

Tero Haukilehto

Isolated unit tests in .Net

Thesis

Spring 2013

School of Technology

Information Technology

1(68)

SEINÄJOKI UNIVERSITY OF APPLIED SCIENCES

Thesis Abstract

Faculty: School of Technology

Degree programme: Information Technology

Specialisation: Data Network Technology

Author: Tero Haukilehto

Title of thesis: Isolated unit tests in .Net

Supervisor: Hilkka Niemelä

Year: 2013 Pages: 60 Number of appendices: 1

In this thesis isolation in unit testing is studied to get a precise picture of the
isolation frameworks available for .Net environment. At the beginning testing is
discussed in theory with the benefits and the problems it may have been linked
with. The theory includes software development in general in connection with
testing.

Theory of isolation is also described before the actual isolation frameworks are
represented. Common frameworks are described in more detail and comparable
information and coding examples are shown. Because the purpose of this thesis is
to report of usable isolation frameworks in unit testing, the focus is on doing unit
testing in practice. As a result an isolation framework can be recommended for the
use of ABB's software development.

Keywords: unit testing, software development, isolation frameworks

2(68)

SEINÄJOEN AMMATTIKORKEAKOULU

Opinnäytetyön tiivistelmä

Koulutusyksikkö: Tekniikan yksikkö

Koulutusohjelma: Tietotekniikka

Suuntautumisvaihtoehto: Tietoverkkotekniikka

Tekijä: Tero Haukilehto

Työn nimi: Isolated unit tests in .Net

Ohjaaja: Hilkka Niemelä

Vuosi: 2013 Sivumäärä: 60 Liitteiden lukumäärä: 1

Tässä työssä tutkitaan ohjelmistotestausta sekä erityisesti yksikkötestausta ja
siinä käytettäviä eristystekniikoita. Työn tarkoituksena on selvittää, mikä .Net-
eristystekniikoista sopii ABB:n käyttöön.

Opinnäytetyössä käydään läpi testausta teoriassa, käsitellään testauksen tärkeyttä
ja syitä, jotka vähentävät sitä. Testausta lähestytään ohjelmistokehityksessä
käytettävien mallien avulla, joihin sen eri strategiat ja testaustasot ovat
yhteydessä. Testauksen yleisestä teoriasta päästään itse eristystekniikoihin, joilla
testausta voidaan helpottaa ja nopeuttaa.

Eristystekniikoita tutkitaan niiden käyttöasteen mukaan. Valittujen tekniikoiden
ominaisuuksia vertaillaan ja niillä toteutetaan esimerkkitestejä. Esimerkkien
pohjalta muodostetaan kuva tekniikoiden käytettävyydestä ja lopulta pystytään
suosittelemaan tekniikkaa ABB:n sovelluskehityksen käyttöön.

Asiasanat: Sovelluskehitys, yksikkötestaus, eristystekniikat.

3(68)

TABLE OF CONTENTS

Thesis Abstract.. 1

Opinnäytetyön tiivistelmä ... 2

TABLE OF CONTENTS .. 3

Tables and figures ... 5

Abbreviations and terms .. 7

1 INTRODUCTION .. 9

1.1 Background ... 9

1.2 Objectives ... 9

1.3 Structure ... 10

1.4 Company introduction ... 10

2 SOFTWARE TESTING ... 12

2.1 Importance of testing ... 12

2.2 Reasons for omitting tests ... 13

2.3 V-model ... 14

2.4 Scrum .. 16

2.5 Testing strategies .. 18

2.5.1 Functional (Black-Box) testing. ... 18

2.5.2 Structural (White-Box) testing ... 19

2.5.3 Gray-Box testing ... 20

2.6 Testing levels .. 21

2.6.1 Unit (module) testing ... 21

2.6.2 Integration testing ... 23

2.6.3 System testing .. 24

2.6.4 Acceptance testing .. 25

2.7 Isolation ... 26

3 ISOLATION FRAMEWORKS .. 28

3.1 Isolation frameworks used today ... 28

3.2 Mostly used isolation frameworks ... 29

3.3 Moles framework ... 30

3.3.1 Installing Moles framework in Microsoft Visual Studio 2010............ 31

4(68)

3.3.2 Mole code example ... 32

3.3.3 Stub coding example .. 39

3.4 Fakes Framework ... 44

3.4.1 Main differences between Fakes and Moles frameworks 45

3.4.2 Fakes example .. 47

3.5 Moq Framework .. 48

3.6 FakeItEasy .. 50

3.6.1 FakeItEasy installation via NuGet ... 51

3.6.2 FakeItEasy example ... 53

4 RESULTS ... 54

5 SUMMARY.. 56

BIBLIOGRAPHY .. 57

APPENDICES ... 61

5(68)

Tables and figures

Figure 1. V-model in software testing (Haikala & Mikkonen 2011). 14

Figure 2. Scrum Framework.. 16

Figure 3. Black-Box testing. (Burnstein 2003, 65). .. 19

Figure 4. Levels of testing (Burnstein 203, 134).. 21

Figure 5. Module hierarchy (Burnstein 2003, 154). ... 24

Figure 6. Test doubles (Meszaros 2009). ... 27

Figure 7. Isolation frameworks used in .Net 2010 (Osherove 2010). 28

Figure 8. Isolation frameworks used in .Net 2012. (Osherove 2012). 29

Figure 9. Tools bar and Extension Manager. .. 31

Figure 10. Extension Manager. ... 32

Figure 11. Mole example Library event class. ... 33

Figure 12. Mole example Sql layer class. ... 34

Figure 13. Solution explorer after creating a unit test project. 35

Figure 14. Adding Reference to the project. ... 35

Figure 15. Adding Moles Assembly. .. 36

Figure 16. Solution Explorer after adding the assembly. 36

Figure 17. Moles example .moles xml-file. .. 36

Figure 18. Fake types in Class View. .. 37

Figure 19. Mole example unit test class. ... 38

Figure 20. Run All Tests in Solution. ... 39

Figure 21. Mole example Test Results. ... 39

Figure 22. Stub example Sql Layer class. ... 40

Figure 23. Stub example Library event class. ... 41

Figure 24. Stub example Save event class. .. 42

Figure 25. Solution Explorer after adding moles assembly and reference. 43

Figure 26. Stub example unit test class. ... 44

Figure 27. Fakes example unit test class. ... 48

Figure 28. MOQ example unit test class. .. 50

Figure 29. Nuget Package Manager Console. .. 52

Figure 30. Installing FakeItEasy package. .. 52

Figure 31. FakeItEasy unit test class. ... 53

file:///C:\Users\user\Desktop\Opinn�ytety�\Opinn�ytety�.docx%23_Toc352227390
file:///C:\Users\user\Desktop\Opinn�ytety�\Opinn�ytety�.docx%23_Toc352227391
file:///C:\Users\user\Desktop\Opinn�ytety�\Opinn�ytety�.docx%23_Toc352227392
file:///C:\Users\user\Desktop\Opinn�ytety�\Opinn�ytety�.docx%23_Toc352227393

6(68)

Table 1. Main differences between Fakes and Moles frameworks 46

Table 2. Moq features compared to Moles features .. 49

7(68)

Abbreviations and terms

.Net Framework Software component library that consists of the common

language runtime and the .NET class library (MSDN).

Acceptance test A test that determines if the system meets its acceptance

criteria and can be accepted by the customer (Farrell-

Vinay 2008, 470).

Black-box testing Functional testing without using any knowledge of the

system's construction (Farrell-Vinay 2008, 473).

C# Object-oriented programming language for building

applications in .Net Framework (MSDN 2012).

Configurable test double Reusable test double with configurable values to be

returned or expected at runtime (Meszaros, 2009).

DOC A component in a software that has dependencies

(Meszaros, 2009).

Dummy object A test double that does not have behavior with no inputs

or output handling (Meszaros, 2009).

Fake object A test double type to run unrunnable tests by using the

indirect outputs (Meszaros, 2009).

Integration testing Test level where software elements, hardware elements

or both are combined and tested until the complete

system has been integrated (Farrell-Vinay 2008, 489).

Isolation framework A framework used in unit tests to break dependencies

(Osherove, 2009).

Mock A test double that verifies indirect outputs of SUT against

expectations (Meszaros, 2009).

8(68)

Mole Test double type used in Fakes framework to isolate third-

party components without testable programming interface

(Msdn 2012c).

Shim Test double type used in Fakes framework to isolate third-

party components without testable programming interface

(Msdn 2012c). Shim Vs. Mole type in Moles framework.

Stub A test double that injects indirect inputs into the system

but ignores the outputs (Meszaros, 2009).

SUT System, subsystem or component being tested, aka

System Under Test (Farrell-Vinay 2008, 504).

System test Test level to determine if the system meets its specified

requirements (Farrell-Vinay 2008, 504).

Temporary test stub A test double for DOC that is not yet available, often used

with test-driven development (Meszaros, 2009).

Test case A set of inputs, execution conditions and a pass/fail

criterion (Pezze & Young 2008, 153).

