
1

Bachelor’s thesis
Information Technology
Specialization: Internet Technology
2013

Aman Yadav

WINDOWS PRESENTATION
FOUNDATION APPLICATION
DEVELOPMENT FOR A MOVIE
THEATER

2

BACHELOR’S THESIS | ABSTRACT
TURKU UNIVERSITY OF APPLIED SCIENCES
Information Technology
08.05.2013 | 49 pages
Instructor: Balsam Almurrani

Aman Yadav

Windows Presentation Foundation Application
Development for a Movie Theater

This thesis is mainly focused on describing a WPF application for a movie theater developed by
using Microsft Visual Studio, Expression Blend and Microsoft SQL server.

The thesis begins with the description of platforms, relevant technology, and the requirement
analysis during the application development processes. Here, MS Visual Studio has been used
as the main programming platform, whereas the MS expression Blend is responsible for the
design and animation, and finally the MS SQL server is responsible for handling the database.

The rest of the thesis covers the application description, analysis, design, and implementation of
the the application. It also includes the structuring of the database, testing portion, and handling
the exception and errors.

KEYWORDS:

C#, MS SQL server. WPF, LINQ.

3

CONTENT

1 INTRODUCTION 7

2 PLATFORMS AND RELEVANT TECHNOLOGIES 8

2.1 Visual Studio 8

2.2 MS Expression Blend 8

2.3 MS SQL Server 8

2.4 Linq 8

3 APPLICATION 10

3.1 WPF 10

3.2 Movie Theater Application Functional Scenario 10

4 REQUIREMENT ANALYSES 12

4.1 System Requirements 12

4.2 Application Requirements 12

4.3 Security Requirements 12

4.4 Functional Requirements 13

5 DATABASE ANALYSIS AND DESIGN 14

5.1 Database Design 14

5.2 Background Solution 19

6 GRAPHICAL USER INTERFACES DESIGN 20

6.1 Login Window 20

6.2 Admin Window 20

6.3 Manager Window 28

6.4 Cashier Window 31

7 DATABASE MODULES 40

7.1 Tables 40

3.2.1 User Authentication 10

3.2.2 Data Connection Establishment 10

3.2.3 User Interface Decission 10

3.2.4 Data Transferring and Updating the Database 11

5.1.1 Relational Model 15

5.1.2 Entity-Relation Model 15

5.1.3 Normalization 16

5.1.4 Referential Integrity 18

4

7.2 Queries 43

8 TESTS AND FIXES 45

8.1 Compatibility Testing 45

8.2 Functional Testing 45

8.3 Security Testing 45

9 FUTURE IMPROVEMENT 47

10 CONCLUSIONS 48

REFERENCES 49

FIGURES
Figure 1. Mapped LINQ diagram. 9
Figure 2. Process of designing a database. 15
Figure 3. Relational Model. 15
Figure 4. Entity-Relation Model before Normalization. 16
Figure 5. Entity-Relation Model after Normalization. 18
Figure 6. Referential Integrity Diagram. 19
Figure 7. Login Window. 20
Figure 8. Starting Administrator Panel. 21
Figure 9. Worker’s Table. 21
Figure 11. Add window. 23
Figure 10. Add window, filling rows. 23
Figure 12. Table after updating with new row. 23
Figure 13. Deleting a row. 24
Figure 14. Selecting Row. 25
Figure 15. Modify rows. 25
Figure 16. Rows after modification. 26
Figure 17. Windows with filled fields. 26
Figure 18. Changing window. 27
Figure 19. Manager Window. 28
Figure 20. Additional Project. 29
Figure 21. Using the references and namespace. 30
Figure 22. Start window cashier. 31
Figure 23. Filtered data and displayed in the grid. 33
Figure 24. DatePicker with BlackOutDays 33
Figure 25. Dynamically filling ticket. 34
Figure 26. Window with free and busy seats. 35
Figure 27. Ticket with chosen seats and price. 37
Figure 28. Sold Tickets Data Grid with new added tickets. 39

