Mika Gynther

LOISTEHON KOMPENSOINNIN NYKYTILA OTAVAN SAHALLA

Opinnäytetyö
Sähkötekniikan koulutusohjelma

Elokuu 2011
KUVAILELEHTI

<table>
<thead>
<tr>
<th>Tekijä(t)</th>
<th>Kouluutusohjelma ja suuntautuminen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mika Gynther</td>
<td>Sähkötekniiikan kouluutusohjelma</td>
</tr>
</tbody>
</table>

Nimeke
Loistehon kompensoinnin nykytila Otavan sahalla

Tiivistelmä
Tämän työn pääpaino oli selvittää loistehon kompensoinnin nykytila Otavan Sahalla, jotta ylimääräissä loistehomaksuja voitaisiin pienentää. Sähkösupimuksen kuuluu yleensä tietty määrä ilmaista loistehoa, joka on suhteutettu pätötehon kulutukseen. Loistehon ilmaismäärä on yleensä 20 % pätötehohuipusta, ylimenevästä osuudesta täytyy maksaa erikseen loistehomaksua.

Asiasonat (avainsanat)
Loisteho, tehokerroin, kompensointi, muuntaja, yliaallot
Date of the bachelor’s thesis

12.9.2012

Author(s)

Mika Gynther

Degree programme and option

Electrical engineering

Name of the bachelor’s thesis

Reactive power compensation of the current state at Otava sawmill

Abstract

The aim of the bachelor’s thesis was to find out the reactive power compensation of the current state at Otava sawmill, so that the additional payments which results from the reactive power can be reduced. Electrical contract usually includes 20 per cent of free reactive power, which is measured by the amount of active power peak.

The study was made at the Otava sawmill, which is part of Versowood group. Otava sawmill is a medium-voltage customer and in the factory area there is located five distribution transformers. The sizes of the transformers various from 800 to 2000 kVA. The study was focused on four transformers.

The study was conducted by measuring the status of the electricity network in four central electrical units. The measurement was made by Metrel Power Quality Analyzer Plus-meter. Measured parameters were reactive power, active power, current and power factor for each phase, voltage- and current-harmonics.

According to the measurement two central electrical units need more compensation immediately. In one central electrical unit there were signs of overcompensation. In all four central electrical units reactive power peak rose to very high during active power peak. This is because of a large number of induction motors start at the same time and the automation which guides the compensation does not have time to react fast enough.

Subject headings, (keywords)

Reactive power, power factor, compensation, transformer, harmonics.

Pages

66 p. + 1 appendix

Language

Finnish

URN

Remarks, notes on appendices

Tutor

Arto Kohvakka

Bachelor’s thesis assigned by

Versowood Oy, Otavan Saha
SISÄLTÖ

1 JOHDANTO ... 1

2 TEORIAA TYÖHÖN LIITTYVISTÄ KÄSITTEISTÄ .. 1
 2.1 Näennäisteho .. 2
 2.2 Pätöteho ... 2
 2.3 Loisteho ... 3
 2.4 Vaihesiirtokulma ... 4
 2.5 Jännite- ja virtayliaallot ... 6

3 LOISTEHO SUURJÄNNITEVERKOSSA ... 9
 3.1 Käytössä oleva sähköjärjestelmä ... 9
 3.2 Sähkön tuotanto .. 9
 3.3 Loisteho generaattorien kannalta .. 9
 3.3.1 Epätahtigeneraattorit .. 10
 3.3.2 Tahtigeneraattorit ... 11
 3.3.3 Tahtigeneraattorit loistehon tuottajina ja kuluttajina 11
 3.4 Loisteho siirtoverkoissa ... 13
 3.4.1 Suurjännitteinen rinnakkaiskondensaattoriparisto 14
 3.4.2 Rinnakkaiskondensaattorin kytkentäseuraukset 15
 3.4.3 Rinnakkaiskuristimet eli reaktorit .. 16
 3.4.4 Sarjakondensaattorit ... 17

4 KOMPENSOINTI PIENJÄNNITEVERKOSSA ... 19
 4.1 Kompensointitavat loistehon kulutuspaikalla .. 19
 4.2 Kompensoinnin laiteratkaisut .. 21
 4.2.1 Rinnakkaiskondensaattoriparisto ... 22
 4.2.2 Estokelaparisto .. 23
 4.2.3 Yliaaltosuodattimet .. 24
 4.3 Yliaallot pienjänniteverkossa ... 24
 4.4 Resonanssit ... 26

5 MUUNTAJA .. 27
 5.1 Muuntajien rakenne .. 28
 5.2 Muuntajan kytkennät .. 30
 5.3 Muuntajan oikosulkukimpedanssi ja oikosulkujännite 31
 5.4 Tertiäärikäämi .. 33
5.5 Väliottokytkin ja käämikytkin ... 35

6 TUTKIMUKSEN TAVOITTEET .. 36

7 MITTAUSKOHTTEET JA MITTAUKSET .. 37

7.1 Pääkeskus PK 1 .. 37

7.2 Pääkeskus PK 2 .. 38

7.3 Pääkeskus PK 2.1 .. 39

7.4 Pääkeskus PK 3 .. 40

7.5 Pääkeskus PK 4 .. 41

8 TULOKSET .. 41

8.1 Muuntaja T1 ja pääkeskus PK 1 ... 42

8.2 Muuntaja T2 ja pääkeskuksen PK 2 ja PK 2.1 45

8.2.1 Pääkeskus PK 2 .. 45

8.2.2 Pääkeskus 2.1 ... 47

8.3 Muuntaja T3 ja pääkeskus PK 3 ... 50

8.4 Muuntaja T4 ja pääkeskus PK 4 ... 53

8.5 Yhteenveto loistehon osalta .. 56

8.6 Kompensointitehon lisäys .. 61

9 POHDINTA .. 64

LIITE

1 Kompensoinnin tehokerroin taulukko
1 JOHDANTO

Tämä tutkimus on tehty Versowood Oy Otavan tehtaalla, joka sijaitsee Otavassa, kymmenen kilometrin päässä Mikkeliä. Otavan tehdas kuuluu Versowood–konserniin, joka on Suomen suurimpia, ellei peräti suurin yksityinen puualostusyritys. Otavassa on pitkät perinteet sahauksesta, sillä Otavassa on ollut saha jo 1890-luvulta lähtien.

Kulutuksen lisääntymisen myötä on herännyt myös kysymyksiä muuntajatehojen riittävyydestä tuleviin investointiin. Sen vuoksi tässä työssä on tehty samoilla mittauksilla kartoitus muuntajien nykyisistä kuormitusvirroista sekä keskuksien yliaalloista.

2 TEORIAA TYÖHÖN LIITTYVISTÄ KÄSITTEISTÄ

2.1 Näennäisteho

$$S = U \times I \quad [\text{VA}] \quad (1)$$

jossa:

U = nimellisjännite
I = nimellisvirta.

Vaihtovirralla jännitteen ja virran tulo ei ole todellista tehoa, vaan niin sanottua näennäistehoa. Kolmivaihejärjestelmässä näennäisteho on vaihekohtaisten näennäistehojen summa, joka voidaan laskea esimerkiksi kaavan 2 mukaan

$$S_{3v} = S_1 + S_2 + S_3 = 3 \times U_v \times I_v = U_1 \times I_1 + U_2 \times I_2 + U_3 \times I_3 \quad (2)$$

jossa:

$S_{1,2,3}$ = ovat vaihekohtaisia näennäistehoja.
$U_{v,1,2,3}$ = vaihejännite
$I_{v,1,2,3}$ = vaihevirta. (Ahoranta 1998, 316.)

2.2 Pätöteho

Vaihtosähkön teholla tarkoitetaan yleensä pätötehoa eli keskimääräistä tehoa. Pätötehon suuruus vaihtelee jatkuvasti, koska käytettävä virta ja jännite muuttuvat jatkuvasti. Sähkön kuluttaja käyttää nimenomaan pätötehoa. Vaihtosähkön tehon suuruus ei siis riipu pelkästään jännitteen ja virran suuruudesta, vaan myös niiden välisestä vaihesiirrosta, $\cos \varphi$-stä. Vaihtosähkön teho on suurimmillaan, kun jännitteen ja virran välinen vaihesiirto on nolla, eli virta ja jännite ovat samassa vaiheessa. Tällöin $\cos \varphi$ saa arvon yksi. Mitä suurempi on jännitteen ja virran välinen kulma, sitä pienemmän arvon $\cos \varphi$ saa, ja sitä pienempi on pätötehon arvo. (Jaatinen 1991, 10, 12.)
Pâtötehoa voidaan laskea kaavan 3 mukaan

\[P = U \times I \times \cos \varphi \] [W]

joissa:
U = jännitteen tehollisarvo
I = virran tehollisarvo
\(\varphi \) = jännitteen ja virran välisen vaihesiirtokulma.

Pâtötehon yksikkö on watti W. Wattien määrä saadaan näennäistehosta kertomalla voltiamperien lukumäärä \(\cos \varphi \):llä. Kolmivaihejärjestelmässä pâtöteho on vaihkohtaisen pâtötehojen summa, ja voidaan laskea usealla tavalla, kuten kaavassa 4 on esitetty

\[P_{3v} = P_1 + P_2 + P_3 = \sqrt{3} \times U \times I \times \cos \varphi = 3 \times U_v \times I \times \cos \varphi \] (4)

joissa:
P_{1,2,3} = vaihkohtainen kokonaispâtöteho
U = pääjännite eli vaiheiden välinen jännite
\(U_v \) = vaihejännite eli vaiheen ja nollajohtimen välinen jännite
I = vaihejohtimen virta
\(\varphi \) = vaihtojännitteen ja -virran välisen vaihesiirtokulma. (Hieta-Wilkman ym. 2006, 149-150.)

2.3 Loisteho

Pâtötehon lisäksi laitteet ottavat myös loistehoa toimiakseen. Esimerkiksi oikosulkumoottorin tehokerroin on melko huono, \(\cos \varphi = 0,85-0,90 \), mikä tarkoittaa, että moottori ottaa loistehoa 62-48 % pâtötehosta (Elovaara & Haarla 2011a, s.88). Keskimäärin epätähtimoottorit tarvitsevat loistehoa 1 kilovarin pâtötehon yhtä kilowattia kohti, mutta esimerkiksi purkauslamppuvalaisimien kuristimet tarvitsevat loistehoa 2 kvar / 1 kW. (Jaatinen 1991, 49-50.)

