

Ibrahim Olanigan

DESIGN AND IMPLEMENTATION OF

FOOD MANAGEMENT SYSTEM ON

ANDROID PLATFORM WITH QR CODE

SUPPORT

Technology and Communication

2013

1

ACKNOWLEDGEMENT

To Allah ta’ala (God the Exalted), who grants me ease and succour amidst the

difficulties of life. To my mother who has taught me that hard work and being

patient and prayerful over what one have no control over are vital for success. To

my late father, who has instilled in me discipline and trustworthiness, and has

been my best role model in this era. To my siblings, who have always supported

me and trusted my big decisions in life. To my close friends who were always

cheering me on. I am grateful to them all especially Rafiat Sanni, Ibrahim Afolabi,

Nimatallah King, Sherifah Alagbe, Lawal Olufowobi, AbdulMajeed Folorunsho

to mention a few.

To my supervisor, Yang Liu who made me realise I can always be better. To

Santiago Chavez and Jarmo Makelä who made complex topics look easy and to

all the amazing teachers I have had the honour of studying with. I am grateful for

the wonderful and challenging times you gave me.

2

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Degree Programme in Information Technology

ABSTRACT

Author Ibrahim Olanigan

Title Design and Implementation of Food Management System

on Android Platform with QR Code Support

Year 2013

Language English

Pages 53

Name of Supervisor Yang Liu

Food wastage is increasingly becoming a topic of concern due primarily to the

negative impact it has on the economic and agricultural industry. Research has

shown that in Finland, households seems to be the highest producers of food

waste and some of this, is as a result of food being disposed because they are

expired.

The main objective of this thesis was to provide a viable solution that allows

mobile users to track the life cycle of their food inventory efficiently. This project

also provides a demo of better implementation with future enhancement in food

packaging. This project was developed for the Android platform, using Facebook

integration to simplify the user registration and a web server for storing the

information.

Keywords: Android, Food, Client, Server, PHP, MySQL

3

The mobile application, which acts as the client-side component was developed

and built in the Eclipse software environment using the Android SDK alongside

external libraries, Facebook SDK for Facebook integration and

ZBarScannerLibrary to read QR code. The server-side component was developed

using the Notepad++ software for the PHP code and phpMyAdmin for the

database management. The end application is able to register user with their

Facebook account and food entries can be added and deleted both on the mobile

device and the server.

Keywords: Android, Food, Client, Server, PHP, MySQL

4

CONTENTS

ACKNOWLEDGEMENT .. 1

ABSTRACT .. 2

LIST OF ABBREVIATIONS ... 6

1 INTRODUCTION .. 7

1.1 Background ... 7

1.2 Objective ... 8

1. INTRODUCTION TO PROJECT TOOLS .. 9

2.1 Android ... 9

2.1.1 Application Overview ... 9

2.1.2 Android Development ... 10

2.1.2.1 AndroidManifest.xml .. 10

2.1.3 Android Emulator ... 11

2.1.4 SQLite Database ... 13

2.2 Quick Response Code (QR Code) .. 14

2.3 PHP: Hypertext Preprocessor (PHP) ... 14

2.4 MySQL ... 15

2.5 phpMyAdmin .. 15

2.6 Facebook Integration .. 15

3 SYSTEM OVERVIEW... 17

3.1 Choice of Android ... 17

3.2 Requirements .. 17

3.3 System Architecture .. 17

4 CLIENT-SIDE DESIGN & IMPLEMENTATION .. 20

4.1 Development Overview .. 20

4.2 User Interface Classes ... 23

4.3 Data Management Classes .. 26

4.3.1 Data Modeling ... 26

4.3.2 Database Management ... 27

4.4 Server Communication Classes .. 29

4.5 Utility classes .. 31

5 SERVER-SIDE DESIGN AND IMPLEMENTATION .. 32

5

5.1 Development Overview .. 32

5.2 Database Design .. 33

5.3 PHP Classes/Files ... 34

5.3.1 Connect PHP file .. 34

5.3.2 Functions PHP file ... 36

5.3.3 Index PHP file .. 41

6 TESTING .. 47

6.1 Client-Side Testing ... 47

6.2 Server-side Testing ... 48

6.3 Overall Testing .. 50

7 CONCLUSION ... 51

7.1 Challenges ... 51

7.2 Possible Improvements ... 52

8 REFERENCES ... 53

6

LIST OF ABBREVIATIONS

API Application programming Interface

AVD Android Virtual Device

CSV Comma-separated values

GUI Graphical User Interface

GPL GNU General Public License

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

PDF Portable Document Format

PHP PHP: Hypertext Preprocessor

QR Quick Response

SDK Software Development Kit

SQL Structured Query Language

XML Extensible Markup Language

UI User Interface

7

1 INTRODUCTION

The prevalence of food waste has been a subject of interest and discussion in

recent years and researches are being done to find effective ways to curb it. It has

been identified as a primary issue in the sustainability of food production and

consumption, in addition to the sustainability of food supply chains. According to

Heta-Kaisa Koivupuro, food waste can be divided into avoidable and unavoidable

waste. Avoidable waste includes edible food and spoiled/damaged edible food,

while unavoidable waste consists of the inedible food like bones, fruit peels, and

egg shells among others./1/

A research shows that in Finland, 5% of purchased food is wasted in households

and an average person wasted about 20-30 kg of food in a year. The average total

amount of food wasted in households yearly is about 120-160 million

kilogrammes./1/ Household wastage could be intentional or not. Many of the food

wastage in household could be as a result of forgetfulness or negligence for the

food expiry date. In countries like Finland with high cost of living, consumers are

inclined to buy food nearing its expiry date due to the discount shop sellers attach

periodically.

