The growth of PhoneGap powered mobile web applications will be

steady and they will help boost the presence of web powered apps on consumer’s devices.

The technology is not yet at a state that it could compete with native technologies directly,

but it is gaining fast in form of performance and functionality. A digital distribution plat-

form is inevitable if mobile web apps are to attract more consumers and developers to

start using them.

As the results from the interviews show, people would be ready to use mobile web apps

over native apps as long as the experience is good or even better, this confirms the main

hypothesis of this thesis.

Development environments and IDEs are continuously improving support for web apps

and the PhoneGap framework, a good example is Dreamweaver with its BUILD exten-

sion.

46

Web apps will be able to compete with native applications in the foreseeable future. The

hype is evident, a lot of people and corporations are backing the technology and there will

be some major improvements and implementations to the framework which will enable

the development of even more complicated web applications in the coming years.

Looking back at the choice of research method regarding consumers opinions, instead of

conducting four interviews, a more wider spread survey would have brought more value

to the research.

6.2 Ideas for further study

With HTML5 based operating systems like Firefox OS and Tizen due in 2013, it will be

interesting to see how they will change consumers attitude towards web apps and how the

development process of HTML5 will evolve. The Firefox OS is most certainly going to

include an integrated mobile web app store that will be using their recently launched Web

Payment JavaScript API, which will play an important part of HTML5’s future.

REFERENCES

148 Apps. (2013). App store metrics. Available: http://148apps.biz/app-store-metrics/.

Available: http://148apps.biz/app-store-metrics/ Last accessed 5.2.2013

Alex Chitu. (2010). Gmail to Use More HTML5 Features. Available: http://googlesys-

tem.blogspot.co.uk/2010/06/gmail-to-use-more-html5-features.html Last accessed

4.3.2013.

Ali Saffari. (2012). Is Webview Slower than the Mobile Browser? (part 1: Canvas

Graphics). Available: http://www.codefessions.com/2012/11/is-webview-slower-

than-mobile-browser.html. Last accessed 12.3.2013.

Andrew Trice. (2012). PhoneGap advice on dealing with Apple application rejec-

tions. Available: http://www.adobe.com/devnet/phonegap/articles/apple-applica-

tion-rejections-and-phonegap-advice.html. Last accessed 14.3.2013.

Andrew Trice. (2013). My Workflow for Developing PhoneGap Applications. Available:

http://www.tricedesigns.com/2013/01/18/my-workflow-for-developing-phonegap-

applications/. Last accessed 18.3.2013.

http://148apps.biz/app-store-metrics/
http://googlesystem.blogspot.co.uk/2010/06/gmail-to-use-more-html5-features.html
http://googlesystem.blogspot.co.uk/2010/06/gmail-to-use-more-html5-features.html
http://www.codefessions.com/2012/11/is-webview-slower-than-mobile-browser.html.%20Last%20accessed%2012.3.2013
http://www.codefessions.com/2012/11/is-webview-slower-than-mobile-browser.html.%20Last%20accessed%2012.3.2013

47

Android Developers. (4.3.2013). Platform Versions. Available: http://developer.an-

droid.com/about/dashboards/index.html. Last accessed 2.4.2013.

Apple Corporation. (2012). UIWebView Class Reference. Available: http://developer.ap-

ple.com/library/ios/#documentation/uikit/reference/UIWebView_Class/Refer-

ence/Reference.html. Last accessed 20.3.2013.

Apple Corporation. (2009). Core Graphics Framework Reference. Available: http://de-

veloper.apple.com/library/ios/#documentation/CoreGraphics/Reference/Core-

Graphics_Framework/_index.html. Last accessed 26.3.2013.

Apple Corporation. (2013). All Categories: Most recent. Available: http://www.ap-

ple.com/webapps/. Last accessed 25.3.2013.

Ariya Hidayat. (2012). For pure #JavaScript, Chrome for iOS is 2x slower than Mobile

Safari (iPad 2, iOS 5.1.1). Reason: no JIT #in UIWebView pic.twit-

ter.com/vjANSCHI. Available: https://twitter.com/ariyahidayat/sta-

tus/218558235530108928. Last accessed 20.3.2013.

Atrice. (2012). Questions and Myths About PhoneGap. Available: http://phon-

egap.com/2012/06/21/questions-and-myths-about-phonegap/. Last accessed

7.4.2013.

Christian Vasile. (2013). HTML5 Introduction – What is HTML5 Capable of, Features,

and Resources. Available: http://www.1stwebdesigner.com/design/html5-introduc-

tion/. Last accessed 11.3.2013.

Compuware. (2012). Mobile apps: What Consumers Really Need and Want. (PDF). 1 (1),

11-12.

Erik Kay. (2010). The Chrome Web Store. Available: The Chrome Web Store. Last ac-

cessed 7.4.2013.

Frederic Lardinois. (2012). Google Bows To Apple: Chrome On iOS Will Use Apple’s

Slow UIWebView To Render Web Pages. Available:

http://techcrunch.com/2012/06/28/google-bows-to-apple-chrome-on-ios-will-use-

apples-slow-uiwebview-to-render-web-pages/. Last accessed 20.3.2013.