7.1.1 Property Tables 40

7.1.2 Table Definition 42

7.2.1 Multi Join, Where 43

7.2.2 Groupby, Having, Virtual Column 43

7.2.3 Except, Intersect And Union Expression 44

8.2.1 Run-Time Problems 45

file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212715
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212716
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212717
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212718
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212719
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212720
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212721
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212722
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212723
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212724
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212725
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212729
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212730
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212732
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212733
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212734
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212735

5

TABLES

Table 1. Excerpt of code by LINQ. 9
Table 2. Binding updates Grid in C#. 22
Table 3. XAML Animation Code. 22
Table 4. Code to start Animation dynamically. 22
Table 5. C# code, adding rows, constraints. 24
Table 6. C# code of deleting rows. 25
Table 7. C# code fills fields. 26
Table 8. Modifying record C# and saving it into database. 26
Table 9. XAML template code. 27
Table 10. Using template in Combo Box component. 27
Table 11. C# Deleting items from listbox using key. 27
Table 12. Code for creating the path. 28
Table 13. Code to represent dll file. 29
Table 14. Code to show how our Excel chart should look like. 30
Table 15. The code to use references and namespace. 31
Table 16. Updating data grid, binding, linq queries. 32
Table 17. C# code which writes and splits current data (month, day, year). 33
Table 18. C# code which sets blackout dates. 33
Table 19. Filtering data in C#. 34
Table 20. C# code of a dynamically filled ticket. 35
Table 21. Linq, chosing occupied seats. 36
Table 22. Creating grid with seats. 36
Table 23. Clicking the button dynamically changes the seats template. 37
Table 24. Creating a list of selected seats. 38
Table 25. Find rest of attributes to make a LINQ add Ticket query. 38
Table 26. Property Table. 40

file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212608
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212609
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212611
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212614
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212615
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212616
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212617
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212618
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212623
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212624
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212625
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212626
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212627
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212628
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212629
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212630
file:///C:/Users/Aman/Dropbox/Thesis/AMAN%20THESIS%20Edited.docx%23_Toc357212631

6

ACRONYMS, ABBREVIATIONS AND SYMBOLS

C# C Sharp
WPF Windows Presentation Foundation
SQL Structured Query Language
XAML Extensible Application Markup Language
XML Extensible Markup Language
.NET Network Enable Technology
MS SQL Microsoft Structured Query Language
LINQ Language Integrated Query
DBMS Database Management System
DBLC Database Life Cycle
ER Entity Relationship
RID Referential Integrity Diagram
RD Referential Diagram
NF Normal Form

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

1 INTRODUCTION

This thesis is mainly focused on the development of a C# application for a movie
theatre with the help of the tools provided by Microsoft Visual Studio and, Microsoft
Expression Blend for the coding and design portion. In the meantime, it uses Microsoft
SQL server 2008 R2 in order to store and update the database.[8][9] To put ourselves
in a real life situation, cinema management system has been chosen, which turns out
to be a good and challenging basis that creates several situations unique for this kind
of project. The plan is to create a couple of user interface that would be used in
different fields of movie theatre management(like seeling the tickets, updating the
database and keeping the track tickets sold), and finally it was decided to create three
user interfaces which are most crucial: cashier, administrator, and manager. All of
them are based on user interactions, so a GUI for each of them has been created,
using different logics, based on connections with database. To make the application
work in most natural way, the objects and types, suitable for particular problems were
created.

Having stated the problems, and getting our database ready, it was a bit hard to decide
whether the application is really important from the cinema point of view. Does our
application really work fine with the database of the theatre? How useful is it?? Does
our design make it easy to use or not? And finally, the decision was made, and it was
positive. Those three GUI are crucial for our cinema applications to work. Here, the
Cashier window enables us to: (i) sell tickets, (ii) browse through possible shows, and
(iii) give the basics of tickets management. The Administrator window poses as an
indispensable factor to consider in a database project, because it provides the clients
with a whole software package. This application provides the basics of database
management, so users do not have to make use of external software for this purpose.
Finally, the Manager tool is added, which can be understood as a statistics tool for
comparing data according to any given input. This tool has been extended with the
ability to prepare Microsoft Excel files with charts by presenting chosen data. After
having our all the user interface and database ready it is supposed to have an
application ready to work on a cinema theatre database created earlier, and an
application that could fit the needs of all the three different types of users.

