

HELSINKI METROPOLIA UNIVERSITY OF APPLIED SCIENCES

Master’s Degree in Information Technology

Multimedia Communications

Master’s Thesis

IMPROVING CONTACT CENTER PERFORMANCE BY LEAN SOFTWARE
DEVELOPMENT PROCESS

Author: Besnik Doroci
Instructor: Ville Jääskeläinen,
LichSc (Tech)

14. 05. 2013

PREFACE

At first, it was hard for me to choose a topic for my final thesis. At that time, our company
started to apply lean methodologies in software development. This “Lean” subject was
new to me, I was lost and at the same time I was concerned for the performance of the
product, especially as to how the performance would fit in this new methodology. This
subject was introduced at the course for “Research Methodologies”, and I was
encouraged by Marjatta Huhta to take this topic for my final thesis.

I would like to thank Ville Jääskeläinen for his effort and time he dedicated to reviewing
the paper and helping me to finalize this. Furthermore, I would like to thank Jonita
Martelius for her help with the English language.

Secondly, I would like to thank my colleagues at the SAP labs, who helped me with
getting material, encouraged me and also participated in the interviews.

Finally, I would like to thank my family for supporting me in general. With their support, I
had more time to spend on my studies.

Helsinki, May 14, 2013

Besnik Doroci

ABSTRACT

Name: Besnik Doroci

Title: Improving Contact Center Performance by Lean Software Development Process

Date: May 14, 2013 Number of pages: 75

Degree Programme: Master’s Degree Programme in Multimedia Communications

Instructor: Ville Jääskeläinen, Head of Programme

Instructor: Imran Razzaq, Senior Developer, SAP Labs Finland

Software development is the process of developing software in an organized way through
predefined phases.

Lean methodology can bring flexibility into the software development process and enable
customers to add or change the requirements throughout the development cycle.

Contact center solution enables a superior customer experience by allowing companies to
ensure the availability of their services and personnel independently of time, location and
contact channel. Since in the contact center solution most of events are live events,
measuring the performance of it is very critical.

Performance of software is very important when determining the quality of the product.
Performance of the system describes how well the system operates under certain
workload. The performance testing can reveal how much resources the system uses
when loaded with a certain load. Performance needs to be observed from a quantitative
perspective and qualitative perspective.

The present study looked for means to how to apply the contact center performance
aspects into every cycle of the software development based on Lean methods as
references to performance in Lean literature are few.

Qualitative methods were used for the study. The methods used in other aspects of
software development were applied to performance testing. Additionally, internal expert
interviews were used to collect data of the most relevant practices in the field.

As a result, two approaches are introduced: The first approach is to include performance
testing as a part of every development cycle. The second approach is to have a separate
team for performance testing. Advantages and disadvantages of these approaches are
discussed.

Key words: Lean, Performance, Contact center, Methodologies.

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Goals and Research Question 2

1.2 Outcome 3

2 LEAN 4

2.1 Lean Thinking 4
2.1.1 Goal in Lean Thinking 4
2.1.2 Foundation in Lean Thinking 5
2.1.3 Respect for People in Lean Thinking 5
2.1.4 Continuous Improvement in Lean Thinking 6
2.1.5 Fourteen Principles in Lean Thinking 6
2.1.6 Product Development in Lean Thinking 7

2.2 Lean Implementation on Software Development 8

2.3 Software Development Methodologies Based on Lean 10
2.3.1 Agile 11
2.3.2 Scrum 13
2.3.3 Extreme Programming 14

2.4 Traditional versus Lean Agile Software Development 16
2.4.1 Traditional Software Development 16
2.4.2 Lean Agile Software Development 17

3 PERFORMANCE OF SOFTWARE 20

3.1 Quality Assurance Levels in Software Development 20

3.2 Software Performance Testing Types 22
3.2.1 Load Scaling, Stress and Capacity 22
3.2.2 Stability and Memory Consumption. 23
3.2.3 Scalability of System 23
3.2.4 Flexibility and Failure Recovery 23
3.2.5 Performance after Upgrade 24

3.3 Software Performance Testing Cycles During Development 25

4 CONTACT CENTER SOLUTION 28

4.1 Human Interface Modules 30

4.2 Connectivity and Core Components 31

4.3 Data Storage 33

4.4 Hardware 33

4.5 Network 34

5 PERFORMANCE OF CONTACT CENTER SOLUTION 35

5.1 Performance of Contact Center Introduction 35

5.2 Performance Requirements for Contact Center Solution 35
5.2.1 End User Requirements 35

5.2.2 Application Performance Requirements 38
5.2.3 Backend Requirements 39
5.2.4 Network Requirements 40
5.2.5 OS/Hardware/Software Requirements 41

5.3 Performance of Contact Center 43

5.4 Analyzing Performance of the CC 43
5.4.1 Performance Indicators in CC 44
5.4.2 Performance Acceptance Levels in CC 46

6 PERFORMANCE OF CC SOFTWARE AND ITS IMPLEMENTATION BY LEAN 48

6.1 Approach 1: Performance Testing as Part of Every Development Cycle 48
6.1.1 Iteration Workflow 50
6.1.2 First Iteration 51
6.1.3 Second Iteration 52
6.1.4 Third Iteration 53
6.1.5 Fourth Iteration 54
6.1.6 Fifth Iteration 55
6.1.7 Sixth Iteration 56
6.1.8 Seventh Iteration 56

6.2 Approach 2: Separate Team Dedicated for Performance 57

7 RESULTS AND ANALYSIS 60

7.1 Approach 1, Advantages and Disadvantages 60

7.2 Approach 2, Advantages and Disadvantages 61

7.3 Results and Analysis Based on Approaches 62

7.4 Results and Analysis Based on Interviews 63

7.5 Comparisons of Approaches Based on Interview 66

8 DISCUSSION AND CONCLUSIONS 67

REFERENCES 68

 ABBREVIATIONS AND ACRONYMS

CC Contact Center

IP Internet Protocol

LPD Lean Product Development

XP Extreme Programing

TDD Test Driven Development

PAU Performance After Upgrade

ITU International Telecommunication Union

IT Information Technology

VoIP Voice over Internet Protocol

UI User Interface

CPU Central Processor Unit

PSTN Public Switch Telephony Network

SIP Session Initial Protocol

QoS Quality of Service

SSO Single Sign On

1

1 INTRODUCTION

The core idea of the Lean methodology is to maximize customer value while

minimizing waste, such as producing something that no one wants, making

mistakes that create no value, etc. Simply, Lean means how to create value

for customers with fewer resources. Lean is applied in every business

including product development. Lean is not a tactic or cost reduction

program but it is the way of thinking and acting for the entire organization.

The idea behind Lean thinking is to let customers have what they want as

fast as possible so they do not have time to change their minds.[1]

Software development is the process of developing software in an organized

way through phases. Typical software development phases start with

software requirement identification, followed by analysis, detailed

specification, software design, coding, testing, and finally maintenance of

software.

In software development, the way to deliver things rapidly is by delivering

them in small packages. Packages can be grown by adding more

functionality. The bigger the programs with more features the longer it takes

to decide what is needed and get it developed, tested and deployed.

Performance of software is very important when determining the quality of

the product. There are usually many issues concerned when discussing per-

formance, e.g. how many users can run the software simultaneously, what

delays there are in the software, does the software meet its requirements,

etc. Since Lean methodology is based on a limited amount of delivery, hav-

ing performance figures is crucial at this stage.

Contact center (CC) is a centralized office used for handling telephone calls,

e-mail, live chat, video calls, and faxes. CC can be also Internet Protocol (IP)

based communications solutions. The operator independent solution

replaces the traditional telephone system, seamlessly integrating fixed and

mobile communications with IT infrastructure and applications. CC solution

enables a superior customer experience by allowing companies to ensure

the availability of their services and personnel independently of time, location

and contact channel.

2

Lean methodology has been applied on other fields for a long time but its

applications in software engineering are still under construction. There are

aspects, such as security issues and performance and scalability, that have

not yet been considered as they should have.

1.1 Goals and Research Question

The goal of this thesis is to define the processes that integrate performance

processes within the Lean processes during the development cycles.

Because Lean methodologies in software engineering are yet in their

development stage, this methodology needs research attention. Therefore

the study asks:

How should (or: could?) Lean methodologies be implemented for contact

center performance processes?

The subject is vital for a company that develops VoIP solutions and is

exploring various options for software development.

Lean and performance studies are based on the literature as well as

information gathered from a company internally. Internal information is

based on the processes used for Lean software development and on the

performance of the software in certain business cases within defined limits.

This study is qualitative, based on existing knowledge on Lean methodology,

especially in software engineering. Internal expert interviews were used to

collect data of the most relevant practices in the field.

The focus of the study revolves around two issues: the performance for

contact center solution and its implementation, and performance processes

in software development based on the Lean methodology.

Performance is a make-or-break quality for software. Poor performance

costs the software industry millions of dollars annually in lost revenue,

decreased productivity, increased development and hardware costs, and

damaged customer relations. Nearly everyone runs into performance

problems at one time or another.

3

Today’s software development organizations are being asked to do more

with less. Operational specifications in web applications often stated in terms

on to improve response time or throughput, or both.[8]

In order to reply the research question, it is necessary to study Lean

methodologies, how Lean is implemented in software development, software

methodologies, key performance measurements for the contact center

application, performance processes during software development, and finally

include best practices on how to fit performance when applying Lean in

software development.

1.2 Outcome

The outcome of this thesis is to define the structure of Lean software

development where performance measurement of the software is part of this

structure.

Performance processes are defined for the contact center software products

developed with Lean methodologies. However, in this thesis there are no

details of actual performance figures because that was out of the scope of

the study.

Deriving approaches on how to implement performance in software

development by Lean solves many concerns about the performance aspects

of the solution. These approaches guide how to build a Lean agile team with

performance aspects in it making sure that all interactions will work and after

each delivery cycle the product has performance built in it.

These approaches can be used in a way that whatever Lean methodology is

used as bases for software development the performance aspects of the

solution are always taken into consideration from the day one.

People’s opinion about the approaches based on the interviews is that the

approaches tend to solve many issues related to the performance of the

software e.g. starting with communication issues and going on with

performance tasks.

4

2 LEAN

Lean is the name given to the Toyota’s method for producing and developing

cars.[2] Toyota Production System in essence shifted the focus of a

manufacturing engineer from the individual machines and their utilization to

the flow of the product through the total process.

2.1 Lean Thinking

Lean is a method that applies to product development and production[1].

Lean simply means creating value for customers with fewer resources.

Lean thinking is based on components such as goal, foundation, respect for

people, continuous improvement, fourteen principles and production

development. Lean thinking house is built from the ground (foundation) to

the roof (goal), as illustrated in Figure 1.[2]

Figure 1. Lean thinking house

In the Lean thinking house it is important that all components work together

as a system. Lean thinking house components are explained more in detail

in the following chapters.

2.1.1 Goal in Lean Thinking

Two main processes for achieving the goal in Lean are the development by

learning from the competition and the production improvement with a focus

on short cycles.[2]

5

The goal of the Lean thinking house is to deliver in a short time value for all

processes, focusing on a high quality product. The other goal is to build

partnership based on trust.

2.1.2 Foundation in Lean Thinking

The foundation is the base of the Lean thinking house. The motto for the

foundation in the Lean thinking house is a good thinking, a good product.[2]

People first go through several months of education in order to learn the

foundations of Lean thinking, problem solving through hands on

improvement experiments, how Lean thinking applies in different domains,

and last but not least, the continuous improvement.