1.1 Background

The advancement of technology has brought ease to the stressful life of human

beings. The prevalence of mobile technologies enables us to constantly be in

touch with the world. By it, different aspects of our lives are brought together for

easy access. For instance, a person could be making finishing touches with his

presentation for next day, discussing with his/her spouse about dinner, booking a

flight for a weekend trip, to mention a few, all in the same place and likely

simultaneously.

The idea for this project was born with my observation of how easily fellow

students dispose expired food products. Due to the high cost of living, many

students tend to buy food products which are close to their expiry date and

sometimes in large quantity due to their discounted prices, as shops attempt to get

8

as much of these products out of their inventory to reduce their losses.

With the proliferation of smartphones, I thought of the feasibility of using the

smartphone as a lifecycle tracker for our food inventory, and be regularly

informed of those products whose expiry date is close by. It is expected that this

would help to reduce the amount of food spillage in the households.

1.2 Objective

The objective of this project was to create a mobile application to assist users in

managing their food inventory. The application would store and display basic

information about the inventory contents and alerts the user of the food products

which are due to expire the next day. Consequentially, users may take actions to

avoid the concerned products get wasted or spoiled. It is believed that a

considerable amount of food waste would be avoided in households if the

occupants are well-informed of the timeline of their food stocks. Provisions have

also been made to allow for the multi-device use.

Most food management applications available are mainly concerned with helping

users watch their weight and food in-take and generally requires lots of

information from user. The advantage of this project is the use of the simplest

information of food products to monitor the inventory. With an eye on the future,

a demo solution was integrated to show compatibility with future advancement in

food packaging.

9

1. INTRODUCTION TO PROJECT TOOLS

This project utilises various technologies and tools. They are Android, QR Code,

Hypertext Preprocessor (PHP), MySQL database and phpMyAdmin.

2.1 Android

Android is an Open Source software stack for mobile devices like phones and

tablets and others. The stack comprises of a Linux-based kernel, middleware and

mobile applications. It is developed by the Open Handset Alliance spearheaded by

Google Inc. It is licensed under the Apache Software License, 2.0 , which is

commonly abbreviated as “Apache 2.0”.

2.1.1 Application Overview

An Android application is usually made of a number of user interface

components, called Activities. An activity is a component that provides a screen

for user interaction to perform an action, such as take a photo, or view gallery.

Typically, an application often has a main activity by which other activities are

called.

An application may also have non-visual components that are essential to its

operations. These components are Services and BroadcastReceiver. A service is

an Android component used to perform long-running operations in the

background, i.e. not visible to the user, and could also be used by an application to

expose some of its functionality to other applications./2/ It is registered using the

<service> tag in the AndroidManifest.xml file.

A BroadcastReceiver is an Android component which receives and handles a

broadcast sent by the system or any application. A broadcast is a system message

that is sent when an application or system occurs. For instance, a broadcast

message may be sent by the orientation of the phone or the battery status changes.

It is statically registered in an application using the <receiver> tag in

the AndroidManifest.xml file.

http://www.apache.org/licenses/LICENSE-2.0

10

Communication between the application components is done using Intents. Intent

is an abstract description of an operation to be performed. It is mostly used to start

an Activity. It can also be used to send a broadcast message and communicate

with Services./3/

2.1.2 Android Development

An Android application can be developed using an Android SDK and a

compatible software development environment. The Android SDK provides

develops with the necessary set of tools and libraries needed to build, test and

debug applications on the Android platform./4/ It is readily available for

download, along with needed support, on the Android official website.

This project was built in the Eclipse software development environment, which

supports multiple programming languages and operating systems, and it is free to

use under the Eclipse Public License.

2.1.2.1 AndroidManifest.xml

The requirement for all Android application is to have

the AndroidManifest.xml file in its root directory. It presents vital information

about the application to the Android system that the system requires before

running any code of the application

Some of the information found in the AndroidManifest.xml file includes,

 The unique package name for the application

 The minimum Android API level required for the application.

 Description of the application’s components, i.e. the activities, services,

broadcast receivers and content providers that make up the application.

 Lists of libraries linked to the application.

 Declaration of permissions needed to access protected API components,

among others./5/

11

2.1.3 Android Emulator

The Android SDK provides an emulator, which is a virtual mobile device, which

runs on the computer and enables the user debug and test applications without a

physical device.

The specification of the emulator is defined, and can be edited, by the developer

using the AVD Manager, which is a graphical user interface used to configure and

manage AVDs.

The AVD can be configured as different devices, screen sizes, Android target

levels. For this project, I have configured the AVD as a Nexus device with a

screen size of 4.65 inches with a resolution of 720 by 1280 pixels. The AVD runs

Android Jelly Bean, version 4.2.2, which is equivalent to API level 17.

12

Figure 1.AVD Configuration interface.

13

Figure 2.AVD (Scaled to original dimensions)

2.1.4 SQLite Database

SQLite is an in-process library that implements a self-contained, serverless, zero-

configuration, transactional database engine. It is free to use for any purpose, be it

private or commercial. It is compact and lightweight hence it is easily deployable

to any system. It is supported by the many UNIX and Windows operating systems

and can be ported easily to other systems. The data types supported are TEXT (to

hold string values), INTEGER (to hold integer values) and REAL (to hold

precision floating-point values)./6/

Android provides the SQLite database to allow for data storage in an application.

