

Android client application development for

existing CRM solution

Martin Kusyn

Bachelor’s Thesis

May 2013

Degree Programme in Software Engineering

School of Technology

 DESCRIPTION

Author(s)

KUSYN, Martin

Type of publication

Bachelor's Thesis

Date

2013-05-05

Pages

74

Language

English

 Permission for web

publication

(X)

Title

Android client application development for existing CRM solution

Degree Programme

Software Engineering

Tutor(s)

PELTOMÄKI, Juha

Assigned by

RAYNET s.r.o.

Abstract

This bachelor's thesis focuses on the development of client application for Android operating

system for mobile devices. The final application serves as a client for RAYNET Cloud CRM, an existing

CRM solution.

The first part of the thesis contains brief introduction of RAYNET s.r.o. , the creator of RAYNET Cloud

CRM, introduction of the CRM system itself and brief description of its functionality and

implementation. Requirements of the mobile client application are discussed and its user interface,

behavior and control are suggested.

Resolving of the application requirements brought several issues that have to been solved or

bypassed. These issues include several problems related to incompatibility between different

versions of Android operating system and also introduces several advanced techniques of Android

programming and describes used libraries.

The major part of the thesis is dedicated to implementation of the application itself. Particular

functionality of most important UX components is described as well as authentication model, data

obtaining workflow and usage of accounts and services.

The thesis demonstrates the development of Android client application that is compatible with

several generations of Android system. The last chapter summarizes the results of the application

development and points out its most problematic parts and also discuss the future development of

application.

Keywords

Android, RAYNET Cloud CRM, Java, AJAX, REST, Mobile application

Miscellaneous

1

TABLE OF CONTENTS

1 Introduction .. 4

1.1 Motivation ... 4

1.2 Company introduction ... 4

1.3 RAYNET Cloud CRM introduction .. 5

1.4 RIA - Rich Internet Application .. 5

1.5 AJAX - Asynchronous JavaScript and XML ... 6

1.6 Server-side implementation .. 7

1.6.1 Spring framework ... 7

1.6.2 Inversion of Control / Dependency Injection ... 7

1.6.3 Aspect Oriented Programming... 7

1.6.4 System architecture ... 8

1.7 Front-end implementation details .. 9

1.8 Available APIs ... 10

2 Mobile client ... 11

2.1 Motivation ... 11

2.2 Selected functionality .. 12

2.2.1 Lead .. 12

2.2.2 Company... 12

2.2.3 Person ... 13

2.2.4 Business case .. 13

2.2.5 Activity .. 13

2.3 UX design ... 14

2.3.1 General application View layout .. 14

2.3.2 General ListView layout ... 16

2.3.3 General DetailView layout ... 18

2.3.4 LoginView layout .. 20

3 Android development .. 22

3.1 Design .. 22

3.1.1 ActionBarSherlock library ... 22

3.1.2 SlidingMenu library .. 23

3.1.3 ViewPagerIndicator library ... 23

3.2 Using Android intents .. 24

3.3 Using AccountManager ... 25

3.4 Creating Authenticator Service ... 26

2

3.4.1 Content providers .. 27

3.4.2 Sync Providers .. 28

3.4.3 Jackson library .. 29

4 Implementation .. 30

4.1 UX Components ... 30

4.1.1 ListViews ... 33

4.1.2 DetailViews ... 52

4.1.3 Login screens .. 60

4.2 Accounts and Services ... 61

4.2.1 Obtaining and storing credentials in Account Manager 61

4.2.2 Contact synchronization service .. 63

4.3 Authentication ... 65

4.4 Obtaining data ... 66

5 Conclusion .. 71

References .. 73

Appendices ... 74

Gestures notation and actions ... 74

3

LIST OF FIGURES

FIGURE 1 - System's tiers and layers (Stříž 2011, 30) ... 8

FIGURE 2 - General application View layout .. 15

FIGURE 3 - ListView layout .. 17

FIGURE 4 - DetailView layout ... 19

FIGURE 5 - LoginView layout .. 21

FIGURE 6 - Simplified inheritance model ... 30

FIGURE 7 - Data obtaining workflow .. 66

4

1 INTRODUCTION

1.1 Motivation

The currently existing mobile client for RAYNET Cloud CRM is limited in many ways

and due to the fact it is built as mobile web application, it does not provide user

experience on the advanced level that RAYNET Cloud CRM's users expect.

The goal was to create a native Android application that will allow users to work with

most important contact and business information, when the computer is not

accessible. It is important that application should be easy to use and allow users to

synchronize contacts and planned activities with the mobile device, so they can be

available even without an internet connection - typically this would be a case when

a user is on the business trip to his/her customer.

It is also significant to provide good users experience and allow user to work with the

application nearly the same way they are used to work with the system itself.

1.2 Company introduction

RAYNET s.r.o. is a company founded in 2004, which is mostly concerned with CRM

system development. Having the experience with custom solutions development,

the company decided to create a new main product - RAYNET Cloud CRM, which is

user friendly solution accessible to a wide range of customers and flexible for further

development or custom modifications.

The company mostly operates in Central Europe and still tries to expand to other

markets. In 2009 RAYNET was awarded with DELOITTE - CE Technology Fast - 'Rising

Stars' category award for the fourth place in central Europe region. In 2011, RAYNET

was awarded once again, this time with DELOITTE - CE Technology Fast 50 award as

the thirteenth most progressive technology company in central Europe region.

5

The company also owns ISO 9001 certificate as an evidence of keeping high

standards in quality of service provided to customers.

1.3 RAYNET Cloud CRM introduction

RAYNET Cloud CRM is the company's main product. The main idea of RAYNET Cloud

CRM is to create a state of art CRM solution, which is easy to use for both - its users

and its developers.

The most important thing was to create a modern application, which will use

modern, yet stable technologies and will be easy to modify to handle the request

of customers looking for a more advanced custom solution.

To fulfill these needs, the application structure had to be well designed and

appropriate technologies had to be used on the project. The most essential

approaches in RAYNET Cloud CRM project were AJAX and RIA.

1.4 RIA - Rich Internet Application

The idea about RIA is to move client-server applications from desktop to web

browser and allow users to use them without installing the client locally. Using the

RIA two different approaches can be faced - applications that uses the browser

plug-ins and applications based on JavaScript and AJAX technology.

Plug-in based applications depend on preinstalled components integrated into the

browser, e.g. Adobe Flash or Microsoft Silverlight. The disadvantage of this approach

is obvious - the plug-in must be supported and installed in the browser. If the plug-in

cannot be installed, it will not be possible to run the application.

The other approach is to develop the application based purely on JavaScript and

AJAX technology. In these days, there is a large amount of already existing and stable

JavaScript frameworks, which made the development of dynamic, single window

application much easier. These frameworks are generally well optimized to work in

major web browsers and take the responsibility for handling differences in the

6

browser, and often brings UX elements to supply standard desktop application forms

and widgets. Another advantage of the JavaScript and AJAX approach is the

possibility of lazy-loading the code currently needed. The client application can be

started very quickly and it provides the basic functionality without downloading the

whole application code. Another code is downloaded in the moment, when required.

Significant drawback of applications run in the browser is the complete

isolation of such applications. The original intent of client JavaScript

implementation in browsers was to provide better user interface and effects, it

was not designed to emulate the complete desktop application. For security

reasons the JavaScript interpreter runs in a secure sandbox with limited

access. The client application cannot interact with other parts of the operating

system it runs in. The example consequence of such isolation is the inability to

directly access files on the client's computer. (Stříž 2011, 8)

1.5 AJAX - Asynchronous JavaScript and XML

The basic idea of a RIA application is to provide desktop-like client-server application

inside a web-browser environment, without reloading the page of the client

application. To make this possible, it is necessary to perform asynchronous requests

and have ability to update elements of the client application without rendering it

again.

The need of reloading and re-rendering whole pages lead to emergence of

AJAX, which stands for Asynchronous JavaScript and XML. AJAX is

a technology that allows client side (web page) to be more interactive and

responsive. (Garret 2005)

Asynchronous requests require web browser support, which is included in all major

modern browsers. "Programmatically, everything is done through the special

XMLHttpRequest (XHR) object, that allows to open connection and asynchronously,

by registering a callback function, wait for an answer." (Stříž 2011, 8)

Modern JavaScript frameworks usually provides an interface to execute AJAX by

encapsulating XHR object and covering possible problems and different XHR

processing in browsers, and also provide the methods how to work with the

application's DOM.

7

1.6 Server-side implementation

1.6.1 Spring framework

Server-side of RAYNET Cloud CRM is based on Spring Framework.

Spring Framework is a Java platform that provides comprehensive

infrastructure support for developing Java applications. The main feature of

Spring is the ability to compose the application out of intercommunicating

POJOs (Plain Old Java Objects). Key principles used in the Spring Framework

that allow easy composition of applications are Inversion of Control (IoC) /

Dependency Injection (DI) and Aspect Oriented Programming (AOP).

(Stříž 2011,12)

1.6.2 Inversion of Control / Dependency Injection

Inversion of Control is a paradigm, that shifts creation of child object from caller

object to the IoC container, usually provided by framework. Since all the

dependencies are based strictly on interfaces, the components code does not know

anything about actual implementation of the object behind the interface, which

makes the code more flexible.

Dependency injection is a concrete implementation of Inversion of Control pattern

that allows removing hard-coded dependencies and makes possible to change them

during the run-time. Spring framework provides the IoC container that handles

dependency injection.

In Spring Framework, the components are registered into the container in a

declarative manner, either from an XML file or by annotating classes with Java

annotations. The absence of central implementation that wires everything

together in procedural manner allows for reusable and clear implementations.

(Stříž 2011, 13)

1.6.3 Aspect Oriented Programming

Aspect Oriented Programming (AOP) is a paradigm that allows the developer

to implement aspects, the cross-cutting concerns such as logging, auditing,

security or transaction management into the system without modification to

the business logic.

Spring provides the AOP framework that transparently creates dynamic proxy

classes. These proxies invoke aspects around components with business logic.

8

Aspects are, same as components, configured by an XML document or

annotations. Many predefined aspects exist inside the Spring Framework for

various tasks. New aspects can also be introduced should the need arise.

(Stříž 2011, 13)

1.6.4 System architecture

As an enterprise application, RAYNET Cloud CRM is divided into the system of

separated tiers and layers, where the tiers represents the physical level of division

and the layers represent logical levels of divisions. Every tier can be run on different

machine or machines.

FIGURE 1 - System's tiers and layers (Stříž 2011, 30)

Web layer (Presentation layer) represents data to the client and retrieves user's

input. It can provide data to the user in the form of HTML page or pure JSON data.

Service layer (Business layer) contains the business logic of the application. It defines

the entities used in the system and functions that cover the work with them.

Data access layer creates a level of abstraction in order to allow having various data

sources with different access methods. Data access layer provides Service layer the

interface with no information about methods used to obtain data. This allows

developer to change the data source without no need for Service layer modification.

Web layer

For this work, it is important to understand the web layer, its controllers, and its

connection to the service layer. Web layer provides adapter between the client

application that runs in the browser and the applications business logic defined by

the service layer.

RAYNET Cloud CRM's web layer is based on Model-View-Controller architectural

pattern and is built on Java Servlets and Spring MVC technologies.

9

Model is represented by service layer that contains the main functionality to work

with entity objects.

Views contain the actual presentation of the logic. RAYNET Cloud CRM architecture

uses two common types of Views - the first is delegated to the JSP page and is used

to provide HTML pages such as login page, index page or error pages, and the second

is JSON view. JSON view is used to serialize the model into the JSON, which is

returned as a result to the AJAX request.

Controllers serve as the entry points to the application. Every user actions is handled

by the browser application as an AJAX request that is processed and dispatched to

the specific controller method according to the request's URL address.

Generally, the controller is responsible to get or put data to the model

(represented by the service layer in this case) and delegate the presentation to

the appropriate view. (Stříž 2011,33)

Record Controller, in the terminology of RAYNET Cloud CRM, is the controller that

handles the CRUD operations and passes the request data to the appropriate record

service.

1.7 Front-end implementation details

RAYNET Cloud CRM's FE client is built on the JavaScript and AJAX approach. The

whole application is built as single-page application, with lazy-loading of the

currently needed code.

To make the client application as stable and reliable as possible, RAYNET created its

own JavaScript framework based on the existing framework ExtJS 3.0. The main

differences RAYNET's client framework differs from the original ExtJS framework in

many ways. It brings its own UX components and widgets, but it also has more

complex inner structure.