Tietty kuormat voivat myös tuottaa loistehoa, esimerkiksi tahtimoottorit. Koska kuormitusten ottama virta lasketaan näennäistehoista, vaikuttaa kokonaisvirtaan myös

\[Q = U*I*\sin\phi \quad [\text{VAR}] \quad (5) \]

jossa:
\[\phi = \text{jännitteen ja virran välinen vaihtovaihe} \]

Loistehon yksikkö on vari. Yksi vari on yksi voltampere reaktiivista. Kolmivaihejärjestelmän loisteho voidaan laskea usealla tavalla, kuten kaavassa 6 on esitetty

\[Q_{3v} = Q_1 + Q_2 + Q_3 = \sqrt{3} \cdot U*I*\sin\phi = 3*U_v*I*\sin\phi \quad (6) \]

jossa:
\[Q_{1,2,3} = \text{vaiheiden kokonaisloisteho} \]
\[U = \text{pääjännite eli vaiheiden välinen jännite} \]
\[U_v = \text{vaihejännite eli vaiheen ja nollajohtimen välinen jännite} \]
\[I = \text{vaihejohtimen virta} \]
\[\phi = \text{vaihtovaihe} \]

2.4 Vaihesiirtokulma

Kuvassa 1 jännitteen ja virran kulmat ovat samanvaiheiset, jolloin \(\cos \phi \) saa huippuurvonansa 1 ja teho on suurimmillaan.

KUVA 1. Virta ja jännite ovat samanvaiheiset (Jaatinen 1991, 10)

Kuvassa 2 virran ja jännitteen välillä on vaihesiirtoa, joten \(\cos \phi < 1 \). Hetkinä, jolloin virta ja jännite ovat erimerkkiset, on teho negatiivinen, välit O-A ja B-C. Muina hetkinä teho on positiivinen. Kuvasta näkyy, kuinka tehon kulku vaihtelee vuoroin sähkölähteestä kuormitukseen ja vuoroin kuormituksesta sähkölähteeeseen päin. Tehon keskiarvo on tässä tapauksessa huonompi, vaikka virta ja jännite ovat samat kuin kuvasella 1. (Jaatinen 1991, 11.)

KUVA 2. Jännite on virtaa edellä, eli vaihesiirto on induktiivinen (Jaatinen 1991, 11)

Kuvassa 3 virran ja jännitteen välinen vaihesiirto on 90°, eli \(\cos \phi = 0 \). Tehon keskiarvo on nyt nolla, koska tehon hetkelliskäyrä heiluu samalla lailla vaaka-akselin molemmilla puolilla. Tehon ollessa positiivinen virtaa tehoa sähkölähteestä kuormitukseen päin sama energiamäärä, kuin mitä virtaa takaisin kuormituksesta sähkölähteeeseen päin tehon ollessa negatiivinen. (Jaatinen 1991, 11.)
2.5 Jännite- ja virtayliaallot

Jännitestandardi SFS-EN 50160 mukaan normaaleissa käyttö-olosuhteissa viikon aikana 95 % jokaisen yksittäisen harmonisen yliaaltojännitteen tehollisarvon 10 minuutin keskiarvoista tulee olla enintään taulukossa 1 esitetty arvo. Lisäksi jakelujännitteen harmonisen kokonaissäärön THD:n tulee olla enintään 8 %, mukaan lukien kaikki harmoniset yliaallot järjestysluvultaan 40:een saakka. Käytännössä jo 3 %:n jännitesäärö saateta aiheuttaa ongelmia laitteissa (Männistö ym. 2006, 21.)

Pääjännitteen säröprosentti voidaan laskea kaavan 7 mukaan

\[
THD - F \% = \left(\frac{\sum_{n=2}^{\infty} U_n}{U_1} \right)^2 \cdot 100 \%
\]

jossa:
\[U_n = \text{harmoninen yliaaltojännite} \]
\[U_1 = \text{perustaaajuinen pääjännite}. \]

Taulukossa 1 on esitetty harmonisten yliaaltojännitteiden arvot liittymiskohdassa järjestyslukuun 25 saakka pj-verkolla prosentteina nimellisjännitteenä ja kj-verkolla prosentteina sopimuksen mukaisesta jakelujännitteenä.

TAULUKKO 1. Harmonisten yliaaltojännitteiden arvot liittymiskohdassa (Männistö et al. 2006, 22)

<table>
<thead>
<tr>
<th>Järjestysluku h</th>
<th>Yliaaltojännite %</th>
<th>Järjestysluku h</th>
<th>Yliaaltojännite %</th>
<th>Järjestysluku h</th>
<th>Yliaaltojännite %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>9</td>
<td>1,5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>3,5</td>
<td>15</td>
<td>0,5</td>
<td>6-24</td>
<td>0,5</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>21</td>
<td>0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kokonaissärö THD 8 %

TAULUKKO 2. Sallitut yliaaltovirrat pienjänniteasiakkaille (Männistö ym. 2006, 44)

<table>
<thead>
<tr>
<th>Referenssvirta</th>
<th>Suositeltava raja</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 25 A</td>
<td>Saa käyttää laitestandardien mukaisia laitteita</td>
</tr>
<tr>
<td>> 25 A - 200 A</td>
<td>Virran harmoninen kokonaissärö max 10 % kokonaivirrasta</td>
</tr>
<tr>
<td>> 200 A</td>
<td>Virran harmoninen kokonaissärö enintään 8 % referenssivirrasta, kuitenkin vähintään 20 A sallitaan. Lisäksi yksittäisten yliaaltojen osalta sallitaan:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Järjestysluku n</th>
<th>Sallittu arvo referenssivirrasta</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 11</td>
<td>7,0 %</td>
</tr>
<tr>
<td>11 - 16</td>
<td>3,5 %</td>
</tr>
<tr>
<td>17 - 22</td>
<td>2,5 %</td>
</tr>
<tr>
<td>23 - 34</td>
<td>1,0 %</td>
</tr>
<tr>
<td>> 34</td>
<td>0,5 %</td>
</tr>
</tbody>
</table>

Jotta kaikki sähkön käyttäjät olisivat samassa asemassa, on yliaaltovirroille annettu maksimirajat, joita sähkönkäyttäjä saa yhdestä liittymäkohdasta normaalitilanteessa ottaa tai syöttää verkosta. Kaikki sähkönkäyttäjät on saatettu tasapuoliseen asemaan sitomalla osuudet referenssivirtaan. Taulukossa 2 on esitelty suurimmat sallitut yliaaltovirrat pienjänniteasiakkaille ja taulukossa 3 keskijänniteasiakkaille.

TAULUKKO 3. Sallitut yliaaltovirrat keskijänniteasiakkaille (Männistö ym. 2006, 45)

<table>
<thead>
<tr>
<th>Referenssvirta</th>
<th>Suositeltava raja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaikki</td>
<td>Virran harmoninen kokonaissärö enintään 8 % referenssivirrasta. Lisäksi eri yliaaltojen osalta:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Järjestysluku n</th>
<th>Sallittu arvo referenssivirrasta</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 11</td>
<td>7,0 %</td>
</tr>
<tr>
<td>11 - 16</td>
<td>3,5 %</td>
</tr>
<tr>
<td>17 - 22</td>
<td>2,5 %</td>
</tr>
<tr>
<td>23 - 34</td>
<td>1,0 %</td>
</tr>
<tr>
<td>> 34</td>
<td>0,5 %</td>
</tr>
</tbody>
</table>

Säröjännitetettä ja särövirtaa ei yleensä mitata erikseen, vaan jännite- ja virtasarön seuranta on liittyen itsensä tai verkonhaltijan tehtävä toimenpide. Yleensä verkonhaltija on vastuussa jännitteestä ja liittyjä virrasta. Eli jos jänniteraja alittuu, mutta virtaraja ylittyy, on sähkönkäyttäjä vastuussa, kun taas jos jänniteraja ylittyy, mutta virtaraja alittuu, on verkonhaltija vastuussa.
3 LOISTEHO SUURJÄNNITEVERKOSSA

Tässä kappaleessa on käsitelty loistehon vaikutusta suurjänniteverkossa. Lisäksi on käyty läpi menetelmiä ja laitteita, joilla voidaan vaikuttaa sähkön siirron kapasiteetin parantamiseen. Kappaleessa on käsitelty sähkön siirtoa lähinnä vain loistehon näkökulmasta.

3.1 Käytössä oleva sähkölähetkijärjestelmä

3.2 Sähkön tuotanto

Sähköä tuotetaan monenlaisissa voimaloissa, kuten vesivoimaa-, ydinvoimaa- ja tuulivoimalaitoksissa, sekä muissa erilaisissa voimalaitoksissa. Suomessa erilaisissa voimaloissa tuotettu sähkö siirretään kuluttajille sähköverkkoa pitkin, johon on kytetty kaikki voimalaitot ja kuluttajat. Sähköverkkojen tehtävänä on yhdistää toisiinsa tuotanto ja kulutus (Elovaara & Haarla 2011a, 73). Sähköverkko kattaa lähes kaikki taloudet Suomessa, joten siirtomatkat ovat välillä pitkiä. Koska siirron ja jakelun häviöt ovat muotoa ≈RI² ja siirrettävä teho muotoa ≈UI, täytyy sähköä siirtää sitä suuremmalla jännitteellä, mitä suuremmasta siirtotehosta on kyse. (Elovaara & Laiho 1988, 29.)

3.3 Loisteho generaattorien kannalta

Sähköä tuottavissa voimaloissa käytetään voimakoneina usein vesi-, höyry- tai kaasuturbineja, jotka pyörittävät samalle akseliille asennettua generaattoria, jolla tuotetaan sähköä. Generaattorit jaetaan yleensä epätähtigeneraattoreihin ja tahtigeneraattoreihin.
3.3.1 Epätahtigeneraattorit

Epätahtikoneilla loisteho on enemmän riippuvainen jännitteestä kuin pätöteho, jos jännite laskee, nousee loistehon kulutus. Epätahtigeneraattorit eivät siten pysty tukeamaan verkkoa häiriötilanteissa. Esimerkiksi epätahtigeneraattoreita käyttävien tuulivoimaloiden ominaisuuks on, että jännitekuoppa verkossa lisää niiden loistehon kulutusta ja siten jännitekuoppa syvenee enistestään. (Elovaara & Haarla 2011a, 139.)
3.3.2 Tahtigeneraattorit

Tahtikone on vaihtosähkökone, jonka roottori pyörii tarkalleen samalla nopeudella, eli samassa tahdissa kuin staattorin synnyttämä magneettikenttä pyörii. Tahtikoneen staattori on periaatteessa samanlainen kuin epätahtikoneen staattori, mutta roottorit ovat erilaiset. Tahtikoneen roottori, eli napapyörä on joko umpi- tai avonaparakenteinen. Avonaparakennetta käytetään esimerkiksi vesivoimaloissa, joissa on tehoihin nähden pienet pyörintänopeudet (75…500 1/min taajuuden ollessa 50Hz) ja tehon heilahtelujen vaimentamiseksi vaaditaan suuria hitausmomentteja, jolloin generaattoreiden halkaisijat ovat suuria. Umpinapakoneita käytetään höyry- ja kaasuturpiinilaitoksissa, joissa pyörintänopeudet ovat suuria (3000 1/min taajuuden ollessa 50 Hz), jolloin generaattoreiden halkaisijat ovat pieniä, jotta kehänopeus olisi teknisesti sopiva. (Aura & Tonteri 1986, 241-242.)

3.3.3 Tahtigeneraattorit loistehon tuottajina ja kuluttajina

Tahtigeneraattoreita on aiemmin käytetty 110 kV:n verkossa synkronikompensaattoreina, jotka olivat kytketty verkkoon kuormittamattomina. Kun tällaisia generaattoreita yli- tai alimagnetointiin, voitiin niillä joko tuottaa tai kuluttaa loistehoa tarpeen mukaan. (Elovaara & Haarla 2011b, 225.)