An application in the Android system may have a private database and this can

only be accessed and managed within the application code.

14

2.2 Quick Response Code (QR Code)

The QR code is the trademark for a type of two-dimensional bar code. It is an

optical machine-readable label used to store information about the item it is

attached to. It was originally designed for use in the automotive industry by a

Toyota subsidiary in Japan, but has become widely popular for other usages

because it is faster to read and have more storage capacity than standard bar

codes.

QR codes are usually used to store contact information, Uniform Resource

Locations (URLs), phone numbers, and text.

Figure 3.Sample QR Code, used for testing in the project.

2.3 PHP: Hypertext Preprocessor (PHP)

PHP is a server-side scripting language primarily designed for the production of

dynamic pages. It was created by Rasmus Lerdorf in 1995 and it is now being

developed by the PHP group. PHP is free software released under the PHP

License, which makes it incompatible with the GNU General Public License

(GPL) due to restriction on the use of the term PHP./7/

It is cross-platform software mostly used in the server-side web development and

it is now being used in the client-side User Interface (UI). It has been used in the

creation of many Web content management systems like Drupal, Wordpress and

Moodle.

http://en.wikipedia.org/wiki/Rasmus_Lerdorf

15

Figure 4.Basic PHP syntax

2.4 MySQL

MySQL is a cross-platform open source relational database management system

(RDBMS). It was created by Michael Widenius, who partly named it after his

daughter, My. It was initially released on the 23
rd

 of May, 1995 under the GPL

License. It was originally owned by a Swedish firm, MySQL Ab, which is now

owned by Oracle.

It is written in C and C++. For this project, the MySQL database was managed

using phpMyAdmin.

2.5 phpMyAdmin

PhpMyAdmin is a free and open source GUI tool written in PHP, which is used

for web database administration. It has cross-platform support for the major

operating systems and it was first released in the 1998 under the GNU General

Public License.

It has an intuitive web interface, and core support for many MySQL features. It

also has data management (including import and export) support for many formats

like CSV, SQL, PDF, XML, among others./8/

2.6 Facebook Integration

Facebook is a popular social networking platform started in 2004 by Mark

Zuckerberg and couple of his friends. It is regularly expanding and boasts of 1

billion users as in October 2012. Due to its large user base, Facebook provides an

http://en.wikipedia.org/wiki/Michael_Widenius

16

avenue of services for developers to tap into its wealth of information.

For the purpose of this project, I have integrated a Facebook login functionality to

access basic information about the users, with their permission, for registration on

the server-side of the project.

17

3 SYSTEM OVERVIEW

3.1 Choice of Android

Android has been chosen for this project, primarily for the open-source nature of

the platform as well as the ease of development and deployment with the

extensive supports provided on the official Android website and major

developers’ forums, such as the Stack Overflow website.

It also has the largest market share and has native compatibility with tablets. It

also supports cross platform application development, i.e. developers can develop

Android application in Mac, Windows and many UNIX-based operating systems

like Ubuntu.

3.2 Requirements

There are certain requirements the proposed application must fulfill to meet the

objectives of the project.

The requirements on the client-side are:

 It must have a user interface

 It must be compatible with most Android devices.

 It must have Facebook integration.

 It must have QR code reading capabilities.

 It should have the ability to store data in the server

The requirements on the server-side are:

 Database must have a user table

 Database must be dedicated food tables for users.

 Database must be able to communicate with client-side application.

3.3 System Architecture

This application consists of an Android application on the client side and PHP-

MySQL application on the server side. The Android application is the part visible

18

to the user and one it interacts with, while the PHP/MySQL-based server-side

component serves as an interface between the Android application and the

database on the server.

The use case for the client-side application is seen in Figure 5 below, showing all

the cases available to the user in the application.

Figure 5.Use case for client-side application

Figure 6 below, shows the use case diagram for the server-side component.

System

User

Register Food

Edit Food

Delete Food

Select Entry options

19

Figure 6.Use case for server-side implementation

System

Android Application

Add new user

Create new food table for user

Edit Food

Delete Food

Register Food

20

4 CLIENT-SIDE DESIGN & IMPLEMENTATION

The client-side application is designed based on the requirements stated in 3.2.1,

using the right sets of libraries, database design and programming methods while

providing a good user experience.

4.1 Development Overview

The mobile application was developed in the Eclipse software using the Android

SDK downloaded from the Android official website. This project uses three java

packages, namely:

 com.olanigan.food

 com.olanigan.data

 com.olanigan.utils

The food package contains all the interface-related classes, while the data package

contains all data management classes. Utility classes are found under the utils

package. The figure below shows the structure of the project in the Eclipse

software.

The application is configured to a minimum API level of 8 and declares

permissions to use the WAKE_LOCK, INTERNET and CAMERA functionalities

of the system. The figures below show the configuration of the

AndroidManifest.xml file.

All the titles of the application are defined under the <application> tag, along with

the list of components and libraries used. The figure below shows a breakdown of

the application structure.

21

Figure 7.Overview of project structure in Eclipse

22

Figure 8.Overview of the AndroidManifest.xml file

Figure 9.Overview of the application structure

23

4.2 User Interface Classes

The user interface in Android is displayed using classes that extend the Activity

class directly or indirectly. The classes used for user interaction in this application

are MainActivity, NewEntryActivity and FbLoginActivity.