After all the theoretical assumptions, it was necessary to test the application in a real
life situation and try to see whether all the needed features are able to meet the user
requirements, and finally to gather the information and feedback from the users.
Garnering this kind of information enables us to figure out better plans and approaches,
to make the design processes appear more complex, but comprehensible in such a
creative and beneficial way during the proceeding stages. At this stage, it was
established that there were a few functions that should be implemented to make the
programs run better. Some of them were reliable and easy to use in connection with
the database, which enables us to obtain various data, refresh them and operate on its
modules that are responsible for controlling the input, so that data in database remain
integral. Some user features include rows and seats selections that could be done
easily with much convenience.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

2 PLATFORMS AND RELEVANT TECHNOLOGIES

2.1 Visual Studio

Visual studio .NET is a Microsoft visual programming environment for programming
languages and development tools in order to create web services using XML
(Extensible Markup Language). The Visual studio comes with .Net framework including
common language runtime itself that provides the visual interface for identifying it as a
web services, forms for building user interface that can even support the mobile
devices, and it also provides the facility for data integration and debugging.[4] During
the development of the application for a movie theater Visual Studio has played a vital
role, as it is the main programing environment for the coding of an application in C#
language.

2.2 MS Expression Blend

Microsoft Expression Blend is a Microsoft user interface design tools developed by
Microsoft. This tool is mainly responsible for creating a WPF and Silver light desktop
application which uses XAML for design and animation. It also provides a sophisticated
environment for the development of an application by adding multimedia files, such as
audios and videos, in order to make the user interface more attractive and easy to use.
MS Expression blend is the main tool that was used in order to design the application
user interfaces and add the animation which was not possible to do with the Visual
Studio.

2.3 MS SQL Server

The MS SQL server is a relational database management system of Microsoft written
in C++. It is responsible for storing and retrieving the data using an application running
on the same computers or on different computers that is connected to an internet. The
popularity of MS SQL server has taken over other database servers because of its high
rate of performance in a more secure way as it can perform 1 million queries per
seconds and can process 14.8 million email messages per second.[7] We used the MS
Sql server during our application development because it is easy to setup and can
easily create the object for each items in the database using LINQ.

2.4 Linq

LINQ is one part of Microsoft .NET technology which enables making queries using
objects. Linq syntax is easy and similar to SQL. LINQ was useful for our applicaiton
development as it treats databases and their elements like objects. In order to work
properly, LINQ has to know the whole mapping of databases which will return a
collection of objects. The collection can be modified and then put back to the source.
Here is the mapped LINQ diagram for our application.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

Figure 1. Mapped LINQ diagram.

After generating the database , LINQ draws a diagram as shown above of our
database and then it maps our database to objects as shown below int the Excerpt
of code by LINQ.

Table 1. Excerpt of code by LINQ.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

3 APPLICATION

3.1 WPF

Windows Presentation Foundation (WPF) is a graphical subsystem developed by
Microsoft. It is based on work with XAML files. WPF provides the facility of
implementing the relationship between design and developers which was slightly
harder previously as the design was easier with the tools such as Photoshop but those
designs needed strenuous efforts by the developers in order to create the control that
could work fine with the designed buttons and the code. In addition, as WPF is based
on XAML, it has given the facility for the developers to implement animation and
effects such as embedding the audio and video to their application with the help of MS
Expression Blend tools, which could make the application much more attractive and
impressive to the users.

3.2 Movie Theater Application Functional Scenario

3.2.1 User Authentication

As the application starts it opens the first UI called login window where the users have
to input their credentials such as User Name and Password in order to verify their
identity on the basis of their status. Here the level of the user, i.e., admin(A),
manager(M) or cashier(C) is determined from the username provided and finally the
decission is done accordingly. In order to prevent the password being seen from others
such as hackers, the password field has been used but in the database it is still storeed
in the clear string format which is risky andwill be dealt with in the future.

3.2.2 Data Connection Establishment

At this point, the connection between the application and database is established with
the credentials provided for the MS SQL server which are not the same credentials as
entered before. The credentials entered for in the Login window are for the application
to decide the level of users and open the user interface accordingly. However, the
credentials for the database are the ones which are needed to connect the database
with the application and are needed to be entered before the application starts which
are the same every time and for every user.