The framework has its own methods to perform lazy-loading of code and allows

combining components based on different versions of ExtJS framework using

sandboxing inside the client application itself. This feature was used in analytics

10

module, which uses the charts based on the ExtJS 4.0 framework. The charts code

and required ExtJS 4.0 classes are encapsulated in its own namespace and provides

the interface which allows communicating with the rest of the application.

Client application workflow

When users try to access their instance of RAYNET Cloud CRM, the first thing to run is

a check if the user is still logged in or not. In the case that a user is logged in (e.g.

after page refresh), the index page is prepared and returned to him/her, otherwise

the login page is displayed. The generation of the pages is provided by JSP Views on

Web layer's controllers.

Since RAYNET Cloud CRM web client is built as a single page RESTful application, the

index page contains only links to included styles, core script of the application's

framework and user information and settings.

1.8 Available APIs

RAYNET Cloud CRM is accessible via two APIs. Standard web API, that serves as an

entry point for web application and REST API with limited functionality for third-party

applications.

Standard web API uses the Spring Security check to authenticate the client

application against the server, when the communication is initialized. Later

communication is authenticated using the session id.

REST API uses BasicAuth for authentication and the authentication string have to be

sent with each request.

11

2 MOBILE CLIENT

2.1 Motivation

Providing the mobile client for the application gives more comfort to RAYNET Cloud

CRM users during the business trips. The idea is to provide users with the lightweight

application containing the functionality which is easily accessible even on the small

touch-screen devices.

Creating complementary mobile client, several different approaches are possible.

The first one is to create a scalable web application, which would work on both -

traditional desktops and small screen devices. This approach however is very limiting

for both types of devices.

The second approach is to create a separated mobile web application, which would

run in mobile device's browser. This approach brings the opportunity to create an

application purely designed for small touch-screen devices, however the

functionality is still limited by abilities of integrated web-browser.

The third approach is to create an application using one of the available mobile

frameworks like PhoneGap, Appcelerator, Rhodes or Sencha Touch. These

frameworks allow compiling the application for several different mobile platforms,

bringing their own HTML5 based UX components and often allow using some basic

phone functionality.

The advantage of this approach is obvious. It is giving programmers the option to

write the code once and run it on different kind of mobile operating systems. The

problem is that the targeted platforms are different, which leads to compromises in

both - functionality and design. Application based on mobile framework always has a

different design than one which is standard on target platforms. This fact is confusing

for the users and the applications are usually not very successful.

The fourth approach is to create a native application for a targeted platform. This

approach allows creating the application according to common platform guidelines

12

and taking advantage of all functionality that the platform provides. Developing the

application for several platforms, this approach is the most complicated and time

consuming, but in the end it brings the best results.

2.2 Selected functionality

A mobile client is not designed to provide all the functionality of a web client. It

should provide only the functionality that makes sense to use on a mobile device,

when the user needs the quick access in a business trip. It is assumed that users on

the way to customer will mostly need to check the contact details, addresses or

planned agenda. These are the primary tasks and the mobile client should make the

work with records as easy as possible - for example allows user to directly dial the

phone number of contact or open the navigation with the address of a company.

The mobile client is dedicated to slightly different use, so it is not necessary to

include work with all entities of full web client.

2.2.1 Lead

Lead is the temporary record, which is supposed to be later converted to Person,

Company or Business case. It is supposed to be created, when a user is contacted by

a person or company interested in business cooperation, but it is not clear how to

categorize it yet.

In the mobile client it should be possible to access the list of Lead records, display the

detail of record, save the contact information to the device's contact list, or create a

new record.

2.2.2 Company

Since the RAYNET Cloud CRM is B2B oriented product, the Company entity is the

basic contact entity. The company allows users to store the basic information about

the firms, including the contacts and a list of addresses.

13

In case of Company entity, mobile client should also allow displaying list of records,

detail, save contact information or create new record. It should also allow users to

work with a list of company addresses or a list of employees.

2.2.3 Person

Person entity figures in the RAYNET Cloud CRM as an employee of the company, or

possibly multiple companies. From a user point of view, Person entity allows storing

contact information, relationships between the person and companies or some

additional information.

Beside the basic functionality, the mobile client should allow user to synchronize

Person records as contacts in device.

2.2.4 Business case

Business case is the entity covering business activity between user and other

business subjects. It gives the user an overview of offers, orders, offered products or

status of negotiations with business subject.

Working with business cases is more complex and it will not be very comfortable to

perform these operations on a small screen of mobile devices. It is assumed, that

users would choose the full web client to work with business cases, so the mobile

client should provide only basic operations with business case, without allowing user

to create or modify records.

2.2.5 Activity

Activity is an abstract entity, which is realized by Email, Letter, Meeting, Phone Call,

Task or Event. An activity entity is meant to be planned and scheduled using the

application's calendar. Activity is linked to Person, Company, Lead or Business Case,

or it could be planned as personal. Activity entity also stores the list of participants.

Different implementations of Activity entity provide different options to users. For

example Email entity allows users to store an email message, which would be sent to

participants of the activity, or which was received from a business subject. To

14

simplify this operation, there also exists the "Email assistant", which allows user to

import email messages simply by forwarding them to the e-mail address of the

assistant.

Working with activities is a crucial feature of a mobile client. Besides the basic

functionality, mobile client should allow users to synchronize activities with build-in

calendar of device, export the activities to calendars of user's Gmail accounts, send

pre-prepared messages by email or perform calls to the clients.

2.3 UX design

RAYNET CRM Touch application provides users with two basic views for each entity -

ListView and DetailView. ListView displays a list of available entity records and allows

user to apply available filters. DetailView displays detailed values of record.

2.3.1 General application View layout

All the views in the application (excluding LoginViews) use the general Layout. The

general Layout defines two components - the Sliding menu drawer and content area.

Both components are built as Fragments. (See fig. 2)

Content area contains the View specific content - this should be a list of available

entity records, entity record's detail or other content such as user's dashboard.

The Sliding menu drawer contains the application's main menu that allows user to

navigate inside the application.

Opening the Sliding menu drawer can be done in two different ways - by clicking on

the menu button in the view's Main Action Bar, or using the Swipe gesture on the left

edge of the screen. To close the Sliding menu drawer, users can use the opposite

direction Swipe gesture or click the visible part of content area on the left.

FIGURE 2 - General application View layout

General application View layout

15

16

2.3.2 General ListView layout

ListView layout extends general View layout and defines the basic behavior of entity

ListViews. The content area of the ListView contains two main components -

ListFragment and FilterFragment. (See fig. 3)

ListFragment contains the list of an entity's records. The list is filtered by filters

specified by FilterFragment.

When the ListItem is clicked, the according DetailView is opened and a detail of the

selected record is displayed.

If the user performs a Long press gesture on the ListItem, the record's QuickView is

displayed and Action Mode menu replaces the Main Action Bar. QuickView contains

more detailed records information, such as contact information. Action Mode menu

contains the list of most used actions that can be performed with a record, such as

dialing-up the phone number from records contacts.

FilterFragment contains entity specific filters that can be set to filter out the list's

records. When users set the filters and confirm them by pressing the "Set filters"

button, ListFragment is displayed and a new request is performed to acquire the

filtered list of records. The fact that filtering is active is indicated in FilterFragment's

tab header.

Switching between the ListFragment and FilterFragment can be done by clicking on

the according tab, or by performing the Swipe gesture on the body of content area.

FIGURE 3 - ListView layout

ListView layout

17

18

2.3.3 General DetailView layout

The DetailView layout is based on the general View layout and contains two

components - DetailFragment and HistoryListFragment. (See fig. 4)

HistoryListFragment contains the list of records context history - the information

about linked activities, relationships or business cases.

DetailFragment is a container component that holds several info subfragments

displaying different record's information. Subfragments are reusable units that can

be used to display the information on different places in application.

Subfragments can also contain the fields - active units that react on click action. On

the click action, the field opens the default intent activity based on its type

- e.g. EmailContactField calls the intent to prepare new email with filled-out email

address. If there are more possible actions that can be done with the record, the

context menu is displayed and user can choose the next action

- e.g. PhoneContactField can be used to dial the contact's phone number, or to

prepare new SMS using the contact's phone number.

FIGURE 4 - DetailView layoutDetailView layout

19

20

2.3.4 LoginView layout

RAYNET CRM Touch application contains two entry points. The first one is

responsible for authorizing users when opening the application and the second one is

responsible for authentication user for the Account Authenticator Service. Both entry

points have specific requirements and need to be handled by their specific

LoginViews. (See fig. 5)

Logging into application can be done in two ways - by selecting Account stored in

AccountManager, or by filling-out the login form. For these different approaches

custom Fragments were created.

AccountListFragment provides the list of application's Accounts stored in Account

Manager, AccountLoginFragment contains the login form fields.

The application login screen contains both AccountListFragment and

AccountLoginFragment. If the Account Manager does not contain any RAYNET CRM

Touch application Accounts, the AccountListFragment visibility is set as gone.

If a user chooses the logging into application using the AccountLoginFragment, user

can choose if the credentials will be stored in the Account Manager by checking the

"Store as Account" checkbox.

Account Authenticator Service's login screen contains only AccountLoginFragment

and since the credentials are always saved into AccountManager, the "Store as

Account" checkbox.

FIGURE 5 - LoginView layoutLoginView layout

21

22

3 ANDROID DEVELOPMENT

3.1 Design

Designing the application's User Interface, it is always good to follow the platform's

design guidelines. Using the platform specific elements and patterns in correct

context simplifies the application to users, who are already used to work with these

elements.

"Most developers want to distribute their apps on multiple platforms. As you

plan your app for Android, keep in mind that different platforms play by

different rules and conventions. Design decisions that make perfect sense on

one platform will look and feel misplaced in the context of a different

platform. While a "design once, ship anywhere" approach might save you time

up-front, you run the very real risk of creating inconsistent apps that alienate

users. Consider the following guidelines to avoid the most common traps and

pitfalls." (Pure Android)

3.1.1 ActionBarSherlock library

One of the difficulties during Android application development is dealing with

different versions of Android system. Despite the fact that Android API contains a

support library that allows programmers to use new features on older Android

versions, it does not really allow to develop Android 4.x application that will run on

devices with Android 2.x. The problem in this case is, that support library does not

contain Android's 4.x Holo theme pack, which is essential for creating an application

that follows current UX standards. Older Android themes did not support one of the

most used features of today's Android UI - Action bars.

Of course it is possible to create Android 2.x full compatible application and run it on

version 4.x, or simply do not support the older versions. Neither of the solutions can

provide both - market penetration and good user experience.

The nonexistence of an optimal solution lead to creation of non-commercial

ActionBarSherlock library, that extends original Android's support library.

"ActionBarSherlock is an extension of the support library designed to facilitate the use

23

of the action bar design pattern across all versions of Android with a single API."

(ActionBarSherlock)

The library will automatically use the native action bar when appropriate or

will automatically wrap a custom implementation around your layouts. This

allows you to easily develop an application with an action bar for every

version of Android from 2.x and up. (ActionBarSherlock)

3.1.2 SlidingMenu library

One of popular present UX elements is a sliding menu. It allows users to open the

menu simply by dragging the edge of the screen, which is very comfortable and shifts

user experience a little bit further.

However this functionality is not a part of the Android API, so it is necessary to

implement the functionality, or use SlidingMenu library that covers it.

SlidingMenu is an Open Source Android library that allows developers to easily

create applications with sliding menus like those made popular in the

Google+, YouTube, and Facebook apps. Feel free to use it all you want in your

Android apps provided that you cite this project and include the license in your

app. (SlidingMenu)

One of the advantages of SlidingMenu library is the possibility to link it with the

ActionBarSherlock library and use the sliding menu feature on Android 2.x devices.

3.1.3 ViewPagerIndicator library

Android 3.x version and above provides ViewPager component that allows users to

switch between the contained fragments using the Swipe gesture. From a user's

point of view it is very convenient.

ViewPagerIndicator library provides sets of components to indicate which page is

currently selected by ViewPager component and to represent it to the user in many

different forms including tabs, icons or titles.

ViewPagerIndicator library is also compatible with ActionBarScherlock library and

Android 2.x compatible.

24

3.2 Using Android intents

RAYNET Cloud CRM mobile client is supposed to open other installed applications to

provide users a possibility to work with some detail of application's detail outside the

application itself - e.g. writing an email to a person from a contact list. Opening the

other application can be done by using a hardcoded link or using the Android's intent

API. However, Android guidelines recommend using intents.