2.1.3 Respect for People in Lean Thinking

One of the goals in the Lean thinking house is gaining the respect for

people. Respect for people in the way that managers understand and act on

the goal of eliminating waste.

Do not trouble your “customer”.[2] Respect for people starts from the

customer. Customer means anyone who consumes the work or decisions in

question. Not to disturb the customer, the work needs to be analyzed and

changed in advance. Customers must not be overloaded by too large re-

leases nor kept waiting for a long time for a new release or a release that

has defects that could have been easily tackled.[1]

Develop people and then build the products. Key in this is that managers act

as teachers, not directors. People need to be mentored for years in

engineering and problem solving, as well in analyzing root causes and

making problem visible, by this people learn how to improve.[2]

Teams and individuals develop their own practices and improvements.

Management challenges people to change and improve but people learn

problem solving and reflections skills and then decide how to improve.

Managers understand and act on the goal of eliminating waste and continue

improving their work in their own actions and decisions, and employees

should see this. Build long relationships with partners based on trust, and

help partners to improve and to stay profitable.

6

2.1.4 Continuous Improvement in Lean Thinking

Go-See is a principle described as critical and fundamental in the Lean

thinking house. In the Toyota way Go-See is highlighted as the first factor for

success in continuous improvement.[2] An example of Go-See is that

managers regularly visit and sit down with the software developers in order

to understand the actual problems and see the opportunities to improve.

Another method is Kaizen, which is both a personal mindset and a practice.

As a mindset, it suggests “My work is to do my work and to improve my

work”, and continuously improve it for its own sake.[2]

Challenge in perfection is the third element of continuous improvement in

Lean. In order to improve products and processes, the change in practices is

necessary for going towards perfection. Changes in practices can be done

by having high expectations, challenging team members, partners, and

ourselves to levels of skill and vision beyond the current state. In continuous

improvement, there is no final process but rather a continuous improvement

and change.

2.1.5 Fourteen Principles in Lean Thinking

Besides the two lean pillars respect for people and continuous improvement

there are other lean principles that form the overall system of Lean. Part of

this broader system is covered in the fourteen principles described in the

Toyota Way book that comes out of decades of direct observation and inter-

views with Toyota people. Table 1 explains these 14 principles.[2]

Table 1. The fourteen principles

1. Base management decisions on long term philosophy even if the company ex-

pects short term financial goals.

2. Move toward flow; move to smaller batch sizes and cycle times for fast value de-

livery and expose weakness.

3. Use pull systems by deciding as late as possible. Pull means no storage in in-

ventory until there is a customer order.

4. Level the work. Reduce variability and remove overworking.

5. Cultural building on fixing problems and stopping on time in order to understand

the root causes of problem.

7

6. Master norms to enable kaizen the employee empowerment.

7. Simple visual management for coordination and problem solving.

8. Use only well tested technologies that serves people and processes.

9. Grow leaders who understand the work and teach it to others.

10. Develop people and team who follow your company's philosophy.

11. Respect for partners and help them improve. Bring partners into Lean thinking.

12. Go see for yourself at real work place in order to understand situation and help.

13. Make decision slowly by consensus; toughly consider options for implementing

rapidly.

14. Become and sustain a learning organization through relentless reflection and

kaizen.

As can be concluded based on the list in Table 1, the organization can be-

come strong if these principles are in mind when planning the future and

making decisions.

2.1.6 Product Development in Lean Thinking

Lean product development (LPD) focuses on creating more useful

knowledge and learning better than the competition.[2] Creating more value

is done by focusing on certain things, e.g. implementing, testing risky fea-

tures or collecting feedback earlier. It can be very costly to discover during

stress performance testing, after 18 months of development, that a key

architectural decision had a flaw. In Lean development, short cycles with

early feedback loops are critical; by implementing less predictable features

early and in short cycles that include testing, the cost of delay is reduced.

Lower cost in LPD is achieved by focusing on large scale to the test

automation to learn about defects and product behavior. The cost of

frequently executing automated tests is usually insignificant in comparison to

the value of early feedback.

8

2.2 Lean Implementation on Software Development

The goal of Lean implementation is to bring the Lean thinking house into

life.[2] That is done by questioning beliefs, attitudes, daily business

behaviors and asking what are the internal customer expectations and

needs.

In general, people tend to start working on methods, tools, processes and

organizational structures. It is relatively easy to see people performing

mechanical tasks, this is due to the fact that mechanical work is something

people are familiar with. In the other part of the Lean there are behaviors,

beliefs and attitudes that relate to the feelings that people have about

themselves as formed early in life.

A person with an attitude that serving customers is important is more likely to

answer repeated customer requests for information and assistance than

someone who does not share the same beliefs and attitudes. This means,

that there is a need to start dealing with the behaviors, attitudes and beliefs

of a company’s personnel in order to make a long lasting change possible

and to develop the Lean culture of its own.

In order to make Lean work one needs to understand what “Respect for

People” and “Kaizen” mean. This is the basis for a successful

implementation and the further development of Lean. To be able to show the

behavior that is expected from people in Lean it is important to understand

what kind of behavior is required.

Respect for people is described in Chapter 2.1.3. A good start for the Lean

implementation for this area would be to question people on experiences

when did they get, or did not, respect from managers. Further questions

would be that what they thought, felt and did as a result.

Kaizen refers to the continuous improvement of processes in manufacturing.

Kaizen implies mastering techniques first before starting the improvement,

that is, the improvement cannot happen if baseline is not in place. Kaizen is

an ongoing activity and implicates small experiments in order to improve

practices. Kaizen refers to the continuous repetition of experiments in order

to make a problem visible and find the root cause, so this helps to learn

process improvements.

9

Continuous improvement is described in Chapter 2.1.4. In continuous

improvement it is important to find out what is working (e.g. the entire

production flow), and then continue on doing that, always by adding small

improvements in the direction of the future.

Analysis of the problem can help with technical problems but it rarely helps

in finding the solution when problems are about people. People are their own

worst critics. Managers are better at improving performance if they

emphasize the positive part and let people handle the negative by

themselves.

The coaching culture is essential in respecting people and continuous

improvement. Coaching is a practical way to implement Lean culture. Telling

(demanding) people to change (e.g. their way or working) creates resistance

because they assume that they are criticized. To take committed action

people need to think things through and choose for themselves how they

want to work. In the respect for people it is stated that teams and individuals

evolve their own practices and improvements.[2]

Meeting culture suggests that all participants in a meeting are equal and

important. Everyone gets turn to speak and is allowed to finish without

interruption. Everyone in the meeting is expected to be honest and express

his feelings. Shearing good experiences in work from past, present and as

well future to further enhance the work.

There are a few details which teams need to fulfill in order to start Lean. The

team needs to know what to do, to have clear deadlines, to make sure that

information sharing is working, to have a lot of interaction between team

members, good collaboration and effective communication. The team needs

to have an organized way of working, e.g. have enough information to be

able to plan and do their own work, know what has been done and what

needs to be done, complementing each other’s work and skills.

Team members are professionals, they should trust each other and that they

can solve all problems together. The team understands market and

customer needs, participates in the whole process from specification to

implementation, and believes that customers like their product. The team

needs to have challenging work and freedom to implement their own ideas.

The best way to do that is by applying short projects.

10

2.3 Software Development Methodologies Based on Lean

Software development technology is very demanding starting from the code

quality implementation while software is written, and other industry practices

for enforcing and monitoring the software without increasing the

programmers workload. Lean provides the holistic view with the visibility of

the problem and it gives some practices on how to solve it. Lean provides

the visibility to the problems, as it focuses in business, value and delivery

across the organization.

Software development should be about business with value in it and

incremental delivery with value increased and not the software development

iteration. Lean provides that vision and then explains what to do with it.

Basically it tells how to remove the waste. The waste in the workflow is what

hurts. Focus on workflow will help people getting organized and the work

done.

In Agile there is a team of a few people for solving a problem which in the

end is a local problem. Local thinking does not solve the global problems.

Expanding agile in all processes not only in some areas in a company by

creating cross teams is difficult as in an enterprise there are different

dynamics. In Lean one takes a system thinking approach from end to end in

all areas in the company. The entire concept of agile is almost an iteration

inside of Lean. Business value is how to get more value quicker, shorten

time to market and most important thinks to deliver faster. Lean agile will

help on getting fast delivery.

Lean provides a bigger picture view and as well as a method for education.

Lean is more of the mindset, respect for the people and their psychology. In

software development one needs to understand the big picture. Lean is not

interested in who is doing what but more in what should be build, idea to

definition, construction validation and deployment. Lean is interested in the

work flow in general, having the best team working on tasks and getting

work done.

The methodology of Lean software development is the application of Lean

manufacturing principles when developing software. A software development

lifecycle process or a project management process could be said to be Lean

11

if it is aligned with the values of the Lean software development and the

principles of Lean software development.

Figure 2 illustrates how Lean thinking is the base for most common

methodologies and techniques used in software development.[2]

Figure 2. Lean thinking as a base for other methodologies and techniques

Many successful methods used in manufacturing are adopted to the

software development. These techniques, such as scrum and extreme

programming in the Lean agile, are introduced in the following chapters.

2.3.1 Agile

One of the Lean thinking tools is being agile. Be agile rather than go agile.[2]

Term agile was chosen in 2001 at the Utah workshop by a group of modern

methodology leaders, two alternative names were considered adaptive or

agile. Both names emphasize flexibility.[2]

Agile is a quality of the organization and its people, to be adaptive

continuously improving and evolving. Be agile with the goal of competitive

business success and rapid delivery of valuable products and knowledge.

Agile means agile, the ability to move quickly, to accept change and to

become master of change by being able to change faster than your

competition does. This agility is supported by Lean and agile practices.[2]

Agile manifesto values and principles

12

Agile development is based on four sets of values that support and

encourage agility. These values are very important for organizations who

want to go agile and scrum. This four agile manifesto values are:[2]

 Individuals and interactions over processes and tools.

 Working software over comprehensive documentation.

 Customer collaboration over contract negotiation.

 Responding to change over following a plan.

Beyond the four agile values are the twelve agile principles that support

being agile:[2]

 Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.

 Welcome changing requirements, even late in development. Agile

processes harness change for the customers competitive advantage.

 Deliver working software frequently, from couple of weeks to a couple

of months, with a preference to the shorter time scale.

 Business people and developers must work together daily throughout

the project.

 The most efficient and effective method of conveying information to

and within development teams is face-to-face conversation.

 Working software is the primary measure of progress.

 Agile process promotes sustainable development. The sponsors,

developers and users should be able to maintain a constant pace

indefinitely.

 Continuous attention to technical excellence and good design

enhances agility.

 Simplicity, the art of maximizing the amount of work not done is

essential.

13

 The best architectures, requirements, and design emerge from self-

organizing teams.

 At regular intervals, the team reflects on how to become more

effective, then tunes and adjusts its behavior accordingly.

Additionally, there are nine agile management principles that summarize key

principles to be agile in a short list:[3]

 Deliver something useful to the client; check what they value.

 Cultivate committed stakeholders.

 Employ a leadership-collaboration style.

 Build competent collaborative teams.

 Enable team decision making.

 Use short time boxed iterations to quickly deliver features.

 Encourage adaptability.

 Champion technical excellence.

 Focus on delivery activities, not process-compliance activities.