3.2.3 User Interface Decission

At this stage with the credentials provided in the login window, the decision for the user
interface to be displayed is made according to the status of the user. There are three
user applications for the application which are as follows:

 Cashier Window

 Admin Window

 Manager Window

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

3.2.4 Data Transferring and Updating the Database

Here, the decision for the UI is made and the required data for the UI is fetched from
the server and is displayed in the tables and other respective fields of the UI. Then the
modification in the database is done according to the recquirements with the help of the
respective UI and finally the database is updated in order to keep the track of the sales
and purchase of tickets on a particular date and time.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

4 REQUIREMENT ANALYSES

The minimum requirements for the application to run smoothly and in an efficient
manner are described below.

4.1 System Requirements

The minimum system requirements by an application in order to run are the same as
the minimum requirement needed by .NET framework. This is because all the libraries
called by the code do not comply with the assembly and these libraries are needed in
order to run the application. The requirements are as follows:

 Processor: Minimum Pentium II-450Mhz

 Operating System: Windows 2000 (Server or Professional), Windows XP, or
Windows NT 4.0 Server

 Memory: 96 MB for Windows 2000 Professional, 192MB for Windows 2000
server

 Hard drive: 500MB free on the Hard Drive

4.2 Application Requirements

The application requirements for the application are as follows:
 The application should provide the services 24/7.

 It should be fast, simple and easy to use, meaning that it should not jam or
crash when the number of users increase. Ourapplication meets these criteria.
It is fast in a way because it does not need any installation and takes less than
5 seconds to start. It is simple and easy because theGUI of the application is
so clear that the user will not have a problem to use it. In addition it has been
designed in a way that mostly it is not necessary totype which makes it simpler
and error free.

 If the application crashes due to some reason, then it should be able to regain
its state in a short time as the application does not need any installation
procedure and can restart in less than 5 seconds.

4.3 Security Requirements

Security requirements for an application are highly important and they includes the
following measures:

 Only those users with specific privilege should be allowed to use the
application.

 Only the admin of the company should be allowed to make modifications in the
database except the ticket table as the Cashier can also make modifications on
it.

 The application should be protected from being affected by harmful external
agents such as virus, hackers, key logger, etc. by having the anti-virus software
running in the host PC and not letting any serious commands such as drop and
delete to be executed on the database.

 In case the system is affected by an external agent then it should not let it to
upload any harmful files to the databases or download anything either by
preventing the modification commands on the database such as update, delete,

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

insert and drop. If the user notices that there is no antivirus in the PC and the
application is not functioning properly, then the connection to the database
should be terminated manually immediately in order to minimize the risk of
damage.

 Access rights for each user:
- Cashier: The Cashier is responsible for selling the tickets so he or she

should just be allowed to make modifications only on the ticket table of the
database, that is, either to sell it or cancel it.

- Manager: The Manager is responsible for keeping the track for the movie
tickets sold during the particular period of time for a particular movie and
creating a chart for it accordingly. So basically he does not have access to
making modifications in the database.

- Admin: The Admin has the full control in the database as he/she is the one
to add or remove a movie in the database.

 The database should be manually backed up once a day or on an alternative
day depending on the situation in order to keep the database safe.

4.4 Functional Requirements

Functional requirements basically depend on the type of the user logged in. The
requirements are as follows:

 Cashier: The Cashier is responsible for selling the tickets and thus he or she
can see the list of movies by any order such as date, actor, release date, etc.
and sell the ticket to the customer accordingly. He or she can even cancel the
ticket and delete it from the database previously sold.

 Manager: The Manager is responsible for keeping the track of everything going
in the business so he can see all the list of movies and the business done by
them. From these statistics, he or she can decide which movie is supposed to
continue and which one needs to be replaced in the theater in order to enhance
the business.

 Admin: The Admin is responsible for adding the new movies, deleting the old
ones, adding and removing the users, giving rights to the users and finally
backing up the database.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

5 DATABASE ANALYSIS AND DESIGN

5.1 Database Design

There are several issues that have to be considered in the design phase of a database,
such as identification, analyses and refinement of the business rules, thus making a
communication tool, an ER model. The ER model will be used as communication
between the user and (database designer) as a blue print for the project.