Do not hardcode links to other apps. In some cases you might want your app

to take advantage of another app's feature set. For example, you may want to

share the content that your app created via a social network or messaging

app, or view the content of a weblink in a browser. Do not use hard-coded,

explicit links to particular apps to achieve this. Instead, use Android's intent

API to launch an activity chooser which lists all applications that are set up to

handle the particular request. This lets the user complete the task with their

preferred app. For sharing in particular, consider using the Share Action

Provider in your action bar to provide faster access to the user's most recently

used sharing target. (Pure Android)

Intents are asynchronous messages which allow Android components to

request functionality from other components of the Android system. Intents

can be used to signal to the Android system that a certain event has occurred.

Other components in Android can register to this event via an intent filter.

(Vogel 2013)

On example below is showed the example usage of calling an implicit intent for

sending the pre-prepared email message. "Implicit intents specify the action which

should be performed and optionally data which provides data for the action."

(Vogel 2013)

Intent intent = new Intent(Intent.ACTION_SENDTO,

 Uri.parse("mailto:"+StringUtils.join(emailAddressList, ",")

 + "?body=" + URLEncoder.encode(emailText)));

startActivity(intent);

When the code is executed, the list of installed applications that are hooked to the

ACTION_SENDTO intent is displayed to user to choose the application, which should

be used for further work (in case that users did not set default a application for that

kind of requests) and after that, intent data are passed to the selected application.

For opening an activity within the application itself, explicit intents are used. Explicit

intents explicitly define the component which should be called by the Android system,

25

by using the Java class as identifier. (Vogel 2013) The code below illustrates opening

the DetailView of Company's owner by passing ownerId to PersonDetailView class.

Intent detailIntent = new Intent(view.getContext(),PersonDetailView.class);

detailIntent.putExtra("recordId", CompanyDetailView.this.ownerId);

startActivity(detailIntent);

3.3 Using AccountManager

Android platform allows to store application's login details in device. This simplifies

logging into the application, and also allows using synchronization services to

synchronize application contacts or calendar events with built-in applications.

Extending AbstractAccountAuthenticator class

To allow users to use the AccountManager, several steps must be taken.

AccountManager expects the data to be passed in a specific way. Account

authenticator class needs to be created and it has to extend

AbstractAccountAuthenticator class and override its abstract functions.

Most important function to implement is

AbstractAccountAuthenticator.addAccount function, which is responsible for

retrieving user's credentials, authenticating them and then storing them using

Account Manager. It is programmer's responsibility to implement the code for these

procedures.

Retrieving user's credentials can be done in various ways including exotic procedures

such as biometric scan, however, the most common is to display login form to user

and obtain the credentials from it.

Authentication of credentials can be done by connecting to the server and checking if

the connection was authorized, or connecting to the application's database and

checking if there exist local account - in case of purely local application.

When the credentials are retrieved, it is time to store them locally. This is done by

function AccountManager.addAccountExplicitly

26

final Account account = new Account(mUsername, your_account_type);

mAccountManager.addAccountExplicitly(account, mPassword, extra_info);

While storing the credentials using the AccountManager, credentials should be

protected.

It is important to understand that AccountManager is not an encryption

service or a keychain. It stores account credentials just as you pass them, in

plain text. On most devices, this isn't a particular concern, because it stores

them in a database that is only accessible to root. But on a rooted device, the

credentials would be readable by anyone with adb access to the device.

With this in mind, you shouldn't pass the user's actual password to

AccountManager.addAccountExplicitly(). Instead, you should store a

cryptographically secure token that would be of limited use to an attacker. If

your user credentials are protecting something valuable, you should carefully

consider doing something similar. (Creating a custom Account Type)

A suitable solution for a situation when secure token cannot be retrieved from server

is to implement one's own password encryption procedure. The simplest way how to

achieve this is to use one of the symmetric key algorithms (e.g. TripleDES) to encode

the password before passing it to the AccountManager.AddAccountExplicitly

function. The key can be stored as private static variable in encryption service. When

the account data is to be retrieved from Account Manager and passed to the

application, the password would be decoded again.

This procedure will make the password more complicated to break. To retrieve the

encryption key it would be necessary to decompile an application's binary code.

3.4 Creating Authenticator Service

Account authenticators need to be available to multiple applications and work

in the background, so naturally they're required to run inside a Service. We'll

call this the authenticator service.

Your authenticator service can be very simple. All it needs to do is create an

instance of your authenticator class in onCreate and call getIBinder in onBind.

(Creating a custom Account Type)

27

Authenticator service has to be registered in the manifest.xml file and the

AccountAuthenticator intent must be declared, so that the system can recognize it

correctly and allow user to store application's account and allow it to use its available

synchronization services.

<service

 android:name="cz.raynet.raynetcrm_touch.service.CrmAccounAuthenticateService"

 android:exported="true"

 android:process=":auth" >

 <intent-filter>

 <action android:name="android.accounts.AccountAuthenticator" />

 </intent-filter>

 <meta-data

 android:name="android.accounts.AccountAuthenticator"

 android:resource="@xml/authenticator" />

</service>

Also the resources for the service should be defined. That is important for a correct

representation of the account in system.

<account-authenticator xmlns:android="http://schemas.android.com/apk/res/android"

 android:accountType="cz.raynet.raynetcrm_touch.account"

 android:icon="@drawable/ic_launcher"

 android:smallIcon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:accountPreferences="@xml/account_preferences"/>

3.4.1 Content providers

When the synchronization of data between the application and system is needed

(e.g. contact synchronization), the best practice is to use Android's Content Providers.

Content providers manage access to a structured set of data. They

encapsulate the data, and provide mechanisms for defining data security.

Content providers are the standard interface that connects data in one

process with code running in another process. (Content Providers)

Programmers can use the default contents providers to implement a way to connect

an application and a system. Android covers most common system entities (e.g.

contacts, calendars, multimedia, user dictionary) with its own content providers,

however, it is also possible to write custom content provider for the application.

A content provider presents data to external applications as one or more

tables that are similar to the tables found in a relational database. A row

28

represents an instance of some type of data the provider collects, and each

column in the row represents an individual piece of data collected for an

instance. (Content Provider Basics)

Retrieving data in an application from a system using the content provider is done by

executing the query method of ContentResolover class.

Following code example is from Content Provider Basics

// Queries the user dictionary and returns results

mCursor = getContentResolver().query(

 UserDictionary.Words.CONTENT_URI, // The content URI of the words table

 mProjection, // The columns to return for each row

 mSelectionClause // Selection criteria

 mSelectionArgs, // Selection criteria

 mSortOrder); // The sort order for the returned rows

Based on Content URI, the specific Content provider's query method is called and

parameters are passed. Comparing query method to the relational database query,

the Content URI works as table identifier.

All content resolvers that are used in application needs to be listed in the manifest

file to obtain necessary permissions.

The ContentResolver.query() client method always returns a Cursor containing

the columns specified by the query's projection for the rows that match the

query's selection criteria. A Cursor object provides random read access to the

rows and columns it contains. Using Cursor methods, you can iterate over the

rows in the results, determine the data type of each column, get the data out

of a column, and examine other properties of the results.

(Content Provider Basics)

If there are no results matching the query's selection criteria, an empty cursor is

returned.

3.4.2 Sync Providers

"Sync providers are services that allow an Account to synchronize data on the device

on a regular basis." (Writing an Android Sync Provider) To create sync provider, it is

necessary to create service, that returns a subclass of AbstractThreadedSyncAdapter

in service's onBind method.

29

Sync provider is linked to the authenticator service and from user's point of view; the

sync provider is located under account settings in Account and Synchronization menu

option. When the synchronization request is initiated, account object is passed to the

onPerformSync method of implemented AbstractThreadedSyncAdapter subclass.

onPerformSync method is responsible for whole synchronization process, including

connecting to the server and authorizing clients account. Synchronization can be

done in several ways. The simplest situation is when the device only mirrors the

records on the server end can't edit them. Easiest way is to delete all the account's

synchronized records and replace them with actual ones.

In situation that records can be edited on device, it is necessary to implement a

correct way to synchronize records. In this case, it also can come to pass that the

record was edited on both sides - in the devices and also on server. In that case it is

necessary to decide which record will be preferred, or allow user to choose the

record. However, demanding user to choose the preferred record is not very user

friendly in the case, when user sets automatic synchronization option - it brings

issues on both sides, technology and user experience.

3.4.3 Jackson library

Jacskon library is Java JSON-processor library. Library itself doesn't depend on any

other package beyond JDK, contains JSON parser and JSON generator and supports

data binding.

4 IMPLEMENTATION

4.1 UX Components

The main UX components are based on several abstract class that provides the basic

functionality and describes the basic behavior of the activity.

FIGURE 6 - Simplified inheritance model

The basic abstract class is

from SlidingMenu library.

AbstractCrmActivity

when the necessary checks are performed.

abstract void init();

onCreate method sets the main menu fragment in the sliding menu drawer and

behavior.

@Override

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setBehindContentView(R.layout.menu_frame);

 FragmentTransaction t = this.getSupportFragmentManager().beginTransaction();

IMPLEMENTATION

UX Components

The main UX components are based on several abstract class that provides the basic

functionality and describes the basic behavior of the activity.

Simplified inheritance model

The basic abstract class is AbstractCrmActivity extending the SlidingFragmentActivity

library.

AbstractCrmActivity defines the abstract init method that is supposed to be called

when the necessary checks are performed.

abstract void init();

method sets the main menu fragment in the sliding menu drawer and

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setBehindContentView(R.layout.menu_frame);

FragmentTransaction t = this.getSupportFragmentManager().beginTransaction();

30

The main UX components are based on several abstract class that provides the basic

SlidingFragmentActivity

that is supposed to be called

method sets the main menu fragment in the sliding menu drawer and its

FragmentTransaction t = this.getSupportFragmentManager().beginTransaction();

31

 mFrag = new MainMenuFragment();

 t.replace(R.id.menu_frame, mFrag);

 t.commit();

 SlidingMenu sm = getSlidingMenu();

 sm.setShadowWidthRes(R.dimen.shadow_width);

 sm.setShadowDrawable(R.drawable.shadow);

 sm.setBehindOffsetRes(R.dimen.slidingmenu_offset);

 sm.setFadeDegree(0.35f);

 sm.setTouchModeAbove(SlidingMenu.TOUCHMODE_MARGIN);

 getSupportActionBar().setDisplayHomeAsUpEnabled(true);

}

switchContent defines the behavior of opening the SlidingMenu

public void switchContent(Fragment fragment) {

 mContent = fragment;

 getSupportFragmentManager()

 .beginTransaction()

 .replace(R.id.content_frame, fragment)

 .commit();

 getSlidingMenu().showContent();

}

handleException method is defined to inform the user that requested action didn't

performed correctly.

public void handleException(Exception e){

 e.printStackTrace();

 Toast.makeText(this, e.getMessage(), Toast.LENGTH_LONG).show();

}

In onStart performs the checks for internet connection availability and ensures that

user is logged into the application. If the checks are passed, the init method is called.

@Override

protected void onStart() {

 super.onStart();

 if(!isNetworkAvailable()){

 this.startActivityForResult(

 new Intent(android.provider.Settings.ACTION_WIFI_SETTINGS),0);

 return;

 }

 if(!AuthenticationProvider.getAuthenticationProvider().isSet()){

 this.startActivity(new Intent(this, LoginActivity.class));

 return;

 }

 init();

}

private boolean isNetworkAvailable() {

32

 ConnectivityManager connectivityManager =

 (ConnectivityManager) this.getSystemService(Context.CONNECTIVITY_SERVICE);

 NetworkInfo activeNetworkInfo = connectivityManager.getActiveNetworkInfo();

 return activeNetworkInfo != null;

}

AbstractViewPagerActivity extends the AbstractCrmActivity and works as a basic

class for Activities that use multiple Fragments.

ArrayList of fragments mFragments is defined as well as ViewPager itself and the

TabPageIndicator.

protected ArrayList<Fragment> mFragments = new ArrayList<Fragment>();

protected TabPageIndicator mTabPageIndicator;

protected ViewPager mViewPager;

onCreate method sets the ViewPager as the content view of the sliding menu frame

and initializes the page indicator component.

