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Acronyms and concepts

API – Application Programming Interface

CSS – Cascading Style Sheets

DOM – Document Object Model

ECMA – European Computer Manufacturers Association

Framework – A collection of methods for developers

HTML – HyperText Markup Language

HTML5 – The newest version of HTML

jQuery – A JavaScript framework

JS – JavaScript

Linting – A process for finding errors in code

Unit testing – A type of testing that tests units of the source code of a program

Plugin – An extension to a framework

Pattern (Software) – A reusable solution to common problems

Source code – An applications code
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1. Introduction

1.1 Background

This thesis has been commissioned by Milk+Chocolate, a digital creative agency 

with customers ranging from large multinationals to smaller brands and 

companies in fields as varied as fashion and politics. Milk+Chocolate take pride 

in the quality of their products and by extension the quality of the code 

produced. 

1.2 Methods

This thesis includes code taken from well-known patterns and from small code 

snippets developed by the author. The code will be examined and presented to 

the reader with a description of the best practice that has been used. These 

examples have been implemented with the best practice that is described. To 

better illustrate to the reader what the code does function and variable names 

have been simplified for better clarity in the code.

The best practices have been chosen through study of literature from leading 

JavaScript and jQuery developers in book and blog form. The choice of best 

practices has been highly influenced by a project the thesis commissioner has 

built.

1.3 Scope and Goals

This thesis will discuss best practices specific to the jQuery framework. Many of 

the best practices discussed can be applied to JavaScript as well but will not be 

elaborated on in the context of plain JavaScript. Best practices in software  

development can not only be applied to code but also to how the code is 

presented, documented, tested and deployed. All of these parts will be discussed 

and analyzed.
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What do best practices provide for program developers and what do they 

contribute to the workflow of a developer? Does a common structure for 

elements enable developers to work better on code that is changed by multiple 

persons.

The objective of this thesis is to improve code modularity, style and 

performance in projects that include JavaScript and jQuery. The objective is to 

provide guidelines for program developers so that they may write code that is all 

of the above. 

1.4 Best practice de!nition and philosophy

A best practice is defined as the recognized methods of correctly running 

businesses or providing services (Collins 2012). This is a definition that can be 

applied to many different industries and fields within industries and is the 

broadest definition of the term. 

Within software programming a best practice can in many ways be equated with 

a software design pattern and often is exactly the same. Not all best practices 

are software patterns and best practices within the software industry also 

include how all of the auxiliary parts of the software development process are 

executed. This can include how documentation is written, how code is 

maintained and updated and in what ways the program or code may be used by 

others. These are points that will be discussed throughout this thesis.

What is the philosophy behind a best practice? Who benefits and in what way? 

These questions can be answered in a more simple way for fields other than 

software programming. A best practice in preventative medicine is to clean a 

minor wound and apply a topical antiseptic ointment. Within aviation 

eliminating distractions within the operational area (FAA 2012) is a common 

best practice that is very logical to follow even for a person who is not versed at 

all in the art of flying. These are things that seem obvious and are when thought 
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about. The same cannot be said about best practices within software. An 

example of this is in order.

1.4.1 A best practice example in JavaScript

/* Example 1 */

var foo = function() {

 for (var i = 0; i < array.length; i++) {

  var element = array[i];

  //Do something with element

 }

}

/* Example 2 */

var foo = function() {

 var element = null;

 var i = null;

 for (i = 0; i < array.length; i++) {

  element = array[i];

  //Do something with element

 } 

}

Both examples illustrated above work for iterating through a list of items in a 

JavaScript array. They do exactly the same thing. How is the second example 

better? Such a deceptively simple example requires a deep knowledge in 

software development and JavaScript to truly understand why the seemingly 

more complex version of the same thing is actually better. In the first example 

the variable element is declared inside the loop. In a language with a so called 

block scope this would mean that the variable is initialized as many times as the 

loop is run and thus used up more processing than is needed for just assigning a 

new value to the variable. Rapidly explained block scope means that a variable is 

only accessible within the block of code it is declared in (a function loop for 

instance). JavaScript does not have block scope  and thus there is not a 

performance gain by declaring the variable before it is used. The best practice is 
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justified by the fact that JavaScript not having a block scope is unusual and thus 

programmers coming from other languages, that have block scope, could be 

confused by the variable declaration within the loop. (Stack Overflow 1 2010)

1.4.2 Thinking ahead

Here the best practice of declaring variables before they are used come from 

what is logical when thinking ahead to when another programmer needs to 

modify the code. A programmer that has spent a large amount of time building 

programs with JavaScript knows that declaring variables inside a loop is not a 

problem or performance detriment. Another programmer with most of their 

experience coming from C or another language with block scope would notice 

the variable declaration inside the loop and possibly be confused of the pattern 

used. (Crockford 2009)

2. Javascript: Then and Now

2.1 ECMAScript, JavaScript and Standards

JavaScript is a scripting language developed in 1995 by Brendan Eich, a 

computer programmer who at the time worked for Netscape Communications. 