Teams in agile should summarize principles mentioned above. A team

needs to share an understanding of the principles, and the impact these

principles have in daily business, and analyze if the team practices are

aligned with these principles.

2.3.2 Scrum

Scrum is one of agile methods which is more related to the faster delivery

and higher quality.[2] Scrum as an agile method is used in software

application development. It is important to understand these five scrum

values: Commitment, focus, openness, respect, and courage.[2]

Commitment. Scrum provides all authority needed for a team to meet their

commitments. Scrum is based on self-organized teams that decide which

items to pick on from the backlog list provided by product owner. No items

14

are pushed to the teams and teams are not told on how to do their work.

This gives the opportunity to the team to have real commitments, and by

this, teams can control how they will do their work. With two or four week

iterations they can also be more realistic with their commitments

Focus. In scrum, the teams need to be 100 percent committed to their work,

and there should not be multitasking, that is, team members should not be

working with items that are not on the team’s task list. This means that each

person is fully focused with all efforts and skills to do committed work for the

goals of getting the good product. This focus leads to the quick delivery and

productivity.

Openness. In scrum, the projects are visible to everyone. Daily scrum of

each team is an open event where team members share their thoughts

about tasks they are working on. Everyone is invited but only scrum team

members can discuss while others are listeners. No closed door meetings.

Respect. In scrum, the team’s respect for people is very important. All

members in the team are equal, they share common goals, and rewards for

the achievement goes to the team and not to the individuals. Teams need to

understand this, and in order to succeed, the team needs to understand

strengths and weaknesses of each team member.

Courage. In scrum, it is important to have courage to commit, act, and be

open. Courage helps to follow scrum rules, courage to change the

organization and to confront the challenging goal. Teams need courage to

explore, learn, decide and act for solving the problems and not wait for

others to do that for the team.

2.3.3 Extreme Programming

Extreme programing (XP) is a set of techniques for extending developers’

creativity and minimizing the administrative load.[4] XP as form of agile

process is defined with four characteristics: communication, simplicity,

courage and feedback. Communication refers to the communication

between development and customers and to their continuous interaction.

Simplicity refers to the simple design and implementation in order to satisfy

customer needs. Courage refers to the commitment on functionality delivery

15

in early stages and often. Feedback is given during the development

process on various activities.

XP combines and intensifies proven software development practices with the

aim to improve software quality and responsiveness to change customer

requirements. Figure 3 illustrates the XP practices.[5]

Figure 3. XP Practices

Figure 3 shows that in XP, the team is working as a whole, so that all con-

tributors including customers are in the same team. Release and iteration

planning are part of the planning game in XP practices. Small releases are

made after each iteration and those releases are tested by the customer.[5]

Coding practices are done by having simple design for software. Test Driven

Development (TDD) refers to the making of a test case first and then the

coding to make the test case work. The TDD ensures a hundred percent

code coverage and that all code is unit tested. Pair programming refers to

working side by side for having better design and better code. While design

evolves the code refactoring must be done for making code cleaner and

clearer.

In XP, the system is fully integrated. This integration is achieved by running

daily builds in order to verify that system is integrated and there are no

issues in the build. Collective code ownership and common code standards

are used for simplicity. The team has a common vision on how the program

works.

16

2.4 Traditional versus Lean Agile Software Development

Traditional methodologies are plan-driven in which the work begins with a

complete set of requirements, followed by architectural and high level design

development, solution building, testing, and finally deployment.

In Agile software development, requirements change during development

based on the customer needs, short work iterations and continues

deployment. In the following chapters, these methodologies are described in

more detail.

2.4.1 Traditional Software Development

The traditional way to build software was through lifecycles known as “the

waterfall”. The required steps of the waterfall model for software lifecycle are

shown in Figure 4.[4] This way to build software was used both in big and

small size companies.

Figure 4. Traditional waterfall model

There are more similar kind of traditional models but all of them start with a

detailed planning phase, at this stage the final product is designed and

documented in details. So the analysis and requirement specification are

done at the planning phase. After the planning phase, the product design

phase starts, as well as estimations on how long development will take, and

what is needed to execute the design. After design approvals, the actual

works starts, and in the implementation phase the code will be written and

implemented in the production line. After the implementation is done, the

integration and testing phase starts. Testing team will complete testing for

product verification validation, and prepares for handover to customers. This

17

process is monitored all the way to make sure that what is designed is in the

product.

This approach requires that product improvement ideas have to come at the

beginning of the development cycle and they must be included in the plan.

However, the reality is that ideas come throughout the release cycle, and in

the waterfall type the ideas are a threat if they come too late to the

development. This model is change-resistant and makes creative people

lose their passion and skills. Future predictions of people is not possible

especially in software development, knowing the exact tasks to be

performed in advance for a coming year is far from the reality.

In the traditional waterfall project, risk remains high throughout the majority

of the development lifecycle. It may only be at the implementation or

integration stage that a problem is exposed and this can have a major

impact on all work undertaken thus far. This often causes major delays, or in

worst case, to the cancellation of the project.

Even though customers get what they have asked in the first place, after a

long development cycle the customer needs may have changed, and the

final product may not satisfy the customer. This might make people think that

one should plan more, document more, do it differently, and so on. People

learn and discover things all the time and all this needs to be part of the

development cycle. This leads to the need on fundamental change from the

traditional development.

2.4.2 Lean Agile Software Development

Customers’ business needs change over time. There may be a newly

discovered need, or the need changes due to market. Lean agile methods

can bring flexibility in the development process that enables customers to

add or change the requirements throughout development cycle.

In Lean Agile development there are deliverables after iterations. Figure 5

illustrates a Lean Agile simplified software development cycle.

18

Figure 5. Lean Agile simplified software development cycle

The process starts with product vision and context. Product owners,

customer and the development team state assumptions about the key

product features, and the value of the product to the company.[6]

At the planning phase, the product features and values are turned into user

stories. The user stories should have simple description of a feature or

functionality to be added in the real use. These user stories are added to

backlog, wherefrom they become to software requirements and will be

turned into software.

During the analyzing and design phase, the stories are further discussed

and analyzed, and the acceptance criteria of the story are identified. At the

design phase there will be more details on how the feature described in the

story will be built, including the technical design. User acceptance test cases

are created at this stage based on the assumption on how the feature will be

used and what are the expected results.

User stories are created throughout the project. Comparing to the

requirements in the traditional model, the user stories are not completed until

they are taken from backlog and analyzed again by the team before the

implementation phase.

Implementing of the user story in general is done by defining a few

alternatives for implementation depending on the complexity of story and by

estimating the business value of the story.

19

After implementation the testing phase starts. User acceptance tests are

created from the complete user stories before the implementation phase and

user story can have one or many acceptance tests in order to ensure that

the functionality works. Acceptance testing of a user story verifies that the

user story is correctly implemented and the desired customer functionality is

in the product. Based on the final acceptance testing, the story can be part

of the working software or it will be returned back to the requirement phase.

So the evaluation of the user acceptance testing for the stories is taking

place and as a final result there is the software deployment or/and new

product requirement/s.

Software is developed in stages based on the iterative approach. The core

functionality is developed first and additional features added as the product

evolves. The early iterations produce only limited working functionality

therefore the importance in putting the technical infrastructure in place starts

on early phases. These early iterations serve on finding the product risks at

the early phases of the product lifecycle, this is a very important benefit

aspect.

These software development stages are known in the Lean as iterations.

Each iteration has a limited amount of story points to be developed. Target

dates for iterations depends from estimated work amount that teams can

handle. For example, if a team can deliver 50 story points in two weeks

iteration and there are in total 200 story points to be achieved, team will

need 4 cycles of 2 week iterations to complete the job. These short iterations

enable fast feedback on tasks done and confirmation that customer needs

are met. By the end of each iteration the results are analyzed and story

points are fulfilled. If they do not require other actions, new stories are

created on top of those and they are about to be part of the coming

iterations.

In Lean Agile development there are continuous deliveries, which does not

mean that what is done is final and sellable. In Lean Agile it is difficult to

understand the acceptance part as per user acceptance is one approach,

customer acceptance is a different thing, and the budget acceptance is other

way of acceptance. In Agile development people are not willing to think in

terms of budget, shipment dates and so on but only on story deliveries.

20

3 PERFORMANCE OF SOFTWARE

Performance of the system describes how well the system operates under a

certain work load. The performance testing can reveal how much resources

the system uses while loaded with certain load. In addition, other kinds of

performance related parameters such as reliability, speed and scalability can

be defined with performance testing. Benchmarking performance tests

against competition can help in evaluating the salability of the product and

needs for performance enhancements.[7]

The system can be loaded with different types of loads depending on the

type of the test. Typically these loads are created by feeding the system

input with multiple simultaneous events and monitoring the output and

performance of the system.

Monitored metrics vary between tested system and test type. Some

measurement results can be defined from input and output of the system

(black box testing) and in other measurements information on transactions

and events inside the system is needed.

3.1 Quality Assurance Levels in Software Development

Performance of the system can be measured on all of the following quality

assurance levels in software development.

Unit testing. Unit testing is the first level testing, it is a process for testing

the individual subprograms, subroutines, classes or procedures in a

program.[8] Unit testing is important part for developers toolbox in order to

achieve reliable application. It is very important to find defects of the

developed code in application at the early stage, finding them later may be

costly and challenging. Unit testing is performed usually by developers.

Module testing. Module testing is very similar to unit testing but in module

testing the module is tested as a whole. Modules have internal architecture

and external interfaces.[8] Module testing helps on verifying changes in code

dependencies (common code, compilers). Some issues are hard to find in

integration testing so module testing helps in finding those unwanted issues.

21

Integration testing. After the individual module tests have been done the

next step is to integrate modules together.[4] Integration testing is testing

two or more modules together without the need of all modules at the same

time. System architecture will be tested in more detail at this stage.

System testing. System testing is the first level where the system is tested

as a whole.[4] The system is tested to verify if it meets the functional and

technical requirements and also enables us to test, verify and validate the

software requirements. The system is tested in an environment that closely

resembles the production environment where the application will be finally

deployed. Possible external systems (e.g. audio gateways) need to be part

of the environment during testing. System testing is covered with functional

and non-functional testing.

Functional system testing. The goal of functional testing is to verify

implemented features according to the Software Requirements

Specification.[4] The testing is done by executing test cases which have

been created to cover all Software Requirements.

Non-functional system testing. This is the testing of everything that does

not relate to the functionality of the system.[4] This type of testing covers

aspects such as ease of use and performance. The system may provide all

the necessary functionality but if it is not easy to use or does not perform

very well, it will not fit for its purpose.

Some non-functional testing types are: User interface testing, Browser

testing, Documentation testing, Infrastructure Compatibility List (ICL),

Security testing, Technical language testing, Accessibility, Recovery testing,

Usability testing, Performance, Load and stress testing.

Non-functional system testing is more concerned with how well a system

performs its function. All systems are written with a purpose in mind usually

with the intention of making money and being profitable. The non-functional

attributes give the system a competitive edge over competitors.

Acceptance testing. Acceptance testing needs to validate that all defined

customer requirements are in the final product.[4] The acceptance testing

checks individual functions and applications and also the integration of

functions working along product. The robustness and correct functioning of

javascript:void(0)

22

the system are tested against specifications in the test cases as well as

against the expectations of the customer and expert testers.

3.2 Software Performance Testing Types

Performance is an indicator of how well a software system or component

meets its requirements. Software performance testing is typically divided into

testing types based on the performance output. Common testing types are

described below.