@Override

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.fragment_view_pager);

 mTabPageIndicator = (TabPageIndicator) findViewById(R.id.indicator);

 mViewPager = (ViewPager) findViewById(R.id.pager);

 mViewPager.setId("VP".hashCode());

 mViewPager.setAdapter(new PagerAdapter(getSupportFragmentManager()));

 mViewPager.setCurrentItem(0);

 mTabPageIndicator.setViewPager(mViewPager);

}

Important part of AbstractViewPagerActivity is implementation of

FragmentPagerAdapter responsible for switching the Fragments inside ViewPager

component.

public class PagerAdapter extends FragmentPagerAdapter {

 public PagerAdapter(FragmentManager fm) {

 super(fm);

 }

 @Override

 public int getCount() {

 return mFragments.size();

 }

33

 @Override

 public CharSequence getPageTitle(int position) {

 return getTabTitle(position);

 }

 @Override

 public Fragment getItem(int position) {

 return mFragments.get(position);

 }

}

4.1.1 ListViews

To create the ListViews according to the design conception described in chapter

2.3.2 - ListView design, it was necessary to solve several issues first - the general

structure of the list Activities, behavior of the subcomponents, communication

between Activity and its subcomponents, filtering logic and filter structuring.

General ListView structuring

Every entity list view is implemented by its own Activity that extends abstract class

AbstractListActivity. AbstractListActivity extends ViewPagerActivity, implements the

common methods and defines abstract methods that are required to be

implemented by subclasses.

Every subclass should define two basic Fragments - Fragment that contains list of

entity records itself, and Fragment that contains set of the filters that can be applied

to the entity list.

abstract AbstractListFragment getListFragment();

abstract FilterListFragment getFilterFragment();

abstract void setStandardFilters();

abstract int getTitleResource();

To handle filtering, AbstractListView defines methods setFilters and resetFilters.

setFilters method's argument is a Map containing a set of CriteriaObject objects that

would be applied to list. Newly set filters are applied to the set of filters that are

already stored, the indication of filtering is enabled, and the method for retrieving

new list data from the ListActivity's ListFragment is called.

public void setFilters(Map<String, CriteriaObject> filters) {

 mFilters.clear();

 mFilters.putAll(mStandardFilters);

 mFilters.putAll(filters);

34

 setFilterActive(true);

 getListFragment().reset();

 getListFragment().loadData(

 new ArrayList<CriteriaObject>(mFilters.values()),

 mFulltext);

 mViewPager.setCurrentItem(0);

}

resetFilter first cleans the currently used filters Map and loads standard set of filters,

then set the filter indication off and calls the ListFragment's method to retrieve data.

public void resetFilters() {

 mFilters.clear();

 mFilters.putAll(mStandardFilters);

 mFulltext = null;

 resetFullText();

 setFilterActive(false);

 getListFragment().reset();

 getListFragment().loadData(

 new ArrayList<CriteriaObject>(mFilters.values()),

 mFulltext);

 mViewPager.setCurrentItem(0);}

Adding the fulltext search component brought the compatibility issue. Current

version of ActionBarScherlock library does not correctly implement the SearchView

component, so it's not working properly on Android 4.x. On the other side, standard

Android 4.x SearchView component is not supported on Android 2.x.

In this case it was necessary to create two different XML menu definition files - first

one for Android 2.x with SearchView component from ActionBarScherlock library,

and second one for Android 4.x using the standard SearchView component. Aside of

that, both XML menu definition files are identical.

Using the different SearchView component also brought the need to specify different

OnQueryTextListeners with same function.

Fulltext SearchView component is set in onCreateOptionsMenu method.

@TargetApi(Build.VERSION_CODES.HONEYCOMB)

@Override

public boolean onCreateOptionsMenu(Menu menu) {

 int currentapiVersion = android.os.Build.VERSION.SDK_INT;

 if (currentapiVersion >= android.os.Build.VERSION_CODES.ICE_CREAM_SANDWICH){

 MenuInflater inflater = getSupportMenuInflater();

 inflater.inflate(R.menu.person_list_menu, menu);

 mSearchViewContainer = menu.findItem(R.id.menu_search);

 SearchView sv = (SearchView) mSearchViewContainer.getActionView();

35

 sv.setOnQueryTextListener(new SearchView.OnQueryTextListener() {

 @Override

 public boolean onQueryTextSubmit(String query) {

 setFullText(query);

 return true;

 }

 @Override

 public boolean onQueryTextChange(String newText) {

 return false;

 }

 });

 } else {

 MenuInflater inflater = getSupportMenuInflater();

 inflater.inflate(R.menu.person_list_menu_support, menu);

 mSearchViewContainer = menu.findItem(R.id.menu_search);

 com.actionbarsherlock.widget.SearchView sv =

 (com.actionbarsherlock.widget.SearchView)

 mSearchViewContainer.getActionView();

 sv.setOnQueryTextListener(

 new com.actionbarsherlock.widget.SearchView.OnQueryTextListener() {

 @Override

 public boolean onQueryTextSubmit(String query) {

 setFullText(query);

 return true;

 }

 @Override

 public boolean onQueryTextChange(String newText) {

 return false;

 }

 });

 }

 return true;

}

Fulltext search is handled by methods setFullText and resetFullText. This method sets

the mFulltext property and reloads the list data. Fulltext search and filtering work

independently - it is possible to search in the filtered records using the fulltext.

public void setFullText(String fullText) {

 mFulltext = fullText;

 setFilterActive(true);

 getListFragment().reset();

 getListFragment().loadData(

 new ArrayList<CriteriaObject>(mFilters.values()),

 mFulltext);

 mViewPager.setCurrentItem(0);

}

resetFullText method resets the value of the mFullText view property and resets the

SearchView component. Since the SearchView components are not compatible, it is

36

necessary to use duplicate code on different SearchView component depending on

the used version of Android operating system.

@TargetApi(Build.VERSION_CODES.HONEYCOMB)

public void resetFullText() {

 mFulltext = null;

 int currentapiVersion = android.os.Build.VERSION.SDK_INT;

 if (currentapiVersion >= android.os.Build.VERSION_CODES.ICE_CREAM_SANDWICH){

 SearchView sv = (SearchView) mSearchViewContainer.getActionView();

 sv.setQuery("", false);

 } else {

 com.actionbarsherlock.widget.SearchView sv =

 (com.actionbarsherlock.widget.SearchView)

 mSearchViewContainer.getActionView();

 sv.setQuery("", false);

 }

 mSearchViewContainer.collapseActionView();

}

AbstractListActivity also contains methods for updating the titles in the

TabPageIndicator component. setListTotalRecordCount method adds the

information about total count of actually found entity records with currents filters

applied, with paging information excluded. When the page title is updated,

TabPageIndicator component is notified about this change.

public void setListTotalRecordCount(int count){

 mListTotalRecordCount = count;

 mPageTitles.set(0, String.format("entity (%s)", count));

 mTabPageIndicator.notifyDataSetChanged();

}

Function of setFiltersActive method is similar. Filter tab page title is updated

according to the status of applied filters and then TabPageIndicator is notified.

public void setFilterActive(boolean active){

 mFilterActive = active;

 String title = active?"filters (active)":"filters";

 mPageTitles.set(1, title);

 mTabPageIndicator.notifyDataSetChanged();

}

Users can reset the filters using the menu button. Handling the click on the menu

buttons is done by the onOptionItemSelected method. Based on the menu item's id,

the particular action is executed. In the case of Reset filters button, the action is to

call reset filter methods in both - ListActivity and FilterFragment.

37

@Override

public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case R.id.reset_filters:

 resetFilters();

 getFilterFragment().resetFilters();

 return true;

 default:

 return false;

 }

}

AbstractListActivity overrides the onCreate method to apply the requested behavior

of the list Activities. The title of the activity is set, setStandardFilters method

implemented by subclass is called, ListFragment and FilterFragment are added to the

ViewPager list of fragments, TabPageIndicator is notified and listFragment is

requested to load the data with default set of filters.

@Override

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setTitle(getString(getTitleResource()));

 setStandardFilters();

 AbstractListFragment lf = getListFragment();

 mFragments.add(lf);

 mFragments.add(getFilterFragment());

 mTabPageIndicator.notifyDataSetChanged();

 lf.loadData(new ArrayList<CriteriaObject>(mFilters.values()));

}

Entity ListActivity example

Each entity ListActivity extends AbstractListActivity and specifies the details of

ListActivity implementation. The AbstractListActivity abstract methods are

implemented.

private AbstractListFragment mListFragment = new PersonListFragment();

private FilterListFragment mFilterFragment = new FilterListFragment();

@Override

AbstractListFragment getListFragment() {

 return mListFragment;

}

@Override

FilterListFragment getFilterFragment() {

 return mFilterFragment;

}

38

@Override

int getTitleResource() {

 return R.string.person_list_activity_name;

}

@Override

 void setStandardFilters() {

}

General ListFragment structuring

General behavior of list Fragments is determined by AbstractListFragment, an

abstract class that extends ListFragment.

AbstractListFragment defines abstract methods taskBackgroundFn and private for

listAsyncTask - AsyncTask subclass defined in body of the class, getDetailClass

method, that returns the Class of View used for displaying entity detail,

getActionModeCallback method to obtain a callback for handling ActionMode menu,

and mapItem method defining the mapping of the entity record to the ListView item.

abstract JsonNode taskBackgroundFn(String...parameters)

 throws CrmConnectionException,

 CrmConnectorException,

 OnlineDataConnectorException;

abstract ActionMode.Callback getActionModeCallback();

abstract Class<?> getDetailClass();

abstract View mapItem(JsonNode data);

onCreateView method is overriden to define several ListFragment specific features.

The mProgressBar property is defined, ListView is defined and the onScrollListener

and OnItemLongClickListener are set, list's adapter is created and set and in the end

progress bar is set to the Fragment's list view as the footer view and the height is

adjusted to fill the whole container.

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 mActivity = getActivity();

 mProgressBar = inflater.inflate(R.layout.list_progress_bar, null);

 mListView = (ListView) inflater.inflate(mViewResource, null);

 mListView.setOnScrollListener(mOnScrollListener);

 mListView.setOnItemLongClickListener(mOnItemLongClickListener);

 mAdapter = new ListItemAdapter(mActivity);

 setListAdapter(mAdapter);

 mListView.addFooterView(mProgressBar);

39

 setProgressBarHeight();

 return mListView;

}

The above mentioned OnItemLongClickListener is responsible for calling the

setSelectedView method in charge of displaying the panel with extra record

information hidden in the list's row, and also for displaying the ActionMode menu

with most commonly used entity record actions.

private OnItemLongClickListener mOnItemLongClickListener =

 new OnItemLongClickListener() {

 @TargetApi(Build.VERSION_CODES.HONEYCOMB)

 @Override

 public boolean onItemLongClick(

 AdapterView<?> parent, View view, int position, long id) {

 setSelectedView(view);

 mSelectedItem = mAdapter.getItem(position);

 if (mActionMode != null) {

 mActionMode.invalidate();

 } else {

 mActionMode = ((SherlockFragmentActivity) mActivity)

 .startActionMode(getActionModeCallback());

 }

 return true;

 }

};

setSelectedView method hides the panel with extra record information of last

selected record's View, then sets new record's View as selected and displays it's extra

record information panel.

protected void setSelectedView(View view) {

 if (mSelectedView != null) {

 mSelectedView.findViewById(R.id.row_extra).setVisibility(View.GONE);

 }

 mSelectedView = view;

 mSelectedView.findViewById(R.id.row_extra).setVisibility(View.VISIBLE);

 mListView.invalidateViews();

}

AbstractListFragment provides the loadData method for loading and reloading data

according to the filters and fulltext search that are set by the container Activity.

Loading the data is done by calling the execute method of listAsyncTask class.

40

public void loadData(List<CriteriaObject> filters, String fulltext) {

 mFilters = filters;

 mFulltext = fulltext;

 new listAsyncTask().execute();

}

listAsyncTask is a subclass of AsyncTask prepared for usage in entity's FragmentList

components. Since it is not possible to use the HTTP request on MainThread in

Android, AsyncTask encapsulates handling of the threads and allows programmers to

simply define the actions that have to be done before the request is done

(onPreExecute method), calling the request itself (doInBackground method) and

how to process the result of request (onPostExecute method).

doInBackground method of listAsyncTask calls the taskBackgroundFn method

implemented by a subclass of AbstractListFragment. doInBackground is running in

the separated thread, so it is not possible to simply propagate the exceptions to the

UI. One of the possibilities is to use runOnUiThread method of Activity, which needs

an instance of Runnable interface that will be executed. It was decided to create the

AsyncTaskResultObject<T> that contains the result of taskBackgroundFuncion, or the

Exception in the case that any problem occurred.

Propagating the Exception to the UI is then ensured by onPostExecute method,

which is running in the main thread and its possible call the handleException method

of current instance of AbstractCrmActivity.