Eich developed the language mainly as a way to validate forms on webpages so 

that a user would not need to wait for a server to respond with a message if the 

input was incorrect (Zakas 2012:1).  When Microsoft released Internet Explorer 

3 and with it their own implementation of JavaScript named JScript a need for a  

common standard was realized and JavaScript was submitted to the European 

Computer Manufacturers Association (ECMA5 2011) for standardization (W3C 

2012). The standardization of the JavaScript core as ECMAScript paved the way 

for the languages current status as one of the most used programming 

languages in the world. (Tiobe 2012)
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2.2 Applications and popularity

JavaScript has had a renaissance in recent years that has been propelled by 

virtue of being the only true programming language available in a wide variety 

of web browsers. This has lead to JavaScript being used for many tasks it was 

not designed for and thus many of the languages limitations are being hit. Rapid 

development in the web browser vendor community has lifted many of the 

obstacles that previously stood in the way (Google 2013). This has enabled the 

development of applications on the web that have many of the same capabilities 

as an equivalent native program on an operating system.  As more and more 

applications are being moved to the web, the abilities of JavaScript are being 

fully realized by developers. The current popularity of JavaScript in the web 

community can best be illustrated by the top languages in use on the social 

coding site GitHub (figure 1).

Figure 1. Top Languages on GitHub (GitHub 2013)

Even though JavaScript has a specification that can be followed web browsers 

vendors have built interpreters that behave differently. This has lead to 

incompatibilities across browsers that are still a cause of frustration for many 

developers. This is where frameworks such as jQuery come in to play.
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2.3 Frameworks and jQuery

A software framework is a collection of reusable tools and functions that are 

built to help a developer build applications better and faster (Maxxess 2012). 

Frameworks have a long history in software development since they give 

developers the ability to much more rapidly develop functioning applications by 

simplifying common tasks such as building a login system for a web application 

or building a database based on variable names. These are tasks that can be 

done manually but are often tedious and susceptible to bugs. 

jQuery is a framework built in JavaScript. The jQuery foundation (jQuery 2013) 

describe jQuery as “a fast and concise JavaScript Library that simplifies 

HTML document traversing, event handling, animating, and Ajax interactions 

for rapid web development.” 

An example of simplified HTML document traversing is illustrated below:

/* Regular JavaScript */

element = document.getElementById(“id”);

/* jQuery */

element = jQuery(“#id”);

The function above retrieves an element by its ID. The two line of code above 

are not strictly equivalent since the jQuery version can do much more than just 

retrieve elements by their ID, but is enough to give an example of what a 

framework can do to simplify everyday tasks for developers. 

3. jQuery Plugin Development Best 
Practices

Plugins have made jQuery such a popular library and enables developers to add 

functions to jQuery in a manner that is identical to adding functions to the 
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jQuery source code itself. The best practices in this chapter cover how this is 

done in a manner that is correct and efficient.

3.1 Basic jQuery plugin best practices

3.1.1 Extending jQuery with plugins

Plugins are one of the main reasons for jQuery’s popularity. The ease with which 

a developer can extend jQuery by extending the jQuery $.fn object and the user 

of the plugin can invoke the plugin are large factors in this. In essence a plugin 

is a regular function that is added to the jQuery object (jQuery Docs 2010). The 

simplicity of this approach gives a developer very quick start in building plugins.  

Building a plugin to use with jQuery instead of modifying the $.fn object 

directly is a best practice that is considered to be obligatory. Updating 

frameworks that have been modified is inconvenient and often not possible 

without a considerable amount of work.

3.1.2 A foundation to build on

Adding a function to the jQuery $.fn object is simple.

jQuery.fn.plugin = function() {};

It is common practice in the jQuery community to use the dollar sign ($) as a 

shorthand property for referencing jQuery. To make sure that there are no 

conflicts with regards to the use of the dollar sign the plugin function should be 

wrapped inside a immediately invoked function expression to which the jQuery 

object is passed (jQuery Docs 2010). This means simply put that the function is 

run immediately when it has been loaded.