Test double An object used to replace the real DOC. Generic name for

family (Meszaros, 2009).

Test spy A test double similar to Mock, but captures the outputs for

later verification (Meszaros, 2009).

Unit Smallest piece of testable code (Pezze & Young 2008,

282).

White-box testing Structural testing where knowledge of the SUT's internal

logic is used (Farrell-Vinay 2008, 503).

9(68)

1 INTRODUCTION

1.1 Background

Software Testing is a current topic. It should have been like that already for many

years, but unfortunately it does not sound fancy and valuable. In fact, sometimes

the testing can be even decreased for balancing the system development budget

or getting the system to the market sooner. However, saving in testing can be

dangerous and at least very risky. (Farrell-Vinay 2008, 1-5.)

Only by testing we can ensure that the system has the value it should have. This is

done with thoroughly testing on each testing level starting from basic unit testing to

final acceptance testing before shipping the product to the customer (Burnstein

2003, 132-137). There are many ways to put testing into practice, but the

hierarchy is usually the same where each phase in testing is connected to the

used testing strategy and to the steps in the current system development

methodology.

The first phase in testing hierarchy is unit testing, where the smallest testable

pieces are tested. In order to test these parts of the program individually, we have

to break their dependencies to other parts. This can be done manually, but using

isolation frameworks has several advantages from making the developing faster,

and less error-prone to reducing the need to duplicate code writing. Isolated unit

tests, in general, are much easier and time saving to write and use, and more

importantly they can even encourage coders to write tests. (Osherove 2009, 99-

102.)

1.2 Objectives

The main objective of this thesis is to look into today's most used isolation

frameworks for .Net environment. The frameworks are compared and their basic

use is shown with coding examples. Before diving into the world of isolation,

testing is discussed in theory starting with basic testing principles and strategies.

10(68)

The main goal is to find out which one of the isolation frameworks available is

suitable for ABB's use in unit testing. The contract with the company also included

actual unit testing for a new ABB software component using the isolation

framework that this study would prove useful. During this thesis unit testing in

practice will be learned and, in addition, the objective is to study and learn how the

testing is connected into software development and it's methodologies.

1.3 Structure

The testing in theory is discussed in the second chapter starting with the reasons

why we should test the software and how important it really is. We also take a look

into negative attitudes towards software testing and how to overcome them. Then

common software development methodologies are represented in connection with

the testing.

Chapter 2.5 handles the strategies of testing from functional and structural

methods to the combination of the both. The next chapter concentrates on the

levels of testing and shows how they are connected to the software development

process. Before the isolation frameworks are introduced a brief explanation about

isolation itself is given.

Chapter three begins with the introduce of common isolation frameworks. Then

four of the most interesting frameworks are taken under a closer look and used in

coding examples. Chapter 4 shows the results of comparing the frameworks and

the final chapter summarizes the whole thesis.

1.4 Company introduction

ABB is a multinational Swiss-Swedish industrial corporation. ABB's main industries

are automation and power technologies. The corporation was founded when the

Swiss BBC Brown Boveri & Cie (founded 1891) and Swedish ASEA (founded

1883) merged in 1988. The company's business is divided into five divisions which

11(68)

are Power Products, Power Systems, Low Voltage Products, Discrete Automation

and Motion, and Process Automation. (ABB 2012a.)

ABB has about 145 000 employees in over 100 countries and it is one of the

largest engineering companies in the world. In Finland over 7000 people are

working for ABB. The reported global revenue was about 40 Billion dollars and the

reported revenue in Finland was 2.6 Billion dollars in 2011. (ABB 2012b.)

In Finland the company has factories in Vaasa, Helsinki and Porvoo and it is the

leading company in industrial maintenance area. ABB spent about 160 million

Euros into product development in Finland in 2011 and it is also one of the biggest

industrial employers in the country. (ABB 2012c.)

This thesis is done especially for the use of Medium voltage products unit in Vaasa

and it's co-unit in India. The unit is responsible for the development, sales and

marketing of protection and control equipment for Medium voltage electrical

transmission that creates the base for smart grid.

12(68)

2 SOFTWARE TESTING

2.1 Importance of testing

One way to approach software testing is to find an answer to a question: Why do

we have to test? According to Pezzè & Young (2008, 15), the reason behind

testing is either to estimate software quality or find defects, both aiming to improve

the software. Craig & Jaskiel (2002, 536), described that in general software

testing is seen as planned searching of errors by running the whole program or a

part of it.

It is estimated that in a new program there are couple errors in every hundred lines

of code. The number of bugs in long used applications can still be even one bug

per thousand lines of code. Yet, it may require too much resourses to find and fix

all errors. About 5% of the bugs can be even invisible because they do not cause

malfunctions or they are fixed by another part of the program. In fact, with testing

we can show that the program contains bugs, but we can't show it does not.

(Haikala & Mikkonen 2011, 205-206.)

One thing is certain - software errors occur and they are expensive. The errors

should be noticed and fixed at the earliest possible stage when they still are easier

and cheaper to fix, as the costs of errors rise while the development process goes

on. Typically, over half of the resources of a software project are spent on finding

the errors, testing and fixing the program. (Haikala & Mikkonen 2011, 205-206.)

According to a report of The National Institute of Standards and Technology in

2002 (NIST 2002), software errors cost the U.S economy approximately 59.5

billion USD every year. The report estimated that over 50% of the errors are

currently found after the later development process or in after sale use. By

improving the testing and earlier identifications of the errors the save could be up

to 22.2 billion USD annually.

For comparison, the whole software testing market in Finland is estimated to be

worth 100-200 million Euros (130 - 270 million USD) (Lehto, 2013). The numbers

may seem unrealistic, but if we assume that an average coder spends half of their

13(68)

coding time finding and fixing errors, the global cost of bugs may rise up to 316

billion dollars per year according to a recent research of a software firm Undo Ltd

(University of Cambridge, 2013).

2.2 Reasons for omitting tests

Still, despite all the facts and numbers that show that testing is a vital part of

software development and even as expensive as all the rest of the project, it is

often given much less value. Peter Farrell-Vinay (2008, 2-5), lists several reasons

why testing is often misunderstood, mislead, done improperly and eventually

failed.

The major problem is that testing has a bad taste, it costs a lot and it can produce

embarrassing results. The testing itself is a never ending process - some even

may see this as a reason for not testing - but a software without testing is like a

school system without tests. It might work (students might have learnt), who

knows?

Testing can be seen as a time wasting activity that prevents the valuable (when it

still has a value) product from making profit. The current economical situation can

also tempt software companies to reduce the testing resources (Lehto, 2013). But

the reality is that the value that testing can provide for the system can even turn

the product's value from negative to positive. A system with bugs can be useless

and worth nothing, no matter how much money has already been spent. Even

patches will not save the system if it has already been claimed unusable by the

public.

If the software development project does not have money, time or other resources

for testing, then there is a lack of planning in the first place. A carefully planned

project includes testing and resources for it. That way testing is also a lot cheaper

and easier when it has been secured from the beginning.

A successful software project requires testing and even more important

requirements specification to test against. Requirements specification is also

crucial for developing, technical writers, marketing and for the management. In

14(68)

practice, the requirement specification cannot be perfect (otherwise we should

have the system itself), but it has to meet the needs of the previous groups.

Furthermore it has to be changeable, because in software development changes

happen.

2.3 V-model

The relationships between the steps in software development and software testing

are often demonstrated with an abstract V-model, the enhanced version of the

classical waterfall model (Ghahrai 2008). The V-model connects each step in

development process to associated phase of testing and vice versa, as seen in the

figure 1 (Haikala & Mikkonen 2011, 206).

Figure 1. V-model in software testing (Haikala & Mikkonen 2011).

As Pezze & Young (2008, 15-18) describe the V-model is based on verification

and validation. The verification stands for the coherency of design, specification

and the code, whereas the validation checks if the system really meets its function.

In practice, during every development step (left side) a corresponding testing plan

is created and while testing (right side) the results are compared to the developing

15(68)

documents = Verification. Respectively, the final code is compared to the overall

system specification = Validation.

In this theoretical model, only after one phase has been completed, checked and

approved the next can be started. This ensures that the verification continues

through all stages and each phase has been tested as planned. (Waterfall-model

2012.)

In that way errors can be noticed at early stages and the number of errors in final

code can be reduced significantly. The V-model works best with small projects,

and thanks to the model the chance to succeed is higher and the development

process is much less time consuming than with the original waterfall model. But

the V-model is not a trouble-free. (Ghahrai 2008.)

The V-model is already dead, says Ed Liversidge, the director of Harmonic

Software Systems Ltd (Liversidge 2005). He accuses the model of misleading

project managers to think that the forthcoming project is well understood and if the

model is used the project is more likely to fail than succeed. Liversidge admits that

the V-model has a number of good points like linking the phases and demanding

the document writing but eventually it will not help.