In the case that no exceptions occurred, the result is processed and the particular

records views are created using subclass of AbstractListFragment subclass's

implementation of mapItem method.

protected class listAsyncTask extends

 AsyncTask<String, Void, AsyncTaskResultObject<JsonNode>> {

 @Override

 protected void onPreExecute() {

 taskPreExecuteFn();

 if (mListView != null) {

 mListView.addFooterView(mProgressBar);

 setProgressBarHeight();

 }

 }

 @Override

41

 protected AsyncTaskResultObject<JsonNode> doInBackground(String... parameters) {

 AsyncTaskResultObject<JsonNode> result =

 new AsyncTaskResultObject<JsonNode>();

 try {

 result.setData(taskBackgroundFn(parameters));

 } catch (Exception e) {

 result.setException(e);

 }

 return result;

 }

 @Override

 protected void onPostExecute(AsyncTaskResultObject<JsonNode> result) {

 JsonNode data = result.getData();

 Exception e = result.getException();

 if (e != null) {

 ((AbstractCrmActivity) mActivity).handleException(e);

 return;

 }

 if (data.isMissingNode()) {

 return;

 }

 mTotalCount = data.path("totalCount").asInt();

 if (mActivity instanceof AbstractListActivity) {

 ((AbstractListActivity) mActivity).setListTotalRecordCount(mTotalCount);

 }

 for (JsonNode record : data.path("data")) {

 mAdapter.add(record);

 mItemViews.add(mapItem(record));

 }

 mListView.removeFooterView(mProgressBar);

 if (mStart + mLimit >= mTotalCount) {

 mListView.setOnScrollListener(null);

 } else if (mStart == 0) {

 mListView.setOnScrollListener(mOnScrollListener);

 }

 }

}

ListItemAdapter extends ArrayAdapter and overrides its getView method to allow

usage of pre-prepared record views. Standard behavior of the ArrayAdapter is to

keep in the memory only the visible views and two not directly visible views that are

about to show when user starts to scroll up or down. The views are not replaced,

only their data is switched.

42

That fact caused the problems with rendering the items with open extra info panel.

All the record views are now saved in the memory and just passed to the adapter

through getView function. The downside of this solution is larger memory

consumption.

public class ListItemAdapter extends ArrayAdapter<JsonNode> {

 public ListItemAdapter(Context context) {

 super(context, 0);

 }

 @Override

 public View getView(int position, View convertView, ViewGroup parent) {

 return mItemViews.get(position);

 }

}

Standard action when the list item is clicked is defined by onListItemClick method. Id

of the selected record is obtained and set to the new detailIntent Intent object as the

extra information. The entity's DetailActivity is obtained from via getDetailClass

method, which is implemented by a subclass, and passed to the constructor of

Intent. In the end, entity's DetailActivity is started.

@Override

public void onListItemClick(ListView lv, View v, int position, long id) {

 JsonNode item = mAdapter.getItem(position);

 int recordId =

 JsonUtils.getJsonNode(item, CommonEntityPath.ID.toString()).asInt();

 Intent detailIntent =

 new Intent(getActivity().getApplicationContext(), getDetailClass());

 detailIntent.putExtra("recordId", recordId);

 startActivity(detailIntent);

}

To handle the need of paging, the OnScrollListener was implemented. onScroll

method is checking, if the index of currently visible item did not overstep the limit for

new paging request. In praxis this works in the way, that when the user is closing to

the end of currently loaded records, the request for more record is called and usually

finished before user gets to the end.

The OnScrollListener is set and removed in onPostExecute method of above

described listAsyncTask class, so it is active only when the record list is not fully

loaded.

43

protected OnScrollListener mOnScrollListener = new OnScrollListener() {

 @Override

 public void onScrollStateChanged(AbsListView view, int scrollState) {}

 @Override

 public void onScroll(AbsListView view, int firstVisibleItem, i

 nt visibleItemCount, int totalItemCount) {

 if (firstVisibleItem + visibleItemCount > mStart + mLimit / 2) {

 mStart += mLimit;

 new listAsyncTask().execute();

 }

 }

};

Entity ListFragment example

 Each entity's ListFragment extend AbstractListFragment and specifies the details of

ListFragment implementation. The AbstractListFragment abstract methods are

implemented.

taskBackgroundFn calls the method responsible to obtain correct data from the

server.

 @Override

JsonNode taskBackgroundFn(String... parameters) throws

 CrmConnectionException,

 CrmConnectorException,

 OnlineDataConnectorException {

 return WebApiDataProvider.getPersonList(mFilters, mFulltext, mLimit, mStart);

}

 getDetailClass method returns the Class that is used to display the detail of the

entity's record.

@Override

Class<?> getDetailClass() {

 return PersonDetailActivity.class;

}

mapItem method returns the list's item view with mapped data.

@Override

View mapItem(JsonNode data) {

 View view = LayoutInflater.from(mActivity).inflate(getItemLayout(), null);

 String personName = JsonUtils.getJsonNode(data,

 PersonListPath.FULL_NAME_WITHOUT_TITLES).asText();

 TextView title = (TextView) view.findViewById(R.id.row_title);

 title.setText(personName);

 String companyName = JsonUtils.getJsonNode(data,

44

 PersonListPath.PRIMARY_RELATIONSHIP_COMPANY_NAME).asText();

 TextView subtitle = (TextView) view.findViewById(R.id.row_subtitle);

 subtitle.setText(companyName);

 JsonNode tel1 = JsonUtils.getJsonNode(data, PersonListPath.TEL1);

 JsonNode email = JsonUtils.getJsonNode(data, PersonListPath.EMAIL);

 LinearLayout extraLayout = (LinearLayout) view.findViewById(R.id.row_extra);

 if (tel1.isTextual()) {

 String tel1text = tel1.asText();

 TextView tv = new TextView(mActivity);

 tv.setText(getString(R.string.tel1) + tel1text);

 extraLayout.addView(tv);

 }

 if (email.isTextual()) {

 String emailText = email.asText();

 TextView tv = new TextView(mActivity);

 tv.setText(getString(R.string.email) + emailText);

 extraLayout.addView(tv);

 }

 return view; }

getActionModeCallback method returns instance of implemented

ActionMode.Callback interface.

@Override

Callback getActionModeCallback() {

 return mActionModeCallback;

}

Instance of ActionMode.Callback is responsible for handling most important

ActionMode menu events. onCreateActionMode menu method can set the menu

items according to the *.xml menu resource file. Since ActionMode menu in

RAYNET CRM Touch should be variable according to the available records

information, the author of the thesis decided to set the items in the

onPrepareActionMode method, which is called every time the ActionMode is shown.

onCreateActionMenu returns Boolean that indicates is the action mode was created

or not.

private enum ActionCode{CALL,SMS,EMAIL};

protected ActionMode.Callback mActionModeCallback = new ActionMode.Callback(){

 private final HashMap<ActionCode, String> mDataMap =

 new HashMap<PersonListFragment.ActionCode, String>();

 @Override

 public boolean onCreateActionMode(ActionMode mode, Menu menu) {

 return true;

 }

45

In onPrepareActionMenu, first the menu and map with actions extra information are

cleared, and then the menu items are added in dependency on available fields in

record item. At the same time the extra information for the actions is put into the

Map.

 @Override

 public boolean onPrepareActionMode(ActionMode mode, Menu menu) {

 menu.clear();

 mDataMap.clear();

 JsonNode tel1 = JsonUtils.getJsonNode(mSelectedItem,

 PersonListPath.TEL1.toString());

 JsonNode email = JsonUtils.getJsonNode(mSelectedItem,

 PersonListPath.EMAIL.toString());

 if(tel1.isTextual()){

 String tel1text = tel1.asText();

 menu.add(Menu.NONE,ActionCode.CALL.ordinal(),

 Menu.NONE, getString(R.string.call)+ tel1text);

 mDataMap.put(ActionCode.CALL, tel1text);

 menu.add(Menu.NONE,ActionCode.SMS.ordinal(),

 Menu.NONE, getString(R.string.sms)+tel1text);

 mDataMap.put(ActionCode.SMS, tel1text);

 }

 if(email.isTextual()){

 String emailText = email.asText();

 menu.add(Menu.NONE,ActionCode.EMAIL.ordinal(),

 Menu.NONE, getString(R.string.email)+emailText);

 mDataMap.put(ActionCode.EMAIL, emailText);

 }

 return true;

 }

onActionItemClicked function is handling the click events of the menu items. New

intent is created according to the selected action and then the responsible activity is

started.

 @Override

 public boolean onActionItemClicked(ActionMode mode, MenuItem item) {

 if(item.getItemId() == ActionCode.CALL.ordinal()){

 Intent intent = new Intent(Intent.ACTION_CALL,

 Uri.parse("tel:"+mDataMap.get(ActionCode.CALL)));

 startActivity(intent);

 }

 if(item.getItemId() == ActionCode.SMS.ordinal()){

 Intent intent = new Intent(Intent.ACTION_VIEW,

46

 Uri.parse("sms:"+mDataMap.get(ActionCode.SMS)));

 startActivity(intent);

 }

 if(item.getItemId() == ActionCode.EMAIL.ordinal()){

 Intent intent = new Intent(Intent.ACTION_SENDTO,

 Uri.parse("mailto:"+mDataMap.get(ActionCode.EMAIL)));

 startActivity(intent);

 }

 return false;

 }

onDestroyActionMode is a method called when the ActionMode component is

dispatched. In this case it sets the value in container ListFragment to null, so it

cannot be referenced anymore.

 @Override

 public void onDestroyActionMode(ActionMode mode) {

 mActionMode = null;

 }

};

General FilterFragment structuring

General structure of FilterFragments is defined by AbstractFilterFragment class.

FilterFragment contains LinearLayout container mFiltersPane and a Button

mApplyBtn. The filter fields are stored in the mFilterFields List. In the

onCreateFunction the Fragment's layout is inflated, the basic elements are obtained

and the mApplyButton's OnClickListener is set.

The action of the mApplyButton is to send the filters to container implementation of

AbstractListActivity, which propagates the filters further to its ListFragment.

@Override

public View onCreateView(LayoutInflater inflater,

 ViewGroup container,

 Bundle savedInstanceState) {

 mContext = getActivity();

 mView = inflater.inflate(R.layout.list_filter, null);

 mInflater = inflater;

 mApplyBtn = (Button) mView.findViewById(R.id.apply_btn);

 mApplyBtn.setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View v) {

 ((AbstractListActivity) getActivity()).setFilters(mFilters);

 }

 });

47

 mFiltersPane = (LinearLayout) mView.findViewById(R.id.filtersListLayout);

 initFilters();

 return mView;

}

onCreateView method also calls the initFilters method that obtains the List of

filterFields from AbstractListFragment subclass using its implementation of abstract

getFilterFields method.

When the filterFields are obtained, their views are prepared and added to the

mFilterPane layout using the FragmentTransaction.

public void initFilters() {

 FragmentTransaction ft;

 ft = getFragmentManager().beginTransaction();

 mFilterFields = getFilterFields();

 for (IResetable filterField : mFilterFields) {

 ft.add(mFiltersPane.getId(), (Fragment) filterField);

 }

 ft.commit();

}

setCriteria method provides the filter fields the way to pass it's CriteriaObject to the

FilterFragment's collection of filters.

public void setCriteria(String criteriaName, CriteriaObject criteria) {

 mFilters.put(criteriaName, criteria);

}

To remove particular CriteriaObject from the collection of filter, there was

implemented the removeCriteria method.

public void removeCriteria(String criteriaName) {

 mFilters.remove(criteriaName);

}

resetFilters method serves to reset all the filterFields to its standard value.

public void resetFilters() {

 for (IResetable filterField : mFilterFields) {

 filterField.reset();

 }

}

48

Entity FilterFragment example

Particular implementation of AbstractFilterFragment is supposed to define only the

getFilterFields method that defines used filterFields.