/* Dollar sign is mapped to the jQuery object */
;(function( $ ) {
  $.fn.plugin = function() {};
})( jQuery );

8



This foundation safeguards against two things. The semicolon before the 

function expression makes sure that any other libraries or scripts that have not 

been closed correctly do not interfere with the functionality of the plugin. 

Passing the dollar sign shorthand into the function enables the safe use of the 

sign within the function without having to worry about conflict with other 

libraries.

jQuery plugins are generally used to manipulate the DOM (Document Object 

Model) and this means that plugins need to access the global window object 

through which developers can access the document object. The window object 

can be passed to the plugin through the function expression used to pass the 

jQuery object (Irish 2010). 

;(function ( $, window, document, undefined ) {
    $.fn.plugin = function () {};
})( jQuery, window, document );

Here the jQuery ($) is passed in with window, document and undefined. Passing 

the global window object with document to the function as local variables 

improves the object resolution process (Osmani 2011).  Passing undefined into 

the function is a way to safeguard against accidental or malicious overwriting of 

undefined in ECMAScript 3 (Irish 2010). ECMAScript 3’s undefined is 

overwritable (ECMA3 1999) and can be tampered with by any JavaScript code. 

The ECMAScript 5 language specification has changed this so that undefined is 

non-writable (ECMA5 2011). All browser have not yet adopted ECMAScript 5 

and thus the passing of undefined into the function and not passing it out 

guarantees that undefined behaves in the intended way.

3.1.3 Maintaining chainability

The ability to chain jQuery functions is one of the most useful features of the 

framework. Maintaining chainability is very important when building a plugin 

as it is an expectation from users that the plugin is chainable as it is such a 

heavily used feature of the jQuery framework. Chainability has been popularized 
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by jQuery but is not exclusive to it. The chainability seen in jQuery is a type of 

prototypal inheritance that can be done with normal JavaScript also (Padolsey 

2009).

$(“h1”).bigger().addClass(“big”).css({ color : “red” });

The model that jQuery follows, allows the developer to run many functions on a 

selected element in a sequence. In the example the heading 1 element on the 

page is made bigger, gets a class called “big”, and has its color changed to red 

through calls to three functions. 

The best practice for maintaining chainability in a jQuery plugin is achieved by 

returning what has been passed to the function with the $.each() method.

;(function ( $ ) {
    $.fn.plugin = function () {
        /* return the elements passed in */
        return this.each(function() {
            var $this = $(this);
        });   
    };
})( jQuery );

Since the elements passed in to a jQuery function can be one element or a 

selection of elements the $.each() method is used to return all of the passed in 

elements in order. This allows for the chainability that is expected.

3.2 Avoiding con"icts and handling dependencies

JavaScript uses the global object window to reference functions and variables. 

This means in practice that declaring a function attaches it to the window 

variable. This can be best illustrated with the example below.
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globalTest = "Testing 123";

var alertTest = function() {

    alert(window.globalTest);

    // alerts "Testing 123"

}

In the example a variable is initialized outside of a function. As JavaScript has 

function scope this means that the variable is accessible globally by any 

function.  In practice this means that the variable is added to the window object. 

This presents a problem as any variable attached to the window object can be 

overwritten any time by any code. To combat this problem a developer should 

implement the best practice of namespacing their code. Namespacing in 

JavaScript is not natively supported as it is in many other high level languages 

such as Java or Go. In a language such as Java a program is automatically 

namespaced (Flanagan 1999) and as such cannot cause conflicts in the same 

way a wayward function in JavaScript can.

3.2.1 Namespacing jQuery plugins

jQuery is regular JavaScript and follows all of the concepts mentioned 

previously. jQuery itself is an extension of the window object and is globally 

accessible once it is loaded.

// Writes out the jQuery object

> console.log(window.jQuery); 

  function (a,b){return new p.fn.init(a,b,c)}

A plugin for jQuery is an extension of the $.fn object (jQuery Docs 2010). What 

a developer does when building a plugin for jQuery is simply adding a function 

to the jQuery framework which can then be accessed as any other jQuery 

function. 

JavaScript’s lack of built-in support for namespacing can be worked around by 

creating a limited number of global objects that serve as wrappers for the rest of 
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a developers code. This is accomplished in practice by creating an anonymous 

function and within it creating an object that serves as a namespace. The plugin 

code is then attached to the namespace and then the $.fn object.