Käytettäessä tahtigeneraattoreita loistehon tuottajina tarvitaan siihen hakki jännitteelliseen sähköverkkoon kytkeytyvä tahtigeneraattoria, jotka ovat tahdistettu keskenään. Generaattori G₁ on automaattisesti säädettävä, ja se syöttää vakiona pysyvällä jännitteellä U₁ ja taajuudella f₁ kuormituksa Z, kuten kuvassa 4 on esitetty. Koneiston 1 rinnalle kytkeytään toinen käsissätoinen koneisto 2 syöttämään samaa kuormitusta. (Aura & Tonteri 1986, s.262) Kun generaattorit on tahdistettu, on generaattori G₂ verkossa tyhjäkyntitilaa vastaavassa tilassa. Jos sen halutaan syöttää verkoon induktiivista loisvirtaa ja loistehoa, on generaattoria ylimagneetoitava. (Aura & Tonteri 1986, 267.)
Lisättäessä generaattorin G_2 magnetointia suurenee sen päälähdejännite E_{mv2} (kuva 5) verkon eli generaattorin G_1 liitinjännitettä U_{V1} suuremmaksi. Tämä aiheuttaa generaattoreiden väliseen vaihepiiriin jännitteen $\Delta U = E_{mv2} - U_{V1}$. Generaattoreiden keskinäiseen vaihepiirin syntyy virta I_2, joka on verkon kannalta pelkkää induktiivista loisvirtaa. Mitä suurempi on generaattorin G_2 magnetointi, sitä suuremmaksi tulee päälähdejännite E_{mv2} ja virta I_2 sekä generaattorin G_2 verkkoon syöttämä loisteho Q_2. Kaikki loisteho, mitä tuotetaan, on myös kulutettava. Tämän vuoksi generaattorin G_1 loisvirran ja loistehon on pienennettävä, mikäli kuormitustilanne ei muutu. (Aura & Tonteri 1986, 267.)

Kuvassa 5 esitetyssä kuvassa on

Φ_m = pääkenttä,

Φ_{ad} = kapasitiivisen loisvirran synnyttämä pitkittäinen myötäkenttä eli ankkurivuo

\bar{U}_v = liitinjännite,

I_r = magnetoimisvirta (Aura & Tonteri 1986, 263).
Jos tahtigeneraattorilla halutaan tuottaa kapasitiivista loisvirtaa ja loistehoa, täytyy generaattoria vastaavasti alimagnetoida. Kun generaattorin G_2 magnetointia pienennetään, pienenee samalla sen päälähdejännite E_{mv2} generaattorin G_1 liitinjännitettä U_{V1} pienemmäksi. Tästä seuraa generaattoreiden keskinäiseen vaihepiiriin jännite $\Delta U = U_{V1} - E_{mv2}$. ΔU taas aiheuttaa generaattoreiden väliseen vaihepiiriin virran I_2, kuten induktiivisessakin loistehon säädössä. Virta I_2 on generaattoreiden välisen vaihepiirin kannalta induktiivivasta loisvirtaa, mutta koska se on jännitteestä U_{V1} edellä 90º, on se verkon kannalta kapasitiivista loisvirtaa. (Aura & Tonteri 1986, 268.)

3.4 Loisteho siirtoverkoissa

Voimansiirtoverkossa loistehon tasapainoa täytyy jatkuvasti pystyä säätämään. Loistehon tuotantoon käytetään jakeluverkoissa yleensä rinnakkaiskondensaattoriparistoja ja loistehon kulutukseen käytetään rinnakkaiskuristimia eli reaktoreita. Reaktorit kompensoivat pienen kuorman aikana johtojen kehittämän ylimääräisen loistehon. (Elovaara & Haarla 2011b, 225.)
3.4.1 Suurjännitteinen rinnakkaiskondensaattoriparisto

Rinnakkaiskondensaattoreita käytetään siis jakeluverkoissa loistehon tuotantoon, ja ne ovat kytetty 110 kV:n verkkoon mahdollisimman lähelle loistehon kulutuspisteitä. Suurjännitteinen rinnakkaiskondensaattori rakentuu useista rinnan ja sarjaan kytettyä vakiokokoisesta kondensaattoriyksiköstä, joiden mitoitusjännite U_R on yli 660 V. Siirto- ja jakeluverkoissa kondensaattoriyksiköiden mitoitusjännite U_R on yleensä $11/\sqrt{3}$ kV ≈ 6,35 kV, ja mitoitusteho Q_R on 50-250 kvar. Sarjaan kytettyjen yksiköiden määrä valitaan verkon ja yksikön mitoitusjännitteen mukaan ja rinnankytkettyjen yksiköiden määrä valitaan pariston tehon mukaan. Suomessa 110 kV:n verkossa paristokoko on yleensä 20-50 Mvar ja 20 kV:n verkossa 1-5 Mvar. (Elovaara & Haarla 2011b, 228.)

Kondensaattoriyksiköt ovat yleensä yksivaiheisia ja yksinapaisesti eristettyjä, jolloin toinen kytentäjähoito on kytetty kuoreen. Kaksinapaisesti eristetyissä kuori on taas maadoitettu tai liitetty jompaankumpaan napaan, jolloin kuori on jännitteellinen. Jos paristossa on kytetty useita yksikköjä sarjaan, on kuori yleensä aina jännitteellinen, olipa se sitten yksi- tai kaksinapaisesti eristetty. Suomessa kondensaattoriyksiköt suojataan käämikohtaisilla sisäisillä sulakkeilla (kuva 6), jotka irrottavat vioittuneet käämiä verkosta. Sisäisten sulakkeiden ansiosta yksikköä voidaan sulakepalosta huolimatta käyttää edelleen ja tehoa menettetään vain noin 2-3 prosenttia. Sisäisistä sulakkeista huolimatta koko paristo on varustettava pääsulakeilla tai vastaavalla suojauskella. (Elovaara & Haarla 2011b, 228-229.)

KUVA 6. Suurjännitekondensaattoriparisto a) ja kondensaattoriyksikkö b) (Elovaara & Haarla 2011b, 229)
Rinnakkaiskondensaattorin tuottama loisteho Q saadaan laskemalla, kuten kaavassa 8 on esitetty

$$Q = \omega C U^2 = (U/U_R)^2 \times Q_R$$ (8)

jossa:

$\omega = $ verkon kulmataajuus

$C = $ kondensaattorin kapasitanssi

$U = $ verkon jännite

$U_R = $ kondensaattorin mitoitusjännite

$Q_R = $ kondensaattorin mitoitusteho. (Elovaara & Haarla 2011b, 229.)

3.4.2 Rinnakkaiskondensaattorin kytentäseuraukset

Kytkettäessä kondensaattoria verkkoon aiheuttaa se jännitemuutoksia ja resonanssi-vaaraa. Kun kondensaattori kytetään verkkoon, verkon jännite nousee kaavan 9 mukaan

$$\frac{U_1'}{U_1} = \frac{1}{1 - \frac{Q_R}{S_k}}$$ (9)

jossa:

$U_1' = $ jännite kytkennän jälkeen

$U_1 = $ jännite ennen kytentää

$Q_R = $ pariston mitoitusteho

$S_k = $ verkon oikosulkuteho kondensaattorin kytentäpisteessä. (Elovaara & Haarla 2011b, 231.)

Jos teholtaan liian suuri kondensaattori kytetään verkkoon, saattaa se aiheuttaa jännitteen nousua liittyvänä valojen äkillistä kirkastumista. Jännitteen nousu rajoitetaan yleensä kolmeen prosenttiin. Kondensaattorin koko tulisi valita siten, ettei resonanssitaajuus f_{res} osu parittomien kolmella jaottomien, eikä verkkokäskyohjausjärjestelmän käyttämien taajuuksien läheisyyteen. Kondensaattorin ja syöttävän verkon muodostama resonanssitaitajuus f_{res} saadaan laskettua kaavan 10 mukaan
\[f_{\text{res}} = f_0 \sqrt{\frac{S_k}{Q_R}} \]
(10)

jossa

\(f_0 \) = on perustaajuus (50 Hz)
\(S_k \) = verkon oikosulkuteho kondensaattorin kytkentäpisteessä
\(Q_R \) = pariston mitoitusteho.

Rinnakkaiskondensaattorin verkkoon kytkeminen aiheuttaa myös sysäysvirran i, jonka suuruus voidaan laskea kaavan 11 mukaan

\[i = 2 \cdot I_R \sqrt{\frac{S_k}{Q_R}} \]
(11)

jossa:

\(I_R \) = kondensaattorin mitoitusvirta
\(S_k \) = verkon oikosulkuteho kondensaattorin kytkentäpisteessä
\(Q_R \) = pariston mitoitusteho.

Sysäysvirta suurenee vielä edellistäkin suuremmaksi, jos verkossa olevan pariston tilalle kytetään toinen paristo (Elovaara & Haarla 2011b, 230-231).

Suurjännitekondensaattorit varustetaan yleensä purkausväylälle kytketyn yksikön mitoitusjänniteestä 50 voltta viidessä minuutissa. Nykyisin voimassa oleva SFS 6001 standardi vaatii vain purkaukselliselle, mutta ajalle ei ole asetettu mitään rajoituksia. (Elovaara & Haarla 2011b, 229.)

3.4.3 Rinnakkaiskuristimet eli reaktorit

Reaktoreilla kompensoidaan pienien kuormituksen aikana johtojen tuottamaa ylimääräistä loistehoa. Suomen kantaverkon kolmivaiheisten reaktoriryhmien teho on 63 Mvar, ja ne ovat kytetty 400/110/20 kV:n muuntajien tertiaarikäämeihin, joissa ne kompensoivat nimenomaan 400 kV:n verkon johtojen tuottamaa loistehoa. Suomessa reaktorit ovat valtaosin ilmasydämisiä, mutta muissa maissa käytetään yleensä suoraan
400 kV:n kiskostoon tai jopa kiinteästi pitkään johtoon liitettyjä öljyjäähdytteisiä rautasydämiä reaktoreita. (Elovaara & Haarla 2011b, 225-226.)

Reaktorin kuluttama loisteho Q voidaan laskea kaavan 12 mukaan

\[
Q = \frac{(U / U_R)^2}{Q_R} \quad (12)
\]

jossa

- \(U\) = verkon jännite
- \(U_R\) = reaktorin mitoitusjännite
- \(Q_R\) = reaktorin mitoitusteho. (Elovaara & Haarla 2011b, 226.)

3.4.4 Sarjakondensaattorit

Pitkillä voimansiirtojohdoilla johdon reaktanssi rajoittaa johdon kautta siirrettävän tehon määrää. Jos osa johdon reaktanssista kompensoidaan sarjakondensaattorilla, voidaan johdon reaktanssia pienentää ja täten päätöhen siirtokykyä kasvattaa. Mitä suurempia on sarjakondensaattorilla tehtävää johdon kompensointiaste, sitä lyhyempi on johdon sähköinen pituus. Sarjakondensaattoreita on kantaverkossa nykyisin 7-8 kappala, ja ne on kytetty pitkiin pohjois-etelä-suuntaihin 400 kV:n siirtojohtoihin, kompensointiasteen ollessa 50–70 %, (Elovaara & Haarla 2011b, 226.) eli kuinka paljon johdon induktiivisesta reaktanssista kompensoidaan.