@Override

protected List<IResetable> getFilterFields() {

 ExternalSelect personCategory = new ExternalSelect();

 personCategory.setArguments(

 new PersonCategoryAsyncTaskLoader(mContext),

 this,

 CodeListPath.ID,

 CodeListPath.CODE01,

 "category",

 "Category");

 ExternalSelect owner = new ExternalSelect();

 owner.setArguments(

 new OwnerAsyncTaskLoader(mContext),

 this,

 PersonDetailPath.ID,

 PersonDetailPath.FULL_NAME_WITHOUT_TITLES,

 "owner",

 "Owner");

 CheckBoxField openBc = new CheckBoxField();

 openBc.setArguments(

 "With open Business Case",

 "openBusinessCase",

 false,

 new CriteriaObject("openBusinessCase",OPERATOR.CUSTOM, null),

 this);

 CheckBoxField invalid = new CheckBoxField();

 invalid.setArguments(

 "Show invalid",

 "invalid",

 false,

 new CriteriaObject("rowInfo.rowAccess",OPERATOR.CUSTOM, "all-rows"),

 this);

 List<IResetable> filterFields = new ArrayList<IResetable>();

 filterFields.add(personCategory);

 filterFields.add(owner);

 filterFields.add(openBc);

 filterFields.add(invalid);

 return filterFields;

}

FilterField

All the FilterFields implements the IResetable interface, which specifies only the reset

method. This method is supposed to set the value of filter field to its default value.

49

public interface IResetable {

 void reset();

}

FilterField itself extends the Fragment and it is only necessary to pass its

CriteriaObject to the container FilterFragment, when the filter is active. The

implementation itself can be simple like in the case of CheckBoxField that just pass

the prepared CriteriaObject using the OnCheckedChangeListener.

public class CheckBoxField extends Fragment implements IResetable{

 protected String mTitle;

 protected String mMapping;

 protected boolean mDefault = false;

 protected CriteriaObject mCriteria;

 private AbstractFiltertFragment mParent;

 protected CheckBox mCheckBox;

 public void setArguments(String title, String mapping, boolean defaultValue,

 CriteriaObject criteria,

 AbstractFiltertFragment filterFragment){

 mTitle = title;

 mMapping = mapping;

 mDefault = defaultValue;

 mParent = filterFragment;

 mCriteria = criteria;

 }

 OnCheckedChangeListener onCheckedChangeListener = new OnCheckedChangeListener(){

 @Override

 public void onCheckedChanged(CompoundButton buttonView, boolean isChecked){

 if(isChecked){

 mParent.setCriteria(mMapping, mCriteria);

 }else{

 mParent.removeCriteria(mMapping);

 }

 }

 };

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 mCheckBox = new CheckBox(getActivity());

 mCheckBox.setText(mTitle);

 mCheckBox.setOnCheckedChangeListener(onCheckedChangeListener);

 reset();

 return mCheckBox;

 }

 @Override

 public void reset(){

 mCheckBox.setChecked(mDefault);

 }

}

50

In some cases it can be necessary to obtain filter values from the server first, like in

the case of ExternalSelectField.

ExternalSelectField class implements GeneralListArrayAdapter, that is using the

Loader to retrieve the data from server and then to process it.

public class GeneralListArrayAdapter extends ArrayAdapter<SimpleListItem>

 implements LoaderCallbacks<JsonNode>{

 public GeneralListArrayAdapter(Context context, int loaderId, Bundle bundle){

 super(context, 0);

 getLoaderManager().initLoader(loaderId, bundle, this).forceLoad();

 }

 public View getView(int position, View convertView, ViewGroup parent) {

 if (convertView == null) {

 convertView = LayoutInflater.from(getContext())

 .inflate(mItemLayout, null);

 }

 TextView title = (TextView) convertView.findViewById(android.R.id.text1);

 title.setText(getItem(position).tag);

 return convertView;

 }

 @Override

 public Loader<JsonNode> onCreateLoader(int arg0, Bundle arg1) {

 return mLoader;

 }

 @Override

 public void onLoadFinished(Loader<JsonNode> loader, JsonNode response) {

 for (JsonNode record : response.get("data")) {

 String name = JsonUtils.getJsonNode(record, mTagPath).asText();

 Long id = JsonUtils.getJsonNode(record, mIdPath).asLong();

 this.add(new SimpleListItem(name, id));

 }

 }

 @Override

 public void onLoaderReset(Loader<JsonNode> arg0) {

 }

}

In onCreateView method, there is an AlertDialog specified. This AlertDialog is using

the above mentioned GeneralListArrayAdapter to obtain the list of records from the

server and to display them in the form of simple dialog with list and two buttons.

51

The positive button closes the dialog and do no action. Negative button serves to

reset the filter value to the default.

@Override

public View onCreateView(LayoutInflater inflater,

 ViewGroup container, Bundle savedInstanceState) {

 Context c = getActivity();

 mAdapter = new GeneralListArrayAdapter(c, 0, null);

 AlertDialog.Builder builder = new AlertDialog.Builder(c);

 builder.setTitle(mTitle)

 .setAdapter(mAdapter, new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int position) {

 SimpleListItem item = mAdapter.getItem(position);

 mParent.setCriteria(mMapping, new CriteriaObject(

 mMapping, CriteriaObject.OPERATOR.EQ, item.id));

 mSelectedTV.setText(item.tag);

 }

 }).setPositiveButton("Cancel", null)

 .setNegativeButton("Clear", new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int which) {

 mParent.removeCriteria(mMapping);

 mSelectedTV.setText("---");

 }

 });

 mDialog = builder.create();

 View view = inflater.inflate(mLayout, null);

 mTitleTV = ((TextView) view.findViewById(android.R.id.text1));

 mSelectedTV = ((TextView) view.findViewById(android.R.id.text2));

 mTitleTV.setText(mTitle);

 mSelectedTV.setText("---");

 view.setClickable(true);

 view.setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View v) {

 mDialog.show();

 }

 });

 return view;

}

Loader to be used is passed to the ExternalSelectField in setArguments method. This

allows to use the filed for different variations of filtering requests.

public void setArguments(Loader<JsonNode> loader,

 AbstractFiltertFragment filterFragment,

 IEntityPath idPath, IEntityPath tagPath,

 String mapping, String title) {

 mLoader = loader;

52

 mIdPath = idPath;

 mTagPath = tagPath;

 mMapping = mapping;

 mTitle = title;

 mParent = filterFragment;

}

Loaders in this case represents the subclass of AsyncTaskLoader that handles the

asynchronous requests in background thread in similar way the AsyncTask do.

4.1.2 DetailViews

General DetailActivity

DetailActivity is a container Activity that holds all the parts of detail record together.

All the DetailActivities implementations are based on AbstractDetailActivity abstract

class extending the ViewPagerActivity.

AbstractDetailActivity defines two abstract methods - getDetailFragment for setting

the implementation of DetailActivity and getEntity for obtaining the entity type for

correct initialization of HistoryFragment.

abstract AbstractDetailFragment getDetailFragment();

abstract EntityEnum getEntity();

Also, the default ViewPage page titles are being hold in the list mPageTitles and the

record id is being hold in mRecordId variable.

protected List<String> mPageTitles = Arrays.asList("entity", "context");

protected Long mRecordId;

In the overriden onCreate method the record id is obtained from extras Bundle.

@Override

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 Bundle extras = getIntent().getExtras();

 mRecordId = extras.getLong("recordId");

}

The init method sets the content Fragments and notifies the PageIndicator about this

change.

@Override

void init() {

 HistoryFragment hf = new HistoryFragment();

 hf.setArguments(mRecordId, getEntity());

53

 AbstractDetailFragment df = getDetailFragment();

 df.setArguments(mRecordId);

 mFragments.add(df);

 mFragments.add(hf);

 mTabPageIndicator.notifyDataSetChanged();

}

The getTabTitle defines the default function to obtain the ViewPager page title.

@Override

public String getTabTitle(int position) {

 String title = mPageTitles.get(position);

 return title;

}

Entity DetailActivity example

The concrete implementation of DetailActivity defines the abstract methods from

AbstractDetailActivity to define the correct entity types.

@Override

AbstractDetailFragment getDetailFragment() {

 return new PersonDetailFragment();

}

@Override

EntityEnum getEntity() {

 return EntityEnum.PERSON;

}

In onCreate method the corresponding titles are set to the mPageTitles list.

@Override

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 mPageTitles.clear();

 mPageTitles.add(getResources().getString(R.string.detail));

 mPageTitles.add(getResources().getString(R.string.context));

}

General DetailFragment

DetailFragment is a container Fragment for the record information subfragments

displaying the actual data. DetailFragment's responsibility is to obtain the correct

data and pass them to the subfragments.

All DetailFragments are subclasses of AstractDetailFragment abstract class. For

obtaining the data corresponding to the entity type the AbstractDetailFragment

54

defines the mainTaskBackgroundFn method, which is meant to be run in the

doInBackground method of its own subclass of AsyncTask - MainAsyncTask.

For initializing the correct subfragments the abstract method processData is defined.

abstract JsonNode mainTaskBackgroundFn() throws CrmConnectionException,

 CrmConnectorException,

 OnlineDataConnectorException;

abstract void processData(JsonNode data);

The MainAsyncTask is executed in the the onStart method. onStart method is called

in the case that container Activity is started or returned, so the data are obtained

with every displaying of the Activity.

In onStart method also all current the Fragments are removed, so they can be added

again when the response is processed.

@Override

public void onStart() {

 super.onStart();

 new MainAsyncTask().execute();

 FragmentTransaction ft;

 for (Fragment f : mFragments) {

 ft = getFragmentManager().beginTransaction();

 ft.remove(f);

 ft.commit();

 }

 mFragments.clear();

}

MainAsyncTask extends the AsyncTask class and defines the behavior of obtaining

the data from server.

In onPostExecute method the obtained data are passed to the abstract processData

method where are the correct Fragments initialized, and then the Fragments are

attached to the container layout.

protected class MainAsyncTask extends

 AsyncTask<String, Void, AsyncTaskResultObject<JsonNode>> {

 @Override

 protected void onPreExecute(){}

 @Override

 protected AsyncTaskResultObject<JsonNode> doInBackground(String... parameters){

 AsyncTaskResultObject<JsonNode> result =

55

 new AsyncTaskResultObject<JsonNode>();

 try {

 result.setData(mainTaskBackgroundFn());

 } catch (Exception e) {

 result.setException(e);

 }

 return result;

 }

 @Override

 protected void onPostExecute(AsyncTaskResultObject<JsonNode> result) {

 JsonNode data = result.getData();

 Exception e = result.getException();

 if (e != null) {

 ((AbstractCrmActivity) mActivity).handleException(e);

 return;

 }

 if (data.isMissingNode()) {

 return;

 }

 processData(data.path("data"));

 FragmentTransaction ft;

 for (Fragment f : mFragments) {

 ft = getFragmentManager().beginTransaction();

 ft.add(R.id.detail_view_main_layout, f);

 ft.commit();

 }

 }

}

Entity DetailFragment example

Concrete implementation of DetailFragment just needs to define abstract methods

of AbstractDetailFragment. processData method defines the used subfragments for

displaying the record's information.

@Override

JsonNode mainTaskBackgroundFn() throws CrmConnectionException,

 CrmConnectorException,

 OnlineDataConnectorException {

 return WebApiDataProvider.getPersonDetail(mRecordId);

}

@Override

void processData(JsonNode data) {

 PersonBasicInfoFragment pbif = new PersonBasicInfoFragment();

 pbif.setArguments(data);

 mFragments.add(pbif);

 PrimaryRelationshipFragment prf = new PrimaryRelationshipFragment();

56

 prf.setArguments(

 JsonUtils.getJsonNode(data,PersonDetailPath.PRIMARY_RELATIONSHIP));

 mFragments.add(prf);

 PersonContactsFragment pcf = new PersonContactsFragment();

 pcf.setArguments(data);

 mFragments.add(pcf);

}

Record information subfragments

All the record information subfragments are subclasses of AbstractSubfragment

abstract class. AbstractSubfragment class defines several helping methods to

generate different kinds of simple Views like TextView.

public TextView generateTextView(IEntityPath path){

 JsonNode node = JsonUtils.getJsonNode(mData, path);

 return generateTextView(node.isTextual()?node.asText():"");

}

Concrete implementation of Subfragment is responsible for displaying the records

information. For this purpose also other Fragments or Subfragments can be used.

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle

savedInstanceState) {

 View v = inflater.inflate(R.layout.default_subfragment_layout, null);

 mLayout = (LinearLayout) v.findViewById(R.id.subfragment_body);

 mLayout.setId(R.id.primary_relationship_fragment_mlayout);

 mLayout.addView(generateLargeTextView(RelationshipPath.COMPANY_NAME));

 String state =

 JsonUtils.getJsonNode(mData, RelationshipPath.COMPANY_STATE).asText();

 mLayout.addView(generateTextView(state));

 JsonNode tel = JsonUtils.getJsonNode(mData, RelationshipPath.COMPANY_TEL1);

 if (tel.isTextual()) {

 PhoneContactField pcf = new PhoneContactField();

 pcf.setArguments(tel.asText());

 getFragmentManager().beginTransaction().add(mLayout.getId(), pcf).commit();

 }

 return v;

}

57

ContactFields

ContactFields are special kind of simple Fragments that reacts on user action like

click. All ContactFields are based on AbstractContactField abstract class extending

Fragment.