The MainActivity class is the main user interface for the application. It displays

the registered food inventory of the user and has the main menu by which other

activities can be accesses.

The class diagram for the MainActivity is shown below.

Figure 10.MainActivity Class diagram

The NewEntryActivity class handles both the manual entry as well as the QR

code entry of the information about the food to be monitored. It is called by the

MainActivity class and returned to it after the entry is completed. It displays a

form that requests information about the name of the food, its expiry date and

reminder time.

The class displays the result of the QR code scanning initiated after the user

chooses the QR code entry in the MainActivity interface. The customized QR

code used for this project, contains information about the name of the new food,

MainActivity

+adapter: ArrayAdapter<Food>
+dbHelper: DatabaseHelper
+activeIntent: Intent
+foodListView: ListView
+selectedFood: Food

+onCreate(Bundle savedInstanceState): void
+onResume(): void
+onPause(): void
+onDestroy(): void
+onCreateOptionsMenu(Menu menu): boolean
+onOptionsItemSelected(MenuItem item): boolean
+showSettings(): void
+onActivityResult(int requestCode, int resultCode, Intent data): void
+onItemClick(AdapterView<?> listView, View view, int position, long arg3): void
+addEntry(View button): void
+showEntryDialog(): void
+showOptionDialog(final Food selectedFood): void
+editAndUpdateUI(Food selectedFood): void
+deleteAndUpdateUI(Food selectedFood): void
+updateUI(): void
+getFoodItems(): List<Food>
+JsonAsyncTask(): AsyncTask<String, Void, String>

DatabaseHelper

+DATABASE_NAME: String = "Thesis"
+FOOD_TABLE: String = "Food"
+DATABASE_VERSION: int = 3

+onCreate(SQLiteDatabase db): void
+onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion): void
+getFoodById(int request_id): Food
+get_last_food(): Food
+addFood(Food newFood): long
+updateFood(Food oldFood, Food newFood): long
+deleteFood(Food food): void
+getAll(): Cursor
+deleteAll(): void

Food

+NAME
+EXPIRY_DATE
+ENTRY_DATE
+REMINDER

+getNAME(): String
+setNAME(String NAME): void
+getEXPIRY_DATE(): String
+setEXPIRY_DATE(String EXPIRY_DATE): void
+getENTRY_DATE(): String
+setENTRY_DATE(String ENTRY_DATE): void
+getREMINDER(): String
+setREMINDER(String REMINDER)

24

and best-before date, and is scanned using the ZBarScannerActivity class, which

is called from an open source QR code scanning library, ZBarScannerLibrary.

After the user fills in the form completely, the class handles the storing of the new

food data into the database, as well as set an alarm notification to the user-defined

time a day before the expiry date. After the completion of its task execution, it

returns the user to the MainActivity class where the updated food listing is

displayed.

 The diagram below shows the class diagram for the NewEntryActivity class.

Figure 11.NewEntryActivity Class Diagram

The FbLoginActivity class is the entry point into the application and it handles the

login and logout of the user using Facebook authentication. Unlike the other

activities, it extends FragmentActivity and acts as the main display for three

Fragment classes, which are the SplashFragment, InfoFragment and

UserSettingsFragment classes.

The SplashFragment class displays the Facebook-custom login button. When

clicked, the button calls the Facebook login dialog from the Facebook SDK

library. The InfoFragment class is called after a successful Facebook login by the

user. It retrieves basic information about the user and this information is used

NewEntryActivity

+dbHelper: DatabaseHelper
+oldFood: Food
+newFood: Food
+LAST_INTENT_ID: int

+onCreate(Bundle savedInstanceState): void
+onCreateDialog(int dialog_id): Dialog
+onClick(View view): void
+saveEntry(): void
+cancelEntry(): void
+setNotifier(Food food): void
+pad(int numner): String
+dateToString(): String
+updateIntentID(): void

DatabaseHelper

+DATABASE_NAME: String = "Thesis"
+FOOD_TABLE: String = "Food"
+DATABASE_VERSION: int = 3

+onCreate(SQLiteDatabase db): void
+onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion): void
+getFoodById(int request_id): Food
+get_last_food(): Food
+addFood(Food newFood): long
+updateFood(Food oldFood, Food newFood): long
+deleteFood(Food food): void
+getAll(): Cursor
+deleteAll(): void

Food

+NAME
+EXPIRY_DATE
+ENTRY_DATE
+REMINDER

+getNAME(): String
+setNAME(String NAME): void
+getEXPIRY_DATE(): String
+setEXPIRY_DATE(String EXPIRY_DATE): void
+getENTRY_DATE(): String
+setENTRY_DATE(String ENTRY_DATE): void
+getREMINDER(): String
+setREMINDER(String REMINDER)

25

either to register the new user into the application database or to retrieve the latest

food listing from the application database. The InfoFragment class redirects the

user to the MainActivity UI.

The userSettings class displays the Facebook logout button by which the user

exits from the main application and redirects to the Facebook login page after

execution. This class is provided by the Facebook library.

Figure 12.Application Login Screen

26

Figure 13.Facebook Login Dialog

4.3 Data Management Classes

4.3.1 Data Modeling

A Food class acts as the model object for the application. It was created to enable

uniformity and ease of data management. The properties of the model include the

27

name of the food, its expiry date, and its date of entry as well as the chosen time

to be reminded of its expiry.

The structure of the model is displayed in Figure 14 below.

Figure 14.Food model of application

The table below highlights the attributes of the model.