Sarjakondensaattori kytketään johdon kanssa sarjaan, jolloin se pienentää johdon päiden välistä induktiivista reaktanssia. Sarjakondensaattorilla pienennetään johdon päiden välistä kulmaeroa ja johdon kuormittuessa verkosta ottama loisteho pienenee.
Sarjakondensaattorilla tuotettu loisteho seuraa portaattomasti verkossa kulkevan kuormitusvirran suuruuden mukana.

Sarjakondensaattorit rakennetaan yleensä vaihekohtaisille lavoille (kuva 7), jotka ovat maasta eristetty tukieristimien avulla. Tämä sen vuoksi, koska sarjakondensaattorit kytketään jännitteelliseen johtoon, jonka seurauksena kaikki järjestelmään kuuluvat osat ovat voimajohdon potentiaalissa.

KUVA 7. Sarjakondensaattoreita lavalla (Nokia Capacitors 2011)
4 KOMPENSOINTI PIENJÄNNITEVERKOSSA

Loistehon siirto sähköverkossa pientää pätötehon siirtokykyä ja lisää johtojen ja muuntajien energiahäviöitä kokonaiskuormitusvirran ollessa suurempi. Kokonaiskuormitusvirran pieneneminen vähentää taas kaapeleiden, muuntajien ja moottorien kuumenemista, mikä taas jatkaa niiden elinkästä ja vähentää niiden häviöitä. Loistehon siirtomäärian pientäminen saattaa myös lykätä verkon vahvistus- tai uusinvestointia eteenpäin. Tämän vuoksi loissähkö tulisi tuottaa mahdollisimman lähellä kulutuspaikkaa. (Männistö ym. 2006, 20.)

4.1 Kompensointitavat loistehon kulutuspaikalla

Vaiheen siirtokondensaattoreilla kehitetään esimerkiksi purkauslamppuvalaisimien kuristimien ja induktiomoottoreiden tarvitsema magnetomisteho, joka on induktiivista loistehoa. Myös muuntajan magneettikentän ylläpitämiseen tarvitaan loistehoa. Kompensointi kulutuspaikalla voidaan tehdä kojekohdaisella kompensoinnilla, ryhmäkohtaisella kompensoinnilla tai keskitetyllä kompensoinnilla. (Jaatinen 1991, 66.)

KUVA 8. Kondensaattorit ovat kytetty moottorien käynnistimien liittimiin

Ryhmäkompensointia käytetään valaisin- ja moottoriryhmien (kuva 9) kompensointiin yhteisellä kondensaattorilla ryhmäkohtaisesti. Valaisimien osalta ryhmäkompensointi sopii erityisesti 3-vaiheisten kontaktorihjattujen valaisinryhmien kompensointiin, koska tällöin kondensaattori voidaan sijoittaa sopivaan paikkaan kuumenemis- ja huoltonäkökohdat huomioon ottaen. (Jaatinen 1991, 72-73.)

KUVA 9. Moottoriryhmän kompensointi (Jaatinen 1991, 75)

Keskitetyssä kompensoinnissa kondensaattorit on asennettu pääkeskuksiin (kuva 10). Keskitettyä kompensointia käytetään usein kojekoahtaisen tai ryhmäkompensoinnin lisäksi riittävän kompensointiasteen saavuttamiseksi, cosφ ≥ 0,97. Käytettäessä kiin-
teitä kondensaattoriyksiköitä loihtehoa tuotetaan jatkuvasti, vaikka kulutuspaikka ei sitä joka hetki tarvitsisiakaan. Tällöin loihtehoa saatetaan tuottaa yli oman käytön, jolloin ylimääräinen loihteho siirtyy muuntajan kautta valtakunnan verkkoon. Jakelu-
muuntajien loihtehon kulutus tyhjäkäynnillä on 1-2 % ja täydellä kuormalla 6-15 % muuntajan nimellistehostaa. Ylikompensoinnin haitat vältetään käytännössä siten, että ei asenneta kondensaattoreita muuntajan pienjännitepuolelle enempää kuin 15-20 %
muuntajan nimellisjännitetehostaa. On myös mahdollista ja suositeltavaa käyttää auto-
nmatiikkaparistoja, jossa säädin kytkee kondensaattoreita verkkoon ja siitä pois loihtehon tarpeen mukaan. (Jaatinen 1991, 76-77.)

4.2 Kepmensoinnin laiteratkaisut

Kompensoinnissa käytettävien laitteiden valinta riippuu esimerkiksi käytetäänkö laite-
, ryhmä- vai kojekohtaisia kompensointia, tarvitaanko ylialtosuodatusta tai kompen-
soidaanko induktiivista vai kapasitiivistä loihtehoa. Pienjännitteiset kondensaattoriyks-
siköt on nykyisin valmistettu yleensä itsepärantuvasta metalloidusta polypropy-
leenikalvosta, jolloin läpilyönti elementissä aiheuttaa metallointikerroksen höyrysy-
misen ja elementin jäämisen oikosulkun. Elementit ovat nykyisin rakenteeltana täy-
sin kuivia, eivätkä sisällä mitään kyllästynestettä. Jokainen elementti varustetaan sisäisellä suojaalla ylivirtaa, ylilämpöä ja ylipainetta vastaan. (Männistö ym. 2006, 48.)

Pienjänniteyksiköt koostuvat rinnankytkeyystä elementeistä, joiden yksikkökooot vaih-
televat 2,5-100 kvar. Yksiköt ovat 3-vaiheisia ja sisäisesti kolmioon tai tähteen kytket-
tyjä nimellisjännitteellä ollessa 400, 525 tai 690 V. Aiemman sähköturvallisuusmääräysten mukaan alle 660 V:n nimellisjännitteisen kondensaattoriysikön varauksen oli purkauduttava 50 voltit irtikyttemisen jälkeen 60 sekunnissa. Nykyisen SFS-EN 60204-1 standardin mukaan yli 60 voltin jännitteisten osien jäännösjännite on purettava 60 voltit 5 sekunnissa syötön katkaisun jälkeen. Purkaminen hoidetaan sisäisellä purkausvastuksella. (Männistö ym. 2006, 48-49.)

4.2.1 Rinnakkaiskondensaattoriparisto

4.2.2 Estokelaparisto

Estokelaparistossa jokainen porras koostuu kondensaattorin ja kuristimen sarjakytkennästä, jotka muodostavat sarjaresonanssipiirin, jonka taajuus on viritettäväntä, jotta verkossa esiintyvä pienin harmoninen yliaaltotaajuus. Viritystaajuutensa alapuolella paristo on kapasitiivinen eli tuottaa loistehoa ja viritystaajuuden yläpuolelta paristo on induktiivinen, jolloin se ei vahvista yliaaltoa. Estokelaparistolla on myös yliaaltoja suodattava vaikutus, mikä riippuu kompensoinnin tehosta ja viritystaujuudesta. Viritystaajuus tulee valita verkossa esiintyvien merkittävimpien yliaaltojen mukaan. Jos käytetään viritystaajuutena esimerkiksi 189 Hz:ää, suodattaa estokelapa-
4.2.3 Yliaaltosuodattimet

Passiiviset yliaaltosuodattimet sisältävät kondensaattoreita ja niiden kanssa sarjaan kytketyn kuristimen. Kuristin muodostaa kondensaattoreiden kanssa sarjaresonanssi- piirin, jolloin suurin osa yliaalloista kulkeutuu suodattimeen, lisäksi sillä voidaan tuottaa haluttu loisteho. Sarjaresonanssi-piirejä on yleensä kolme, jotka on viritetty taajuuksille 5., 7. ja 11 harmoninen yliaalto. (Männistö ym. 2006, 53.)

4.3 Yliaallon pienjänniteverkossa

Resistanssi pysyy taajuuden muuttuessa vakiona, mutta reaktanssien kaavoissa vaikuttaa taajuus f, joten niiden vaikutus impedansseihin muuttuu taajuuden mukaan.
Verkossa kulkevat yliaaltovirrat synnyttävät jännitteessä yliaaltoja kohdatessaan verkoston impedanssiin. Jännitteen yliaallet aiheuttavat jännitteen käyrämuodon säröytymistä ja siten jännitethäviöitä. Kuvassa 12 on esitetty 3. yliaallon (150 Hz) ja perusaallon (50 Hz) käyrämuodostusta yliaaltomäärän ollessa noin 20 %. (Jaatinen 1991, 32.)

Yliaallet aiheuttavat jakeluverkostoon lisähäviöitä ja ylijännitteitä. Laitteille yliaallet aiheuttavat lisälämpenemistä, laitevaurioita sekä väantömomentin muuttumista. Yliaallet lyhentävät esimerkiksi televisioiden ja tietokoneiden elinkäällä rasittamalla niiden herkkää komponentteja, kuten transistoreita ja kondensaattoreita.

Taulukossa 4 on esitetty 9 ensimmäisen harmonisten yliaaltojen moottoreiden väantömomentille aiheuttamia muutoksia, lisäksi tulevat vielä ääni- ja värähtelyilmiöt. Yliaallet järjestysluvultaan 3n+1 lisäävät hieman väantömomenttia, ellei niiden vaikutus pyörimissuuntaan on taulukon mukaan positiivinen, jolloin magneettikenttä pyörittää moottoria samaan suuntaan kuin perusaalto, ja syntyy lisälämpäimistä. Yliaallet 3n-1 pienentävät väantömomenttia, ellei niiden vaikutus on taulukon mukaan negatiivinen, jolloin magneettikenttä yrittää jarruttaa moottoria, ja syntyy lisähäviöitä. Nolla vaikutuksella yliaallet kuormittavat nollajohtoa. (Männistö ym. 2006, 34.)

TAULUKKO 4. Yliaaltojen vaikutus moottorien pyörimiseen

<table>
<thead>
<tr>
<th>Yliaallon järjestysluku</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taajuus Hz</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td>450</td>
</tr>
<tr>
<td>Vaikutus pyörimissuuntaan</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Kuvassa 13 on esitetty, kuinka vaihejohtimien kolmannet yliaaltovirrat ovat samanvaiheisia ja summautuvat nollajohtimeen kolminkertaistaen virran amplitudin vaihejohtimen virran amplitudiin nähden.

KUVA 13. Vaihejohtimien yliaaltovirtojen summautuminen nollajohtimeen (Männistö ym. 2006, 33).