The first reason for V-model to fail according to Mr. Liversidge is that it is simply

too abstract and rigid to cover all situations and especially meet the changes that

will happen in software development. The second reason is that doing unit tests

separate from integration tests can be expensive and problematic in large projects

due to unit test's possible need for a custom test harness. Liversidge warns

software managers from leading into a false sense of security with the V-model

because without flexible and problem solving engineers they would be using it too

precisely and fail. Hereby the V-model can be used in software development as a

directional guideline rather than a strict set of orders keeping in mind its

advantages and disadvantages.

16(68)

2.4 Scrum

Traditionally waterfall based methods are not the only used in software

development. If one trend has attracted attention in software development lately,

its Agile methodology. One of the most used agile methods is Scrum, which offers

a model to lead a software development project. Unlike the waterfall based models

like the V-model, Scrum has only three different core roles: Product owner,

ScrumMaster and development team, whereas the V-model has at least five:

descriptor, planner, coder, tester and project manager, all with certain tasks.

(Poimala & Tolvanen, 2011.)

Scrum, in brief is rather a framework than complete methodology, focusing on

dividing the project and maintaining the control of progressing. Agile development

like Scrum divides the development progress into cycles. The most important cycle

is a development cycle named Sprint, lasting from one week to two months, at

which time the product should be basically complete. (Poimala & Tolvanen, 2011.)

Figure 2 shows the basic framework of Scrum where the product is developed

starting from product and sprint backlogs through sprints and daily scrums to

potentially shippable product increment.

During the sprint, the requirements cannot be changed and the team has full

freedom to try achieve the goals of the sprint. The team itself can consist from

workers with various job titles, each working on their best for the sprint, often

Potentially
shippable
Product increment

Product
Backlog

Daily Scrum

Sprint Cycle

Sprint
Backlog

1 - 8

Weeks

24
Hours

Figure 2. Scrum Framework.

17(68)

crossing their preferred disciplines. While the product owner is responsible for the

vision of the product, the ScrumMaster concentrates on helping the team to be

their best and to keep up high performance. (Cohn, 2012.)

The main difference in testing with V-model and Scrum methodology is that in V-

model testing is a phase, in Scrum it's not. During the sprint, the Scrum team

works as a whole, test engineers included to achieve the current goal. This gives

clearly different approach to testing than the traditional model, because after the

sprint the feature should be ready, tested and no regressions should exist.

(Tuomikoski, 2009.) In other words, the unit testing is even more important in agile

methods like Scrum when the new cycle has to have the regression tests done in

the previous cycle.

Testing in Scrum provides short feedback loop to the development when both

developers and test engineers are working closely. It also enhances the

communication and support during the development. Yet, short sprints set

challenges to create enough code to be tested and in given time. (Tuomikoski,

2009.) Unfortunately, when the sprints can have even more intensive schedules

than traditional development, the team may give up unit testing the code to reach

the other sprint goals.

Agile methodologies have been criticized for not answering the question why the

development project exists or how should be the development process led in the

long run. Therefore, the project preparations should not have forgotten even with

agile methods. (Poimala & Tolvanen, 2011.)

Both agile and waterfall based software development methods have their own

ways to handle and describe the projects. Depending on current project other can

be more suitable to use than another. Still, using whichever should not lead into a

situation where testing is reduced because of limited time. If so, then the fault is

somewhere else than in the methodologies.

18(68)

2.5 Testing strategies

Despite the used software development methodology, in order to design accurate

software test cases, a valid test approach is needed. Many techniques are used

but often two major methods are mentioned: functional and structural (Burnstein

2003, 63-64). Both can be used with any unit or build but they offer different

strengths, quality aspects and cons (Farrell-Vinay 2008, 18).

The V-model and the testing strategies are often linked to each other. As moving

upwards with the model the testing usually changes from white-box to black-box

testing. (Haikala & Mikkonen 2011, 209.) In Scrum the current test strategy is not

as clear as with the V-model, but it is often depending on the current sprint goals.

The sprint however might not include all the testing, so addition testing have to be

planned outside the sprint. (Almeida, 2007.)

2.5.1 Functional (Black-Box) testing.

Functional testing, often referred as Black-Box testing, is an approach where

tester can consider the software under test to be (in) a black box. The tester does

not have knowledge of inner structure of the software, he only knows what it does.

This enables the strategy to be used with any build from a single unit to complete

system, because the approach is the same in every case and you cannot see what

is inside the box (i.e. how it works). (Burnstein 2003, 63-64.)

The tests are written using the specification and tested against it to find errors

where the system does not work as described. To be effective, the specification

needs to be accurate and thorough (Farrell-Vinay 2008, 18). Also information from

Input/Process/Output Diagram (IPO) or requirements specification can be used to

describe the behavior or functionality of the system (Burnstein 2003, 63-64).

Common methods in Black-Box testing are Equivalence class partitioning and

Boundary value analysis. In Equivalence class partitioning the input domain of the

software is divided into equivalence classes. These classes are chosen by

assumption that if one works with the software they all will. Or if one contains a

19(68)

defect, they all do. (Burnstein 2003, 65-72.) That also creates the weakness of the

method, the solid-lookalike class can in fact consist of multiple classes (Haikala &

Mikkonen 2011, 209).

If as well the edges of the equivalence classes are used, the method is called

boundary value analysis. Adding the boundaries strengthens the basic

equivalence class partitioning and increases potentially the possibility of finding

errors. (Burnstein 2003, 72-73.) However, the expanded test cases are also more

difficult to create (Haikala & Mikkonen 2011, 209).

In practice, the tester runs test with specified inputs and compares the output to

expected values (see figure 3). This characterizes the black-box testing as

functional, or specification-based method and it is also an effective method to

check consistency of specifications. (Burnstein 2003, 64.)

2.5.2 Structural (White-Box) testing

As opposite to black-box testing, in white-box (or glass-box) testing, the tester has

the knowledge of the software under test. In this strategy the tester aims to

determine if all internal components in the software are functioning properly. The

strategy has an exercising nature and it focuses to finding errors from the system

by executing its structural elements. (Burnstein 2003, 64.)

Structural testing strategy can be used as an extension of functional testing. It is

estimated that with good black-box testing you can exercise only up to 70% of the

code, so other techniques are required (Farrell-Vinay 2008, 209). White-Box

Inputs Outputs

Black-Box

Figure 3. Black-Box testing (Burnstein 2003, 65).

20(68)

testing offers more accurate approach to test the code. But because of more

thoroughness way to test, it will take time to exercise all statements or true/false

branches that occur in a module or function, and so this strategy is more effective

with smaller pieces of code. (Burnstein 2003, 64.)

Practically white-box testing is usually done using the logic of the system, but not

following the specifications. The tester is often the programmer, because he

already has the knowledge of the software and ability to create tests in given time.

In fact, it would take more than reasonable time to test completely even a trivial

program with this method, so some shortcuts and prioritization has to be used.

(Myers 2004, 14.) One good strategy could be a combination of both strategies i.e.

gray box testing.

2.5.3 Gray-Box testing

Gray (or Grey) box testing is a combination of functional (black) and structural

(white) testing strategies. As you can imagine, in gray-box testing the software

under test is (in) a gray box, you can see inside but not clearly. Therefore, the

tester has limited knowledge of the system but the test cases are designed as in

black box testing. (Softwaretestingfundamentals.)

With gray box testing we have the advantages of both functional and structural

testing and the test coverage can be increased. However, with this combination

comes also the disadvantages from both methods. For example, the code

coverage may suffer due the limited access to source code or binaries and the

identification of defects can be difficult. (Erenthika, 2012.)

Briefly the tests are done from the outside but with better information of the

system. This gives a tester with little programming knowledge an opportunity to

create the tests based on the code and then applied to the user interface elements

of the SUT. (SBP tech blog, 2012.) However, as the gray box strategy can be used

with any testing level, it is especially used in integration testing and to test Web

services (Softwaretestingclass).

21(68)

2.6 Testing levels

Haikala & Mikkonen (2011, 206-207), set three different testing levels for the

testing according to the V-model: Unit testing (module testing, unit testing),

integration testing and system testing. Burnstein (2003, 64), counts also an

acceptance test in some type as a one and continues that each of these levels has

their own goals and may contain one or more sublevels or phases. In a figure

below (figure 4), Burnstein clearly points out the cohesion of testing levels and

parts to be tested.

2.6.1 Unit (module) testing

Unit testing tests a smallest piece of testable code, which can be a single class or

a module with usually 100 - 1000 lines of code (Haikala & Mikkonen 2011, 207).

However, the definition of "unit" can vary. Pezze & Young (2008, 282), defines unit

as follow:

"In object-oriented programs, small sets of strongly related functions
or procedures are naturally identified with classes, which are generally
the smallest work units that can be systematically tested."

Unit test

Integration test

System test

Acceptance

test

Individual

components

Component

groups

System as a

whole

Individual

components

Figure 4. Levels of testing (Burnstein 203, 134).

22(68)

As they continue that a single method should not be automatically considered as a

unit, since they act by defining object state in a single class and the effect can be

often seen only after effecting with other methods. However, Burnstein (2003,

137), writes that the method and the class or object are usually defined as a unit

by researchers in object-oriented systems. Whereas in procedural languages unit

is perceived as a function or procedure.