3.2.1 Load Scaling, Stress and Capacity

In load scaling one tests the performance of the system and its components

are monitored while the level of load is increased. With the information from

load capacity testing scalability testing gives a good estimation on how the

system behaves while the load level increases.

Load capacity testing contains tests for defining the maximum quantities for

different types of system input events that system can handle without failing.

Also failing mechanisms should be investigated when the system is stressed

to breaking point.

In load capacity testing the level of load is increased between test runs until

the breaking point of the system component is found. The breaking point is

considered to be a point where the system does not work properly or does

not fulfill all requirements defined for its acceptable performance.

The purpose of load capacity testing is to test how much load essential

system components can handle. The testing of each component will be

performed by loading the complete system with set of common system input

events while monitoring the performance of tested component.

Load capacity testing contains both burst and steady load tests. The goal is

to define maximum load levels for each tested component / complete system

in both cases. For some components maximum levels cannot be achieved

due the restrictions of other system components.

Load scaling tests are done with a standard system setup. In some special

cases some specific component may be isolated to run on their own server.

23

Scalability and load capacity testing is done with both burst and steady

loads.

3.2.2 Stability and Memory Consumption.

Stability and memory consumption tests contain tests running for a longer

period. Possible memory leaks and other issues related to repetitive events

are checked.

Stability testing refers to the overall reliability, robustness, functional and

availability of a system under a variety conditions. Acceptance levels for sta-

bility of the system should be determined prior to the production release.

3.2.3 Scalability of System

Resources/Hardware scaling testing contains tests where the performance

of the system and its components are monitored while system resources are

scaled up by adding new instances of system components to run on

additional server.

The purpose of the scalability of the software is to investigate the behavior of

system with simultaneous events of different types, how system / component

performance increases while resources increase and as well verifying of the

performance against requirements.

With resource scaling tests it can be shown that the system is able to handle

up scaled levels of load in up scaled environment. Resources scaling tests

are done by adding resources to standard system setup by e.g. adding more

core components in the application server. Scalability testing is done with

both burst and steady loads.

3.2.4 Flexibility and Failure Recovery

Flexibility and failure recovery refers to the system maintenance. Flexibility

and failure recovery tests test the operation of the system in certain failure

situations and monitor how the system recovers from that. In system

requirements it has been stated that specified system maintenance

operations shall be able to be performed while the system stays active.

The correct operation of the system will be tested while functionality is added

/modified/removed from the system while the system is in use (active system

24

simulation). Hardware is added to the system while the system is in use

(active system simulation).

Operation of the system shall be tested in different types of failure scenarios

e.g. automatic switchover to a redundant server without losing calls.

Depending on the failure scenario, system core functionalities (e.g. calls)

should not be affected or system should recover in acceptable time.

In the failure recovery tests the failure mechanisms and breaking point

analysis should be performed during load capacity tests, network problem

recovery tests and module failure recovery tests.

Flexibility and failure recovery tests mainly contain steady load tests with

some special events (e.g. 1000 active calls + maintenance operation/failure

occurs in some system component).

3.2.5 Performance after Upgrade

The goal of performance after upgrade (PAU) testing is to measure the

performance of the system after upgrade with some standard tests and

compare the results with ones from earlier tests with previous software

version.

Changes in performance are monitored and detailed testing is performed if

notable changes are discovered. PAU testing does not include tests with

very high levels of load. The purpose is to test the system at the normal level

of load.

Performance after upgrade testing mainly consists on steady load tests as

the results between tests runs are more easily comparable. However, also

burst tests may be executed in order to get more information on

performance of upgraded software.

Standard system setup is used in performance after upgrade tests. In some

special cases performance change of specific component can be

investigated in detail by isolating it from standard system setup to its own

server

25

3.3 Software Performance Testing Cycles During Development

All performance testing types mentioned in Chapter 3.4 need to be repeated

in particular testing cycles. Performance testing is a cycle repetition of

defined steps. Figure 6 illustrates the main events of the performance testing

cycle.[9]

Figure 6. Performance testing simplified cycle

As illustrated in Figure 6, performance testing starts with system evaluation.

Collection of information about the project as a whole, the functions of the

system, the expected user activities, the system architecture, performance

requirements and any other details that are helpful in creating the

performance testing strategy specific to the needs of the particular project.[9]

Outputs for the system evaluation are risks as they are potential problems.

Performance testing is based on identification of risks, e.g. the program

being too slow, memory leaks, cannot handle particular amount of

simultaneous users, failovers and recoveries and so on. Risks can be of

various types on software projects but as for the performance testing cycle

commonly in question are technical risks. Technical risks such as platforms,

methods, processes, standards and functionality may result from defined

parameters, other dependencies, lack of experience, tools in use. So the list

of identified risks needs to be analyzed and prioritized based on the potential

risk impact to the solution. In the risk analyzing phase the estimation needs

26

to be done on the probability that risk may result in a loss, in impact of that

loss if risk turns into problem and the time when risk needs to be addressed.

At the develop tests assets phase the test running environment and test

cases need to be prepared for test execution and analysis. The test running

environment is achieved by experimental design. Experimental design is

done based on the identified risk. In experimental design it is important to

make sure that performance testing can be run due to the change on the

software. There may be one or more factors that change during a

performance test. Therefore, it is good to explore more with these factor

changes in order to understand what impact each change may have to the

performance of the software.

Test cases are created based on design, of course tools and skills are

needed in order to have probability to catch the errors. When creating a test

case, the idea on how the software may fail, and if does so, how to catch it,

needs to be used. Test case should be neither too simple nor too complex.

Sometimes it is necessary to combine test cases into one big test case e.g.

for testing software capabilities. This big test needs to be created in such a

way that it is not too complicated to execute nor to understand the output.

During test case creation the expected output or test result needs to be

noted down as reference for executing the test case.

After test case creation the test execution will follow. It is very essential that

the software is tested in appropriate way. Most important rule is that test

case procedure will force the software to use data entered correctly. Right

after the execution of the test case the test case validation takes place, and

if necessary, debugging is done. During this phase the initial baselines are

taken for future testing. The results from these first tests are used for

benchmarking purpose in order to help in result analyzing for all following

tests to be analyzed in the result and analyzing phase. For the

benchmarking, it is important to identify the business, system and user

requirements that define it, and system usage and key metrics for measuring

it.

In order to verify that requirements of the function or performance tests are

met, the results need to be analyzed. Depending on the test result, the

testers can be satisfied or dissatisfied to the outcome. When satisfied, the

27

outcome means that requirements are validated and therefore criteria are

met. Testing is completed and test results are printed in the final report.

When dissatisfied, the outcome means that there is a bug in design, test

case, or in execution part, or the issue can be in analyzing tools, or there is a

new risk to be identified. The performance team should be able to detect the

source of issues, and start tuning in order to meet the acceptance criteria.

By tuning activities the system is modified. The modification made must

improve performance of the system, if the modification does not fix, or

improve the performance, then the modification is removed from the system.

In case there is a new risk identified, the new risk will get back to the test

assets.

Test analysis report is necessary for documenting the test result, in case of

failure it provides the information on locating the source problem, repeating

the problem, as well as fixing the source of problem.

Performance testing is a repeated cycle which gets complicated by

unknowns and estimations. Performance testing is based on lots of

variables. Before a system goes live it can be only guessed how the users

will use the software. Test runs are based on guesses and approximations

(e.g. in what hardware or cloud the software will be run etc).

28

4 CONTACT CENTER SOLUTION

Contact center (CC) is a place where various types of customer contacts can

be handled for various customer needs. Contact center is defined as “A

coordinated system of people, processes, technologies and strategies that

provide access to the organizational resources through appropriate channels

of communication to enable interactions that create value to the customer

and organization”.[10]

Contact centers are guided by three level of strategies: Business, contact

center, and technology.[11] Based on these strategies the CC can have

different operation perspectives based on the industry, sector, size, location,

channels, tasks, volume, and function.

From the CC operation perspective and user needs, the operation

classification is demanded firstly based on the industry (e.g. Media, Hospital,

Hotels, Banks), then on communication sector (e.g. business to business or

business to customer), then by contact center types (e.g. inbound, outbound

or both types), serving location (e.g. on-site or remotely), serving hours,

business tasks (e.g. reservation, orders, billing), call volumes (e.g. number

of serving agents per day, calls handled per day) and finally from the

communication channel point of view. In today’s CC solution there are

supported various types of communication channels such as voice

(telephony), e-mail, chat, SMS and fax. CC service requires highly skilled

agents for serving and handling customer needs.

Figure 7 shows a simplified contact center solution with very basic features.

When drawing Figure 7 all extra features such as e-mail, chat and fax were

ignored. Figure 7 illustrates the basic telephony services and features which

are similar to the contact center solution developed in the customer our

company.

Lean methodologies applied to the performance of the contact center

solution related to this thesis will be concentrated on only in the telephony

part.

29

Figure 7. Simplified picture of contact center solution inter connections

The telephony features of the contact center solution are fully based on

voice over internet Protocol (VoIP) technology. The system is easy to

configure according to communication business needs.

A contact center agent can login to the system from different terminals such

as Web User Interface (Web UIs) or IP desk phone. Contact center agents

are internal users of the system having login accounts created by the

administrators of the system. Contact center agents handle incoming or

outgoing contacts.[10]

Communication from the customers to the system goes through VoIP

gateways. VoIP gateways converts VoIP stream from data packet switch to

a circuit switching format and vice versa.[10] Circuit switching refers to the

Public Switching Telephone Network (PSTN) developed to support voice

traffic.[11]

Web services and VoIP gateways (such as SIP or H323) are used as UIs for

communication with the engine components that handle connections, call

routings, call switching and other functionalities. Different terminals offer

different functionalities and thus load of the system is changing due to the

connection type.

30

Figure 8 illustrates the simplified picture of a basic contact center.

Figure 8. Simplified picture of a basic contact center

Figure 8 shows how data center and office are connected through internet

routers and firewalls while customers and data center are connected through

PSTN and VoIP gateways.

4.1 Human Interface Modules

Human interface modules are mostly web browser based user interfaces

that provide the end users access to the phone, monitoring, reporting as well

as to the administrating functions.

Soft phone is the primary graphical user interface. Soft phone has the basic

telephony UI elements, directory, call history functionality and other functions

such as presence management, serving state and so on. Soft phones

require PC with fast enough CPU, adequate memory, high quality sound

card and supported operating system.[11]

Mobile Client is a UI for mobile phones based on mobile platform.

Session Initial Protocol (SIP) Phones are IP desk phones that are connected

through network cable to the system.[11]

31

Monitoring is the graphical UI for monitoring the users and providing current

statistic information. Monitoring includes data tracking and analyzing for

identifying individual agents, contact center performance, anticipating

problems and coaching.[10] In performance measurements we can use this

online monitoring feature for monitoring the quality of contact center service.

Reporting is the graphical UI for getting statistical results on software usage

and reporting information.[11] In order to analyze the events on contact

center solution performance, the reporting tools can be used to get this data

from the reporting data storage.

Administrator is using java web star UI for configuring, controlling and

monitoring the contact center software.

Customers are the external users who perform the calls to the system. They

can use any phone connected to the PSTN directly or indirectly to make a

call.

PSTN networks are connected to the IP network through VoIP gateways.