;(function ( $ ) {
  // Check if namespace has already been initialized
  if (!$.namespace) {
    $.namespace = {};
  };
  // Create our plugin object
  $.namespace.plugin = function ( elements, options ) {};
  // Extend the $.fn object
  $.fn.namespace_plugin = function ( options ) {
    return this.each(function () {
      (new $.namespace.plugin(this, options));
    });
  };
})( jQuery );

Here the namespace is added to the jQuery object with $.namespace = {}; and 

is used as a wrapper for the rest of the plugins code. The plugin is then added to 

the $.fn object in the form of namespace_plugin so it can be called. This way of 

namespacing plugins is the preferred way going forward as it avoids conflicts 

but also enables developers of jQuery plugins to use more generic names for 

their functions such as slider() for an image gallery or date picker() for a 

function that enables a user to choose a date from a calendar, two very common 

plugin functions in the world of jQuery. Another benefit is that if the developers 

namespace remains consistent the code can be recognized easily by the 

developers namespace i.e.. $.mc for Milk+Chocolate.

This example is based on Addy Osmani’s namespaced jQuery pattern that can 

be found in appendix 1.

3.3 Adaptable code

One of the strengths of jQuery is the amount of adaptability that can be built 

into functions, plugins and objects. jQuery plugins and functions are generally 

invoked on a DOM element that is then manipulated in some way by the 
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function. A basic scenario could be that a developer would like to increase the 

size of all headings on a page after the user has done specific action.

// Make all heading 1 elements bigger
$(“h1”).bigger();

Here the h1 element is passed into the .bigger() function where it is 

manipulated. The plugins default option is to set the font-size of the element 

that is passed in to 50px. If the uses wishes to use another value it has to be 

added to the function call.

3.3.1 Overridable options

When developing a jQuery plugin that should be easily adapted by the user a 

developer needs to handle the incoming options in a manner that avoids 

conflicts and enables the user to change any aspect of the functions the plugin 

uses. The best practice is to build code that uses overridable options for all 

settings. In practice this means much more than giving the user a way to change 

given settings. The developer of the plugin needs to use the options throughout 

the code and avoid using variables that are not declared in the options of the 

plugin.

A pattern for accepting options that uses jQuery’s build in $.extend function is 

the correct way to override the default options that are set by the developer of a 

plugin.
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;(function ( $, window, document, undefined ) {
    // Options are received by the plugin
    $.fn.bigger = function ( options ) {
        // Merge the passed in options with the default options
        options = $.extend( {}, $.fn.bigger.options, options );
        return this.each(function () {
            var elem = $(this);
            // The options is used to determine the font-size
            elem.css({ "font-size" : options.fontSize });
        });
    };
    // Default options specified by the developer
    $.fn.bigger.options = {
        fontSize: "50px"
    };
})( jQuery, window, document );

This pattern allows the developer to override options every time the plugin 

function is called and also set options globally (Alman 2010). What this means 

is that instead of having to pass options to the function on each call the 

developer may set the options for the plugin once and have it use those options 

each time it is called. 

The $.bigger() plugin can be used as an example. If the user of the plugin 

wants to always increase the font-size to 100px he could pass the options to the 

function each time the function is called.

/* Options are passed on each call */
$(“h1”).bigger({ fontSize : "100px" });
$(“h2”).bigger({ fontSize : "100px" });
$(“h3”).bigger({ fontSize : "200px" });

As the $.bigger() plugin allows for globally overridable options the preferred 

way of accomplishing the increase of the font-size for the different elements is to 

set a the fontSize option before invoking the function.

/* Options are set globally once */
$.fn.bigger.options = { fontSize : "100px" };
$(“h1”).bigger();
$(“h2”).bigger();
$(“h3”).bigger({ fontSize : "200px" });
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Here we may set the h1 and h2 elements to our new default font size but the 

third call  to the $.bigger() function accepts a new option for the font size and 

proceeds by overwriting the globally set option as specified in the overridable 

options pattern.

The complete source for the $.bigger() plugin can be found in Appendix 2.

3.4 Understandable and styled code

One of the easiest best practices to adopt as a developer is structuring code in a 

consistent manner. In the world of jQuery this means following the jQuery 

JavaScript style guide which gives a comprehensive but concise overview of how 

to write JavaScript in the same way as the developers of jQuery. 