The main objective for unit testing is to make sure that each individual unit in the

software under test is working as described in the specification Burnstein (2003,

138). Nevertheless, Myers (2004, 70), reminds that the goal is not to show that the

unit equates the specification, only that the unit does contradict it. He also

encourages to unit test by stating that focusing initially on smaller units larger

elements can be managed. Debugging as well becomes easier when found error

can be traced to particular unit, and that the testing can be done by testing several

modules simultaneously.

Traditionally unit testing is done after the code for the unit is written. But especially

with agile methods or eXtreme programming (an agile methodology highly

responding to customer requirements (Extremeprogramming, 2009).), unit testing

can be done using Test Driven-Development, known as TDD, where the tests are

written before writing the code (Farrell-Vinay 2008, 232).

Practically in test driven-development, the test is written first and then the

functional code is created to pass the test. TDD provides an active way to unit test

the code and offers an opportunity to find a bug when it has been created, but it

does not cover other testing. Also notable thing is that TDD is more of a

developing method than a testing method. (Agiledata, 2010.)

So who should write the unit tests, the developer or someone else? Does

developer who tests his own code create a quality gate or is it likely that he tries to

prove the function of the program and not to find the errors in it? Farrell-Vinay

(2008, 237), lists several reasons why the system test group should and should

not unit test. The bottom line is that a special group of testers does not offer a

significant benefit. The developers themselves can write the best tests for their

code with lower costs and without having to learn the code. However, it is

23(68)

important to have another programmer to review the tests written by the

developer.

2.6.2 Integration testing

Burnstein (2003, 152), sets two main objectives for Integration test. First, to find

errors in the interfaces of units. Second, to assemble units to subsystems and

subsystems to a full system. Also like in other testing levels, after completing this

level the system should be ready for next level of testing.

She continues that the tester should not think that he is doing the same tests that

have been already made in previous unit testing level. In integration testing, the

modules are tested together, not individually, and therefore problems on

communications and interfaces may occur.

Integration testing can be done in two ways: Bottom-up and Top-down. Bottom-up

integration starts with testing the lowest-modules that do not call other modules i.e.

bottom of the module hierarchy. These modules are integrated to upper level

modules until the top is reached. Benefit in Bottom-up method is that the lowest

modules are usually well tested, but the problem is that the complete system does

not exist until all modules are integrated. (Burnstein 2003, 152-155.)

Top-down integration goes vice versa. The integration is started at the top level

and starting the module below, all modules will be integrated and tested, until we

reach the bottom. The rule is that when integrating lower level modules the upper

caller module should have already been tested. This ensures the testing of upper

level modules at early stages, but makes it difficult to make changes to the upper

level modules if errors are found at low levels. (Burnstein 2003, 155-156.)

Often a combination (known as the sandwich or backbone strategy) of these two

approaches is used. This can be due to for example of reuse existing modules or

commercial off-the-shelf components, or need of develop prototypes for user

feedback. In practice, we start from both ends, and following the hierarchy

integrate towards the middle. (Pezze & Young 2008, 410.)

24(68)

Below is a simple structure chart of integration (Figure 5). Despite the direction

used, the modules are integrated together following the module hierarchy. In top-

down integration we start at the top, in bottom-up from the lowest module and in

sandwich from both ends. The integration and testing is done, until the entire

system has been integrated.

2.6.3 System testing

After integration testing we should have an entire system to be tested. During

system testing the system is compared to its requirements specification, functional

specification, and manual and other customer level documentation. In this level of

testing the testers should be independent of the development process, because

the developers often tend to test the parts that are known to be working and

therefore do not find so many bugs as a testers outside form the development.

(Haikala & Mikkonen 2011, 208-209.)

Farrell-Vinay (2008, 243), points out that again the goal is not to show that the

system meets its specification and working properly, the objective is to show it

does not. System testing requires a large amount of resources, even half of the

total testing resources, so it is obvious that this phase should be carefully planned.

Also professional testers are often recommended. Haikala & Mikkonen (2011,

208), lists following types of system tests, that can tell about the nature of this

testing level: Field testing, stress testing, reliability testing, installation testing and

M1

M2 M3 M4 M5

M10 M10 M9 M8 M7 M6

Figure 5. Module hierarchy (Burnstein 2003, 154).

25(68)

usability testing. They also include acceptance testing into system testing, but we

will discuss it in detail later.

Actually there are tens of different test types to be used, but they all have the

same goal: To test and exercise the software system as a whole and ensure the

user's experience (Guru99). In practice, some of the test suites used in integration

and unit testing can be used in system testing, but this should be due to using

system cases early, not reusing unit and integration test cases (Pezze & Young

2008, 418).

2.6.4 Acceptance testing

Pezze & Young (2008, 422), define acceptance testing as follow: Based on

statistical testing results or comparison to experience with previous products, the

objective of acceptance testing is to determine if the product is ready for release.

Therefore, this testing level is done from the user's point of view

Statistical testing requires test data from precise defined samples (what and how

much). Yet, the results of lower level tests (i.e. systematic tests) are not valid,

because their purpose is to focus finding errors, not produce statistically

representative data.

Acceptance testing can be done also with users. These variations are called alpha

& beta testing. Alpha testing often refers to a testing performed within the

developing organization. Whereas beta testing is done at user's sites. The benefit

and the downside from testing with users is to have users from each segment and

weigh the results with right value.

In industry, the acceptance testing often has a real value, when the both parties

agree that the service or product meet the requirements of the agreement. This

usually works as a trigger for partial or full payment. Errors found at this level can

be very harmful for the image and relationships of the companies and create large

costs. (Aiia 2010.)

26(68)

2.7 Isolation

As said earlier, unit testing tests a smallest piece of testable code. In order to test

just and only the unit, isolation is often needed. By isolating the unit from other

units, we ensure that we do not cross the unit boundaries and write integration

tests instead.

Carrie Prebble (2008), puts it in this way: How could you find bugs in your unit

under test if your test harness includes a library and connection via network? How

would you know if the unit fails or the connection fails? The answer - you cannot.

You can't find bugs from the unit unless you test only the unit.

This is all about of focusing one unit at a time, and removing all other

dependencies that might cause an error. Prebble (2008), writes also that an

isolated unit is controlled by the test. For example, if an unit creates a new helper

GregorianCalendar, then December dates cannot be tested if it's not December.

But with isolation we can create a test which creates the calendar and puts it to the

unit.

The isolation in practice is achieved by using test doubles to replace the real

depended-on components (DOC). The trick is that the test double does not have

to act precisely as the real DOC, only to provide the same API so the system

under test think it is the real one (Meszaros, 2009). This not only makes the testing

easier but saves time and effort compared to non-isolated tests.

However, the main goal is to make impossible tests possible. Meszaros (2009),

compares test double to a stunt actor, hired by film makers to act in risky scenes.

Requirements for stunt double are depending on the scene. He / she may

resemble only a bit the real one or may not be able to act at all, but what matter is

that he is able to do all the dirty work.

The test double should be used to cover as little as possible. They should not

replace the parts of the system under test that we are currently testing, because

we want to test the real software, not fake. We should keep in mind that we can

create different doubles for different tests, even with the same DOC. (Meszaros,

2009.)

27(68)

There are several different types of test doubles, usually depending on the

isolation framework used. The types used with common frameworks are

represented next chapter in more detail. Meszaros (2009), characterizes most

used doubles as in the figure below (figure 6), where from left to the right the

object gets more intelligent and advanced. In brief: The dummy object can be as

simple as null object, whereas a fake object can contain the same (but simplified)

functionality as the real DOC.

Figure 6. Test doubles (Meszaros 2009).

The type we should use depends on the functionality we want to mimic. Each type

has their own ups and downs. Unconfigurable test doubles like dummy or fake

objects are used, when we don't need pre-configured responses or expectations

(Meszaros, 2009).

Hard-coded test doubles instead are used in single test cases where we tell the

double what to return and expect (i.e. test stub, test spy & mock object). These

doubles are usually handmade for very simple or very specific behavior and

therefore need more effort. (Meszaros, 2009.)

Configurable test doubles are used when we want to use the test double in several

tests, or reduce test code duplication. In a setup phase the test double's interface

is configured to hold appropriate values during the runtime. When the methods on

the test double are called by the system, the double returns the values of

predefined variables. (Meszaros, 2009.)

28(68)

3 ISOLATION FRAMEWORKS

In this chapter popular isolation frameworks for .Net and are introduced. Four

frameworks: MS Moles, MS Fakes, Moq and FakeItEasy are taken into closer look

and example tests are written and ran using them. All four are used with C#

programming language on Visual Studio development environment. Moles works

on 2010 version and Fakes on 2012. Moq and FakeItEasy examples are written

with VS 2010, but they can be used with both versions.