4.4 Resonanssit

Resonanssseja esiintyy sarja- ja rinnakkaisresonanssineinä, joista rinnakkaisresonansssi on yleisempi ja haitallisempi, etenkin jos piirissä on suuntaajakäytäntöä. Kun suuntaajan rinnalle kytketään kondensaattori, muodostuu verkon ja muuntajan induktanssin ja kondensaattorin kapasitanssin muodostama rinnakkaisresonansspiiri, johon suuntaajasta tulee yliaaltovirtoja. Jokaisella yliaaltotaajuudella virta I on yhtä suuri kuin vastaava suuntaajan virran yliaaltokomponentti ja admittanssi Y on yhtä suuri kuin suuntaajan rinnalla olevan kuormituksen admittanssi kyseisellä taajuudella. Resonanssisitilanteessa piirin impedanssi on suuri jonka vuoksi piirin yli vaikuttava jännitesäärö on
suuri. Tämän seurauksena piirissä kulkee suuri kiertävä virta, joka aiheuttaa verkkoon jännitesäätöä ja ylikuormittaa kondensaattoreita. Rinnakkaisresonanssissa piirissä vaikuttava virta voi olla moninkertainen piiriin tulevaan virtaan nähden. (Jaatinen 1991, 29.)

Pienjänniteverkossa virrat vahvistuvat tyypillisesti 1-5 ja keskijänniteverkossa jopa 10-20 kertaiseksi. Kuvassa 14 on esitetty rinnakkaisresonanssin sijaiskytkentä, jossa yliaaltolähettää on kuvattu ideaalisella virtalähteellä J ja sisäisellä admittanssilla Y.

![KUVASISARJUUS]

KUVA 14. Rinnakkaisresonanssin sijaiskytkentä (Jaatinen 1991, 29).

5 MUUNTAJA

Muuntajan keksiminen on aikoinaan aiheuttanut sen, että vaihtosähkö on syrjäyttänyt tasasähköön, koska muuntaja toimii vain vaihtosähköllä. Muuntaja on siis laite, joka vaihtosähköjärjestelmässä muuntaa ja myös säätää jännitteitä ja virtoja kahden tai useamman käännöksen avulla käyttäen hyvänkseen sähkömagneettista induktiota. Auran ja Tonterin mukaan (1996, 7) muuntajat jaotellaan voimamuuntajiin, suojamuuntajiin ja mittamuuntajiin. Voimamuuntajilla muunnetaan jännite U_1 jännitteenä U_2 sähkö- energian siirrossa tarpeen mukaan. Suojamuuntajien tehtävänä on eristää jokin sähkö-laitte yleisestä sähköverkosta. Mittamuuntajien tehtävänä on muuntaa jännite tai virta sopivaksi mittalaitteille tai releille. Mittamuuntajat jaetaan jännite- ja virtamuuntajiin. Voimamuuntajat voidaan vielä jakaa suurtehomuuntajiin ja pienetehomoontajiin, jälkimäisiä kutsutaan myös jakelumuuntajiksi. Jakelumuuntajiin lasketaan kuuluvaksi muuntajat, joiden yläjännitepuolen nimellisjännite U_{1n} on ≤ 20 000 voltta ja alajänni-
tepuolen nimellisjännite $U_{2n} = 400$ voltia, sekä teho $S_n \leq 3150$ kVA. Jakelumuuntajat jaetaan taas rakenteensa puolesta pauutasäiliöllisiin öljyeristeisiin ja paisuntasäiliöllisiin öljyeristeisiin rakenteeseen, hermeettisiin ja pylväsmuuntajiin. (Aura & Tonteri 1986, 79-80.)

5.1 Muuntajien rakene

Muuntaja-astia on yleensä rakennettu sitkeästi ja lujasta terästehtyvästä. Muuntajan rautasydämet taas valmistetaan yleensä 0,23 - 0,35 mm:n vahvuisesta kylmävalssatuista eli kidesuunnatuista sydänlevystistä, jotka voivat olla laserkäsiteltynä häviöiden pienentämiseksi. Jakelumuuntajia on alettu valmistaa myös niin sanotustaan amorfisesta sydänlevymateriaalista, jossa kiderakenne puuttuu kokonaan, jolloin häviöt ovat entistäkin pienemmät. Suurien muuntajien käämit on yleensä valmistettu kuperista, mutta jakelumuuntajan käämit voidaan valmistaa myös alumiinista. (Elovaara & Haarla 2011b, 141 - 142.)

Sydänrakenteensa perusteella muuntajat jaetaan sydänmuuntajiin ja vaippamuuntajiin. Rakenteiden välinen ero riippuu siitä, millainen kulkutie nollavuoroinella magneettivuolla on. Esimerkiksi kolmipylväinen kolmivaihemuuntaja on sydänmuuntaja, ja viisipylväinen kolmivaihemuuntaja on jo eräänlainen vaippamuuntaja, tai ainakin vaippa- ja sydänmuuntajan sekamuoto. Viisipylväinen muuntajasydän voidaan yleensä rakentaa matalammaksi kuin kolmepylväinen, mistä voi olla joskus etua. Yksivaihei-
set muuntajat toimivat aina vaippamuuntajan tavoin. (Elovaara & Haarla 2011b, 142 - 143.)

Kuvassa 15 on esitetty erilaisia muuntajasydämiä, joissa viivoitettu aluea pylväille piirrettyä käämiä. Kuvassa a ja b ovat yksivaihemuuntajan sydämiä, c on kolmivaiheisen sydänmuuntajan sydän, d on kolmivaiheisen 5-pylväsmuuntajan sydän ja e on perinteisen kolmivaiheisen vaippamuuntajan sydän (Elovaara & Haarla 2011b, 143).

KUVA 15. Erilaisia muuntajan sydänrakenteita (Elovaara & Haarla 2011b, 143)

Kuvassa 16 on esitetty öljyeristeinen jakelumuuntaja, jossa on väliottokytkin. Kuvan numeroinnit tarkoittavat:
1. Öljysäiliö
2. Arvokilpi
3. Paisuntasäiliö
4. Lämpömittari
5. Lämpömittaritasku
6. Öljykorkeuden osoitin
7. Kaasurele
8. Alajänniteläpivienti
9. Yläjänniteläpivienti
10. Tähtipistemäpivienti
11. Nostosilmukat
12. Väliottokytkimen asennon valitsin.
KUVA 16. Paisuntasäiliöllinen öljyeristeinen jakelumuuntaja (Aura & Tonteri 1986, 82)

5.2 Muuntajan kytkenät

Tähtikytkentä soveltuu parhaiten suurille jännitteille ja pienille virroille, mutta sitä joudutaan käyttämään myös silloin, kun tarvitaan tähtipiste maadoittamista varten.

5.3 Muuntajan oikosulkuimpedanssi ja oikosulkujännite

Muuntajan oikosulkuimpedanssi mitataan tehtaalla ja merkitään arvokilpeen prosentteina muuntajan nimellisimpedanssistä. Se saadaan laskettua myös kaavan 13 mukaan

$$z_k = \frac{100 \ Z_k}{Z_n} \ \text{%},$$

joska:

$z_k =$ muuntajan suhteellinen oikosulkuimpedanssi
$Z_k =$ muuntajan oikosulkuimpedanssi
$Z_n =$ muuntajan nimellisimpedanssi. (Aura & Tonteri 1986, 43 - 44.)

Kaksikäämitys­muuntajan oikosulkuimpedanssi saadaan laskemalla muuntajan oikosulkuresistanssi ja oikosulkureaktanssi yhteen kaavan 14 mukaisesti
\[Z_k = R_k + jX_k \] \hspace{1cm} (14)

jossa:
\[R_k = \text{muuntajan oikosulkuresistanssi} \]
\[jX_k = \text{muuntajan oikosulkureaktanssi}. \text{(Elovaara & Haarla 2011a, 131.)} \]

Oikosulkujännitteeksi sanotaan jännitetä, jolla syötetyssä oikosuljetussa muuntajassa kulkee muuntajan mitoitusvirran suuruinen virta, joka saadaan laskettua kaavan 15 mukaan

\[U_k = Z_k + I_R \] \hspace{1cm} (15)

jossa:
\[U_k = \text{oikosulkujännite} \]
\[Z_k = \text{muuntajan oikosulkupedanssi} \]
\[I_R = \text{mitoitusvirta}. \]

Oikosulkujännitteen koostuu resistiivisesta osasta, joka on virran kanssa samanvaiheinen ja reaktiivisesta osasta, joka on virtaa 90º edellä. Arvot ilmoitetaan yleensä prosentteinä muuntajan mitoitusjännitteestä, jolloin oikosulkujännitteelle saadaan kaavan 15 mukainen yhtälö

\[U_k = (u_r + ju_x) \frac{U_R}{\sqrt{3}} = (R_k + jX_k) \frac{S_R}{3 \cdot U_R} \] \hspace{1cm} (16)

jossa:
\[U_k = \text{oikosulkujännite} \]
\[u_r = \text{oikosulkujännitteen resistiivinen osa} \]
\[ju_x = \text{oikosulkujännitteen reaktiivinen osa} \]
\[U_R = \text{mitoitusjännite} \]
\[R_k = \text{muuntajan oikosulkuresistanssi} \]
\[jX_k = \text{muuntajan oikosulkureaktanssi} \]
\[S_R = \text{muuntajan mitoitusteho}. \text{(Elovaara & Haarla 2011a, 132.)} \]
Yleensä \(u_r \) on noin 1-2 % ja \(u_x \) on 6-15 %, jolloin reaktiivinen osa kasvaa suhteessa enemmän muuntajan koon kasvaessa.

On olemassa myös niin sanottuja säästökytkettyjä muuntajia. Säästökytketyissä muuntajissa ensiö- ja toisiokäämityksillä on yhteenosa, jonka vuoksi ne kytkevät galvaanisesti yhteen ne verkot, joiden välillä se on. Tällaisen muuntajan oikosulkumpe-danssi on varsin pieni, jolloin sillä ei voida juurikaan rajoittaa vikavirtojen suuruutta. Tämän vuoksi Suomen kantaverkoissa ei käytetä säästömuuntajia. (Elovaara & Haarla 2011a, 133.)

5.4 Tertiäärikäämi

Jos kolmikäämisen muuntajan jänniteportaat ovat 400 kV, 110 kV ja 21 kV ja alajännitekäämiin kytketyin kompensointireaktorit, kehittyvää loistehoa virtaa sopivien impedanssisuhdeiden vuoksi yläjännitekäämin puolelle, eli 400 kV:n verkkoon. Näin tehdään siksi, että 110 kV:n verkko ei juuri tuota jännitteen nousua aiheuttavaa kapasitivista loistehoa. Edellä mainitut impedanssisuhteet käämien välillä saadaan aikaan siten, että välijännitekäämi (110 kV) sijaitsee lähinnä pylvästä, alajännitekäämi (21 kV) sijaitsee uloimpana ja yläjännitekäämi (400 kV) sijaitsee näiden käämien välissä. (Elovaara & Haarla 2011a, 134.)