AbstractContactField class defines the internal variables and also the abstract

methods to obtain the icon drawable resource id and to handle the click action.

protected String mContactString;

protected TextView mView;

abstract protected int getIcon();

abstract protected void onContactClick(View v);

The basic onClickAction listener is defined.

protected OnClickListener mOnClickListener = new OnClickListener() {

 @Override

 public void onClick(View v) {

 onContactClick(v);

 }

};

In onCreateView method the basic behavior of ContactField and the information to

display is set.

@Override

public View onCreateView(LayoutInflater inflater,

 ViewGroup container,

 Bundle savedInstanceState) {

 mView = new TextView(getActivity());

 mView.setText(mContactString);

 Drawable img = getActivity().getResources().getDrawable(getIcon());

 mView.setCompoundDrawablesWithIntrinsicBounds(img, null, null, null);

 mView.setCompoundDrawablePadding(10);

 mView.setTextAppearance(getActivity(), android.R.style.TextAppearance_Large);

 mView.setOnClickListener(mOnClickListener);

 return mView;

}

Particular implementation of ContactField is responsible mainly for defining the

action performed on the click of ContactField's body. This can be simple action as

opening the email application using intent with prefilled contact data like on example

below.

58

@Override

protected void onContactClick(View v) {

 Intent intent =

 new Intent(Intent.ACTION_SENDTO, Uri.parse("mailto:"+mContactString));

 startActivity(intent);

}

HistoryFragment

HistoryFragment extends the AbstractListFragment, however, it changes lots of its

functionality. For example there is no need for filtering, no showing of extra data

records and opening the DetaiView of selected record depends on its entity.

The onCreateView method disables onItemLongClick listener of Fragment's ListView

and calls loadData method with no filters or fulltext set.

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 View v = super.onCreateView(inflater, container, savedInstanceState);

 mListView.setOnItemLongClickListener(null);

 loadData(null, null);

 return v;

}

taskBackgroundFn method calls the WebApiDataProvider's getHistoryList method

for the current record.

@Override

JsonNode taskBackgroundFn(String... parameters) throws CrmConnectionException,

 CrmConnectorException, OnlineDataConnectorException {

 return WebApiDataProvider.getHistoryList(mEntity, mRecordId, mLimit, mStart);

}

Record's view is rendered according to its entity. Different icons and data are

displayed for different entities.

@Override

View mapItem(JsonNode data) {

 View view = LayoutInflater.from(mActivity).inflate(getItemLayout(), null);

 TextView titleTV = (TextView) view.findViewById(R.id.row_title);

 TextView subtitle1TV = (TextView) view.findViewById(R.id.row_subtitle);

 TextView subtitle2TV = (TextView) view.findViewById(R.id.row_subtitle_2);

 ImageView iconIV = (ImageView) view.findViewById(R.id.icon);

 String entityName = data.path("_entityName").asText();

 EntityEnum e = EntityEnum.enumMatch(entityName);

 switch (e) {

59

 case EMAIL:

 case EVENT:

 case MEETING:

 case PHONE_CALL:

 case LETTER:

 case TASK:

 titleTV.setText(

 JsonUtils.getJsonNode(data, CommonEntityPath.TITLE).asText());

 subtitle1TV.setText(

 JsonUtils.getJsonNode(data, CommonEntityPath.STATUS).asText());

 break;

 case RELATIONSHIP:

 titleTV.setText(

 JsonUtils.getJsonNode(data, CommonEntityPath.COMPANY_NAME).asText());

 subtitle1TV.setText(

 JsonUtils.getJsonNode(data, CommonEntityPath.TYPE).asText());

 break;

 default:

 break;

 }

 iconIV.setImageResource(e.getIconResource());

 subtitle2TV.setText(

 JsonUtils.getJsonNode(data, CommonEntityPath.CREATED_AT).asText());

 return view;

}

The list item click action is handled by onListItemClick method. Depending on the

entity of selected item the according DetailView is opened.

@Override

public void onListItemClick(ListView lv, View v, int position, long id) {

 JsonNode item = mAdapter.getItem(position);

 Class<?> detailClass =

 EntityEnum.enumMatch(item.path("_entityName").asText()).getClass();

 if(detailClass == null){

 return;

 }

 int recordId = JsonUtils.getJsonNode(item, CommonEntityPath.ID).asInt();

 Intent detailIntent =

 new Intent(mActivity.getApplicationContext(), detailClass);

 detailIntent.putExtra("recordId", recordId);

 startActivity(detailIntent);

}

60

4.1.3 Login screens

Using the synchronization services brought the need of using the login screen

separately from the application. It is possible to implement one login screen, that

would meet the needs of both login scenarios, however, that would limit the

flexibility of the login screen. On this point the author of the thesis decided to create

two separated login Activities, both based on common login form Fragment.

Account authenticator login screen uses only the basic login form Fragment

(AccountLoginFragment), while the applications login screen also uses the list of

accounts that are already stored in device's AccountManager (AccountListFragment).

To allow login application to use the Fragments, both of the login activities

implements interface ICredentialsReceiver, which contains method

receiveCredentials(Bundle credentials) that is responsible for receiving and

processing credentials obtained from used fragments.

Method receiveCredentials is called from the fragments after the defined action is

executed. In the case of AccountLoginFragment, it is a click action of login button.

onClick method first obtains the credentials filled by user to the login form's

TextViews and store them in the credentials Bundle, which is then passed to the

container activity's receiveCredentials method.

public void onClick(View view) {

 Bundle credentials = new Bundle();

 credentials.putString(Constants.CRM_ACCOUNT_USERNAME,

 tb_username.getText().toString());

 credentials.putString(Constants.CRM_ACCOUNT_INSTANCE,

 tb_instance.getText().toString());

 credentials.putString(Constants.CRM_ACCOUNT_PASSWORD,

 tb_password.getText().toString());

 ((ICredentialsReceiver)getActivity()).receiveCredentials(credentials);

}

In the case of AccountListFragment, the action is mapped to the click on the item of

account list. AccountListFragment stores the list of application's Accounts that are

obtained from Account Manager in fragments onAttach method, and when the click

action is performed, credentials Bundle is obtained from the selected Account and

passed to the container Activity's receiveCredentials method.

61

4.2 Accounts and Services

4.2.1 Obtaining and storing credentials in Account Manager

For the purpose of adding application's Accounts to the AccountManager, the author

created the CrmAccounAuthenticateService according to an approach described in

the chapter 3.3 - Using AccountManager.

addAccount method of inner CrmAccountAuthenticator class creates the Bundle that

defines the Activity that should be used for obtaining the credentials from the user.

In this case it is LoginSimpleActivity.

public Bundle addAccount(AccountAuthenticatorResponse response, String accountType,

 String authTokenType, String[] requiredFeatures, Bundle options)

 throws NetworkErrorException {

 Bundle reply = new Bundle();

 Intent i = new Intent(mContext, LoginSimpleActivity.class);

 i.putExtra(AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE, response);

 reply.putParcelable(AccountManager.KEY_INTENT, i);

 return reply;

}

Login Activities for Account authentication usually inherit from

AccountAuthenticatorActivity, which is a helper class containing the methods for a

correct respond to the account authenticator instance. However, this class is not

capable of working with Fragments.

At this point the author decided to incorporate the AccountAuthenticatorActivity

methods in own class - LoginSimpleActivity, that supports Fragments. The code

involved in the class is identical with the code from AccountAuthenticatorActivity,

which extends basic Android's Activity.

private AccountAuthenticatorResponse mAccountAuthenticatorResponse = null;

private Bundle mResultBundle = null;

public final void setAccountAuthenticatorResult(Bundle result) {

mResultBundle = result;

}

protected void onCreate(Bundle icicle) {

 super.onCreate(icicle);

 mAccountAuthenticatorResponse = getIntent().getParcelableExtra(

62

 AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE);

 if (mAccountAuthenticatorResponse != null) {

 mAccountAuthenticatorResponse.onRequestContinued();

 }

}

public void finish() {

 if (mAccountAuthenticatorResponse != null) {

 if (mResultBundle != null) {

 mAccountAuthenticatorResponse.onResult(mResultBundle);

 } else {

 mAccountAuthenticatorResponse.onError(

 AccountManager.ERROR_CODE_CANCELED, canceled");

 }

 mAccountAuthenticatorResponse = null;

 }

 super.finish();

}

LoginSimpleActivity contains AccountLoginFragment and for the purpose of obtaining

the credentials it implements ICredentialsReceiver interface and overrides it is

method receiveCredentials.

public void receiveCredentials(Bundle credentials) {

 LoginTask t = new LoginTask(this);

 t.execute(credentials);

}

When this method is called, it creates the instance of LoginTask (subclass of

AsyncTask) and passes the credentials Bundle to it. doInBackground method of

LoginTask checks validity of the credentials and then adds the Account to the

account manager explicitly.

@Override

public Boolean doInBackground(Bundle... params) {

 Bundle credentials = params[0];

 if (checkCredentials(credentials)) {

 String accountName = String.format("%s / %s",

 credentials.getString(Constants.CRM_ACCOUNT_USERNAME),

 credentials.getString(Constants.CRM_ACCOUNT_INSTANCE));

 Account account = new Account(accountName, Constants.CRM_ACCOUNT_TYPE);

 AccountManager am = AccountManager.get(mContext);

 if (am.addAccountExplicitly(account, null, credentials)) {

 Bundle result = new Bundle();

 result.putString(AccountManager.KEY_ACCOUNT_NAME,

 account.name + " / instancename");

 result.putString(AccountManager.KEY_ACCOUNT_TYPE,

 account.type);

63

 setAccountAuthenticatorResult(result);

 return true;

 }

 }

 return false;

}

If the credentials are confirmed by a server, new Account is created and added to the

account manager. When adding the Account using addAccountExplicitly, the

password is set as null, and the credentials Bundle is used for storing the credentials.

Password field is ready for possible future storing a local security PIN in future.

If the Account is successfully added, result Bundle is created, set as Activity's result

and sent back to the CrmAccountAuthenticator in finish method. Otherwise the error

is sent.

4.2.2 Contact synchronization service

Contact synchronization is processed by CrmSyncContactsService, a subclass of

Service. The class implements CrmSyncAdapter extending the

AbstractThreadedSyncAdapter.

private static class CrmSyncAdapter extends AbstractThreadedSyncAdapter {

 private Context mContext;

 public CrmSyncAdapter(Context context) {

 super(context, true);

 mContext = context;

 }

 @Override

 public void onPerformSync(Account account,

 Bundle extras,

 String authority,

 ContentProviderClient provider,

 SyncResult syncResult) {

 try {

 CrmSyncContactsService.performSync(mContext,

 account,

 extras,

 authority,

 provider,

 syncResult);

 } catch (OperationCanceledException e) {

 }

 }

}

64

This adapter is bind to the service in the onBind method.

@Override

public IBinder onBind(Intent intent) {

 IBinder ret = null;

 ret = getSyncAdapter().getSyncAdapterBinder();

 return ret;

}

private CrmSyncAdapter getSyncAdapter() {

 if (sSyncAdapter == null)

 sSyncAdapter = new CrmSyncAdapter(this);

 return sSyncAdapter;

}

Synchronization itself is performed by performSync method, which obtains the data

from server using the RAYNET Cloud CRM REST API. When all the data are obtained,

service checks if the group exists and starts to add the Person records into it using

the addPerson binding method.

private static void performSync(Context context,

 Account account,

 Bundle extras,

 String authority,

 ContentProviderClient provider,

 SyncResult syncResult

) throws OperationCanceledException {

 android.os.Debug.waitForDebugger();

 mContentResolver = context.getContentResolver();

 AccountManager am = AccountManager.get(context);

 String username = am.getUserData(account, Constants.CRM_ACCOUNT_USERNAME);

 String password = am.getUserData(account, Constants.CRM_ACCOUNT_PASSWORD);

 String instance = am.getUserData(account, Constants.CRM_ACCOUNT_INSTANCE);

 AuthenticationProvider

 .getAuthenticationProvider()

 .setCredentials(username, password, instance);

 try {

 int p_start=0;

 int p_limit=25;

 int total_count = -1;

 List<JsonNode> responseList = new ArrayList<JsonNode>();

 while(total_count < 0 || p_start <= total_count){

 List<Object> paging = new ArrayList<Object>();

 paging.add(p_start);

 paging.add(p_limit);

 JsonNode n = RestApiDataProvider.getPersonList(paging);

65

 if(total_count == -1){

 total_count = n.path("totalCount").asInt();

 }

 responseList.add(n);

 p_start += p_limit;

 }

 long personGroupId = ensureSampleGroupExists(context, account, "Persons");

 for(JsonNode personList : responseList){

 for (JsonNode person : personList.path("data")) {

 ArrayList<ContentProviderOperation> operationList =

 new ArrayList<ContentProviderOperation>();

 operationList.addAll(addPersonContact(account,person,personGroupId));

 mContentResolver.applyBatch(ContactsContract.AUTHORITY, operationList);

 }

 }

 } catch (Exception e) {

 throw new OperationCanceledException(e);

 }

}

4.3 Authentication

Credentials of currently logged user are stored in the singleton class

AuthenticationProvider.