Gateways provide the electrical and mechanical adaptation between two

networks and perform protocol and voice stream transactions. Gateways are

controlled by SIP adapters towards contact center solution which are

connected to the core components for call routing and switching call events

to the correct extension (Agent or queue). After connection is established,

the VoIP gateway routes RTP stream to defined extension.

4.2 Connectivity and Core Components

Connectivity and core components handle connections, call routings, call

switching and other functionalities (e.g. data loading, protocol transactions

etc.). These components are described below.

Web Servers. Web servers are computers that deliver web pages. Most

contact center applications use the client server architecture.[11] Web UIs

are using web service components of web server for loading data in UI from

requested data storage. This data (user setting, user role, user serving, user

profiles directory data) will load the web server and data storage server.

Connection servers. Connection servers provide secure connection

between web client UI and core component.[11]

32

SIP bridges and gateways. Gateways connect PSTN networks to IP

networks and enable calls to pass from one to the other.[11] SIP bridge

handles initiating, receiving and controlling calls from/to SIP gateways and

SIP phones. SIP bridge contains a SIP register and perform protocol

transactions from SIP gateways to the core component of the system. In

case of SIP phone login to the system SIP bridge handles the transfers of

authorization info to the core components of the software. Voice stream is

travelling through SIP bridges and gateways.

Because of the real-time requirement of voice streams it is essential to

understand the possible voice stream paths and to recognize the possible

endpoints. Gateways are voice stream endpoints in the LAN. The other

voice stream endpoint is either an immediate endpoint such as IP Phone,

Client Terminal, Voice Mail, Interaction voice responds (IVR) or in some

cases another gateway.

Core components. This type of infrastructure provides highly integrated

capabilities for basic voice switch functions as well as optional sets of

contact center capabilities.[11] Core components are used for handling

contact request, event auditing, call routing, call switch and control.

Figure 9 illustrates the simple call routing example.

Figure 9.Simple call routing including voice stream and call control

33

Figure 9 shows that while the call control is handled by the application server

core components, the voice stream is having a direct connection from the

gateway to the end point.

4.3 Data Storage

Data storage server refers to the file and database server. Data storage

servers are used for storing system configuration, user accounts and call

details as well as files for voice prompts, voicemail messages, call recording

and attachments.

This data can be static or dynamic. Static data refers to system availability

and therefore it is very crucial for operation of the software. Dynamic data is

not crucial for the operation of the software but is very important for service

control, production control and other related issues important to the

customer.

Reporting and monitoring databases are as well part of data storage. Quality

of service can be monitored by the system, data of events can be analyzed.

Event data is stored in reporting databases. All kind of reports based on

users, dates, and queues can be received form reporting database.

4.4 Hardware

Hardware needed for the contact center solution depends on the type, scale

and size of the implemented solution. Minimum hardware requirements for

system installation are one application server and one database server.

However, the recommended number of servers for minimum installation is

two application servers and clustered database. The recommendation

comes from the fact that application components can be backed up in these

two application servers in redundant installation where one component

instance is active and other one as backup in case the active component

fails.

Telephony features are fully based in VoIP. But in order to communicate with

the outside world then VoIP gateway hardware is needed. From the client

side perspective the agent needs a PC with headset, mobile phone or IP

desk phone for communication.

34

4.5 Network

Network infrastructure is the technology that physically transports the

agent/caller interaction.[11] Telephony network refers to the PSTN and

mobile network. PSTN connection to the TCP/IP Ethernet network is done

with VoIP gateways which transform PSTN call to IP and vice-versa. Mobiles

are connected through own network (GSM/3G) to the PSTN and further to

the VoIP gateways.

Network is connected to PSTN via E1/T1/J1 connectors and to the CC

software via VoIP gateways. Internet connectivity for the web forms is done

through firewalls to the LAN.

Network connectivity for the solution users/terminals is done through

corporate data network. Network is connected to the solution via TCP/IP

Ethernet network (LAN/WAN).

Contact center enables agents to handle phone calls, chats, e-mails and

other interactions with customers. In order to enable this communication, all

components mentioned above affect on contact center performance. In the

following chapter, the performance of the contact center solution will be in

focus.

35

5 PERFORMANCE OF CONTACT CENTER SOLUTION

In the chapters below the performance of the contact center is introduced in

general, and the performance requirements and performance analysis of the

contact center is described.

5.1 Performance of Contact Center Introduction

The most challenging issue in the contact center performance is the timing

issue e.g. answering calls in time, service availability, resource allocations,

failure recoveries, and so on.

The contact center performs in real time and there are changes e.g. in the

number of agent serving, how agents are allocated, and how good they are

performing. Contact center needs to monitor the number of calls arrived to

the extensions (queues) in order to avoid long queuing times.

From the contact center performance perspective it is very important to

answer to each call arrived to the system. CC supervisor can supervise on

how agents are performing and in what state they are, are they serving or

are they wrapping up calls, or are they just not currently serving in the

queues. Supervisor can inform agents for the need to serve, or even force

agents to serve in queues.

5.2 Performance Requirements for Contact Center Solution

Performance requirements for the contact center solution described in this

chapter are derived from the end user, application, backend, network, OS,

hardware, and software.

5.2.1 End User Requirements

Performance requirements from the end user perspective start from login,

user authentication and other requirements relevant for the end user. These

end user requirements are described below.

Login. Login is the process for identifying and authenticating the user

through credentials for accessing system. Login starts with connection to the

system, as an output, the login session is opened for entering credentials.

Credential data is sent for the authentication to the database and if the user

36

is successfully authenticated the session is opened. Login process takes

time and may cause delays. This delay needs to be reasonable.

Authentication. Authentication to the system can be done in various

methods. Common methods used are login name following with the

password, by certificates (e.g. SSO single sign on), and pin codes for phone

terminals.

When authenticating with login name and password the client sends user

name and password. Strings are processed and passed to the database

procedure for verification. Server responds with success or failure depending

on result. On success server sends to client the unique user id that will be

used with service requests. On failure the request for credentials is sent over

again until success or timeout.

Authenticating users with certificates, user specific certificates are required

on the user interface module. Pin codes are used for authenticating users

using SIP phones.

Web Browser based user interface. User interfaces that provide end users

access to the phone, monitoring, reporting and administrating functions.

Throughput. Throughput represents the amount of data that the users

received from the server at any given second. This statistic helps to evaluate

the amount of load end users generate, in terms of server throughput.

Transaction per second. The number of completed transactions (both

successful and unsuccessful) performed during a test. This statistic helps to

determine the actual transaction load on system.

Transactions Response Times. Slow applications cause unhappy

customers.[8] The average time taken to perform transactions. This statistic

helps to determine whether the performance of the server is within

acceptable minimum and maximum transaction performance time ranges

defined for your system.

Hits per Second. The number of hits made on the Web server by end users.

This statistics helps to evaluate the amount of load end users generate, in

terms of the number of hits.

37

Call Connection Response Time. Response time in terms of delays in

connection of two ends and the response time in terms of delays in voice

stream. Delays in connecting two ends refers to the time that it takes for

placed call to be received by the other end (e.g. customer placing the call

and waiting for the agent to answer it). This type of delay is not that critical

compering to the delays in the voice stream with demands to carry high

quality voice over it.

Voice quality. Voice quality in terms of end user experience can be for

example on the following levels:

Excellent voice quality. Speech is clear. Volume levels are satisfying and

there is possibility to increase/decrease levels from the current level. Voice

dynamics are good or excellent.

Good voice quality. Speech is clear. Possibly not the very best voice

dynamics, appearance of distant counterpart and/or desire for volume level

adjustments.

Acceptable voice quality. All speech is caught, but there are occasionally

some minor but clear distortions and/or too low or high volume levels. It

might be approved if there are other good reasons to approve it.

Unacceptable voice quality. Most or all of speech is caught, but there are

severe distortions and/or too low or high volume levels. This will not be

approved.

Availability. General availability for services in the solution in case of

service failure and in case of service maintenance. Service availability to the

end user must be maintained and managed in order to be available all the

time.

In case of application failure in the system, the redundant backup unit of the

failed application is activated and thus availability of the system is recovered.

In case of maintenance system is switched to the redundant backup units

and active units are switched off and are maintained during this time, finally

the system maintenance is done and active units are switched on again.

From the end user perspective system needs to be available all the time,

and switchovers should have minimum impact to the end user.

38

5.2.2 Application Performance Requirements

Application performance requirements are related to the call events,

automated services and routing rules. These application requirements are

presented below.

Inbound events. Inbound events refer to the calls that are coming to the

system from the external network (PSTN). These incoming events need to

be handled by the system without errors or extended delays.

The call routing events in the inbound need to be performed according to the

routing rules. Live events need to be handled by the system as designed.

These events (e.g. phone calls) are supposed to happen simultaneously

during inbound so that in the system there will be a need to handle this

events properly. One important aspect in the live events is that they must

continue to be active until they are hanged up by the end user or application

definition. With increase of events the load of the system is increased and

the application performance needs to be verified.

Outbound events. Outbound events refer to the calls that are going from

the system to the external network (PSTN). These outgoing events need to

be handled by the system without errors or any extended delays. The call

routing events in the outbound need to be performed according to the

routing rules. Live events need to be handled by the system as designed,

correspondingly to the incoming calls.

Automated services. Interactive Voice Response (IVR) applications allow

the system to interact with humans using voice and DTMF keypad

inputs.[10]

IVR application can be used for example for informing the caller where call is

directed. IVR application selects the destination based on the defined

number.

IVR applications contain logical functions and states. Each state have

specific IVR functionality e.g. playing message from file, recording message

to a file, divert the current call to another number etc. IVR application loads

the system with events and this IVR application performance needs to be

verified.

39

Routing rules. Calls that have been called to a queue number are delivered

to the agents according to the queue settings and schedules. Routings to the

queue number can be done based on the automatic call distribution,

conditional routing and customer data routing.

Automatic call distribution routs calls to queue based on the destination

number. Conditional routing analyses the current situation when making

routing decisions and dynamically adapts to the situation. The routing

conditionals can be for example purpose of call, time of call, and CC staff

availability. Customer data routing requires access to the customer

information and uses customer information when making routing decisions.

Calls or forwarded calls to a personal number are treated primarily as the

personal reachability service profile or device status defines. Based on the

routing parameters and reachability profiles, a call that comes into a queue

are forwarded to a personal number.

In case of presence profiles the users are ready and available to

communicate. In case of absences e.g. meeting, lunch or vacation, the calls

are forwarded to other users, queues, voicemails or a simple IVR informs the

caller about the current reachability state based on the routing rules defined.

As per device status system monitors the state of user terminal device and

routings and reachability are depending on the device state (e.g. ready

connecting, busy).

Routing of the outgoing calls to an appropriate number or gateway.

Outgoing calls routing can be based on the call with exceptions, location

based routing and least cost routing functionality. Ongoing calls with

exception are referring to the redirecting of called number A to the number

B. Location based routing select the gateways for routes based on the

source number location. This is used when company has offices and

gateways in different location. List cost routing is used for reducing carrier

charges when call reaches the PSTN.

5.2.3 Backend Requirements

The backend requirements are related to server-to-server connection and

high availability. They are presented below.

40

Server to Server. Servers used for the solution are application and

database servers. Application servers with performance focusing on

processor and networking. Application servers work with processes between

users, modules and data bases by sending retrieving events, storing,

changing or removing data. Application servers do not contain any crucial

data and therefore they are easy to be replaced.