3.1 Isolation frameworks used today

There are many frameworks that can handle isolation in .Net environment. Some

have more powerful test objects than others, some are new or based on old

codebase. Two polls (figure 7 & figure 8) below can give us a hint about the usage

of mostly used isolation frameworks of today.

Figure 7. Isolation frameworks used in .Net 2010 (Osherove 2010).

0,00 % 10,00 % 20,00 % 30,00 % 40,00 % 50,00 %

Moq

RhinoMocks

Hand Rolled Mocks and Stubs

Typemock Isolator

None

Moles

JustMock

Nsubstitute

Other

Nmock2

Nmock

FakeItEasy

2010 Poll: Which Isolation Framework
do you use in .NET?

Votes: 1409

29(68)

Figure 8. Isolation frameworks used in .Net 2012 (Osherove 2012).

3.2 Mostly used isolation frameworks

Moq is widely used open source isolation framework and has gained users

especially from older Rhino Mocks due their similarities and same code base

(CastleProject 2011).

Moles was a project of Microsoft Research but its development has ended. Moles

has been replaced by its successor Fakes which is integrated in Visual Studio

2012 Ultimate version (MSDN 2013), and is also available for Premium version

with update 2 (Harry, 2013). Yet, Moles is still in use because it is free and working

with 2008 and 2010 versions (Microsoft research 2010a).

Typemock Isolator is a commercial isolation framework and has pricing starting

from 799 $. Today there is a free edition of the program but it comes with limited

functionality (Typemock, 2013). Typemock Isolator could be a powerful tool, but

because it is not free and has quite small amount of users, we do not look into it in

more detail.

0,00 % 10,00 % 20,00 % 30,00 % 40,00 % 50,00 %

Moq

Rhino Mocks

None. Just Hand Written

FakeItEasy

Nsubstitute

Typemock Isolator

None. Not sure what those things are …

Moles

MS Fakes/Moles (Built into VS 11)

JustMock

Other

2012 Poll: Which Isolation framework
do you use if any?

Votes: 959

30(68)

FakeItEasy is a newcomer and it is basically a mix of Moq and Rhino Mocks. This

open source framework has only one type of fake object (called fake). (FakeItEasy

2012.)

NSubstitute is open source framework that aims at the same target as

FakeItEasy with easy to use and start with. Uses "substitute" to cover common

test doubles. (NSbustitute.)

Handwitten Mocks. Some users still use handwritten types in order to break the

dependencies and isolate their code. This method requires more time and good

knowledge. Handwritten types are also hard to make compatible with other types

and may be difficult to use by others than the creator. (Meszaros, 2009.)

3.3 Moles framework

Moles is an isolation framework for .Net developed with test generation tool called

Pex by Microsoft Research. Moles provides two test objects (stubs and moles) to

detour any .Net method. It can be used with Visual Studio 2008 & 2010 and also

with other testing frameworks like NUnit. (Microsoft research, 2010b.) It is

important to notice that the Moles Framework is no longer developed. Microsoft is

going to replace Moles with Fakes and do not offer support for Moles anymore.

(MSDN 2013.)

Fakes framework has some changes to Moles and is still under development.

Main differences between Moles in Visual Studio 2010 and Fakes in Visual Studio

2012 Release Candidate version are listed in chapter 3.4.1.

The Moles framework has two different kinds of isolation techniques (i.e. test

doubles) stub types and mole types. These components provide different ways to

detour objects in various situations in unit testing. Basically the differences

between stubs and moles can be determined as following.

• Stub types should be used to detour virtual methods and interfaces.

• Mole types should be used for a code that you cannot detour with

 stubs. For example sealed classes or static, non-virtual methods.

31(68)

Microsoft recommends users to prefer stubs when possible. Stubs are lighter than

mole types and have less performance issues with runtime rewriting (Microsoft

research, 2010a).

3.3.1 Installing Moles framework in Microsoft Visual Studio 2010

In order to Install Moles framework in Microsoft Visual Studio 2010 do following.

1. Select Tools / Extension Manager... (figure 9)

Figure 9. Tools bar and Extension Manager.

2. Select "Click here to go online and find extensions"

3. Type “Moles” in search bar on top right and hit enter

32(68)

Figure 10. Extension Manager.

4. Select right version depending on your system (x86/x64) and click

download (figure 10).

5. A file download will pop up. Download and run the installer.

3.3.2 Mole code example

The example is a simple library project which has two class-files LibraryEvent.cs

and SqlLayer.cs. In LibraryEvent.cs (figure 11) the program first defines books,

user and events. At the bottom AddEventBook() tries to connect to SQL-database

via SqlLayer.cs (figure 12) to save the event. The trick is that there is no Sql-

database so in order to run unit tests we have to use an isolation framework to

fake the SaveEvent().

33(68)

Figure 11. Mole example Library event class.

34(68)

Figure 12. Mole example Sql layer class.

Before we can write the test, we have to add a reference to the test project and

add a moles framework assembly to the reference. These operations will create

and prepare the fake types of our actual code to be used in our isolated unit tests.

1. Open the example project in Visual Studio

2. Add new test project (File > Add > New Project… > Visual C# / Test)

3. Now we got an empty test project and our Solution Explorer should

look like in figure 13.

35(68)

Figure 13. Solution explorer after creating a unit test project.

4. Test project comes with solution items, project properties, references

and a class file where the actual test script will be written. Add a

reference (figure 14) to our actual project (MolesIsolationExample) by

right clicking on TestProject1 / References > Add Reference… >

Projects (tab) > MolesIsolationExample > OK

Figure 14. Adding Reference to the project.

5. Add Moles assembly to the reference we just added

(“MolesIsolationExample”). Right click on the reference > Add Moles

Assembly (figure 15).

36(68)

Figure 15. Adding Moles Assembly.

6. Adding Moles Assembly adds few new references and xml-file

“ProjectName.moles” to our test project. After building the program our

Solution Explorer should look like below in figure 16. (Note that it may

need a refresh to show added files).

Figure 16. Solution Explorer after adding the assembly.

Figure 17. Moles example .moles xml-file.

37(68)

Moles framework uses the .moles file (figure 17) to generate the code for stub

types and mole types. The xml-file points the assembly that you want to mole.

Figure 18. Fake types in Class View.

7. Notice items under TestProject1 > Project References >

MolesIsolationExample.Moles > MSqlLayer (figure 18). We can see

that after adding the reference and moles assembly, fake types are

created under “ProjectName.moles”. These fake types will be used to

detour the real ones in our isolated unit tests.

Moles framework uses prefixes to mark files. For example in figure 18 we can see

that Moles has created Mole type files starting with “M” and Stub type files starting

with “S”. In our example project we are going to use a fake

“MSqlLayer.SaveEventInt32Int32()” to detour the real SqlLayer.SaveEvent().

Now we have prepared our code to be used in isolated unit tests. In order to write

the test, open UnitTest1.cs under the TestProject. This is where the actual test

code will be written. An Example test is below in figure 19.

38(68)

Figure 19. Mole example unit test class.

To run the test, select Test > Run > All Tests in Solution (figure 20), or right click

on the code and select Run Tests.

39(68)

Figure 20. Run All Tests in Solution.

After successful testing you should get following (figure 21) test results.

Figure 21. Mole example Test Results.

3.3.3 Stub coding example

Stub type is used to generate fake stub implementations of virtual methods and

interfaces. It is recommended to prefer stubs to moles. The example project

(figures 22, 23 and 24) is same library project we used in the previous mole

example. The difference is that we use a simple interface called

SaveEventInterface to call saveEvent() in SqlLayer.cs to show how to use stub

type to fake an interface. Changes to mole example are underlined.

40(68)

Figure 22. Stub example Sql Layer class.

41(68)

Figure 23. Stub example Library event class.

42(68)

Figure 24. Stub example Save event class.

Same way as in the Mole example we need to add the project reference to our test

project and add the moles assembly to that reference. This creates the fake types

of our real objects. This is done as follow:

1. Open the stub example project.

2. Add new test project (File > Add > New Project… > Visual C# / Test)

3. Add a reference to our actual project (StubIsolationExample). Right

click on TestProject1 / References > Add Reference… > Projects (tab)

> StubIsolationExample > OK

4. Add Moles assembly to the reference you just added

(“StubIsolationExample”). Right click on the reference > Add Moles

Assembly.

5. Adding Moles Assembly adds few new references and xml-file

“ProjectName.moles” to your test project. After building the program

your Solution Explorer should now look as in figure 25. (Note that it

may need a refresh to show added files)

43(68)

Figure 25. Solution Explorer after adding moles assembly and reference.

The test can now be written into UnitTest1.cs under the TestProject1. An example

test where Moles is used to mimic the saveinterface is in followed in figure 26.

44(68)

Figure 26. Stub example unit test class.

3.4 Fakes Framework

Fakes framework (also developed by Microsoft Research) is the next generation of

Moles framework and has replaced it. These two frameworks are very alike,

except for a few functions and naming policy. For example Fakes uses name Shim

instead of Mole.