Frederick Hirsch. (2013). Device APIs Working Group. Available:

http://www.w3.org/2009/dap/ Last accessed 20.2.2013

Global Intelligence Alliance. (2010). Native or Web Application? How Best to Deliver

Content and Services to Your Audiences over the Mobile Phone. 1 (1), p1-38.

Available: http://www.globalintelligence.com/insights-analysis/white-papers/na-

tive-or-web-application-how-best-to-deliver-cont/ Last accessed 7.2.2013.

Greg Avola. (2012). Creating apps with PhoneGap: Lessons learned. Available:

http://www.adobe.com/devnet/phonegap/articles/creating-apps-with-phonegap-

lessons.html. Last accessed 1.4.2013.

http://www.w3.org/2009/dap/
http://www.globalintelligence.com/insights-analysis/white-papers/native-or-web-application-how-best-to-deliver-cont/
http://www.globalintelligence.com/insights-analysis/white-papers/native-or-web-application-how-best-to-deliver-cont/

48

HTML5Rocks. (2013). Why HTML5 Rocks. Available:

http://www.html5rocks.com/en/why. Last accessed 8.3.2013.

jQuery Mobile. (2013). How do I need to configure PhoneGap/Cordova?.Available:

http://view.jquerymobile.com/1.3.0/docs/faq/how-configure-phonegap-cor-

dova.php. Last accessed 30.3.2013.

Killian Bell. (2011). Steve Jobs Was Originally Dead Set Against Third-Party Apps for

the iPhone. Available: http://www.cultofmac.com/125180/steve-jobs-was-origi-

nally-dead-set-against-third-party-apps-for-the-iphone/ Last accessed 28.2.2013.

Lauren Indvik. (2013). 'Financial Times' Relaunches Web App With 'Live' and 'Morning'

Editions. Available: http://mashable.com/2013/04/03/financial-times-ios-web-app-

update/. Last accessed 12.4.2013.

Mary Meeker. (2012). The state of the Web. 1(1), p1-88. Available: http://www.busi-

nessinsider.com/mary-meeker-2012-internet-trends-year-end-update-2012-12 Last

accessed 4.1.2013.

Matt Asay. (2012). HTML5 isn't Facebook's 'biggest mistake'. Available:

http://www.theregister.co.uk/2012/09/14/facebook_html_5_vs_native_apps/. Last

accessed 1.4.2013.

Matt Burns. (2013). BlackBerry’s Android Bet Is Paying Off. Available:

http://techcrunch.com/2013/03/27/blackberrys-android-bet-is-paying-off/. Last ac-

cessed 7.4.2013.

Matt Gemmel. (2011). Apps vs the Web. Available: http://mattgem-

mell.com/2011/07/22/apps-vs-the-web/. Last accessed 25.2.2013.

Matt Vickers. (2013). Making mobile work. Available:

http://blog.xero.com/2013/03/making-mobile-work/. Last accessed 26.3.2013.

Michael Simon. (2012). Face Off: Chrome vs. Safari for iOS. Available:

http://www.maclife.com/article/news/face_chrome_vs_safari_ios. Last accessed

20.3.2013.

Mobithinking. (2012). What you can learn from the FT Web app: interview with Steve

Pinches. Available: http://mobithinking.com/ft-web-app-interview-steve-pinches.

Last accessed 10.4.2013.

Mozilla Developers. (2013). Using the application cache. Available: https://devel-

oper.mozilla.org/en/docs/HTML/Using_the_application_cache. Last accessed

8.4.2013.

Netmarketshare. (2013). Market share reports. Available: http://www.netmarket-

share.com/. Last accessed 26.3.2013.

http://www.businessinsider.com/mary-meeker-2012-internet-trends-year-end-update-2012-12
http://www.businessinsider.com/mary-meeker-2012-internet-trends-year-end-update-2012-12

49

Oracle Corporation. (2008). Understanding JIT Compilation and Optimizations. Availa-

ble: http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/un-

derst_jit.html. Last accessed 20.3.2013.

Paul Irish. (2013). WebKit for developer. Available: http://paulirish.com/2013/webkit-

for-developers/. Last accessed 26.3.2013.

PhoneGap. Events. Available: http://docs.phonegap.com/en/1.0.0/phon-

egap_events_events.md.html. Last accessed 28.3.2013.

PhoneGap. (2013). Getting Started Guides. Available: http://docs.phon-

egap.com/en/2.5.0/guide_getting-started_index.md.html#Get-

ting%20Started%20Guides. Last accessed 1.4.2013.

Sydience. (2013). WebApps. Available: http://www.sydience.com/?p=56. Last accessed

4.4.2013.

W3C. (2012). Plan 2014. Available: http://dev.w3.org/html5/decision-policy/html5-

2014-plan.html. Last accessed 13.3.2013.

http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/underst_jit.html.%20Last%20accessed%2020.3.2013
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/underst_jit.html.%20Last%20accessed%2020.3.2013

APPENDICES

Question 1 Do you know what a web app is?

Question 2 What do you like or dislike in the Finan-

cial Times web app?

Question 3 What do you like or dislike in the Guard-

ian Native app?

Question 4 Could you see yourself any of these apps

daily?

Question 5 What does an app store mean for you?

Question 6 Does an app store bring more value to the

app?

Question 7 Would it make any difference for you to

be browsing new apps through a web link

or through an app store?

Table 3. Interview questions