3.4.1 Spacing

The jQuery JavaScript style guide states that developers should use tabs for 

indentation, no unnecessary whitespace at the end of lines and use spacing 

liberally. All examples are taken from the jQuery JavaScript style guide. (jQuery 

Contribute 2013)

// Bad
if(condition) doSomething("something");
// Good
if ( condition ) {
    doSomething( "something" );
}

Spacing liberally improves readability dramatically and avoids confusion. The 

use of brackets in the good example makes it clear that the function 

doSomething() depends on the if condition. In a program with many hundreds 

of lines of code this improves the chances that misunderstandings regarding the 

function of the if statement do not occur. Adding spaces to the function calls 

attributes adds clarity to what is passed in to the function.
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3.4.2 Assignments

Creating and assigning variables should be done in a clear way. When creating 

variables for later use without a value they can be put on the same line while a 

new line is required if a value is assigned on declaration (jQuery Contribute 

2013).

// Bad
var foo = true;
var bar = false;
var a;
var b;
var c;
var object = {};
var array = [];

// Good
var a, b, c,
    foo = true,
    bar = false,
    object = {},
    array = [];

By following this style repetition is avoided and clarity is upheld. Here the use of 

spacing is also demonstrated again as the equals sign between the variable and 

its value has a space on each side and the empty object and array do not have 

any spaces within their braces and brackets respectively. 

This style of assigning variables is widely supported and can also be found in the 

Idiomatic.js (Idiomatic.js 2013) and Google JavaScript style guide (Google 

Style).

3.4.3 Comments and Quotes

Comments that span one line should be denoted with two slashes and multiple 

line comments should use the slash and star syntax (jQuery Contribute 2013).
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// Single line comment
/*
Multi-line
comment
*/
// Use double quotes with jQuery
$("h1").bigger();

This commenting system signals to the reader if the content is a short 

description or a more comprehensive text such as a feature explanation. The use 

of double quotes is preferred to single quotes when using jQuery but also 

enables the use of single quotes within the double quotes when needed.

3.4.4 A word on consistency

The purpose of style guides is to provide a vocabulary for developers so that 

another developer who uses the code or needs to change it can concentrate on 

what is being said and not how it is being said (Google Style). 

None of the rules presented in any kind of style guide matter if they are not 

followed in a consistent manner. Even if there isn’t a style guide available for the 

type of code a developer is currently writing there should always be consistency.

When a developer continues development on a for example a jQuery plugin can 

notice patterns in how the existing code is structured. If all function calls have 

comments before them describing what the function does then the new code 

that is written should also have a comment before it. What is most important is 

that a style is followed so that extensive refactoring is not required when a new 

feature has to be added.

4. jQuery Plugin Deployment Best 
Practices

Developing a jQuery plugin can be a fast task that takes a few minutes and 

solves a specific problem in a project. Developing a jQuery plugin can also be a 

project of many years and could mean that many thousands of developers use 
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the code. For the latter case a set of deployment best practices and patterns can 

be followed to improve code quality and also to make it easier for others develop 

the code further.

4.1 Code processing

The current popularity of JavaScript has brought with it many different tools for  

optimization. The most used are different kinds of code minifiers such as the 

YUI Compressor developed by Yahoo (YUI). 

JavaScript is an asset that has to be downloaded by the end user before it is 

executed in the browser environment. This means that any savings in file size 

speeds up and improves the user experience.

Minification is a system for optimizing code in a way that removes unnecessary 

characters and symbols from the source to lessen the amount of data that has to 

be stored. As minified code is not meant to be changed or edited in the minified 

state. No comments or clear and understandable function names are needed 

and thus a very large amount of characters, symbols and whitespace can be 

removed. To illustrate a very basic minification the example pattern for a jQuery  

plugin can be used.

// Before
;(function ( $ ) {
    $.fn.plugin = function () {
        /* return the elements passed in */
        return this.each(function() {
            var $this = $(this);
        });   
    };
})( jQuery );

// After
;(function(a){a.fn.plugin=function(){return this.each(function(){var 
b=a(this)})}})(jQuery);

18



In this example 209 characters were input and the minified code had 91. This 

means that a 56% reduction was achieved with no effort at all on the developers 

part. 

4.1.1 Optimizing for mini!cation

While minification works on any JavaScript code that does not have syntax 

errors there are ways to improve the minification ratio. There are two main 

ways to help a minification algorithm which will be discussed. 