By designing appropriate data repositories of integrated information, the integrated
data must be decomposed properly into its constituent parts, with each part stored in its
own table. The table is the basic building block of database design. Consequently, the
table’s structure is of great importance, since poor table structures lead to redundancy.
So we need to prevent poor table structures and produce good table structures.
Thereby, we need to consider normalization, which is process for evaluating and
correcting a table’s structures to minimize data redundancies, and thus reducing the
likelihood of destructive data anomalies. Normalizing works through a series of stages
called normal forms. For most purposes in business database design, a third normal
form is as high as one needs to go in the normalization process, which is also required
for this project.

Further, the relationships between the tables must be carefully considered so that the
integrated view of the data can be re-created later as information for the end user. The
database must facilitate data management and generate accurate and valuable
information. The customer may want to generate complex information from the
database. Complex information requirements may dictate data transformation, thus
they may expand the number of entities and attributes within the design. Therefore, the
database may have to sacrifice some of its “clean” design structures and/or some of its
high transaction speed to ensure maximum information generation.

We also had to consider end-user demand for fast performance. Therefore, we may be
occasionally expected to denormalize some portions of a database design in order to
meet performance requirements. However, the price one will pay for increased
performance through denormalization is greater data redundancy.

Furthermore, we have to choose which DBMS (Database Management System) to use
in this project. There are many to choose from, since this project will be a product of
corroboration between two subjects, we choose to use Microsoft SQL Server,
because the front end of the application will be developed with Microsoft technology,
which will thus enable better integration.

For the back–end of the Cinema application we choose to use the database life
cycle(DBLC), which is a never ending life cycly as the monitoring, modification and
maintenance life cycle keeps roatating once the database has been implemented.
However, at this point we have used a simpler version of the DBLC.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

Figure 2. Process of designing a database.

The above diagram shows the process of designing a database in this thesis. An entity-
relationship (ER) diagram was created based on assessments of our mini world. In the
RD phase, normalization was applied to correct any problems associated with poor
design (i.e., redundancy prevention) where it is necessary, and at last in the final phase
where the database is implemented. Furthermore, the Chain model was used for the
ER diagram, since the ER model is a communication tool between the designer and
customer, it would be easier for the customer to understand.

5.1.1 Relational Model

The term relational database was originally defined by Edgar Codd at IBM Almaden
Research Center in 1970.[2] It was based on predicate logic and set theory.

Figure 3. Relational Model.

The main construct for representing data in the relational model is a relation which is
defined as a set of tuples that have the same attributes. A tuple represents an object
and information about that object.
Although there are other models such as the hierarchical and network model, the
relational database is used for this project because it allows the definition of data
structure, storage, retrieval operations and integrity constraints.

5.1.2 Entity-Relation Model

Data modelling is the first step in the database design, serving as a bridge between the
real-world object and the database model that is implemented. Therefore, the
importance of the data-modelling details, expressed graphically through an entity
relationships (ER) diagram is essential.

Mini World
E/R

SQL tables

(constraints)
RD

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

Figure 4. Entity-Relation Model before Normalization.

The ER diagram above represents the conceptual database as viewed by the end user.
It reflects the problem description through a database’s main components: entities,
which represent a real world, objects such as a movie and their characteristics through
attributes and the association between the entities as relationships.
Further, the entity-relationship diagram was mapped to table schemes where entities
correspond to tables and attributes as table rows. The one-to-many relationships were
translated as follows:

 Add the primary key attribute (or attributes) of the entity on the one side of the
relationship as a foreign key in the relation on the right side

 The one side migrates to the many side.
The many-to-many relationship:

 Create another relation and include primary keys of all relations as primary key
of new relation in RID

The following three tables were created as a bridge between the many-to-many
relationships:

 Employee_Show (between EMPLOYEE and SHOW).

 Show_Movie (between SHOW and MOVIE).

 Movie_Actor (Between MOVIE and ACTOR).