45(68)

Yet, the Fakes framework is only available built in Visual Studio 2012 Ultimate

version due to its dependency on IntelliTrace-component (MSDN 2013). This

decision to not include the full unit test tools in other Visual Studio 2012 versions

was noted by many developers and also caused astonishment (Visual Studio User

Voice, 2013). Eventually Microsoft brought the Fakes also into Visual Studio 2012

Premium in VS212.2 update (Harry, 2013), but other versions remained without it.

3.4.1 Main differences between Fakes and Moles frameworks

The following table 1. contains comparison between Fakes and Moles frameworks

in two different Visual Studio versions. Many differences are related to naming

policies, but also other features have been changed. By knowing the differences,

moving from Moles to Fakes can be made easier and the use of Fakes more

effective.

46(68)

Table 1. Main differences between Fakes and Moles frameworks.

Target Moles in Visual Studio 2010 Fakes in Visual Studio 2012

RC

HostType HostType(“Moles”) No host type needed. Using

ShimContext instead of

MolesContext. See the fakes

example.

Using

directive

using

Microsoft.Moles.Framework;

using

Microsoft.QualityTools.

Testing.Fakes;

Isolation

types

.Moles .Fakes

.xml

Assembly

filename

.moles .fakes

Mole / Shim

files

Mole (files marked with prefix “M”) Shim (files marked with prefix

“Shim”)

Stub Stub (prefix “S”) Stub (prefix “Stub”)

Static

constructor

Can be erased through assembly

attribute. “[assembly:

MolesEraseStaticConstructor(type

of(MyClass))]”

Allowed

Finalizers Can be erased through assembly

attribute: “[assembly:

MolesEraseFinalizer(typeof(MyCla

ss))]”

Not supported

CPU-profiler Can be set between x.86, x.64 or

AnyCPU by assembly attribute:

“[assembly:

MolesAssemblySettings(Bitness =

MolesBitness.x86)]”

Handled by IntelliTrace

component.

47(68)

3.4.2 Fakes example

In this example we are going to do unit tests for the same StubIsolationExample

we used with Moles Framework. Instead of the Moles now we are going to use

Fakes framework with Visual Studio 2012 RC to isolate the dependencies and to

run the test. Differences between Fakes and Moles examples are mainly cosmetic

and related to the user interface. The differences can be seen in the screenshots

in appendix 1. The example test for the Fakes framework is shown in figure 27.

Preparation

1. Open Visual Studio.

2. Open the stub example project.

3. Add a new Unit Test Project (File > Add > New Project… > Visual C# /

Test)

4. Add a reference to our actual project (StubIsolationExample). Right

click on TestProject1 / References > Add Reference… > Projects (tab)

> Select StubIsolationExample > OK

5. Add Fakes assembly to the reference you just added

(“StubIsolationExample”). Right click on the reference > Add Fakes

Assembly.

48(68)

Figure 27. Fakes example unit test class.

3.5 Moq Framework

Moq is a lightweight mocking library for .Net. It is widely used, open source and

easy to set up (Moq). Moq derives from the same code base than the older but

still used Rhino Mocks (CastleProject 2011). The Moq framework can be

downloaded from http://code.google.com/p/moq/downloads/list and attached to the

49(68)

project as instructed in the next chapter or it can be downloaded and installed by

using the NuGet Package manager with command: Install-Package Moq.

Instructions for NuGet is found in chapter 3.6.1 FakeItEasy installation via Nuget.

(Nuget.org, 2011.) Table 2 compares the features between Moq and Moles. Moq

does the basic isolation, but cannot be used to isolate static methods or sealed

classed.

Table 2. Moq features compared to Moles features.

Isolation feature Moles Moq

Classes Yes Yes

Interfaces Yes Yes

Methods Yes Yes

Static methods Yes No

Sealed classes Yes No

The example we use with Moq is the same library project we used with

StubIsolationExample with Moles framework. Preparation is done as following.

1. Save Moq framework to your computer

2. Open the StubIsolationExample project in Visual Studio.

3. Add new test project (File > Add > New Project… > Visual C# / Test)

4. Add a reference to our actual project (StubIsolationExample). Right

click on TestProject1 / References > Add Reference… > Projects (tab)

> StubIsolationExample > OK

5. Add Moq.dll reference to the test project. Right click on TestProject1 /

References > Add Reference > Browse > Search and select Moq.dll

and click OK.

An example unit test class for StubIsolationExample with Moq is below (figure 28).

In this example a mock is created from the SaveEventInterface and then used like

50(68)

the real interface to save the event and return the eventBookId.

Figure 28. MOQ example unit test class.

3.6 FakeItEasy

FakeItEasy is a free software isolation framework made under MIT licence

(FakeItEasy, 2013). It is, at least by the creator, a mix of Rhino Mocks and Moq

51(68)

frameworks. Compared to Moles and Fakes, FakeItEasy has the same features as

Moq listed in table 2 in chapter 3.5.

As mentioned before, FakeItEasy has only one kind of fake object type called

"fake" and it makes no difference between mocking and stubbing (Hägne 2012).

Yet, FakeItEasy has also dummy test double type that can be used to create

dummy instances where values are not important to the test (Hägne 2011).

"I used Rhino Mocks before and I quite liked it, especially after the
AAA-syntax was introduced I did like the fluent API of Moq better
though. What I didn't like with Moq was the "mock object" where you
have to use mock.Object everywhere, I like the Rhino-approach with
"natural" mocks better. Every instance looks and feels like a normal
instance of the faked type.

I wanted the best of both worlds and also I wanted to see what I could
do with the syntax when I had absolutely free hands. Personally I
(obviously) think I created something that is a good mix with the best
from both world, but that's quite easy when you're standing on the
shoulders of giants". (Hägne 2012.)

3.6.1 FakeItEasy installation via NuGet

FakeItEasy versions dated later than August 2011, requires installing NuGet

Package Manager to Visual Studio (older versions can be downloaded and

attached to the project like the Moq from

http://code.google.com/p/fakeiteasy/downloads/list). The newer versions of

FakeItEasy are installed and added to the project via the Nuget. (Nuget.org, 2013.)

This operation is fairly easy and done as follow:

1. Download and install Nuget Package Manager from:

http://visualstudiogallery.msdn.microsoft.com/27077b70-9dad-4c64-

adcf-c7cf6bc9970c

2. Open the StubIsolationExample project in Visual Studio.

3. Add new test project (File > Add > New Project… > Visual C# / Test)

4. Open Nuget Package Manager Console from Tools > Library Package

Manager > Package Manager Console (Figure 29).

http://code.google.com/p/fakeiteasy/downloads/list
http://visualstudiogallery.msdn.microsoft.com/27077b70-9dad-4c64-adcf-c7cf6bc9970c
http://visualstudiogallery.msdn.microsoft.com/27077b70-9dad-4c64-adcf-c7cf6bc9970c

52(68)

Figure 29. Nuget Package Manager Console.

5. Check the latest version of FakeItEasy from

https://www.nuget.org/packages/FakeItEasy/. For example the version

1.9.1 was newest stable version in March 6, 2013.

6. Select the Default project where you want to install FakeItEasy from

the Package Manager Console and type following command: Install-

Package FakeItEasy -Version 1.9.1, using the version you want to

install and hit enter (Figure 30).

Figure 30. Installing FakeItEasy package.

7. If the FakeItEasy was successfully installed, you should now have the

FakeItEasy.dll reference in the project references.

8. Add a reference to our test project (StubIsolationExample). Right click

on TestProject1 / References > Add Reference… > Projects (tab) >

StubIsolationExample > OK.

9. Add using definition "using FakeItEasy;" on the top of your test class.

https://www.nuget.org/packages/FakeItEasy/

53(68)

3.6.2 FakeItEasy example

An example unit test class for StubIsolationExample with FakeItEasy is below

(figure 31). Using FakeItEasy a fake is created from SaveEventInterface and used

like the real interface and the return value is set for EventBookId.

Figure 31. FakeItEasy unit test class.

54(68)

4 RESULTS

All Isolation frameworks with examples in this thesis are useful and workable and

the installation or attachment to the actual project is relatively easy and basic use

is simple. At the beginning of studying isolation in unit testing, Moles framework

was mainly used, and it seemed to be effective and after learning the basic calls,

also quite straightforward. Moles also had good documentation, support and

implementation (due to the support of big commercial firm Microsoft), remarkably

better than open source frameworks.

After discovering the change from Moles to Fakes, studying Fakes started which

was available preinstalled in Visual Studio 2012 RC. Yet later it became known

that Fakes is also a dead end, because it will be available only in Visual Studio

2012 Ultimate version, which will not be in the use of an ordinary coder due to its

expensive license. This made it clear that the only remaining and acceptable

choice would be an open source framework. The chance to update the Fakes into

the Premium version did not have significance to the results.

Moq is a handy tool and very easy to set up. However, during the unit testing for

the ABB's new component a situation was often faced where the Moq's mock did

not act as easily as expected and in the way the unit to be tested should have

required. After several problem cases like this FakeItEasy started to gain attention.