Database server with performance importance on amount of I/O file and

storage capacities. Data base servers contain static data and dynamic data.

Static data refers to the configuration and user data which is critical for

software operation and therefore availability is a must. Dynamic data refers

to the call data, service level control and other business relevant data which

is not crucial for the ongoing operations but very critical for the service

provider or to the customers or both. Data need to be regularly backed up.

High availability. Software processes in servers are controlled and

monitored by availability controllers. In case a component fails the automatic

recovery starts by restarting the same component on another server for

having the service back.

5.2.4 Network Requirements

The network requirements are related to network traffic and VoIP packages

in the network. They are presented below.

Network traffic. Network traffic control is implemented with firewalls and

access lists on switches and routers and using VLANs. Different traffic

shapes apply to different network boundaries.

Between the management network and the core network, there is

management traffic, such as configuration tasks. Between the core network

and the access network there are mainly database queries.

Voice streams are typically carried from voice endpoints in the access

network over service and access links to voice endpoints (e.g. IP desk

phones, VoIP gateways) in the customer LAN.

Voice streams have strict time demands in the network, thus it is

recommended to minimize the network distance between endpoints.

Minimizing the network distance between endpoints may decrease the

41

number of services that depend on any particular device and can therefore

provide more robustness against voice distortions due to increasing traffic

delays.

VoIP packages. In VoIP, the quality of voice transmission and receiving

must be consistent in order to replace public switch telephony network with

the service of VoIP. VoIP packages should not be suffering from too long

one-way delay known as latency, packet loss and jitter.

One-way delay demand should be less than 150 milliseconds in order to

carry high quality voice, according to the International Telecommunication

Union (ITU).[11] Latency over 300 milliseconds leads to the big delays and

echo and is unacceptable due to the bad voice quality.

There should be no packet loss in the network. Packet loss exceeding 0,2

percent causes clipping.[11] This means that words get dropped from

conversation. Jitter buffers for compensating varying delays are effective on

varying delays less than 100 milliseconds.[12]

VoIP can guarantee high-quality voice transmission only if the voice packets

have priority over other kinds of network traffic. VoIP traffic must have

certain compensating bandwidth, latency, and jitter requirements. This high

quality voice is guaranteed if the Quality of Service (QoS) is applied in the

network.[12]

5.2.5 OS/Hardware/Software Requirements

Requirements related to CPU, memory, disc usage, database and

processes data are presented below.

CPU. Some server applications cause more strain on the CPU capacity than

disk I/O or memory. The acceptable amount of CPU to be used by module

tasks is e.g. 40%. For CPU optimal performance at peak times, the average

CPU usage must not exceed e.g. 70 percent over a 15 minute interval. Any

back end module tasks should not take total amount of CPU.

CPU utilization is referring to the total amount of available CPU that is being

utilized. CPU utilization should not exceed e.g. 60 % of total CPU. CPU

Burst tolerance referring to the amount of time a process uses the CPU for a

42

single time job. A process can use the CPU several times before completing

the job.

CPU spike is a sudden increase in processor utilization, which can cause

temporary or permanent damage to the CPU and motherboard. CPU spikes

can be caused by simultaneous running of applications that use a large

amount of CPU resources and RAM.

A sustained processor queue length of two or more threads indicating that

threads are being kept waiting because a processor cannot handle the load

assigned, these typically indicates a processor bottleneck.

Memory. For a process, memory consumption should be steadily growing.

After load is over, the memory consumption should return to reasonable

state. Memory consumption should be stable.

No memory leaks. A permanent memory leak refers to the memory created

by the system which is not destroyed until reload. Temporary memory leaks

refers to the memory created, used and finally destroyed when not needed.

Memory available bytes mean the remaining amount of physical memory.

Cache bytes mean the static file cache size. A page fault per second refers

to the overall rate of error pages. Pages per second if this increase the out of

memory increases.

Memory pool It is a pool to accommodate objects created and used by the

application and the operating system so filled pool means that the memory

leak may occur.

Disk usage. Routine services for using disk should not always grow, there

should be some cleaning routines applied.

Database queries. A database query is sent to a database in order to get

information back from the database. All queries perform some type of data

operation such as selecting data, inserting/updating data, or creating data

objects such as tables. DB should be used in optimal way. No peak

excessive queries into DB.

43

Data related to the software processes. The process data contains

number of threads active, opened handles, processor activity, as well as

physical and virtual memory allocation.

5.3 Performance of Contact Center

Performance of the contact center starts with web logins. During web logins

there are data queries and transaction between web client, web server,

application server and the database. These queries and transactions create

load to the system, this load needs to be measured, analyzed in order to get

the performance levels of the solution.

Performance continues with the other components involved in CC solution

which enables the communication in the system. Communication in the

system takes place with different channels that communicate with each

other.

From the user perspective, communication can be internal and external.

Internal communication is referring to the communication within same

network. External communication is referring to the communication out of the

system through gateways to external networks.

This communication system has its own communication logic for connection

and routing rules. Communication events load the system that needs to be

measured in terms of resource consumption, delays in communication and

the data transfer during communication.

To get more knowledge on performance, the system needs to be loaded with

multiple communication events. Effects of the events need to be monitored,

and the data collected and analyzed.

5.4 Analyzing Performance of the CC

Performance analyzing starts with the collection of data during test runs,

analyzing the collected data, and finally results and conclusion. The

collected data contain system events such as the time when the events took

place, delays of the events, and failure points if any.

The data is collected from the application and database servers in order to

analyze the server performance. In addition, network traffic data is collected.

44

Depending on the test run, additional data is collected for analyzing the

sound quality during by having test users manually logged to the system.

The collected data is analyzed, and test results are evaluated and finally test

results are ok or failed. This leads to more tests, changes in the test setup,

or changes in software modules in order to verify the performance

requirements.

5.4.1 Performance Indicators in CC

In this chapter, the performance indicators in CC solution are introduced.

These main indicators derive from events, delays, logins, components, net-

work and sound quality.

Events and delays. In VoIP, network delay is caused when data packets

(e.g. voice) take more time than expected to reach their destination. There

may be different sources of delays in the VoIP networks.[13]

Logins. Web logins are the first events in CC. During login time there are

delays in loading for different Web UI views make queries for directories,

history, and others. These types of delays have impact only for C solution

users. When lots of users log in, the delay has to be at the accepted level.

In the CC solution the communication travels from one end to the other end.

Figure 10 illustrates the end-to-end voice flow in a compressed voice

circuit.[13]

Figure 10. End-to-end voice flow

Communication has delays that have direct impact on communication quality

and customer satisfaction. End-to-end software dependent delays need to

be considered. The delays need to be reasonable and therefore they need to

be followed during performance testing as per delays in RTP packages need

to be very controlled since they have direct impact e.g. in the call quality.

45

CC components. CC components have also performance metrics. This

metrics define the maximum number of agents in the system as well as the

maximum of simultaneous calls that one individual component can run on a

dedicated hardware. These components can be multiplied for extending the

number of simultaneous calls, connections and agents in the system.

Acceptance levels shown in Table 2 are based on the company internal

experts.

 Table 2. Single component performance metrics based on internal experts.

Single Component Maximum Simultaneous

WEB Logins 1000 softphone agents

SIP Phone Logins 1000 desk phone agents

SIP Bridge 1000 calls

Connection Server 500 connection

Core component 2000 agents

Table 2 illustrates the maximum simultaneous events that one single

component can handle.

Servers. CC components are installed on application and database servers.

When system is loaded with communication events the server workload

increases. This increase is monitored through a performance monitoring

application, and the saved data is analyzed after each test run. Windows

performance monitoring application can be used if the Windows operating

system is in use.[14] Performance counters, such as processor utilization,

memory usage, disk read and write, and network are commonly used.

In application servers, data related to the each tested process is collected.

This process data contains number of threads active, opened handlings,

processor activity, as well as physical and virtual memory allocation.

In database servers the data related to the hard drive read and write

operations such as the read and write data request, and read and write

bytes per second, are collected.

46

Network traffic. The communication between application and database

servers can increase network traffic. The amount of sent and received data

over network needs to be collected. LAN needs to be utilized first in order to

estimate the amount of other network traffic.

Sound quality during heavy load. Sound quality usually is tested by the

physical user logins to the system under test. Users can evaluate the sound

quality during the call based on their experience.

5.4.2 Performance Acceptance Levels in CC

Performance acceptance level refers to the criteria of defined metrics for the

performance of the CC solution. It is set based on the test run and described

in the test case. Acceptance level should meet the requirements of the

software. Acceptance level for web logins depend mostly on user

experience, and it is acceptable that web logins take longer than opening

other web UI after login. Also delays in performing searches in the web UI

have to be at a reasonable level.

In CC communication the main delays are the transmission delays and

connection delays. Transmission delays are standard transmission time and

it has impact in the transmission quality of the user applications. The

transmission delays should not exceed the maximum accepted level as

shown in Table 3. Transmission delays are critical for having stability and

quality in system. Connection delays in CC cannot be too long as the

customer is waiting for live communication.

The acceptance level of delays should be defined based on the sources of

delays and type of communication. For calls acceptance delays should be

smaller than for example in e-mails. Table 3 lists the common types of

delays in CC and their acceptance level based on the company internal

experts and [13].

Table 3. Delay specification based on [13] and internal experts.

Types of delay Acceptable level

Web UI login delays 5 – 30 seconds

Delays for another view in Web UI 2 – 10 seconds

47

Delays on Searching in Web UI 5 – 30 seconds

Transmission delays 0 -150 millisecond

Connection delays 1 - 5 seconds

Commonly used acceptance levels are total processor utilization of 60%, in

memory there should be no memory leaks, disk reads and writes per second

depend on disc manufacturer, and network utilization is at the maximum

50%.

48

6 PERFORMANCE OF CC SOFTWARE AND ITS IMPLEMENTATION BY LEAN

Performance in Lean should have focus on early testing and feedback.

Measuring performance only once at the end of a long sequential

development cycle may cause long delays and extra cost to the project.

After many months of development it can be very costly to discover during

performance testing that a key architectural decision was defective.

In Lean development, short cycles with early feedback loops are critical.

Implementing less predictable things early and in short cycles that include

performance measurements, the cost of delay is reduced.

Performance testing is very important for delivering the good product.

Performance testing traditionally requires weeks for setups and therefore

there is no time to take it from the start of the development. However, now

there are many developed tools that enable performance testing from the

beginning of the project.

Performance is important everywhere in Lean development lifecycle. Since

performance is continual and repeatable process in software development,

this continuous improvement is based on repeatable test runs and feedback.

Performance needs to be looked at from both quantitative perspective (e.g.

numbers, speed, numbers of users and so on) and qualitative perspective (

e.g. how happy are the software users).

In order to implement performance aspects of a contact center solution in

software development based on Lean methodology, a couple of approaches

are be introduced in this chapter. These approaches will cover most of the

performance aspects and the approaches will be introduced to the case

company.

6.1 Approach 1: Performance Testing as Part of Every Development Cycle

It is important to understand that performance is not just an extra work but it

is a must in order to be successful. Integrating performance aspect into the

development cycles is done by getting performance into user stories. Since

user stories have a simple description of a feature or functionality to be

added into the product backlog, the backside (e.g. if stories are written in

49

paper) of user stories can be used for having performance aspects. The

backside of user stories is used for noting items relevant to the performance.

In order to integrate performance into the development cycle it is very

important to have people with special skills on performance in the team. This

team can think of where the application is going to be run and what

performance aspects are relevant to be checked.