5.1.3 Normalization

The normalization process is a very efficient method to prevent redundancies, thereby
avoiding data anomalies in the database. After the initial design had been complete,
normalization was used to analyse the relationships that exist among the attributes
within each entity, to determine if the structure can be improved through normalization.
Furthermore, there were no changes made to the initial design, since it met the
conditions of 1NF. As for the 1NF, the table structures were checked for not repeating

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

groups and all primary keys were identified. As for the 2NF, the tables must meet the
condition of 1NF and no partial dependencies. Finally, the 3NF must meet the
conditions required by 1NF, 2NF and no transitive dependencies. In our case before
normalization, we noticed some mistakes in our database. In addition, before
normalization, we noticed a redundancy in our database (for example, before we had
attribute “capacity” in table Room, which could be calculated by multiplying the attribute
row with the column of Room table). Moreover, the attribute (name and surname) was
not divided into two another attributes in the Actor table. The next problem was the
table screen – we did not have it before. We had the field ‘screen’ in the table Room,
but we realised that screen do not have to be only in this table, but it could show on
another one in the future, so we added the table Screen. Thus, the bridge tables for
many-to-many relationships between the tables such as Employee –Show, Show-
Movie and Movie-Actor were created. Finally, we achieved the goal of 3NF in our
database.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

Figure 5. Entity-Relation Model after Normalization.

5.1.4 Referential Integrity

The following referential integrity diagram (RID) shows the tables structure that was
mapped from the ER diagram.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

Figure 6. Referential Integrity Diagram.

The RID was made to show the relationships between primary and foreign keys in the
tables structure of the database. The RID will illustrate that there are no referential
integrity violation between the foreign key candidate key and the primary key, as seen
in the above RID, which is a good indication that the foreign key candidate can be
accepted as the foreign key. This ensures that relationships between tables remain
consistent.

5.2 Background Solution

 Data integrity – wherever our program relies on user input we implemented
filters and exceptions (as instead of text box we used the drop down box with
the data binding so that the user can select the component from it instead of
typing the name manually which may lead to an error) to ensure that during the
use of application the database will remain consistent and no errors will occur.

 Connection handling – with the use of the external configuration file, it is
extremely easy to change the database connection and transfer our program
onto different systems. Beside this one, we implemented strict control of
connection and secured it with a reasonable amount of exceptions.

 User authorization and tracking – The application identifies users with the use
of the logging window and runs the proper application. Additionally, the cashier
window is extended with the tracking of the logged user so that it is possible to
control who sold s particular ticket and later on use this relation in the statistics
tool.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

6 GRAPHICAL USER INTERFACES DESIGN

6.1 Login Window

Figure 7. Login Window.

This is the first window created with Expression Blend. As it is the first point at which
the user actually experiences our program, we wanted to make it as customized and as
characteristic as possible. To achieve this, we invented an interesting visual design and
connected it with some appealing animations.

This is also the moment where we established a connection with the database. On the
basis of given username and password, the type of user is obtained and the
corresponding window is invoked.

6.2 Admin Window

After logging in as the administrator, we will see Admin Panel View.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

The administrator has got the full right on the database, and can modify, add, and
delete rows in each our table. Let’s focus on one table, in this case, the Users table.
After changing the tab, we can see a “DataGrid” with data from the Workers table.[10]

To load a data set, we use a LINQ query, and add Binding to each column in
XAML.[11] Bindings connect our asset with objects. Objects are transferred to our
“DataGrid” and are assigned to a particular column. XAML interprets by field name in
object and enters it to the bind column.[1] In C# code we assign our collection to
“ItemsSource” attribute of our grid.

Figure 8. Starting Administrator Panel.

Figure 9. Worker’s Table.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

As mentioned before, our Administrator Panel can add, modify, and edit the rows in
Database. Let’s take a look at the Add function. After choosing a specific tab, and
pressing the Add button, immediately appears animation (a unique animation that
depends on the tab which we chose with our Add Window). This animation is
generated by using Blend and XAML Animation Code.

Table 3. XAML Animation Code.

To change the animate parameters, we should change the values of Key Time and
Value attribute. These two attributes inform us about special location (Value) and time
(Key Time) when this attribute is at a particular location. Moreover, the first Key
Time=”0” is a time when the animation starts, and last, in this case, the Key
Time=”0:0:2” the time when animation finishes.