Kuvassa 18 on esitetty kolmikäämimuuntajan yksi pylväs vaihekäämeineen. Kuvassa ensiokään on esitetty numerolla 1, joka olisi em. mukaan 21 kV:n käämi, toisiokään numerolla 2, joka olisi 400 kV:n käämi ja kolmansiokäämi numerolla 3, joka olisi siis 110 kV:n käämi.
5.5 Väliottokytkin ja käämikytkin

Suurmuuntajien jännitteen säätö joudutaan tekemään jännitteellisenä ja kuormitetun. Silloin jännitteen säätöön käytetään käämikytkintä, jolla jännitteen säätö voidaan tehdä muuntajan ollessa jännitteellinen ja kuormitetun. Tähtikytkennässä käytetään kolmivaiheisia nollapistekäämikytkimiä. Nollapistekäämikytkin on siis yksi kolmivaiheinen kytin. Kolmiokytkennässä eri vaiheiden välillä vaikuttaa päälämpö, jonka vuoksi kolmiokytkennässä käytetään vaihekaamikytkimiä. Vaihekaamikytkimet rakenne-
taan eristysvaikeuksien vuoksi yksivaiheiseksi, jolloin niitä on kolme. Jokaisella vaiheella on siis oma käämikytin. Käämikytkimestä on yleensä monta säätöporrasta, ja yksi porras on noin 1,5 %. Yleisimpää säättöalueita ovat ± 6 * 1,67 % = ± 10 %, ± 9 * 1,67 % = ± 15 %, ± 9 * 1,33 % = ± 12 %. Kuvassa 20 on esitetty periaatteellinen kytkenkä nollapistekäämikytkimelle a, ja vaihekäämikytkimelle b. (Aura & Tonteri 1986, 57.)

KUVA 20. Nollapistekäämikytkin a, vaihekäämikytkin b (Aura & Tonteri 1986, 57)

6 TUTKIMUKSEN TAVOITTEET

Tutkimuksessa mitattiin muuntajien kuormituksen nykytilaa sekä loistehon kompensoinnin riittävyyttä eri muuntajien pääkeskuksissa. Lisäksi mitattiin kolmannet, vii-
dennet ja yhdeksänteen jännite- ja virtayliaallot sekä jännitteen ja virran kokonaissäröt. Muuntajien kuormituksen mittauksen tavoitteena oli selvittää, voiko muuntajien perään lisätä vielä kuormaa. Tutkimuksen pääpaine oli selvittää loistehon kompensoinnin riittävyyys eri muuntajien päähkkeksuksissa. Samalla käytiin läpi loistehoparistojen kunto lähinnä mittaamalla niiden ottama virta. Koska tutkimukseen käytetyissä mittarissa oli mahdollisuus mitata myös jännite- ja virtayliaallot sekä jännitteen ja virran kokonaissäröt, mitattiin ne samalla kertaa, vaikka harmonisia yliaaltoja ei olekaan käsitelty tuloksissa.

Alun perin tutkimuksessa oli tarkoitus keskittyä vain tehtaan alkupään muuntajiin 1 ja 2, mutta mittauksia suoritettaessa mukaan otettiin myös muuntajat 3 ja 4. Kondensaattoriparistojen kunto mitattiin kuitenkin vain muuntajien 1 ja 2 osalta. Muuntaja numero 5 jätettiin pois mittauksista, koska mittautusten aikana kaikki muuntajan perään kytketyt laitokset eivät olleet toiminnassa, sekä muuntajan jälkeiseen päähkkeksukseen asennetusta automaattisesti säätävää estokelaparistosta oli vioittunut neljä paristoja kytkiviä kontaktoreita sekä kolme kondensaattoriparistoa.

7 MITTAUSKOhteet ja mittaukset

7.1 Päähkeskus PK 1

Päähkeskus PK 1 saa syöttönsä muuntajalta T1, joka on 1000 kVA:n muuntaja. T1 syöttää päähkeskus PK 1:stä nousukaapeleilla 3 AMMK 3*1*300. Muuntaja T1 on Strömbergin valmistama muuntaja KTMU 24X4627 vuosimallia 1971, jonka kytkentä on Dyn11. Päähkeskus 1:een on kytketty automaattisesti säätävä kondensaattoriyksikkö, joka sisältää 4 kappaletta 50 kVarin paristoa. Tästä kondensaattoriyksikköstä oli palanut kaksi etusulaketta, jotka vaihdettiin ennen mittausta. Yhteensä siis 200 kVaria.

KUVA 21. Virranmittaus muuntajalta T1 tulevista nousukaapeleista

7.2 Pääkeskus PK 2

7.3 Pääkeskus PK 2.1

7.4 Pääkeskus PK 3

KUVA 24. Mittaus PK 3:n nousukaapeleista

7.5 Pääkeskus PK 4

8 TULOKSET

8.1 Muuntaja T1 ja pääkeskus PK 1

Muuntaja T1 on 1000 kVA:n muuntaja, jolloin sen vaihekohtainen nimelliskuormitusvirta on kaavan 2 mukaan

\[I = S / (U\sqrt{3}) = 1000\,000\,VA / (400\sqrt{3}) = 1443\,A \]

Mittauksissa suurin vaihekohtainen kuormitusvirta mitattiin vaiheelta 2, ja se oli 810 ampeeria. Keskimäärin vaihekohtaiset maksimivirrat vaihtelivat 600 - 700 amperin välillä. Muuntajan kuormituksesta on siis käytössä alle 60 prosenttia. Koska mittaus suoritettiin kesä-aikana, eikä kaikkein suurin tuikki ollut sahauksessa, saattaa maksimikuormitusvirrat olla talvella suurimmalla tukill henkistä. Kaavioissa 1 on esitetty muuntajan T1 vaihekohtaiset maksimikuormitusvirrat mittausjaksossa eri aikoina.

![T1 Vaihekohtaiset maksimikuormitusvirrat kA](chart.png)

KAAVIO 1. Vaihekohtaiset maksimikuormitusvirrat muuntajalla T1

Pääkeskus PK 1:n keskimääräiset tehokertoimet olivat suurimmaksi osaksi aikaa 0,96-0,99. Pääkeskus 1:ssä on automaattisesti säätöne kondensaattoripatteristo, mutta säätöne ei aina ehditä reagoimaan muutoksiin, ja tehokerroin käy myös usein kapasitiivisella puolella. Kaavioissa 2 on esitetty vaihekohtaiset tehokertoimet pääkeskuksesta 1 mitattuna.

KAAVIO 2. Keskimääräiset vaihekohtaiset tehokertoimet PK 1:ssä

KAAVIO 3. Pätö- ja loistehohuiput PK 1:ssä

THD-U max

![THD-U max diagram](image)

KAAVIO 4. Jännitteen kokonaissäröt THD-U PK 1:ssä

THD-I max

![THD-I max diagram](image)

KAAVIO 5. Virran kokonaissäröt THD-I PK 1:ssä
8.2 Muuntaja T2 ja pääkeskukset PK 2 ja PK 2,1

Kuten aiemmin oli mainittu, pääkeskus PK 2 saa syöttönsä pääkeskus PK 2,1:ltä, jota taas syöttää muuntaja T2. Muuntaja T2 on 2000 kVA:n muuntaja, jolloin sen vaihekohtainen nimelliskuormitusvirta on kaavan 2 mukaan

\[I = \frac{S}{U*\sqrt{3}} = \frac{2000000 \text{ VA}}{(400*\sqrt{3})} = 2887 \text{ A}. \]

8.2.1 Pääkeskus PK 2

![PK 2 Vaihekohtaiset maksimikuormitusvirrat kA](image)

KAAVIO 6. Vaihekohtaiset maksimikuormitusvirrat pääkeskus PK 2:lla

Pääkeskus PK 2:n keskimääräiset vaihekohtaiset tehokertoimet olivat 0,90 molemmin puolin, joten korjaamisen varaa kompensoinnista löytyy. Pääkeskus PK 2:ssa on automaattisesti säätävää kompensointitehoa 150 kVaria ja kaksi kiinteää patteristoa, teholtaan yhteensä 71 kVaria. Kaaviossa 7 on esitetty pääkeskus PK 2:n vaihekohtaiset keskimääräiset tehokertoimet.
KESKIMÄÄRÄiset tehokertoimet

<table>
<thead>
<tr>
<th></th>
<th>0,60</th>
<th>0,70</th>
<th>0,80</th>
<th>0,90</th>
<th>1,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:54</td>
<td>11:09</td>
<td>11:24</td>
<td>11:39</td>
<td>11:54</td>
<td>12:09</td>
</tr>
<tr>
<td>12:24</td>
<td>12:39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vaihe 1, Vaihe 2, Vaihe 3

KAAVIO 7. Keskimääräiset vaihekohtaiset tehokertoimet PK 2:ssa

Kaaviossa 8 on esitetty PK 2:n pätö- ja loistehohuiput. Tuloksista käy ilmi, kuinka loistehon kompensointi on riittämätön, jolloin loistehoa otetaan verkosta paljon. Mitattu pätötehohuippu oli 662 kW ja loistehohuippu 669 kVaria induktiivista.

KAAVIO 8. Pätö- ja loistehohuiput PK 2:ssa

KAAVIO 9. Jännitteen kokonaissäröt THD-U PK 2:ssa

KAAVIO 10. Virran kokonaissäröt THD-I PK 2:ssa

8.2.2 Pääkeskus 2.1

Kaaviossa 12 on esitetty keskimääräiset vaihekohtaiset tehokertoimet pääkeskus PK 2.1:ssä. PK 2.1:ssä ei ole automaattisesti säätövää kompensointiysikköä, vaan kaksi kiinteää kondensaattoriparistoa, joiden yhteisteho on 150 kvaria. Kuten aiemmin on mainittu, toinen näistä paristoista lienee viallinen, joten kompensointitehoa näillä paristoilla olisi vain 75 kvaria. Lisäksi on kaksi 50 kvarin patteristoa, jotka ovat kytetty moottorien käynnistimiin. Tehokerroin oli paras vaiheella 1, jonka arvot olivat keskimäärin noin 0,94 - 0,96, toiseksi parhaat arvot olivat vaiheella 2, jonka arvot olivat keskimäärin noin 0,92 - 0,94, ja huonoinmat arvot olivat vaiheella 3, keskimääräisillä arvoilla noin 0,91 - 0,94. Edellä mainitut arvot ovat vain karkeita keskiarvoja kaikista mittauksen arvoista.
Keskimääräiset tehokertoimet

<table>
<thead>
<tr>
<th></th>
<th>0,60</th>
<th>0,70</th>
<th>0,80</th>
<th>0,90</th>
<th>1,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vaihe 1 **Vaihe 2** **Vaihe 3**

KAAVIO 12. Keskimääräiset vaihekohtaiset tehokertoimet PK 2.1:ssä

Kaaviossa 13 on esitetty pätö- ja loistehohuiput. Mitattu pätötehuippu oli 1014 kW ja loistehohuippu 738 kVaria. Kompensointi käy välillä hieman myös kapasitiivisella puolella, tämä tapahtuu lähinnä vähiten kuormitetulla vaiheella yksi.