Performance persons should be involved throughout the development cycle

and they work as advisors in the team in order to have performance involved

in every part of the development cycle.

Figure 11 shows a simplified picture on how performance could be

integrated in the Lean agile development cycle.

Figure 11. Integrating performance testing into Lean agile development cycle

In the analyzing and design phase in the development cycle, the stories are

further discussed and analyzed, and there will be more details on how the

feature described in the story will be built including the technical design.

User acceptance test cases are created at this stage based on the

assumption on how the feature will be used and the expected result.

Parallel with the analyzing and design phase the performance aspects of the

product start to be analyzed. Performance relevant stories are created in the

back side of the user story, or as a separate performance story. When

stories are ready the development of test assets starts and as a result the

50

performance test cases are created and for the test to be executed the test

environment is designed.

During the implementation phase of the development cycle in the

performance side of that implementation the test environment is finalized for

the test cases to be executed in testing phase.

Test execution phase can be done parallel in separate testing environments.

For the user stories acceptance testing is done to verify the desired

customer functionality in the product, and for the performance stories the

test execution is done for desired test case output.

At the evaluation phase based on the testing result of the user stories, the

evaluation process will determine that the user story will be part of the

desired software, or in case of failure, it will get back to the requirement

phase. As per performance aspect of the user story, if the story criteria are

met, the testing is completed and the final report is done. In case of failure

the team should be able to detect the source of failure and proceed with

tuning in order to meet acceptance criteria. If tuning cannot be done the

issue is stated as new risk identified and this new risk will get back to the

developer test assets for further analysis.

The number of user stories to be picked up from backlog items will be based

on the number of iterations, their length (e.g. 1 to 2 weeks) and the size of

the team (e.g. small and cross functional). Target dates for iterations

depends from estimated work amount that the teams can handle. The teams

need to communicate on daily bases.

6.1.1 Iteration Workflow

Initially the stories with potential risks to the software are created and those

stories are part of the back log items to be executed by the performance

team. The performance team takes story points from backlog and start to

work on them. Figure 12 illustrates a simplified iteration workflow.

The testing environment and test cases are created based on the story

points. Execution of the tests cases starts when test cases and test

environment is ready. Right after the execution the test case validation takes

place and the base line is set for the future similar testing approach and the

first test results will be used for benchmarking.

51

Figure 12. Iteration workflow

The test results are analyzed and classified based on the requirement

validation. If criteria are met the test case is completed, and if not, some fine

tuning can be done in the system in order to meet the acceptance criteria. If

criteria are not met and tuning will not solve the issue, then new risk is

identified at this point. Finally, the test result is documented in the test

analyzing report. Iteration under work is finalized before going for next

iteration.

6.1.2 First Iteration

In the first iteration, developing stories with performance aspects included

starts at the unit level. Coding is done by defined coding practices like test

driven development, which means that the measurement of performance

starts from the unit testing.

Performance tests can be run on the unit testing level by calling functions

and classes. After each cycle results are compared in a specific file and

checked for big changes in the response time value. This will help to tackle

issues, e.g. pointing into wrong DB, in the beginning of development, so that

changes can be done before getting into continuous integration or

acceptance phase or further.

These stories lead to the use of continuous system build that provides

feedback every time new code is checked in the code repository, usually on

a daily basis.

52

6.1.3 Second Iteration

The second iteration with story points with risks related to the software

installation and the platform where the software will be run is described in

Table 4.

Table 4. Software installation story points

Requirements Story points

Software Installation Hardware

Operating system

Databases

Story points based on the requirements on operating system, hardware and

software under test are described in Table 5. They are based on the

introduction in Chapter 5.2.5.

Table 5. OS, hardware and software under test story points

Requirements Story points

CPU Acceptable amount of CPU to be used

CPU optimal performance at peak times

No module back end tasks takes 100% of CPU

CPU Utilization

CPU burst

CPU Spike

Memory Stable memory growing

Stable memory consumption

No memory leaks

Memory available bytes

53

Disk usage Routine services should not always grow

Clean routines for the routine services

Database queries Data base queries data operation ok

DB should be used in optimal way

No peak excessive queries into DB

Software process performance data Active threads

Opened handles

Processor activity

Physical and virtual memory allocation

Table 5 illustrates the story point related to the requirements, as explained in

Chapter 5.2.5.

6.1.4 Third Iteration

The third iteration starts with story points concerning end user requirements

that are described in Table 6. They are based on the end user requirements

explained in Chapter 5.2.1.

Table 6. End user requirements story points

Requirements Story points

Login Session opened for entering credentials

Credential data is sent for the authentication

Reasonable login delays

Authentication By username and password

By certificates

By pin codes

54

Web UI Phone, Monitoring, Reporting, Admin UIs

Throughput

Transaction per second

Transactions Response Times

Hits Per Second

Call Connection Response Time Delay in connection of two ends

Delay in voice stream

Voice quality Acceptable (Excellent, good, ok)

Unacceptable

Availability In case of failure

In case of maintenance

Table 6 illustrates the story point related to the requirements, as explained in

Chapter 5.2.1.

6.1.5 Fourth Iteration

The fourth iteration may have stories with performance story points as listed

in Table 7. They are based on the application performance requirements

introduced in Chapter 5.2.2.

Table 7. Application performance story points

Requirements Story points

Inbound events Handling incoming events without errors or any insufficient delays

Call routings events according to the routing rules

Handling live events(e.g. phone call)

Outbound events Handling outgoing events without errors or any insufficient delays

55

Call routings events according to the routing rules

Handling live events (e.g. phone call)

Automated services DTMF keypad inputs

IVR application states

IVR application functions

Routing rules Automatic call distribution routing,

Conditional routing

Customer data routing

Table 7 illustrates the story point related to the requirements, as explained in

Chapter 5.2.2.

6.1.6 Fifth Iteration

The fifth iteration may have stories based on the backend requirements. The

story points are based on the requirements presented in Chapter 5.2.3.

Application performance story points are shown in Table 8.

Table 8. Server to server story point

Requirements Story points

Server to server connec-

tion

Applications and Data-

base servers

Server processor and networking

Processes between users, modules and data bases by sending retriev-

ing events, storing, changing or removing data

Amount of i/o file

Storage capacities

High Availability Controlling and monitoring processes

Automatic recovery

56

Table 8 illustrates the story point related to the requirements, as explained in

Chapter 5.2.3.

6.1.7 Sixth Iteration

The sixth iteration may have stories based on the network requirements. The

story points are based on the requirements presented in Chapter 5.2.4. See

application performance story points in Table 9.

Table 9. Network requirements story points

Requirements Story points

Network traffic Traffic between management and core network

Traffic between core and access network

Real time demands in network (Voice streams)

Minimized network distance between endpoints

VoIP packages Latency

Packed loss

Jitter

Table 9 illustrates the story point related to the requirements, as explained in

Chapter 5.2.4.

6.1.8 Seventh Iteration

The seventh iteration for the performance team with stories more relevant to

the performance testing types, as described in Chapter 3.2.

Load scaling of the system in order to test that system can be scaled by

increasing load level.

Load capacity of the system in order to verify how much load essential

system/components can handle.

57

Load stressing the system/components to the point where the system does

not work properly or does not fulfill all requirements defined for its

acceptable performance.

Stability and memory consumption for verifying the stability of the system

and locating the possible memory leak issues.

Scalability of the system in order to verify that scalability of the system

increases while increasing resources and as final result the performance of

the system increases.

Flexibility and failure recovery. System must function correctly even

though functionality is added, modified or removed from the system or

hardware is added to the system while system is active. These test are very

important for the system maintenance perspective.

Performance after upgrade. Performance of the system after upgrade is

measured with some standard tests and the results is compared with those

ones from earlier tests with previous software version.

This step finishes all iterations for this approach, and the performance

aspects are the elementary part of the product.

6.2 Approach 2: Separate Team Dedicated for Performance

Performance team as a separate team in the software development cycle

working on performance of the software. Figure 13 illustrates how tasks flow

from the development team to the performance team. On top of the other

aspects related to the CC solution, the development team analyses the

stories picked from backlog, and in case there are performance concerns,

the performance tests are required for that story.

Figure 13 Performance team as a separate team from development

58

Performance starts by system evaluation so the collection of information

about the project as a whole, the functions of the system, the expected user

activities, the system architecture, performance requirements and any other

details of that kind are helpful in creating the performance testing strategy

specific to the needs of the particular project. See Chapter 3.3 for more

details.

After the system evaluation, there are a number of stories with potential risks

to the software. Starting with the performance requirements of contact center

solution in Chapter 5.2 and continuing with the side requirements as the

hardware where the system will run, base installation involving operating

system and data bases and finally the installation of the actual software and

finalizing with the requirements on the performance testing types in Chapter

3.2. The stories are created and those stories will be part of the backlog

items to be executed by the separate performance team.

The performance team takes story points from the backlog and starts to

work on them. The number of the stories to be picked up from the backlog

items will be based on the number of iterations, their length (e.g. 1 to 2

weeks) and the size of the team (e.g. small and cross functional). The target

dates for iterations depend on the estimated amount of work that the teams

can handle.

Communication between teams in this approach is very critical. The team

needs to meet on a daily basis. Performance teams needs to inform the

other teams on stories they are working on as well as on what was critical to

the product they have thought of. If the teams that develop the product have

this knowledge then the performance aspects are taken into consideration

during product development in cycles. This approach makes sure that all

stories are studied and performance aspects of the product are carefully

analyzed.

The iteration workflow is the same as for the first approach but the content is

not necessarily the same. The difference in iterations is that by this approach

only items relevant to the performance team are placed in backlogs.

By this approach, the story point content in iterations can be planned more in

advance compared to the first approach but this does not mean that it is the

59

final one as per new stories with high priority may come in form development

team during their iterations.

60

7 RESULTS AND ANALYSIS

The advantages and disadvantages for the approaches introduced in

Chapter 6 will be analysed in this chapter. Also the results and analyses

based on the interviews on the approaches are presented here.

7.1 Approach 1, Advantages and Disadvantages

Analyzing the approach 1 and pinpointing the main positive aspects for

recovering the performance of the solution in all levels of development and

on the other hand, recovering the main negative aspects which may lead to

the bad performance of the solution in general.

Advantages:

 Getting the performance stories into same user stories regarding

feature or functionality.

 Integrating performance measurement into the unit testing.

 Taking product performance into account from the day one of the

development life cycle.

 Involving performance testers throughout the cycle.

 Reducing cost of quality by fixing performance issues early in the

cycle.

 Identifying major application defects and architectural issues early.

 Incremental performance testing of integrated modules. The

incremental performance test should be compared in terms of

progress.

Disadvantages:

 At early level only part of the developed product is available so

iterations need to be repeated more often.

 Balancing workload inside the team, meaning that performance

aspects of feature and feature to be developed have same priority.

61

 Team with people having different backgrounds requires more time

on decision making, which tends to reduce efficiency.

 Team members, especially developers, may concentrate on

development activities more and may neglect performance testing

activities.

 Developers tend to have more creative skills while performance

testing requires more of destructive skills.

These positive and negative aspects are part of the approach above.

However, if negative aspects are analyzed by the team in advance they can

become less critical for the success of this approach.

7.2 Approach 2, Advantages and Disadvantages

The approach 2 is analyzed based on the positive aspects for recovering the

performance of the solution in all the levels of development and on the other

hand, recovering the negative aspects which may lead to the bad

performance of the solution in general.