 This code shows the dynamic start of our Animation. At first, we have to find our object
which is responsible for our Animation. To do this, we have to look into our resources
and find what ? (by name) that is interesting us. Here we used casting, because there
are variable types of resources, and we are looking for the Storyboard object, which is
responsible for our animation. The calling method Begin () is starting our animation.

Table 2. Binding updates Grid in C#.

Table 4. Code to start Animation dynamically.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

After filling our rows and pressing the accept button, we invoke the event, which will
assign particular texts from text boxes to particular attributes of our object and use the
LINQ function to add a new row to the database. We also used some constraints,
which are protecting us from writing wrong strings. In this case, the function Trim
()checks if textbox is not empty, and the function Try Parse () protects us from typing
letters instead of numbers. After this, we invoke the update function, and we can see
that our grid is updating immediately with a new row.

In order to update the row the function insertOnSubmit() invokes a simple query
INSERT INTO” in our Database which in this case is:
INSERT INTO workers VALUES(‘admin1’,’admin1’,’Jan’,’Kowalski’,’a’);

Figure 10. Add window.
Figure 11. Add window, filling rows.

Figure 12. Table after updating with new row.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

Table 5. C# code, adding rows, constraints.

Let us take a look at another function – deleting rows from the database. At first, we
should select a row which we want to delete. If we will not do it, then the program will
send us a warning. After clicking a button, we invoke an event, which runs the LINQ
query to find object which we want to remove, and after that, we use the built-in method
DeleteOnSubmit(). In query, we used the method FirstOrDefault() which is responsible
for returning only one object, not a collection of objects. Finally, object is removed.

Figure 13. Deleting a row.

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

Table 6. C# code of deleting rows.

After deleting rows, we are updating the “DataGrid”, and immediately that selected row
disappeared. We can notice that delete on submit call the sql query DELETE FROM

In the Admin view, we add one more function – modify records. To modify a record, we
have to select the record which is the most interesting for us and click the button below
to call the event.

There is what ? called an animation with window. It is the same as add event, but with
filled rows. In the code below, our Program is casting a row type “DataGridItem” to
Actor. Then we used the attributes of the Actor object to fill all the fields. We are using
the LINQ query statement to find our object in mapped objects, and then we can
change the fields.

Figure 14. Selecting Row.

Figure 15. Modify rows.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

After changing fields and clicking the modify button, an event is called which uses LINQ
and changes our record in the database. Then the values are assigned from the text
box fields to the attributes of our object, which will then call a method
submitChanges()(works like MODIFY in SQL). This is the built-in LINQ method which
accepts the changes in object and maps it into database. Actually this is the same
event as after clicking the add button but the program performs a different function. The
program sets a flag event called eventFlag which shows which part of code should be
invoked.

Table 8. Modifying record C# and saving it into database.

Table 7. C# code fills fields.

Figure 16. Rows after modification.

Figure 17. Windows with filled fields.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

In the program we also used the binding text template in order to display our data in
Combo Boxes which have already been bound with the database. Several attributes
with various parameters and binding sets are assigned to a employee template where
X:Key is the name of our template. In places where we are declaring our component,
we used the Item Template parameter to load our template to items. Static Resource
emphasizes that template is static, and we cannot change it dynamically.

As we can see in order to account for the many to many relationship(M:N), we used list
boxes. Clicking on the combo box calls an event and the (?) item is added to the
listbox. We can add some items from the combo box. We can also remove items from
the combo box after selecting an item. Clicking the “delete” key, then calls the function
remove(object) to delete it from the combo box. Finally to refresh the listbox, the
collection of objects are assigned to the attributes of listbox.

Table 9. XAML template code.

Table 10. Using template in Combo Box component.

Table 11. C# Deleting items from listbox using key.

Figure 18. Changing window.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

6.3 Manager Window

The Manager Window is our tool for statistics. It can filter data by date and pick values
that will be plotted later on in an Excel chart. The general idea for this application is the
future development possibilities as the GUI loads an external dll(type of a file) file
providing all the logic functions. Parts encoded in this application only obtain dates
from date pickers and choose paths for saving a file. For this purpose, we use an in-
built Windows Dialog Form that has the full support for system functions and
exceptions. The rest of the functionality is based on external dll that loads values for
combo-boxes and with the button ‘Save’, it executes the proper part of the code. In a
real life situation, this kind of solution has lots of advantages. Thanks to this, our
product can be installed on a client system and later on when the client requests more
analysis functions, we can provide them by changing only one file. So the already
installed version does not have to be changed, only the external file, loaded during
runtime.