Pätö- ja loistehohuiput

KAAVIO 13. Pätö- ja loistehohuiput PK 2.1:ssä

KAAVIO 14. Jännitteen kokonaissärö THD-U PK 2.1:ssä

KAAVIO 15. Virran kokonaissärö PK 2.1:ssä

8.3 Muuntaja T3 ja pääkeskus PK 3

Muuntaja T3 on 1000kVA:n muuntaja, jonka vaihekohtainen nimelliskuormitusvirta on kaavan 2 mukaan

\[
I = \frac{S}{U \cdot \sqrt{3}} = \frac{1000000 \text{ VA}}{(400 \cdot \sqrt{3})} = 1443 \text{ A}
\]

Kuormitusvirrat olivat 1200–1300 ampeerin välillä suurimman osan ajasta, mutta väliillä virrat nousivat jopa 1700 ampeeriin, eli muuntajaa ylikuormitetaan. Suurin virta

T3 Vaihekohtaiset maksimikuormitusvirrat kA

KAAVIO 16. Vaihekohtaiset maksimikuormitusvirrat muuntajalla T3

Kaaviossa 17 on esitetty pääkeskus PK 3:n vaihekohtaiset tehokertoimet. Kuten kavaviosta näkyy, tehokertoimet ovat eri vaiheilla hyvin samanlaiset ja tasaiset. Tehokertoimet ovat lähes jatkuvaltä välillä 0,93 - 0,94. Tässä keskuksessa olisi lisäkompensoinnin aihetta.

Keskimääräiset tehokertoimet

KAAVIO 17. Keskimääräiset vaihekohtaiset tehokertoimet PK 3:ssa

Pätö- ja loistehohuiput

![Päťö- ja loistehohuiput PK 3:ssa](image)

KAAVIO 18. Pätö- ja loistehohuiput PK 3:ssa

THD-U max

![THD-U max PK 3:ssa](image)

KAAVIO 19. Jännitteen kokonaissärö THD-U PK 3:ssa
KAAVIO 20. Virran kokonaissärö THD-I PK 3:ssa

8.4 Muuntaja T4 ja pääkeskus PK 4

Muuntaja T4 on 800 kVA:n muuntaja, jonka vaihekohtainen maksimi nimelliskuormitusvirta on kaavan 2 mukaan

\[I = \frac{S}{U \cdot \sqrt{3}} = \frac{800 \, 000 \, VA}{400 \cdot \sqrt{3}} = 1154 \, A \]

Mittauksissa suurin vaihekohtainen kuormitusvirta mitattiin vaiheelta 3, ja arvo oli 1740 ampeeria. Muuntajan nimelliskuormitusvirta ylitettiin siten yli 50 prosentilla, tosin kuormitus oli hetkellistä. Kuormitushuiput tulevat todennäköisesti suurten puhallinmoottoreiden käynnistymisestä, joten kuormitushuiput ovat hyvin lyhytaikaisia.
KAVAVIO 21. Vaihekohtaiset maksimikuormitusvirrat muuntajalla T4

KAVAVIO 22. Keskimääräiset vaihekohtaiset tehokertoimet PK 4:ssa

Kaaviossa 23 on esitettä pääkeskus PK 4:n pätö- ja loistehohuiput mittausotantojen aikana. Suurin mitattu pätötehohuippu oli 799 kW ja loistehohuippu 739 kVaria. Loistehon kompensointi toimii muuten hyvin, mutta suurien pätötehohuippujen aikana.
kompensointiteho ei riitä. 500 kW:n tehoilla kompensointi käy välillä kapasitiivisella-
kin puolella.

Pätö- ja loistehohuiput

![Kuva: Pätö- ja loistehohuiput PK 4:ssä](image)

KAAVIO 23. Pätö- ja loistehohuiput PK 4:ssä

Kaaviossa 24 on esitetty vertailun vuoksi mittarin mittaamat tehokertoimien minimit eri vaiheilla. Kuten kaaviosta käy ilmi, tehokertoimet romahdavat kuormitusleipäpajen aikana.

Dpf minimit

![Kuva: Dpf minimit PK 4:ssä](image)

KAAVIO 24. Tehokertoimien minimit pääkeskus PK 4:ssä

8.5 Yhteenveto loistehon osalta

\[Q_{LASK} = Q_{\text{MAX}} - K \cdot P_{\text{MAX}} \] (17)
Q_{LASK} = laskutettava loisteho [kVar]
Q_{MAX} = loistehon huippuarvo [kVar]
P_{MAX} = pätötehon huippuarvo [kW]
K = sähkölaitoskohtainen kerroin 0,5 – 0,2 [kVar / kW].

Loistehon kompensoinnin lisätarve voidaan laskea eri tavoilla. Yksi esimerkki on käyttää liitteestä 1 saatavaa kerrointa, jolla kerrotaan pätötehohuippu. Kerroin saadaan kun tiedetään nykyinen tehokerroin, jonka jälkeen katsotaan samalta riviltä halutun tehokertoimen kohdalta vaadittu kerroin, jolla kerrotaan pätötehohuippu. Vaadittava kompensointiteho saadaan siten kaavan 18 mukaan

Q_{komp} = f * P_h

jossa
Q_{komp} = tarvittava kompensointiteho [kVar]
f = taulukosta saatava kerroin
P_h = pätötehohuippu [kW].

Nykyisenä tehokertoimena on käytetty tehokerrointa, joka on saatu jakamalla muuntamon keskimääräinen loisteho keskimääräisellä pätöteholla. Tästä saadaan tanφ, joka on muutettu kulman kautta cosφ:ksi. Kuvassa 25 on esitetty näennäistehon S, pätötehon P ja loistehon Q suhde toisiinsa.

KUVA 25. Tehojen suhde toisiinsa
Taulukossa 5 on esitetty pääkeskuskohtaisesti päätöehuipput, loistehuipput, loistehon ilmariososuus, sekä loistehomaksut mittautantojen perusteella pääkeskuskohtaisesti. Taulukossa täytyy huomioilla, että pääkeskus PK 2.1 syöttää pääkeskus PK 2:ta, joten pääkeskus PK 2.1 on merkitsevä keskus. Lisäksi on muistettava, että todelliseen loistehomaksuun vaikuttaa kaikki muuntamot yhdessä, joten loistehuipput eivät satu samanaikaisesti, kuten eivät myöskään päätöehuipput. Loistehomaksu on Järvi-Suomen Energialla 4,45 € / kVar / kk.

TAULUKKO 5. Loistehomaksut pääkeskuskohtaisesti

<table>
<thead>
<tr>
<th>Pääkeskus</th>
<th>PK 1</th>
<th>PK 2</th>
<th>PK 2.1</th>
<th>PK 3</th>
<th>PK 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Päätöehuippu kW</td>
<td>464</td>
<td>662</td>
<td>1014</td>
<td>876</td>
<td>799</td>
</tr>
<tr>
<td>Loistehuippu kVaria</td>
<td>443</td>
<td>669</td>
<td>738</td>
<td>570</td>
<td>739</td>
</tr>
<tr>
<td>Loistehon ilmariososuus kVaria</td>
<td>93</td>
<td>132</td>
<td>203</td>
<td>175</td>
<td>160</td>
</tr>
<tr>
<td>Maksettava osuus kVaria</td>
<td>350</td>
<td>537</td>
<td>535</td>
<td>395</td>
<td>579</td>
</tr>
<tr>
<td>Maksettava osuus euroa</td>
<td>1558</td>
<td>2388</td>
<td>2382</td>
<td>1757</td>
<td>2577</td>
</tr>
</tbody>
</table>

Taulukossa 6 on esitetty muuntamokohtaisesti päätöehuipput, loistehuipput, loistehon ilmariososuus sekä loistehomaksut mittautantojen perusteella.

TAULUKKO 6. Loistehomaksut muuntamokohtaisesti

<table>
<thead>
<tr>
<th>Muuntamo</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Päätöehuippu kW</td>
<td>464</td>
<td>1014</td>
<td>876</td>
<td>799</td>
</tr>
<tr>
<td>Loistehuippu kVaria</td>
<td>443</td>
<td>738</td>
<td>570</td>
<td>739</td>
</tr>
<tr>
<td>Loistehon ilmariososuus kVaria</td>
<td>93</td>
<td>203</td>
<td>175</td>
<td>160</td>
</tr>
<tr>
<td>Maksettava osuus kVaria</td>
<td>350</td>
<td>535</td>
<td>395</td>
<td>579</td>
</tr>
<tr>
<td>Maksettava osuus euroa</td>
<td>1558</td>
<td>2382</td>
<td>1757</td>
<td>2577</td>
</tr>
</tbody>
</table>

Muuntamolla T1 loistehon kompensointi on melko hyvässä kunnossa, loistehon kompensointi on jopa enimmäkseen kapasitiivisella puolella. Laitteiden samanaikainen käynnistys tauon jälkeen aiheutti induktiivisen loistehuipun, joka jopa ylitti sen hetkisen päätöehuipun. Muuntamolle ei tarvita lisäkompensointia, mutta kompensointiysiksön uudistus olisi tarpeen, koska säädin ei tunnu pelaavan kunnolla.
KAAVIO 27. Pätö- ja loistehon keskiarvot muuntajalla T1

Muuntamolla T2 loistehon kompensointi on riittämätön, lisäksi laitteiden yhteiskäynnistys ilmeisesti aiheuttaa loistehon kulutukseen piikkejä. Muuntamon T2 keskimääräinen tehokerroin oli 0,939. Moottorien kompensointiaste pyritään Jaatisen mukaan (1991, s.97) rajoittamaan cosφ ≤ 0,98 kondensaattorien aiheuttaman haitallisen ylijännitteen vuoksi. Kaavan 18 ja liitteen 1 taulukosta saatavan kertoimen mukaan voidaan lisäkompensoinnin tarve laskea seuraavasti

\[Q_{\text{komp}} = f \times P_h = 0,16 \times 1014 \, \text{kW} = 162 \, \text{kVaria}. \]

KAAVIO 28. Pätö- ja loistehon keskiarvot muuntajalla T2

Muuntajan T3 keskimääräinen tehokerroin oli 0,936 joten lisäkompensointi olisi tarpeen. Myös muuntamalla T3 laitteiden yhteiskäynnistys aiheuttaa loistehon kulutukseen piikkejä. Kaavan 18 ja liitteen 1 taulukosta saatavan kertoimen mukaan voidaan lisäkompensoinnin tarve laskea seuraavasti, kun tehokertoimeksi halutaan 0,98.

\[Q_{\text{komp}} = f \times P_h = 0,16 \times 876 \text{ kW} = 140 \text{ kVaria.} \]

Kaaviossa 28 on esitetty pätö- ja loistehokulutuksen keskiarvot muuntamalla T3. Loistehon kulutus on pelkästään induktiivisella puolella jatkuvasti.

KAAVIO 29. Pätö- ja loistehon keskiarvot muuntajalla T3
Muuntamon T4 keskimääräinen tehokerroin keskimääräisistä pätö- ja loistehosta laskettuna on 0,981, joka on hyvä. Mutta jos tehokerroin lasketaan vaihekohtaisesti ja-kamalla keskimääräinen pätöteho keskimääräisellä virralla ja – jännitteellä, jää tehokerroin 0,975:een, jolloin kompensointitehoa voisi vielä hieman lisätä.

\[Q_{\text{komp}} = f \ast P_h = 0,02 \ast 799 \text{ kW} = 16 \text{ kVaria}. \]

Lisäkompensoinnin tarve ei ole suuri, joten se on helppo toteuttaa vaikka kiinteällä paristolla keskuksen kiskostoon asennettuna, mutta se pienentäisi käynnistysien aiheuttamia huippuja osaltaan. Kaavioissa 30 on esitetty muuntamo T4:n pätö- ja loistehokulutuksen keskiarvot.