Table 1.Description of Food model attributes

Attribute Description

Name Name of the food to be stored.

Expiry Date Best-before date of the food product

Entry Date Date of entry of food information

Reminder Time chosen by user to be reminded a day before expiry date

4.3.2 Database Management

Data persistence in an Android application is done primarily with the SQLite

database provided as a library component in the Android system. Applications

that utilise the SQLite database, usually have dedicated classes to handle the

Food

+NAME
+EXPIRY_DATE
+ENTRY_DATE
+REMINDER

+getNAME(): String
+setNAME(String NAME): void
+getEXPIRY_DATE(): String
+setEXPIRY_DATE(String EXPIRY_DATE): void
+getENTRY_DATE(): String
+setENTRY_DATE(String ENTRY_DATE): void
+getREMINDER(): String
+setREMINDER(String REMINDER)

28

management of the database. The DatabaseHelper class was created for that

purpose. It extends the SQLiteOpenHelper class and handles all the internal

database functions of the application including opening and closing the database,

executing queries and handles queries with the Food model.

It also does operation on the server database using the methods defined in the

UrlHandler class.

Figure 15.DatabaseHelper Class Diagram

For this project, the database was named “Thesis” and defined in the

DatabaseHelper class as DATABASE_NAME. Also, only one table was created in

the database. The table is named “Food” and defined in the DatabaseHelper class

as FOOD_TABLE. The table is created when the database is first created and can

only be structurally modified when the database is upgraded. It is used to store the

food entries of the user and the final version of the database is three (3) due to the

structural changes it has undergone during development.

DatabaseHelper

+DATABASE_NAME: String = "Thesis"
+FOOD_TABLE: String = "Food"
+DATABASE_VERSION: int = 3

+onCreate(SQLiteDatabase db): void
+onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion): void
+getFoodById(int request_id): Food
+get_last_food(): Food
+addFood(Food newFood): long
+updateFood(Food oldFood, Food newFood): long
+deleteFood(Food food): void
+getAll(): Cursor
+deleteAll(): void

UrlHandler

+is: InputStream
+jObj: JSONObject
+jArray: JSONArray
+UrlResponse: String
+bool: boolean = false
+httpClient: HttpClient

+getHttpClient(): HttpClient
+doPost(String url, ArrayList<NameValuePair> postParameters): String
+getArray(String url, List<NameValuePair> params): JSONArray
+SendToUrl(String url, List<NameValuePair> params): String
+JSONFromUrl(String url, List<NameValuePair> params): JSONObject
+getFoodList(String facebook_id): JSONArray
+loginUser(String facebook_id): JSONObject
+registerUser(String facebook_id, String first_name, String last_name, String location): JSONObject
+urlAddFood(String facebook_id, String food_name, String category, String expiry_date, String reminder): String
+urlDeleteFood(String facebook_id, String food_name, String category, String expiry_date): void

Food

+NAME
+EXPIRY_DATE
+ENTRY_DATE
+REMINDER

+getNAME(): String
+setNAME(String NAME): void
+getEXPIRY_DATE(): String
+setEXPIRY_DATE(String EXPIRY_DATE): void
+getENTRY_DATE(): String
+setENTRY_DATE(String ENTRY_DATE): void
+getREMINDER(): String
+setREMINDER(String REMINDER)

29

 4.4 Server Communication Classes

Data communication between the application and external server is handled by the

UrlHandler class. Its operations include retrieving and registering user and food

inventory information.

The class has numerous functions which sends HTTP request to the server. The

requests consist of the URL address of the index.php file on the server and

parameters that contain the information of the user and food entries. The table

below highlights the common parameters used in the request.

Figure 16.UrlHandler Class Diagram

Table 2.Description of Parameters used in HTTP request to server

HTTP Parameters Description

tag Tag for different operation

facebook_id ID of user from Facebook server

first_name First name of user

last_name Last name of user

UrlHandler

+is: InputStream
+jObj: JSONObject
+jArray: JSONArray
+UrlResponse: String
+bool: boolean = false
+httpClient: HttpClient

+getHttpClient(): HttpClient
+doPost(String url, ArrayList<NameValuePair> postParameters): String
+getArray(String url, List<NameValuePair> params): JSONArray
+SendToUrl(String url, List<NameValuePair> params): String
+JSONFromUrl(String url, List<NameValuePair> params): JSONObject
+getFoodList(String facebook_id): JSONArray
+loginUser(String facebook_id): JSONObject
+registerUser(String facebook_id, String first_name, String last_name, String location): JSONObject
+urlAddFood(String facebook_id, String food_name, String category, String expiry_date, String reminder): String
+urlDeleteFood(String facebook_id, String food_name, String category, String expiry_date): void

30

location Primary location of user

food_name Name of the food to be stored.

expiry _date Best-before date of the food product

entry_date Date of entry of food information

reminder Time chosen by user to be reminded a

day before expiry date

The number of parameters that accompany a request differs depending on the

desired operation to be performed on the server. However, the tag parameter is the

primary parameter that informs the server what operation to perform. In this

application, a list of tags was created as string and the outline of these tags can be

found in the table below.

Table 3.Description of different tag types

Tag Name Value (string) Description of requested operation

list_tag list Return the list of all food entries by

current user

login_tag login Check if user information exists in

database

register_tag register Register new user and create dedicated

table for user in the database

add_tag add Add new food entry to database

delete_tag delete Delete selected food entry from database

31

Register notification for

food expiration

When preset Alarm

is triggered

4.5 Utility classes

The Notifier class acts as a Broadcast Receiver for the application. It inherits a

BroadcastReceiver class.