To be able to effectively minimize anything the minification process relies on 

repetition of constants. 

function toggle( element ) {
  if ( $(element).hasClass("selected") ) {
    $(element).removeClass("selected");
  } else {
    $(element).addClass("selected");
  }
}

The minification process will not create variables for repeated strings. The 

minified version of this code is not as small as it could be.
function toggle(a){if($(a).hasClass("selected")){$
(a).removeClass("selected")}else{$(a).addClass("selected")}};

An improved version would be to store the string as a variable to improve the 

compression ratio.
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function toggle( element ) {
  var selected = "selected";
  if ( $(element).hasClass(selected) ) {
    $(element).removeClass(selected);
  } else {
    $(element).addClass(selected);
  }
}

function toggle(a){var b="selected";if($(a).hasClass(b)){$
(a).removeClass(b)}else{$(a).addClass(b)}};

This approach enables the compressor to recognize the variable and replace the 

occurrences of it with a very short variable name. This is noticeable in files with 

variables that are repeated hundreds of times such as the jQuery source code. 

For version 1.9.1 of jQuery this means that there are 277977 characters in the 

source code before minification and 104761 after it. A saving of 62% in file size 

is sizable and once the amount of work needed to accomplish the savings are 

taken into account the choice to minify is apparent.

The example pattern for building a jQuery plugin has window and document 

passed to it in the function declaration. This is not only for the improved 

resolution process but also for the improved minification ratio.

;(function ( $, window, document, undefined ) {
    window.onload = function() {
        console.log("load");
    }
    $(document).ready(function(){
        console.log("ready");
    });
})( jQuery, window, document );

;(function(c,b,a,d){b.onload=function()
{console.log("load")};c(a).ready(function(){console.log("ready")})})
(jQuery,window,document);

The two keys to improved minification is declaring variables for often used 

strings and and storing local references to objects and values (Zakas 2008). 
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4.1.2 Concatenation

In a real-world situation many different JavaScript plugins and libraries can be 

needed for an application or page. Adding them into one http request helps 

speed up an application or page. (Zakas 2012) This can be accomplished in a few 

different ways but the method is not as important as the outcome. 

A basic page that utilizes JavaScript and jQuery often has several scripts that are 

needed for the webpage to function. A restaurant website can be taken as an 

example. They have a slideshow on the front page and a date picker for 

reservations on the reservations page. It is presumed that the webpage uses 

jQuery. For this functionality the webpage uses the jQuery library, a plugin for 

the slideshow and the date picker, and a script file that runs the required 

functions once the page has loaded. This adds up to four files that need to be 

requested by the browser for the site to function. 

Basic concatenation for a site with the setup mentioned is to include jQuery and 

a script file which contains the rest of the required files. jQuery should be 

included separately for easier upgrading and caching (Coyier 2010) and the rest 

of the scripts into one file. This is something that is done when pushing the code 

into a production state.

4.2 Testing

4.2.1 The most volatile of environments

JavaScript typically executes in one of the most volatile run-time environments 

that have been in wide use. This is the web browser, where many different 

companies build completely different engines to run JavaScript. These different 

engines are often touted as the reason one web browser is better than another.

The different platforms and implementations of JavaScript engines has resulted 

in a plethora of different environments that have to be taken into account by a 
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developer. On top of this different browsers support different versions of 

JavaScript (ECMAScript 3 or 5) (Kangax 2012) and the implementations of the 

languages are not always exactly to specification.

Different implementations and environments lead inevitably to bugs. No 

JavaScript engine is perfect and many have specific bugs that are known but 

have not and will not be fixed due to the browser where it is found not being 

updated anymore, as in the case of a few Internet Explorer 8 bugs (Stack 

Overflow 2). 

One of the goals of the jQuery project was to give developers a toolbox of 

functions that could be used with confidence without having to worry about 

different browser implementations of a function which could behave in a 

different manner than what was intended by the developer. 

Even though jQuery enables the developer to write JavaScript in a consistent 

manner for different platforms there is of course still the change for bugs in the 

developers own code.

4.2.2 Code linting with JSLint

When the C programming language was in its infancy there were errors which 

the compilers of that day were not able to detect. To combat this problem a 

small code checking program called lint was developed by Bell Labs (Johnson 

1979). As the C compilers were developed further and the language specification 

for C was stabilized the need for lint was no longer needed (Crockford 2008).