Advantages:

 A specific team for performance testing provides skilled performance

testers and cumulates knowhow.

 Team is not emotionally involved with the team who has built the

product.

 Team members can support each other because of their common

approach.

 Team develops its own plan for performance testing, self-leading

team.

 It is possible to make more on-demand type testing.

 Decision making is easier as this separate team handles

performance issues only, and team members have common

background.

62

Disadvantages:

 Finding the critical aspects relevant to the performance testing is

difficult as the team members are not involved in development. The

team needs to have a performance tester in the development team

as well.

 There are no natural, nor reliable ways to communicate possible

requirement changes to a separate team. These may have impact to

the performance.

 As developers do unit-level, component-level, integration-level

testing, the performance team is basically doing the double repetition.

 Product delivery issues in case of issue during performance testing

then release will be pending for the issue to be fixed first by

development team.

 When to start performance testing is always a challenging decision.

These positive and negative aspects are part of the approach above. In the

same way as in the first approach, if negative aspects are carefully analyzed

by the team in advance they can become less critical for the success of this

approach.

7.3 Results and Analysis Based on Approaches

Having a Lean agile development team and Performance testing team as

separated entities will get complicated. After each delivery, the performance

team needs to start from the beginning and analyze all variables relevant to

the delivered product and the delivery will be postponed due to the

performance tests. In addition, as to the end result, if there are performance

issues then the product needs to get back to the development for another

cycle.

Building a Lean agile development team with performance testers included

one makes sure that all interactions will work, and after each delivery cycle

the product has performance built in it.

63

Creating a Lean agile development team and later on trying to add

performance in top of that it will not work. Performance testing into the Lean

agile development has to start from the user stories and at the unit testing

level.

Common aspects for both approaches related to the performance testing

types such as the scalability and stability aspects can be tested when entire

functionality is implemented and tested.

7.4 Results and Analysis Based on Interviews

The following chapters are based on three interviews with senior developers

with various experiences in Lean methodology. The interview topics are

listed in Appendix 1. This chapter includes straightforward guidelines

proposed by the professionals having been interviewed.

When considering the functionality requirements from the customer

perspective, it is important that the customer demands on how the system

should behave have been correctly understood. If not, the requirements are

false, and require bug fixes or feature improvements. In addition to bug fixing

and features improvements, the customers demand new features to the

product.

Functionality is the most important customer requirement. Make functionality

requirements work and follow up with the bug fixes of the solution. How to

implement it is a different topic (e.g. clean code and so on).

Reliability is the second most important thing after functionality. If a

component is working fast but crashes frequently then it is not reliable

enough and it is not working as desired. Functionality and reliability always

go hand in hand with each other and one should always think about

reliability while developing functionality.

Performance is very important and it should be included in the original

design. In the contact center solution, many components have critical

performance aspects. Develop solution functionality first and then follow up

with performance if there are performance aspects. Performance of the

feature should be determined based on the performance aspects used by

customer.

64

Contact center is a live session and calls are critical, e.g. how many

simultaneous users a customer demands in a live system, or the number of

ongoing calls the system can handle (e.g. 2000 ongoing calls). These

performance requirements can be very critical and have an effect on

memory consumption and bigger points such as calls per second, user per

seconds or user per time.

All performance starts with clear design, good design. Design the software in

order to avoid database roundtrips because they have huge latency. For

example, the good and efficient code that runs fast (e.g.in 2 microseconds)

but needs to access database often (e.g. 5 times) can result in total to 500

milliseconds. So it really does not matter if the code runs faster in terms of

microseconds if database roundtrips take many milliseconds. Instead, for

example, drop database roundtrip times from 500 milliseconds to 70

milliseconds instead of developing on decreasing code running.

Data copying is a huge operation CPU-wise and handling lock is other issue.

Having efficient code but forgetting locks, for example, having 5 CPU and

having 20 threads in application working together can make performance

even lousier instead of having 1 thread doing work. All threads try to read or

write at the same time leading to the boundary condition that is very difficult

to reproduce. This needs multiple time of execution but after a while, it can

crash. Therefore, it may appear time to time to customers but not in short

tests. In a multithreading environment it is necessary to find where the

shared data is located and modify the locking mechanism so that threads

are waiting for lock release and then access data in memory. If the question

is what is gained by having 20 threads and 99% of the time is consumed for

waiting lock mechanism the answer is when designing software consider the

performance aspects.

The performance of the product can be tested at different stages. At the unit

level, the unit testing performance is different from other performance testing

types and therefore it requires a different approach. Code profiling can be

used as a tool for measuring performance at the unit level. Checking code

efficiency with code profiling tools at the unit test level, for example running

code a million times and then checking where it spends most of the time.

Code profile is a tool for measuring performance in the smallest possible

65

level e.g. a testing class by checking how efficient that class is and how the

class may affect the total performance.

At the integration level, first identify most critical components and then

everything depends on the defined tests. Define what is wanted, e.g. 10000

user logins? How can that be gained? Test a certain path of the product, test

one feature of a chain of features such as the login process.

At the final product level, it is important to test the performance of the

product as whole with the nonfunctional testing part including system

resources e.g. CPU load, memory consumption.

Knowing the waterfall model, having a big project with low/no feedback and

very person dependent, the idea of Lean on the other hand is good.

Performance aspects need and should integrate on all stages of

development. Tools are needed for integration and especially for

performance measurement.

Lean methodology is based on development by delivering small tasks and

working all the time in all aspects of the product. The approaches for having

performance of software in product development by lean tend to solve lots of

issues related to the performance of the software. For example starting with

communication issues and going on with performance tasks in all

development aspects.

When analyzing the approaches introduced it is not that black and white

which one is better. In some cases Approach 1 is better and for some cases

Approach 2 is better.

However, Approach 1 seems much better for starting to form a unit test level

using profiling tools, continuing with integration and acceptance part of the

product compared to Approach 2 where developers decide what is relevant

for performance.

Approach 1 solves communication problems. People are aware of what

others are doing and especially if applying methodology e.g. which uses

stickers in board and having a team (developers and performance testers)

that does the performance tests and gets that through till the end.

66

In Approach 2, the performance team has to wait until development team is

ready in order to start working on that area, so always there may be a

blocker.

Considering the differences of these approaches for overall product

performance, Approach 2 seems better, however, for a software

development cycle having small stories in all iterations leads to the first

approach. The first approach would be better for Lean way of working.

Delivering small tasks and working all the time in all the aspects of the

product.

7.5 Comparisons of Approaches Based on Interview

Based on the interviews for suggested approaches, Approach 1 is much

better at the unit and integration level of the software development. All

performance aspects of the software are taken from the unit level,

integration and following with the acceptance part of the ready product.

However, Approach 2 is better when dealing with the performance testing

types at the end of the project. The performance team is specialized in the

performance testing types and the result may come faster and more

detailed.

67

8 DISCUSSION AND CONCLUSIONS

Both of the suggested approaches aim to reduce the software development

risks. These development risks refer to the requirements, design and

development, coding and integrating testing and so on.

In order to be successful, the team’s listening skills must be developed.

These skills help the team to get complete information about customer

needs, user stories, processes, software application and as well final product

what management and customer desires.

Lean methodology provides a good ground for software development. It

consists of proven principles, methods and tools that create processes for

making development more efficient. Lean provides an ability to develop

culture for encouraging people’s creativity and skills especially in problem

solving and continuous improvement.

The suggested approaches are aimed to cover the performance aspect of

the contact center solution in software development based on Lean.

However, the suggested approaches have not been implemented in

software development and therefore the actual outcome is missing and

conclusions about the outcome for the approaches is based on the

interviews and common sense.

These approaches are good candidates to be implemented by the case

company. the people interviewed encouraged the author to introduce the

study to the architects and other stakeholders in the company. The

stakeholders agreeing on one of the introduced approaches, it could be

taken into use for benchmarking against the current, traditional waterfall

development processes.

The introduced approaches were created to cover performance aspects of

the contact center solution having Lean as a base. Since this is the first time

performance testing is being woven in the Lean development methods more

research is required on Lean, applying Lean in software development, and

finally focusing on the performance of the software during all the stages of

development.

68

REFERENCES

[1] James P Womack and Daniel T Jones. (2003). Lean thinking. New York.

[2] C.Larman and B.Wodde. (2009). Scaling Lean and agile development.
Boston Pearson Education.

[3] Highsmith J. (2004). Agile project management. Addison-Wesley.

[4] SH L Pfleeger and J M Atlee (2010). Software Engineering. Boston
Pearson Education

[5] Extreme Programing. Getting Started.

http://xprogramming.com/index.php

[6] A.Shalloway, G.Beaver and J.R.Trott. (2010). Lean-agile software
development. Boston Pearson Education.

[7] C Kaner, J Falk and H Q Nguen (1999). Testing computer software. New
York

[8] G J Myers, C Sandler and T Badgett (2011). The art of software testing
Hoboken New Jersey.

[9] PerfTestPlus, Inc. A mental model for performance testing.

http://www.perftestplus.com/approach.htm

[10] B. Claveland (2008). Contact Center Management Directory. ICMI,
Colorado Springs.

[11] Bocklund L and Bengston D (2002).Contact Center Technology
Demystified. A Division of ICMI, inc Maryland

[12] Cisco. Quality of Service for Voice over IP.

http://www.cisco.com/en/US/docs/ios/solutions_docs/qos_solutions/QoSVoI
P/QoSVoIP.html#wp1015329

[13] Cisco. Understanding Delay in Packet Voice Networks.

http://www.cisco.com/en/US/tech/tk652/tk698/technologies_white_paper091
86a00800a8993.shtml

[14] Microsoft TechNet Library. Working with Performance Counters.

http://technet.microsoft.com/en-us/library/bb734903.aspx

http://xprogramming.com/index.php
http://www.perftestplus.com/approach.htm
http://www.cisco.com/en/US/docs/ios/solutions_docs/qos_solutions/QoSVoIP/QoSVoIP.html#wp1015329
http://www.cisco.com/en/US/docs/ios/solutions_docs/qos_solutions/QoSVoIP/QoSVoIP.html#wp1015329
http://www.cisco.com/en/US/tech/tk652/tk698/technologies_white_paper09186a00800a8993.shtml
http://www.cisco.com/en/US/tech/tk652/tk698/technologies_white_paper09186a00800a8993.shtml
http://technet.microsoft.com/en-us/library/bb734903.aspx

 APPENDIX 1 1(1)

Questions for Interview

Requirements:

1. How often customer/s demands for changes in the current product functionality?

2. How do you address those problems in terms of performance?

Performance:

3. What about performance of the product in current development process?

4. How do you measure performance at your company?

5. How performance testing is developed at you company?

6. How critical performance is for contact center solution?

7. Considering current software development methodology in use from where the per-

formance measurement starts?

Software Development Methodology:

8. How code deployment is done at your company? Do you use TDD or other meth-

ods?

9. Are you happy with the current development process? If yes why? If no why

10. What do you think for the Lean software development?

11. Can we have performance aspects of solution integrated in lean development?

12. How would you implement performance in development by lean?

Approaches introduced for integrating performance in software development by

Lean:

13. What do you thing for these approaches?

14. Consider the difference between those approaches. Would you use one of those ap-

proaches?

15. If yes then:

a. What problems does this approach solve?

b. How this approach fulfill lean way of working?

16. If no then:

a. What approaches would you suggest?