Figure 17.Notifier Class Diagram

The class is notified by the Android system when an alarm WAKE_UP event

occurs after the countdown value set in the NewEntryActivity or QREntryActivity

classes elapses. The onReceive function of the class is automatically called to

handle the event. The setNotification function is then called to create a new

notification in the system notification bar, informing the user of the name of the

food that is expected to expire the next day.

Figure 18.Relationship between NewEntryActivity and Notifier Classes

Notifier

+food_name: String

+onReceive(Context context, Intent intent): void
+setNotification(Context context)

NewEntryActivity

Notifier

Android

System

32

5 SERVER-SIDE DESIGN AND IMPLEMENTATION

This chapter deals with data retrieval and storage from the database, initiated by

HTTP request from the client-side application. PHP is used to handle the request

from the application and performs appropriate tasks on the MYSQL database. It

also informs the application of success or failure of the application.

5.1 Development Overview

The PHP development was done in the Notepad++ software, which is a free and

open Windows multi-language editor. It provides colored support for native

functions, as well as code indentation. It displays the edited files in tabs for ease

of accessing and editing multiple files simultaneously.

Figure 19.PHP Development in Notepad++ software

The server database was managed by a free PHP-based GUI tool named

phpMyAdmin which was readily available on the server.

33

Figure 20.phpMyAdmin interface on the server

5.2 Database Design

The database for the project was designed based on the requirements listed in

chapter 3.2. A table named “users” is created to store the basic information of

users that uses the application. This information includes the Facebook ID, first

name and the last name of the user, which are provided by the Facebook server

via the mobile application.

The table has four columns. They are facebook_id for the Facebook ID of the

users, first_name, last_name for the first and last name of the user respectively

and created_at for the date the user information was stored in the database. The

facebook_id column acts as the primary key for the table.

Figure 21.Entity diagram for users table

Each user is expected to have a dedicated table in the database to store food

entries. In order to have this, a dynamic naming convention is used for these

tables. The Facebook ID of the user is used as an underscore suffix to the word,

34

hence the name of each food table is in the format food_[Facebook ID].For

instance, if the Facebook ID of a user is 12345, the food table for this user would

be named “food_12345”.

The table has five columns; id column which acts as the primary key, food_name

column for the name of the food, expiry_date and entry_date columns for the

expiry date as well as the date of entry for the food, and the reminder column for

the time set by the user to be reminded the day before the expiry date.

Figure 22.Entity diagram for food table

5.3 PHP Classes/Files

Three PHP files were created to handle the logical and data management

operations. The main PHP file is the index.php file which handles the HTTP

requests from the application. The other files are the functions.php file, which

contains the declaration of the functions used in the index.php file, and the

connect.php file which contains the login details for authorized access to the

database. These files were stored in my student account on the cc.puv.fi server.

5.3.1 Connect PHP file

The connect.php file contains the administrative configuration of the MySQL

database required to do operations on it. Due to the administrative rights granted

by this file, the user application may make changes to the content of the database.

35

Figure 23.MySQL configuration

The figure shows that the MySQL used for this project is hosted on

mysql.cc.puv.fi which is the official MySQL server for VAMK University of

Applied Sciences. The server is only accessible locally. For this project, I have

used my student account on the server and a VPN connection to allow access to

the PHP files as well as managing the database remotely.

The file also defines the Connect class which handles connection to the database.

The figures below shows the class diagram as well as the PHP code for the

Connect class.

.

Figure 24.Connect class diagram

The class has a defined constructor and destructor. A class constructor is a method

defined to be called when a new instance of the class is created and in the Connect

class, it calls the connect method. Therefore, a connection is made to the database

whenever an instance of the Connect class is created.

When a class is no longer referenced, the destructor method is called. The

destructor of this class calls the close method, which closes connection to the

database.

Connect

+_construct(): function
+_destruct(): function
+connect(): function
+close(): function

36

Figure 25.Constructor and destructor for Connect class

In the connect method, the native MySQL function, mysql_connect is used to

connect to the database server using the pre-defined configuration values and the

function, mysql_select_db is used to select the specific database for this project, as

shown in line 25 and 27 of the figure below.

The close function is defined to close the database connection by calling the

native MySQL function, mysql_close.

Figure 26.connect and close methods for Connect class

5.3.2 Functions PHP file

The functions.php file defines the DbFunctions class. The DbFunctions class

defines methods for database operations which are called from the index.php

37

based on the value of the tag parameter in the HTTP request. The figure below

shows the class diagram for the class.

Figure 27.DbFunctions Class Diagram

A global variable db is declared and used as an instance of the Connect class. The

assignment of the variable db as a new instance of Connect class is done in the

constructor method of the class, and the connect.php was included to achieve this.

The class has no defined destructor method.

38

Figure 28.Global variable and constructor method

The class has five methods defined for database operation, namely: isUserExist,

storeUser, getFoodById, storeFood and deleteFood. The isUserExist method is

used to check if a user exists using its unique Facebook ID as an argument. The

method calls a MySQL query that selects the facebook_id column from the users

table with a conditional statement to check if the Facebook ID of the user exists in

the column.

Figure 29.Code for isUserExist method

39

The storeUser method is used to store information about a new user in the users

table, and also used to create a dedicated food table for the user using a dynamic

naming system. It takes three arguments, namely: the Facebook ID, first name and

the last name of the user. It first stores the new user information in the users table,

and on successful completion, it creates a new table for the user using the

Facebook ID.