FakeItEasy is as easy to install as Moq, and requires even less knowledge about

isolation frameworks, stubs, mocks, etc. This is because there is only one test

double type built in. It is true that with Moq you can easily set up mocks you want

to setup to do whatever you need, especially with objects with read only values,

but with FakeItEasy you simply work faster by writing fakes for dependencies you

do not want to setup so precisely.

By this thesis the recommendation is to use both open source isolation

frameworks Moq and FakeItEasy in unit testing, because together they complete

each other and make it easier to write and run unit tests. Starting with FakeItEasy

would be a good idea and to checking if it fulfills the needs of isolation and if it

does not, at least it gives the user the basics of isolation in a simple form. Not later

55(68)

than then the developer is ready to use Moq or any other isolation framework, but

at least Moq is a good way to continue.

A notable thing with isolation frameworks is that they develop, get better and

advance rapidly and by the time you have learned to use one, there will be another

new feature or even complete framework available. Completely different matter is

when we will have an automated unit testing tool, that could be used in production.

Still, the fact is that until then we do not have the choice to learn to do the testing

ourselves.

56(68)

5 SUMMARY

The basics of isolated unit tests in .Net environment were introduced in this thesis.

In the beginning the importance of testing and the reasons why we do not test

were discussed and the basic testing strategies and testing levels were connected

to the common software development methods. After explaining how isolation is

achieved in theory, we moved into isolation frameworks, where with coding

examples the isolation was put into practice.

As a result we got information about testing as a part of software development and

knowledge of isolated unit tests using these tools. This information is helpful for

everyone interested in and related to software development and especially testing.

This thesis taught a lot of theory and practice from the software development to

actual unit testing code written by professional software developers.

The subject was challenging, because there is insufficient or incoherent

information about the isolation available. There is wide range of literature and

studies made about testing in general, but isolation seems to be quite anew field.

The terminology of isolation techniques, for example, can vary and as one talks

about a stub, he can actually mean a mock or something else. The situation will

change while the techniques develop and become more common, but at the

moment this thesis is a good way to get to know how isolation can be done in unit

testing.

57(68)

BIBLIOGRAPHY

ABB 2012a. [Online document]. [Ref. 15. November 2012]. ABB Ltd. Available at:
http://new.abb.com/about/abb-in-brief/history

ABB 2012b. [Online document]. [Ref. 15. November 2012]. ABB Ltd. Available at:
http://www.abb.fi/cawp/fiabb251/b23b1eb7a45bc7b3c2256b200045bd29.aspx

ABB 2012c. [Online document]. [Ref. 15. November 2012]. ABB Ltd. Available at:
http://www.abb.fi/cawp/fiabb251/0b5e2755355c156dc12579bb003910a4.aspx

Agiledata, 2010.Introduction to Test Driven Development (TDD). [Web page]. [Ref
8. March 2013]. Available at: http://www.agiledata.org/essays/tdd.html

Aiia 2010. Acceptance testing. [Online publication]. Australian information industry
association. [Ref 29. January 2013]. Available at:
http://www.aiia.biz/legal/consulting/acceptance-testing

Almeida, G. 2007. Scrum, Test and Testers - Where are the relation?. [Online
publication]. [Ref 15. March 2013]. Available at:
http://www.gerson.se/Docs/ScrumTest_and_Testers.pdf

Burnstein, I. 2003. Practical software testing. New York: Springer-Verlag.

CastleProject. [Online document]. [Ref. 15. November 2012]. Available
at:http://docs.castleproject.org/Default.aspx?Page=DynamicProxy&NS=Tools&
AspxAutoDetectCookieSupport=1

Cohn, M. 2012. What is Scrum Methodology? .[Online publication]. [Ref 1. March
2013]. Available at:http://www.mountaingoatsoftware.com/topics/scrum

Erenthika, D. 2012. Gray box testing. [Online document]. [Ref 27. February 2013].
Available at: http://www.slideshare.net/dasuner/gray-box-testing

Extremeprogramming, 2009. [Online document]. [Ref 8. March 2013]. Available at:
http://www.extremeprogramming.org/

FakeItEasy, 2012. [Online document]. [Ref. 15. November 2012]. Available at:
https://github.com/FakeItEasy/FakeItEasy/wiki/Why-was-FakeItEasy-
created%3F

FakeItEasy, 2013. [Online document]. Licence [Ref 20. March 2013]. Available at:
https://github.com/FakeItEasy/FakeItEasy/blob/master/License.txt

http://new.abb.com/about/abb-in-brief/history
http://www.abb.fi/cawp/fiabb251/b23b1eb7a45bc7b3c2256b200045bd29.aspx
http://www.abb.fi/cawp/fiabb251/0b5e2755355c156dc12579bb003910a4.aspx
http://www.agiledata.org/essays/tdd.html
http://www.aiia.biz/legal/consulting/acceptance-testing
http://www.gerson.se/Docs/ScrumTest_and_Testers.pdf
http://docs.castleproject.org/Default.aspx?Page=DynamicProxy&NS=Tools&AspxAutoDetectCookieSupport=1
http://docs.castleproject.org/Default.aspx?Page=DynamicProxy&NS=Tools&AspxAutoDetectCookieSupport=1
http://www.mountaingoatsoftware.com/topics/scrum
http://www.slideshare.net/dasuner/gray-box-testing
http://www.extremeprogramming.org/
https://github.com/FakeItEasy/FakeItEasy/wiki/Why-was-FakeItEasy-created%3F
https://github.com/FakeItEasy/FakeItEasy/wiki/Why-was-FakeItEasy-created%3F
https://github.com/FakeItEasy/FakeItEasy/blob/master/License.txt

58(68)

Farrell-Vinay, P. 2008. Manage Software testing. New York: Auerbach
Publications.

Ghahrai, A. 2008.V Model. [Online document]. TestingExcellence.com. [Ref. 17.
December 2012]. Available at: http://www.testingexcellence.com/v-model/

Haikala, I. & Mikkonen, T. 2011. Ohjelmistotuotannon käytännöt. Helsinki:
Talentum.

Harry, B. 2013. Announcing Visual Studio 2012 Update 2 (VS2012.2). [Online
document]. [Ref. 15. March 2013]. Available at:
http://blogs.msdn.com/b/bharry/archive/2013/01/30/announcing-visual-studio-
2012-update-2-vs2012-2.aspx

Hägne, P. 2012. [Online article]. [Ref. 5 December 2012]. Available at:
https://github.com/FakeItEasy/FakeItEasy/wiki/Why-was-FakeItEasy-
created%3F

Hägne, P. 2011. [Online document]. [Ref. 7. March 2013]. Available at:
http://stackoverflow.com/questions/7801212/what-is-a-dummy-used-for-in-
fakeiteasy/7808294#7808294

Lehto, T. 2013. "Ketterä testaus keventää: Sulautettu tietotekniikka korvaa
vauhdilla tuotannon analogisia järjestelmiä. Tämä vaatii luotettavaa
ohjelmistotestausta". 3T: Tuotanto, Talous, Työelämä 5 (2013), 12-13.

Liversidge, E. 2005. The Death of the V-model. [Online document]. [Ref. 17.
December 2012]. Available at: http://www.harmonicss.co.uk/index.php/hss-
downloads/doc_download/12-death-of-the-v-model

Meszaros, G. 2009. Test Double. [Web site]. [Ref 1. February 2013]. Available at:
http://xunitpatterns.com/Test%20Double.html

Microsoft 2013. Capabilities comparison of Visual Studio versions. [Online
document]. Microsoft Co. [Ref. 21. January 2013]. Available at:
http://www.microsoft.com/visualstudio/eng/products/compare

Microsoft research 2010a. Unit Testing with Microsoft Moles. [Online publication].
Microsoft Co. [Ref. 15. October 2012]. Available at:
http://research.microsoft.com/en-us/projects/pex/molestutorial.docx

Microsoft research 2010b. Getting started with Microsoft Pex and Moles. [Online
publication]. Microsoft Co. [Ref. 6. February 2013]. Available at:
http://research.microsoft.com/en-us/projects/pex/getstarted.pdf

Moq [Online document]. [Ref. 15. November 2012]. Available at:
http://code.google.com/p/moq/

http://www.testingexcellence.com/v-model/
http://blogs.msdn.com/b/bharry/archive/2013/01/30/announcing-visual-studio-2012-update-2-vs2012-2.aspx
http://blogs.msdn.com/b/bharry/archive/2013/01/30/announcing-visual-studio-2012-update-2-vs2012-2.aspx
https://github.com/FakeItEasy/FakeItEasy/wiki/Why-was-FakeItEasy-created%3F
https://github.com/FakeItEasy/FakeItEasy/wiki/Why-was-FakeItEasy-created%3F
http://stackoverflow.com/questions/7801212/what-is-a-dummy-used-for-in-fakeiteasy/7808294%237808294
http://stackoverflow.com/questions/7801212/what-is-a-dummy-used-for-in-fakeiteasy/7808294%237808294
http://www.harmonicss.co.uk/index.php/hss-downloads/doc_download/12-death-of-the-v-model
http://www.harmonicss.co.uk/index.php/hss-downloads/doc_download/12-death-of-the-v-model
http://xunitpatterns.com/Test%20Double.html
http://www.microsoft.com/visualstudio/eng/products/compare
http://research.microsoft.com/en-us/projects/pex/molestutorial.docx
http://research.microsoft.com/en-us/projects/pex/getstarted.pdf
http://code.google.com/p/moq/

59(68)

MSDN. Overview of the .NET Framework. [Online document]. Microsoft Co.[Ref
18. February .2013]. Available at: http://msdn.microsoft.com/en-
us/library/zw4w595w.aspx

MSDN, 2012a. Visual C#. [Online document]. Microsoft Co. [Ref 12. March 2013].
Available at: http://msdn.microsoft.com/en-us/library/kx37x362.aspx

MSDN, 2012b. Isolating Code under Test with Microsoft Fakes. [Online
document]. Microsoft Co. [Ref. 26. March 2013]. Available at:
http://msdn.microsoft.com/en-us/library/hh549175.aspx#shims

Myers, G. J. 2004. The Art of Software Testing.Second Edition. Hoboken: Wiley.