JavaScript has not had the same chance to mature  as C as it was not at its stage 

of invention intended for use in many of the ways it is now. This has led to a 

need for a syntax checker and verifier for JavaScript, a lint for JavaScript. 

Fortunately Douglas Crockford, a JavaScript developer, saw the need for this 

and developed JSLint. 
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JSLint is a code quality tool which uses a strict subset of JavaScript to check 

your code against and rejects code that is accepted by browsers (Crockford 

2008). The most common things that JSLint captures are undeclared variables 

and inconsistent whitespace. The errors are presented with an explanation and 

a approximate location within the code.

Line 132 [col. 5]
test = 0;
'test' is not defined.

This is a valuable tool for spotting errors that could otherwise pass undetected 

because it is valid JavaScript but could lead to performance or other problems 

down the line. Code that does not pass through JSLint without errors is not 

acceptable. Thus the recommended best practice is to always check any 

JavaScript code that will be used in a production environment with JSLint.

4.2.3 Unit testing with QUnit

The testing of code is one of the most important parts of any software project. 

The subject of testing is something that can and has been explored extensively 

throughout the history of programming. Ways of programming, such as Test 

Driven Development, have emerged which require a systematic approach to the 

development process which requires extensive testing.

Testing JavaScript is a challenge as the code is often not stand alone and can in 

many instances be intermixed with HTML as inline elements on a web page. 

This presents challenges for developers who wish to implement unit testing. A 

unit is in its most simple form a function that gives a output based on an input. 

This is not very often the case when testing JavaScript where the output of a 

specific function can depend on what is present in the DOM. QUnit is a 

JavaScript unit testing framework build by the jQuery foundation which aims to 

simplify the process of testing for JavaScript developers.

One area where unit testing shines is as a tool for refactoring. Refactoring is the 

process of rewriting or restructuring code without modifying its behavior. 
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(QUnit 2013). As a section of code is changed the chances for bugs are increased 

and developers need a way to easily ensure that the functionality of a program 

stays the same as it is improved from a code structure standpoint.

Including unit tests alongside the code you have developed is considered a best 

practice, particularly if the code is to be changed or improved by other 

developers. The tests may also help other developers understand how a more 

complex program is supposed to behave. The inclusion of tests in a program 

that is developed by many individuals helps in the process of programming. 

This is because a developer not very familiar with the code can get into 

improving small pieces of it without having to worry about breaking something 

down the line. This is of course only possible if the tests for the program are well 

structured.

For better understanding of how QUnit works an example is needed. In its most 

basic form a unit test is setting in an expected result an comparing it to what the 

function returns.

QUnit.test( "square test", function( assert ) {
 function square( x ) {
  return x * x;
 }
 var result = square( 2 );
 assert.equal( result, 4, "square(2) equals 4" );
});

The QUnit test function test for the expected result of 4 when 2 is passed to the 

square() function. The result is then presented as passed.
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Figure 2. QUnit result example.

Figure 2 hardly illustrates the power of the QUnit testing library but gives a 

feeling for the power of unit testing. 

A complete testing battery included with a plugin gives developers confidence to 

change even functions that are critical to a plugins functioning. This makes the 

chance that other developers will improve your code greater.

4.3 Documentation

Documentation is a vital part of any software project and can be critical if the 

aim of a developer is for their plugin to become popular. If users of a plugin and 

other developers need to read the code for a plugin to understand how to use it 

then the threshold for usage is raised substantially. 

Vital parts of any documentation are a description of the functionality, how to 

use the functionality and an example (Watters 2010). With these a plugin 

developer has a good start and what is needed for a user to get up and running. 

This is adequate documentation and taking the work to another level requires a 

substantial amount of work.

4.3.1 Internal & External

The documentation of a plugin should be internal, in the code, and external, as a 

separate document describing the functionality on a higher level. The internal 
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code documentation can describe in detail what a function does and what a 

variable is supposed to contain. The internal should be concise and describe 

only necessary parts. Any longer descriptions or philosophical choices in how a 

function has been structured should be relegated to the external documentation. 

(Watters 2010)

4.3.2 Plugin documentation

A decision has to be made for how the documentation for a plugin should be 

structured. A popular way is the tutorial style of documentation that is a how-to 

of the most basic usage of the plugin (Watters 2010). This enables users to get a 

quick start and understand the basics. Another style is the deep dive reference 

style which many higher level programming languages use in their API 

documentation (Kaplan-Moss 2009). This way of documenting is not as suited 

for plugins since the scope of a plugin is nothing near the scope of a high-level 

programming languages API.