Figure 30.Code for storeUser method

The getFoodById method is used to retrieve all the food entries of a particular

user using the Facebook ID of the user as argument.

40

Figure 31.Code for getFoodById method

The storeFood method is defined to store food entries from the mobile application

to the server. It takes five (5) arguments, one of which is the Facebook ID of the

user which is used to determine the table to store the entry into based on the

dynamic table naming system. The other arguments are the food information

provided by the mobile application. They include the name of the food, its expiry

date, its entry date and reminder time for the food.

Figure 32.Code for storeFood method

The deleteFood method is defined to delete a particular food entry. It takes three

arguments which are the Facebook ID of the user, the name of the food and its

expiry date. The Facebook ID is used to select the table and the other arguments

are used to select the specific entry to delete. The name of the food and its expiry

date are together distinctive of each food entry. The ID of the table was not used

for the deletion due to the possibility of being different from its corresponding

value in the client-side application.

41

Figure 33.Code for deleteFood method

5.3.3 Index PHP file

This file that handles communication between the mobile application and the

server database. It performs logical operations based on the value of the tag

parameter of the HTTP request and encodes the response in JSON format, which

is handled by the mobile application. It uses the DbFunctions class, defined in the

functions.php file, to perform operation on the database.

Figure 34.Validity check for the tag parameter

All the logical operations are enclosed in an IF conditional statement which

ensures that tag parameter is set and it is not empty, as shown on line 3 of the

figure above. The tag parameter is used to select which operation the application

intends to perform on the database whenever it sends an HTTP request while

holding the value of the Facebook ID of the user provided by the Facebook server.

 All HTTP requests must have the tag and facebook_id parameters. Lines 5 and 6

show the storing of the values of these parameters in their corresponding

variables.

42

Figure 35.Inclusion of DbFunctions class

The require_once statement on line 10 is used to include the functions.php file in

the code and ensures it is only included once. The variable dbFunctions is

declared on line 11, as an instance of DbFunctions class declared in the

functions.php file.

Figure 36.Declaration of the response array

Line 13 shows the declaration of the response variable. It is declared as an array

and primarily contains the value of the tag parameter in the HTTP request and

varying values of success and error, which are determined at the end of each tag-

based logical operation. The values of the success and error tags are both zero (0)

by default, and only one of these tags changes its value to one (1) after the

execution of the tag-based operations. The value of the success tag changes to one

(1) if the operation was executed successfully. Otherwise, the value of the error

tag changes to one (1).

43

Figure 37.Code for handling login tag

In the case when the mobile application sends an HTTP request with the login tag,

the request would only contain the tag and facebook_id parameters. The

facebook_id variable is used on line 19, as an argument in the isUserExist

function of the DBFunctions class to check if the information about the user’s

Facebook ID exists in the database. If the user information is present, a success

message is sent back as response as shown on line 22 or else, an error message is

returned as shown on line 26. All the response messages are encoded using the

JSON format.

Figure 38.Code for handling register tag

If the user application wants to register a new user, an HTTP request is made with

the register tag. This request contains the default parameter as well as the

first_name and last_name parameters which represent the first name and the last

name of the user respectively. This information is provided by the Facebook

server to the mobile application.

44

The isUserExist function is used to check if the user already exists in the database

on line 36. If the user already exists, an error message is returned. Otherwise, the

new user information is stored in the database using the storeUser function on line

43. On line 44, a conditional statement is used in check if registration was

successful and if it was, a success message is returned as shown on line 51. If the

registration failed, an error message is returned as shown on line 53.

.

Figure 39.Code for handling add tag

An HTTP request containing the add tag, is an intent to add a new food entry to

the database. This request includes parameters for the name of the food, its entry

date, its expiry date as well as the user-set reminder time, alongside the default

parameters.

The storeFood function of the DbFunctions class is called to add the information

about the new entry in the database as shown on line 65. All the parameters of the

HTTP, except the tag parameter, supply the values of the required arguments for

the storeFood function. The conditional statement on line 67 is used to check for

successful database entry. A success message is returned if a new entry was made,

and returns an error message to the user application if the entry failed.

45

Figure 40.Code for handling delete tag

If the end user intends to delete a food entry, the application sends an HTTP

request with the delete tag. This request contains the name of the food and the

expiry date which are stored in the food_name and entry_date parameters

respectively. The deleteFood function of the DbFunctions class is called to delete

a certain food entry whose name and expiry date are provided, as shown on line

85. The outcome of the operation is used to check its success or failure with an IF

conditional statement, as displayed on line 87 and either a success message or an

error message is sent back to the user application as appropriate.

Figure 41.Code for handling list tag

46

The list tag is used if the application intends to get the list of all the food entries

for a specific user from the database. The HTTP request only contains the tag and

facebook_id parameters. The getFoodById function is called with the Facebook

ID of the concerned user as its argument. The function then returns the query

result which has the current food listings of the user stored on a dedicated table.

An array named records and a while statement are used to reorganise the query

result into an array, which is then sent to application using JSON encoding.

The table below shows the relationship between the various kinds of tag

parameter used in the HTTP request from the mobile application and the PHP

classes on the server.