NIST 2002. [Online article]. [Ref. 5. December 2012]. Available at:
http://www.abeacha.com/NIST_press_release_bugs_cost.htm

NSubstitute. [Web site]. [Ref 20. March 2013]. Available at:
http://nsubstitute.github.com/

Nuget.org, 2011. Moq. [Web page]. [Ref 5. March 2013]. Available at:
http://nuget.org/packages/moq

Nuget.org, 2013. Fake It Easy!. [Web page]. [Ref 5. March 2013]. Available at:
https://www.nuget.org/packages/FakeItEasy

Osherove, R. 2009. The Art of Unit Testing.Greenwich: Manning Publications Co.

Osherove, R. 2010. 2010 Poll: Which isolation framework do you use in .NET?.
[Online publication]. [Ref 5. February 2013]. Available at:
http://osherove.com/blog/2010/9/10/2010-poll-which-isolation-framework-do-
you-use-in-net.html

Osherove, R. 2012. 2012 Poll: Which isolation framework do you use in .NET?.
[Online publication]. [Ref 5. February 2013]. Available at:
http://osherove.com/blog/2012/5/4/annual-poll-which-isolation-framework-do-
you-use-if-any.html

Pezzè, M. & Young, M. 2008. Software testing and analysis: Process, Principles,
and techniques.Hoboken: Wiley.

Poimala, S. & Tolvanen, P. 2011. Ketteryys haltuun. [Online publication]. [Ref 18.
March 2013]. Available at:http://www.meteoriitti.com/fi-
FI/tiedotteet/ajankohtaista/ketteryys-haltuun-ketteran-kehityksen-yleiset-
periaatteet

http://msdn.microsoft.com/en-us/library/zw4w595w.aspx
http://msdn.microsoft.com/en-us/library/zw4w595w.aspx
http://msdn.microsoft.com/en-us/library/kx37x362.aspx
http://msdn.microsoft.com/en-us/library/hh549175.aspx%23shims
http://www.abeacha.com/NIST_press_release_bugs_cost.htm
http://nsubstitute.github.com/
http://nuget.org/packages/moq
https://www.nuget.org/packages/FakeItEasy
http://osherove.com/blog/2010/9/10/2010-poll-which-isolation-framework-do-you-use-in-net.html
http://osherove.com/blog/2010/9/10/2010-poll-which-isolation-framework-do-you-use-in-net.html
http://osherove.com/blog/2012/5/4/annual-poll-which-isolation-framework-do-you-use-if-any.html
http://osherove.com/blog/2012/5/4/annual-poll-which-isolation-framework-do-you-use-if-any.html
http://www.meteoriitti.com/fi-FI/tiedotteet/ajankohtaista/ketteryys-haltuun-ketteran-kehityksen-yleiset-periaatteet
http://www.meteoriitti.com/fi-FI/tiedotteet/ajankohtaista/ketteryys-haltuun-ketteran-kehityksen-yleiset-periaatteet
http://www.meteoriitti.com/fi-FI/tiedotteet/ajankohtaista/ketteryys-haltuun-ketteran-kehityksen-yleiset-periaatteet

60(68)

Prebble, C. 2008. What It Means to Mock: Isolating Units for Testing. [Online
Document]. [Ref 29. January 2013]. Available at:
http://www.javaranch.com/journal/2008/04/what-it-means-to-mock.html

SBP tech blog, 2012. Gray-box: the bridge between black-box and white-box
testing [Online document]. [Ref. 16. January 2013]. Available at:
http://www.sbp-romania.com/Blog/2012/05/14/gray-box-the-bridge-between-
black-box-and-white-box-testing.aspx

Softwaretestingclass. Gray box testing. [Online document]. [Ref. 16. January
2013]. Available at: http://www.softwaretestingclass.com/gray-box-testing/

Softwaretestingfundamentals, 2010. Gray box testing. [Online document]. [Ref. 16.
January 2013]. Available at: http://softwaretestingfundamentals.com/gray-box-
testing/

System-testing. [Online document]. System-testing. [Ref 28. January 2013].
Available at: http://www.guru99.com/system-testing.html

Tuomikoski, J. 2009. Testing in Scrum. [Online document]. [Ref 1. March 2013].
Available at: http://www.tol.oulu.fi/users/ilkka.tervonen/Ote_vierailu_09.pdf

Typemock 2012. Isolator v7 pricing.[Web page].[Ref. 11 December 2012].
Available at: http://www.typemock.com/pricing

University of Cambridge, 2013. "Research by Cambridge MBAs for tech firm Undo
finds software bugs cost the industry $316 billion a year". [Online document].
[Ref 27. February 2013]. Available at:
https://www.jbs.cam.ac.uk/media/2013/research-by-cambridge-mbas-for-tech-
firm-undo-finds-software-bugs-cost-the-industry-316-billion-a-year/

Visual Studio User Voice, 2013. [Online document]. [Ref. 15. March 2013].
Available at: http://visualstudio.uservoice.com/forums/121579-visual-
studio/suggestions/2919309-provide-microsoft-fakes-with-all-visual-studio-edi

Waterfall-model 2012 [Online document]. [Ref. 11. December 2012]. Available at:
http://www.waterfall-model.com/v-model-waterfall-model/

http://www.javaranch.com/journal/2008/04/what-it-means-to-mock.html
http://www.sbp-romania.com/Blog/2012/05/14/gray-box-the-bridge-between-black-box-and-white-box-testing.aspx
http://www.sbp-romania.com/Blog/2012/05/14/gray-box-the-bridge-between-black-box-and-white-box-testing.aspx
http://www.softwaretestingclass.com/gray-box-testing/
http://softwaretestingfundamentals.com/gray-box-testing/
http://softwaretestingfundamentals.com/gray-box-testing/
http://www.guru99.com/system-testing.html
http://www.tol.oulu.fi/users/ilkka.tervonen/Ote_vierailu_09.pdf
http://www.typemock.com/pricing
https://www.jbs.cam.ac.uk/media/2013/research-by-cambridge-mbas-for-tech-firm-undo-finds-software-bugs-cost-the-industry-316-billion-a-year/
https://www.jbs.cam.ac.uk/media/2013/research-by-cambridge-mbas-for-tech-firm-undo-finds-software-bugs-cost-the-industry-316-billion-a-year/
http://visualstudio.uservoice.com/forums/121579-visual-studio/suggestions/2919309-provide-microsoft-fakes-with-all-visual-studio-edi
http://visualstudio.uservoice.com/forums/121579-visual-studio/suggestions/2919309-provide-microsoft-fakes-with-all-visual-studio-edi
http://www.waterfall-model.com/v-model-waterfall-model/

61(68)

APPENDICES

APPENDIX 1. Differences with Fakes and Moles examples

Main view

Figure 32. Main view in Visual Studio 2010.

Figure 33. Main view in Visual Studio 2012 RC.

62(68)

Adding unit test project

Figure 34. Adding unit test project in Visual Studio 2010.

Figure 35. Adding unit test project in Visual Studio 2012 RC.

63(68)

Adding reference

Figure 36. Adding reference in Visual Studio 2010.

Figure 37. Adding reference in Visual Studio 2012 RC.

64(68)

Run the tests

Figure 38. Run test in Visual Studio 2010.

Figure 39. Run test in Visual Studio 2012 RC.

65(68)

Test results

Figure 40. Test results in Visual Studio 2010.

Figure 41. Test results in Visual Studio 2012 RC.

66(68)

Adding Assembly

Figure 42. Adding assembly in Visual Studio 2010.

Figure 43. Adding assembly in Visual Studio 2012 RC.

67(68)

Class View

Figure 44. Class view in Visual Studio 2010.

Figure 45. Class view in Visual Studio 2012 RC.

68(68)

Assembly .xml file

Figure 46. Assembly .xml-file in Visual Studio 2010.

Figure 47. Assembly .xml-file in Visual Studio 2012 RC.