From the tutorial stage of documentation a developer can choose to dive deeper 

but for the purposes of many plugins this is superfluous. If further 

documentation is required the next step would be to describe specific functions 

in a deeper manner.

5. Conclusions

This thesis presents simple but key practices and patterns that are valuable to 

any developer who works with jQuery in general and its plugins in particular. 

The best practices  presented have been used and recommended by people on 

the forefront of the JavaScript world. 

The use of the best practices presented ensures that the groundwork for a 

reliable plugin is set for the development and deployment processes. They also 

give a developer not accustomed to jQuery a head start in writing jQuery 

flavored JavaScript well. A more abstract advantage of using best practices is 
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the confidence it gives to developers. The feeling of confidence in their code is 

something that every developer worth their salt should strive for. This thesis 

also gives a baseline for developers so that they have a guide to follow which is 

preferred and by virtue speeds up development.

There are many things that have been left out of the thesis as discussing all best 

practices would not be possible. I have chosen the ones that can be used on any 

project that includes the use of jQuery plugins and not just esoteric situations. 

The included best practices were chosen based on what I have found that was 

not clear to me with the JavaScript language but also discussions with other 

developers. This has worked adequately but I feel now that the work would 

benefit immensely by going even deeper into the topics that are included and by 

removing parts of the the work such as the style of how the code is written.

Milk+Chocolate will able to use this document for internal training as jQuery 

development is a large part of the development workflow at the company. This 

has been done already while the thesis was still in the editing phase and the 

results were encouraging but improvement suggestions were also presented. 

One suggestion was to include an even deeper dive into the world of JavaScript 

best practices and not just jQuery plugins. One reader also suggested that the 

work should include even more topics to cover a wider breath of the jQuery 

development field. These are all improvements that I agree with and can see 

that will be added to the work as it continues it’s life as a living document on the 

Milk+Chocolate wiki.

Best practices are recommendations. It is inherent in their name. Who defines 

what is a best practice? Sometimes the best practice is logical and clear even to 

the uninitiated as in the example of keeping the area around an aircraft clear of 

extraneous material. As stated before the same cannot be said of best practices 

in the world of software development and jQuery plugins in particular.

What can be accomplished by following the best practices described in this 

thesis is above all an efficiency for accomplishing simple tasks in a manner that 

is proven to be reliable. 
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Appendices

Appendix 1 – Addy Osmani namespaced jQuery 
plugin pattern

/*!
 * jQuery namespaced 'Starter' plugin boilerplate
 * Author: @dougneiner
 * Further changes: @addyosmani
 * Licensed under the MIT license
 */

;(function ( $ ) {
    if (!$.myNamespace) {
        $.myNamespace = {};
    };

    $.myNamespace.myPluginName = function ( el, myFunctionParam, 
options ) {
        // To avoid scope issues, use 'base' instead of 'this'
        // to reference this class from internal events and functions.
        var base = this;

        // Access to jQuery and DOM versions of element
        base.$el = $(el);
        base.el = el;

        // Add a reverse reference to the DOM object
        base.$el.data( "myNamespace.myPluginName" , base );

        base.init = function () {
            base.myFunctionParam = myFunctionParam;

            base.options = $.extend({}, 
            $.myNamespace.myPluginName.defaultOptions, options);

            // Put your initialization code here
        };

        // Sample Function, Uncomment to use
        // base.functionName = function( parameters ){
        // 
        // };



        // Run initializer
        base.init();
    };

    $.myNamespace.myPluginName.defaultOptions = {
        myDefaultValue: ""
    };

    $.fn.mynamespace_myPluginName = function 
        ( myFunctionParam, options ) {
        return this.each(function () {
            (new $.myNamespace.myPluginName(this, 
            myFunctionParam, options));
        });
    };

})( jQuery );

Appendix 2 – jQuery Bigger 

;(function ( $, window, document, undefined ) {
    /*Options are received by the plugin */
    $.fn.bigger = function ( options ) {
        /* Merge the passed in options with the default options */
        options = $.extend( {}, $.fn.bigger.options, options );
        return this.each(function () {
            var elem = $(this);
            /*The options is used within the code to determine the 
font-size*/
            elem.css({ "font-size" : options.fontSize });
        });
    };
    /* Default options specified by the developer*/
    $.fn.bigger.options = {
        fontSize: "50px"
    };
})( jQuery, window, document );