Table 4.Methods employed to handle different tag values

Tag Name

(from HTTP

request)

Value

(handled by

index.php)

Methods called from DBFunctions class

(in functions.php)

list_tag list getFoodById()

login_tag login isUserExist()

register_tag register isUserExist(),storeUser()

add_tag add storeFood()

delete_tag delete deleteFood()

47

6 TESTING

6.1 Client-Side Testing

Testing on the mobile application was done primarily with the Android Virtual

Device (AVD), provided by the Android SDK. It was used to test all the

functionalities of the mobile application except the QR code reading functionality

which was done using an Android device. The client-side testing was done

primarily within the virtual device.

Figure 42.Application sequence for adding new entry.

The figure above depicts the sequence of registering a new entry. Sequence 1

shows the menu dialog that appears when the “Add New Entry” button is clicked.

It displays the option of adding the entry either through scanning a QR code or

using a manual entry. Sequences 2 and 3 show the path taken if the user decides to

scan the QR code. Sequence 2 invokes the ZBarScannerLibrary to scan the QR

code and the outcome, if successful, is shown in the NewEntryActivity UI in stage

3.

1
2

3 4

5

48

Sequence 4 shows an empty form on the NewEntryActivity UI for user to fill, and

Sequence 5 shows the new listing on the MainActivity UI.

6.2 Server-side Testing

The testing of the server-side was done on a web browser, by making HTTP calls

to the server. A new PHP file, named test.php, was written specifically for testing

purposes. It includes the functions.php file to allow access to the methods defined

for the DbFunctions class. Only the user tag is used for testing.

The user tag is used here for testing user login and registration. It is used

alongside three other parameters which acts as a demo for the user information

retrieved from the Facebook server. The Google Chrome browser was used for the

tests.

Below are figures for the testing code as well as test results displayed on the

browser and the phpMyAdmin interface.

Figure 43.Code for testing user tag

49

Figure 44.First Test, Web browser showing an HTTP request to the server

Figure 45.phpMyAdmin interface showing the list of tables.

 Figure 46.Second test, Web browser showing an HTTP request to the server.

Figure 47.phpMyAdmin interface showing the result of second test.

50

Figure 48.Content of users table after the tests.

6.3 Overall Testing

In order to test the client-side and the server-side simultaneously, a dummy user

profile created in the server-side testa was used for testing. The Guest mode in the

mobile application was turned off, to allow the application interact with the

server. The figure below shows the sequence of testing new food entry and other

functionalities were tested likewise.

Figure 49.Application sequence for adding new entry locally and to server

Sequence 1 shows the transition to the new entry screen. Sequence 2 and 3 show

the new entry updated both in the mobile application and in the database on the

server. It should be noted that users are expected to have internet connection when

making new entries in user mode.

1

2

3

51

7 CONCLUSION

7.1 Challenges

A major problem faced by developers for applications like this, is how to

effectively manage data between the mobile devices and the server. As previously

mentioned, data persistence could be done both locally and externally, hence the

issue of synchronizing data while minimizing resources used becomes a serious

concern.

This was resolved in this application by giving users the right to choose either to

store the information locally on their devices or ability to access it on various

devices by storing the information on the server. An internet connection is a

requirement for the latter. Hence, it is expected that the user who chooses this

option has an internet connection.

It is possible that multiple users have access to a single device. Hence, the

dilemma over naming the database table in local application arose. Provision was

made on the server to create separate food inventory tables for users, but that is

expected for the database on the server.

It is expected that smartphones and tablets are personal items, hence there does

not seem to be a need to create separate tables for each user that logs in into the

application on a device, as this would be a rarity. Therefore, a single name has

been chosen for the table on the mobile application, while a dynamic naming

convention is applied on the server. However, if multiple users do use the

application on a single device with separate login details, the application deletes

the food inventory table when the user logs out and is able to retrieve pre-stored

information on the server when the user logs in again.

52

7.2 Possible Improvements

The solution presented in this project is useful enough to combat food waste

through expiration. However, it may appear cumbersome for many users to

register their inventories manually into the application.

At the time of writing, there was no standard food information system on food

packages that gives the user the information of both the name of the food, as well

as its expiry date. The viable improvement would be get the food name from the

product bar code and read the expiry date using OCR tools. However, the level of

ease of using this option is only slightly greater than using the manual option of

filling the food information.

Some companies have started trials with using QR code on their food packages to

provide detailed information. Notwithstanding, there is still lot of hurdles to pass

for it to become a standard. But for the meantime, this application presents a

viable and effective solution.

53

8 REFERENCES

/1/ Koivupuro, Heta-Kaisa 2011, FOODSPILL – Food wastage and

environmental impacts, Henvi Seminar Series, Food and Environment –

Sustainable food cycle, MTT Agrifood Research Finland

/2/ Service. Official Android Developer Reference website, 5
th

 March 2013,

http://developer.android.com/reference/android/app/Service.html.

/3/ Intent. Official Android Developer Reference website, 5
th

 March 2013,

http://developer.android.com/reference/android/content/Intent.html.

/4/ Official website for Android SDK, 5
th

 March 2013,

http://developer.android.com/sdk/index.htm.

/5/ The AndroidManifest.xml File, Official Android API Guides website, 6
th

March 2013,

http://developer.android.com/guide/topics/manifest/manifest-intro.html.

/6/ About SQLite, Official SQLite website, 6
th

 March 2013,

 http://www.sqlite.org/about.html

/7/ GNU Operating System, GPL-Incompatible Free Software Licenses, 6
th

 March

2013,

http://www.gnu.org/licenses/license-list.html#GPLIncompatibleLicenses

/8/ Official phpMyAdmin website, 6
th

 March 2013,

http://www.phpmyadmin.net/