Class defines several private variables. currentInstance contains the currently used

AuthenticationProvider instance. instanceName, j_username and j_password

contains actual user's credentials. base64Authentication is Base64 encoded

credentials string used for authorizing application against REST API. isSet indicates if

the credentials were set to the AuthenticationProvider instance.

private static AuthenticationProvider currentInstance;

private String instanceName;

private String j_username;

private String j_password;

private String base64Authentication;

private boolean isSet = false;

All of the above mentioned private variables have primitive public getters, except for

currentInstance. This variable is accessible via getAuthenticatoProvider method,

which creates new instance in the case that

yet.

public static AuthenticationProvider getAuthenticationProvider() {

 if (currentInstance == null) {

 currentInstance = new Authen

 }

 return currentInstance;

}

Credentials are set to the

When setting the credentials are being set, also the

generated.

public void setCredentials(String username, String password, String instanceName){

 this.instanceName = instanceName;

 this.j_username = username;

 this.j_password = password;

 this.isSet = true;

 this.base64Authentication = Base64.encodeToString(

}

4.4 Obtaining data

Data obtaining workflow is processed by two classes.

gateway for obtaining

request execution.

FIGURE 7 - Data obtaining workflow

UX component can request data from

responsible provider method

which creates new instance in the case that currentInstance hasn't been initialized

public static AuthenticationProvider getAuthenticationProvider() {

if (currentInstance == null) {

currentInstance = new AuthenticationProvider();

return currentInstance;

Credentials are set to the AuthenticationProvider using the setCredentials

When setting the credentials are being set, also the base64Authentication

setCredentials(String username, String password, String instanceName){

this.instanceName = instanceName;

this.j_username = username;

this.j_password = password;

this.isSet = true;

this.base64Authentication = Base64.encodeToString(

 (username + ":" + password).getBytes(),

 Base64.NO_WRAP);

Obtaining data

Data obtaining workflow is processed by two classes. Data provider class

gateway for obtaining the data from CrmConnector class, which realizes the http

request execution.

Data obtaining workflow

UX component can request data from data provider passing appropriate data to

provider method - e.g. calling the getPersonDetail from

66

hasn't been initialized

public static AuthenticationProvider getAuthenticationProvider() {

setCredentials method.

base64Authentication string is

setCredentials(String username, String password, String instanceName){

(username + ":" + password).getBytes(),

Data provider class serves as a

class, which realizes the http

passing appropriate data to

from WebApiProvider.

67

WebApiDataProvider.getPersonDetail(mRecordId);

getPersonDetail encapsulates the calling of getDetailInternal method common for

most of the standard detail requests.

public static JsonNode getPersonDetail(Long id) throws CrmConnectionException,

 CrmConnectorException,

 OnlineDataConnectorException {

 return getDetailInternal(null, EntityEnum.PERSON.getString(), id, null);

}

getDetailInternal prepares the JSON serialization of SearchCommand helper objects,

calls the executeRequest from CrmConnector to obtain the data and tries to parse

the JSON response into the JsonNode object from Jackson library.

private static JsonNode getDetailInternal(String url,

 String entityName,

 Long id,

 SearchCommand searchCommand

) throws CrmConnectionException,

 CrmConnectorException,

 OnlineDataConnectorException {

 Writer sw = new StringWriter();

 try {

 fObjectMapper.writeValue(sw, searchCommand);

 } catch (Exception e) {

 }

 String searchCommandJSON = sw.toString();

 String requestUrl = (url != null) ? url : CrmUrl.DETAIL_SPECIAL_URL.getUrl();

 String response =

 CrmConnector.executeRequest(requestUrl, entityName, id, searchCommandJSON);

 JsonNode rootNode;

 try {

 rootNode = fObjectMapper.readTree(response);

 } catch (Exception e) {

 throw new OnlineDataConnectorException(e);

 }

 return rootNode;

}

Public executeRequest of CrmConnector prepares the correct request URL and calls

the internal method executeRequestInternal to obtain the data.

public static String executeRequest(String requestUrl,

 String entityName,

 Long id,

 String requestPayload

68

) throws CrmConnectionException,

 CrmConnectorException {

 List<Object> args = new ArrayList<Object>();

 if (entityName != null) {

 args.add(entityName);

 }

 if (id != null) {

 args.add(id);

 }

 AuthenticationProvider ap = AuthenticationProvider.getAuthenticationProvider();

 String responseText = executeRequestInternal(formatUrl(

 requestUrl,

 args,

 ap.getInstanceName()),

 requestPayload);

 return responseText;

}

executeRequestInternal executes the data request itself. HttpPost object is prepared

and executed by DefaultHttpClient instance. In the case that the server declined the

request, getSessionId method is called to authenticate request and obtain session id

from server, and then repeats the request.

synchronized private static String executeRequestInternal(String requestUrl,

 String requestPayload

) throws CrmConnectionException,

 CrmConnectorException {

 HttpPost request = new HttpPost(requestUrl);

 String responseText = null;

 if (requestPayload != null) {

 StringEntity se = null;

 try {

 se = new StringEntity(requestPayload);

 } catch (UnsupportedEncodingException e) {

 throw new CrmConnectorException(e);

 }

 se.setContentType(new BasicHeader(HTTP.CONTENT_TYPE, "application/json"));

 request.setEntity(se);

 }

 StringBuilder builder = new StringBuilder();

 HttpResponse response;

 try {

 response = fHttpClient.execute(request);

 } catch (Exception e) {

 throw new CrmConnectorException(e);

 }

 StatusLine statusLine = response.getStatusLine();

69

 int statusCode = statusLine.getStatusCode();

 switch (statusCode) {

 case 200:

 if (response.getHeaders("X-RAYNETCRM-Login").length > 0) {

 try {

 response.getEntity().consumeContent();

 } catch (IOException e) {

 throw new CrmConnectorException(e);

 }

 getSessionId();

 return executeRequestInternal(requestUrl, requestPayload);

 } else {

 HttpEntity entity = response.getEntity();

 InputStream content;

 try {

 content = entity.getContent();

 } catch (Exception e) {

 throw new CrmConnectorException(e);

 }

 BufferedReader reader =

 new BufferedReader(new InputStreamReader(content));

 String line;

 try {

 while ((line = reader.readLine()) != null) {

 builder.append(line);

 }

 } catch (IOException e) {

 throw new CrmConnectorException(e);

 }

 responseText = builder.toString();

 }

 break;

 default:

 throw new CrmConnectionException(statusCode);

 }

 return responseText;

}

getSessionId method performs an authentication check against the server. If the

authentication process fails at any point, the appropriate exception is thrown out.

synchronized private static void getSessionId() throws CrmConnectorException,

 CrmConnectionException {

 AuthenticationProvider ap = AuthenticationProvider.getAuthenticationProvider();

 HttpPost request = new HttpPost(

 formatUrl(CrmUrl.J_SPRING_SECURITY_CHECK.getUrl(),

 null,

 ap.getInstanceName()));

 List<BasicNameValuePair> formparams = new ArrayList<BasicNameValuePair>();

70

 formparams.add(new BasicNameValuePair("j_username", ap.getUsername()));

 formparams.add(new BasicNameValuePair("j_password", ap.getPassword()));

 UrlEncodedFormEntity postEntity = null;

 try {

 postEntity = new UrlEncodedFormEntity(formparams, "UTF-8");

 } catch (UnsupportedEncodingException e) {

 throw new CrmConnectorException(e);

 }

 request.setEntity(postEntity);

 StringBuilder builder = new StringBuilder();

 HttpResponse response;

 try {

 response = fHttpClient.execute(request);

 } catch (Exception e) {

 throw new CrmConnectorException(e);

 }

 StatusLine statusLine = response.getStatusLine();

 int statusCode = statusLine.getStatusCode();

 switch (statusCode) {

 case 200:

 HttpEntity entity = response.getEntity();

 InputStream content;

 try {

 content = entity.getContent();

 } catch (Exception e) {

 throw new CrmConnectorException(e);

 }

 BufferedReader reader = new BufferedReader(new InputStreamReader(content));

 String line;

 try {

 while ((line = reader.readLine()) != null) {

 builder.append(line);

 }

 } catch (IOException e) {

 throw new CrmConnectorException(e);

 }

 String responseText = builder.toString();

 responseText.toString();

 if (response.getHeaders("X-RAYNETCRM-Login").length > 0) {

 throw new CrmConnectionException(401);

 };

 break;

 default:

 throw new CrmConnectionException(statusCode);

 }

}

71

5 CONCLUSION

This thesis describes the development of an Android client application and

successfully demonstrates the planned functionality on a working prototype. The

problems that occurred during the prototype application can be separated into two

categories.

The first category contains the problems caused by the attempt to make application

compatible with older versions of Android operating system. Most of these

compatibility problems were solved by using the ActionBarSherlock library, however,

in several cases the compatibility issues cannot be solved or bypassed without

reducing or modifying the functionality for older versions of Android

- e.g. synchronization with Google calendar.

The second category of issues is limited by the current server side implementation of

RAYNET Cloud CRM. These limits influenced mostly the authentication process and

synchronization services. These issues are currently bypassed, however, they could

be solved in a slightly more elegant way with some minor changes on the server-side.

The fact that it is not possible to obtain the information about user using the RAYNET

Cloud CRM standard web API led to the need to use the RAYNET Cloud CRM REST API

for this single request. This problem can be resolved by creating the server controller

that returns the user information on standard security check request.

Using the synchronization services, application have to use the RAYNET Cloud CRM

REST API to obtain the data because of security checks on RAYNET Cloud CRM

standard web API. Using the standard web API, users can be logged in using only one

session id. In the case of synchronization services that request data automatically,

this could lead to logging off users from the desktop computer while working in the

system.

Even though RAYNET Cloud CRM REST API is able to provide the most important data

for synchronization services, it is limited in many ways - e.g. it is not possible to

download images using it. This fact is not essential, but it can significantly improve

user experience.

72

This issue can be solved by allowing the mobile client to connect to the server using

different TCP port than web client does.

The following development of the application will focus on extending the described

functionality and UX tuning.

73

REFERENCES

ActionBarSherlock. Referenced 2013-03-19 from ActionBarSherlock:

http://actionbarsherlock.com/

Content Provider Basics. Referenced 2013-03-15 from Android Developer:

http://developer.android.com/guide/topics/providers/content-provider-basics.html

Content Providers. Referenced 2013-03-15 from Android Developer:

http://developer.android.com/guide/topics/providers/content-providers.html

Creating a custom Account Type. Referenced 2013-03-15 from Android Developer:

http://developer.android.com/training/id-auth/custom_auth.html

Garrett, J. (2005) Ajax: A New Approach to Web Applications. Referenced 2013-03-25

from Adaptive Path:

http://www.adaptivepath.com/ideas/essays/archives/000385.php.

Pure Android. Referenced 2013-03-10 from Android Developer:

http://developer.android.com/design/patterns/pure-android.html

SlidingMenu. Referenced 2013-03-19 from jfenstein10 SlidingMenu:

https://github.com/jfeinstein10/SlidingMenu

Stříž, M. (2011) Platform for Rich Internet Applications development. Master's thesis

FIT VUT Brno

Vogel, L. (2013) Android Intents - Tutorial. Referenced 2013-03-18 from Vogella:

http://www.vogella.com/articles/AndroidIntent/article.html

Writing an Android Sync Provider. Referenced 2013-03-15 from Did You Win Yet:

http://www.c99.org/2010/01/23/writing-an-android-sync-provider-part-2/

APPENDICES

Gestures notation and actions

APPENDICES

notation and actions

74