Kaavio 30. Pätö- ja loistehon keskiarvot muuntajalla T4

8.6 Kompensointitehon lisäys

Päätöhteon ja loistehohuiput eivät satu eri muuntamoilla samaan aikaan, mutta mikäli näin kävisi, olisi näiden neljän muuntajan päätötehohuippu mittausten perusteella 3153 kW ja loistehohuippu 2490 kVaria. Tästä loistehon ilmäisuosuus olisi 631 kVaria, joten maksullinen loistehon kulutus olisi 1859 kVaria. Kun loistehon hinta on 4,45 € / kVar, tekisi se kuukauden loistehomaksuksi 8273 euroa. ja vuositasolla 99 276 €.

Samanaikaiset huiput eivät ole kovin realismisia toteutua, mutta näistä laskelmista puuttuu vielä muuntamo T5, jonka estokelaparistosta oli palanut sulakkeita, särkynyt kontaktoreita ja useita paristoja. Tämän muuntamon tehokerroin oli paneelin mukaan välillä 0,84. Koska sahalla tauot eri osastoilla pidetään samaan aikaan, on täysin mahdollista, että useammalla muuntajalla tehopiikit sattuvat juuri samaan aikaan. Silloin 8 000 euron kuukausittainen loistehomaksu on jo todennäköistä toteutua. Lisäksi täyttää myös talvella ainakin muuntamoiden T1 ja T2 kuormitus kasvaa jonkin verran, jolloin myös loistehohuiput kasvavat. Kesäkuussa 2011 loistehon maksullinen osuus oli 908 kVaria, joka tekee 4 041 euroa.

Rahallisesti kompensoinnin parantaminen tekee säästöjä myös päätöhen kulutuksen pienennemisen kautta. Loistehon kulutus lisää virran kulutusta, koska muuntajien kuormitusvirta lasketaan näennäistehosta, joka sisältää myös loistehon. Esimerkiksi kun muuntamon T2 päätötehohuippu oli 1014 kW:a, oli loistehohuippu 601 kVaria. Maksimivirta nykykompensoinnilla saadaan laskettua kaavan 2 mukaan, kun korvataan näennäisteho S päätöheon P ja loistehon Q vekto reiden summalla.

\[I_{max1} = \sqrt{(P^2 + Q^2)} / (\sqrt{3} * U) = \sqrt{(1014^2 + 601^2)} / (\sqrt{3} * 400) = 1,70 \text{ kA} \]
Mikäli loistehokomponentti puuttuisi kokonaan, tulisi maksimivirraksi vain

$I_{\text{max2}} = \frac{P}{(\sqrt{3} \times U)} = \frac{1014}{(\sqrt{3} \times 400)} = 1,44 \text{ kA}$

Eroa on siis 260 ampeeria, mikä tekisi tehosäästöksi yhteensä 104 kW. Tämä erotus on laskettu huipputehosta, eikä todellisuudessa loistehokomponenttia saa kokonaan pois. Taulukossa 7 on esitetyt lisäkompensoinnilla saavutettava keskimääräinen kuormitusvirran alenema ja siitä johtuva päätöhehonteho säästö vuodessa. Muuntajan T2 mittauksista on jätetty kolme mittaushetkeä pois, koska niihin on sattunut sahauslinjalalla seisokki, ja tämän vuoksi keskiarvo on vääristynyt pienempään suuntaan. Muuntajia T2 ja T3 kuormitetaan vuodessa 220 päivää ja muuntajaa T4 335 päivää.

Todellisuudessa säästöt olisivat suurempia, sillä talvella tehonkulutus nousee jonkin verran ja muuntajat T2 ja T3 ovat muutenkin osittain kuormitettuja myös muina vuorokauden tunteina ja vuoden jokaisena päivänä, mitä taulukossa on esitetty. Taulukossa esitettyillä luvuilla vuosittainen säästö olisi siis yli 318 000 kWh.

Taulukko 7. Muuntamoiden alentuneet virrankulutukset ja päätötehot

<table>
<thead>
<tr>
<th>Muuntamo</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Yksikkö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keskimääräinen päätörehovirra-</td>
<td>240</td>
<td>539</td>
<td>637</td>
<td>470</td>
<td>kW</td>
</tr>
<tr>
<td>tus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keskimääräinen loistehovirrutcus</td>
<td>50</td>
<td>206</td>
<td>239</td>
<td>93</td>
<td>kVar</td>
</tr>
<tr>
<td>Lisäkompensointitavoite</td>
<td>-</td>
<td>162</td>
<td>140</td>
<td>16</td>
<td>kVar</td>
</tr>
<tr>
<td>Nykyinen kuormitusvirran k-a</td>
<td>354</td>
<td>833</td>
<td>982</td>
<td>692</td>
<td>A</td>
</tr>
<tr>
<td>Kuormitusvirran lisäkompen-</td>
<td>354</td>
<td>781</td>
<td>930</td>
<td>687</td>
<td>A</td>
</tr>
<tr>
<td>soinnin jälkeen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuormitusvirran aleneminen</td>
<td>-</td>
<td>52</td>
<td>52</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>Tavoite tehokerroin</td>
<td>0,98</td>
<td>0,98</td>
<td>0,98</td>
<td>0,98</td>
<td></td>
</tr>
<tr>
<td>Tehonsäästö</td>
<td>-</td>
<td>35,3</td>
<td>35,3</td>
<td>3,4</td>
<td>kWh</td>
</tr>
<tr>
<td>Tunteja vuorokaudessa</td>
<td>-</td>
<td>17,5</td>
<td>20</td>
<td>24</td>
<td>h</td>
</tr>
<tr>
<td>Säästö vuodessa</td>
<td>-</td>
<td>135905</td>
<td>155320</td>
<td>27336</td>
<td>kWh</td>
</tr>
</tbody>
</table>
9 POHDINTA

Työ tehtiin Versowood Oy:n Otavan Sahalla, joka on 20 kV:n suurasiakas. Työn tarkoituksena oli selvittää suurien loistehomaksujen syitä. Loistehomaksut ovat vaihdelleet kuukausittain suurestikin, mutta lasku on ollut jatkuvasti kasvamaan päin. Työssä oli alun perin tarkoitus keskittyä vain muuntajien T1 ja T2 loistehokulutuksen selvittämiseen, mutta mukaan otettiin työn edetessä myös muuntajan T3 ja T4. Myös muuntaja T5 oli mitattu, mutta mittauksien aikaan kaikki muuntajan syöttämät laitokset eivät olleet käytössä. Lisäksi muuntajan T5 syöttämässä pääkeskuksessa olevasta estokelaparistosta oli vioittunut useita paristoja, eikä niitä saatu hankittua tilalle ajoissa.

Loistehon kompensoinnilla saadaan säästöjä monella tavalla. Ensimmäisenä näkyvänä säästönä tulee loistehomaksujen pienenenminen, mutta loistehon kompensointi vähentää myös virrankulutusta. Muuntajan teho on aina näennäistehoa, joka sisältää loiste-
ho-osan ja pätöteho-osan. Kun kuormitusvirrasta poistetaan loistehokomponentti, ver-
kon pätötehon siirtokapasiteetti kasvaa, jolloin kokonaisvirrat pienenevät, mikä pie-
nettää pätötehon häviöitä. Tämän seurauksena pätötheoa kuluu vähemmän, jolloin
säästöä syntyy sekä vähentyneestä energiamaksusta että siirtomaksusta. Loistehon
vähentäminen siirtoverkosta vähentää myös laitteiden kuumentumista, mikä taas tuo
lisää energiasäästöjä. Yliaaltojen poistaminen taas vähentää laitevaurioita sekä vähentä-
ää laitteiden lämpenemistä, sillä tietyillä yliaaltojen taajuuksilla on esimerkiksi moot-
torin pyörintää vastustava tai lisäävä voimavaikutus.

Lopuksi täytyy muistaa, että toteutetaanpa loistehon kompensointi minkä laajuisena
tahansa tai millä laitteilla tahansa, ei sillä ole lopuksi mitään merkitystä, ellei laitteita
tarkasteta ja huolleta säännöllisesti. Kaikenlaiset kompensointilaitteet ovat turhia, jos
osa niiden etusulakkeista tai osa paristoista on palanut. Tätä työtä tehdessä todettiin
lähes jokaisessa pääkeskuksessa jonkin kompensointilaitteen toiminnan olevan ositt
tain tai kokonaan pois pelistä joko sulakepalon, paristovaurion tai kontaktorivian ta
kia. Kompensointilaitteille tulisi tehdä säännölliset tarkastukset tietyin aikavälein ja
kirjata tulokset kirjallisesti ylös.
LÄHTEET

<table>
<thead>
<tr>
<th>Nykyinen</th>
<th>Tavoiteltu (\cos \varphi) >>kerroin (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cos \varphi)</td>
<td>0,80</td>
</tr>
<tr>
<td>0,70</td>
<td>0,27</td>
</tr>
<tr>
<td>0,71</td>
<td>0,24</td>
</tr>
<tr>
<td>0,72</td>
<td>0,21</td>
</tr>
<tr>
<td>0,73</td>
<td>0,19</td>
</tr>
<tr>
<td>0,74</td>
<td>0,16</td>
</tr>
<tr>
<td>0,75</td>
<td>0,13</td>
</tr>
<tr>
<td>0,76</td>
<td>0,11</td>
</tr>
<tr>
<td>0,77</td>
<td>0,08</td>
</tr>
<tr>
<td>0,78</td>
<td>0,05</td>
</tr>
<tr>
<td>0,79</td>
<td>0,03</td>
</tr>
<tr>
<td>0,80</td>
<td>0,13</td>
</tr>
<tr>
<td>0,81</td>
<td>0,10</td>
</tr>
<tr>
<td>0,82</td>
<td>0,08</td>
</tr>
<tr>
<td>0,83</td>
<td>0,05</td>
</tr>
<tr>
<td>0,84</td>
<td>0,03</td>
</tr>
<tr>
<td>0,85</td>
<td>0,14</td>
</tr>
<tr>
<td>0,86</td>
<td>0,11</td>
</tr>
<tr>
<td>0,87</td>
<td>0,08</td>
</tr>
<tr>
<td>0,88</td>
<td>0,06</td>
</tr>
<tr>
<td>0,89</td>
<td>0,03</td>
</tr>
<tr>
<td>0,90</td>
<td>0,06</td>
</tr>
<tr>
<td>0,91</td>
<td>0,03</td>
</tr>
<tr>
<td>0,92</td>
<td>0,10</td>
</tr>
<tr>
<td>0,93</td>
<td>0,07</td>
</tr>
<tr>
<td>0,94</td>
<td>0,03</td>
</tr>
<tr>
<td>0,95</td>
<td>0,13</td>
</tr>
</tbody>
</table>