 Figure 19. Manager Window.

The figure above presents the outlook of statistics tool where most of the controls are
created manually or at least have an applied template. This appearance fits in our
application design and main idea of style. Although it looks minimalistic, it offers a lot
options which can be still extended.

Table 12. Code for creating the path.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

Before presenting the code of this application, it is worth mentioning the following:

 Use of external dll file:

At first, we added an additional project to our solution in the form of
Class Library, then we created a reference between the main part and
the one that is responsible for obtaining dll.[3]

Figure 20. Additional Project.

 Then it was quite simple to refer to functions that are represented

physically as dll file. Using the ‘using’ directive manager window,it was

joined with the dll project and which in code can be used as follows:

Table 13. Code to represent dll file.

 Invoking window for choosing the path to saving excel charts:

Since we needed two methods that can build a content of combo boxes
and exports data to excel, we picked this way of loading dll. Any
additional changes can be introduced by change of code in the getData
project, building it individually and then replacing the getData.dll file in
the folder where the cinema.exe file is placed.It is a must to mention
what the dll looks like, because it uses additional features from Office
Package but also fills in combo-boxes in the user interface:

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

Table 14. Code to show how our Excel chart should look like.

 As mentioned previously, features of Office package are possible to use

by means of reference and used namespace:

Figure 21. Using the references and namespace.

 The code to use the references and namespace is as follows:

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

Table 15. The code to use references and namespace.

The presented solutions are in agreement with the theory of using Microsoft Office
Excel features. In the beginning an object of an application was created, and then we
extended it with workbooks and worksheets. Having that implemented, it is possible to
treat a worksheet as an array and point to particular indexes and assign values. Later
on, we build a chart and indicate a range of labels and data. To ensure that the range
is always correct, we use a function that returns the position of the last used cell. In the
end, the file is saved with titles passed from the user interface so that it is clear what
kind of data is included in the chart.

6.4 Cashier Window

In the Cashier View, user has fewer rights than admin. He can only take a look at
some pictures. After logging to Cashier View, we will enter a window with “Data Grid”,
empty ticket fields and some buttons which the program uses for filtering information,
and to display data in the “DataGrid” components, we used the Linq query to get Data
Set then binding in XAML (in the same way as in Admin Panel) to display data, and
after that, we set Data Set to the Data Grid using attribute ItemSource of “DataGrid”
Component. As we can see here, we used data from few tables, and used the join
condition. To properly bind and display data, we created another class, MixedData, by
using mixed attributes to object, and then assigning MixedData collection to
ItemsSource in order to bind it.

Figure 22. Start window cashier.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

The Date Picker and combo Box component are responsible for filtering our data in the
grid. In DatePicker, we added one or more functionality, that we cannot choose date,
before the present day. Choosing past data is useless in our case. After running a
program, the Date Picker always displays a current date, so we write from the Date
Picker textField date, split it using the function Split()(to get day, month, year), and put
our strings to the method SetBlackOutDates() where we set CalendarDateRange into
BlackoutDates attribute. We should notice that we decrement day by 1, because we
want to select the current day, but we do not want to select days before. To filter data,
we use the LINQ query with the chosen attributes and condition WHERE (like in SQL)
then assign a collection of data to DataGrid attribute Items Source.

Table 16. Updating data grid, binding, linq queries.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

Figure 24. DatePicker with BlackOutDays

Figure 23. Filtered data and displayed in the grid.

Table 17. C# code which writes and splits current data (month, day, year).

Table 18. C# code which sets blackout dates.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

After selecting a row in the dataGrid, an event is called which will fill dynamically our
Tickets. At first, the program cast selected an item from MixedData, then read each
attribute of the casted object and filled it to the ticket. We added a condition to add
number ‘0’to minutes, because we cannot set to the database the int value which is
starting from ‘0’, so we are doing it dynamically in c# code.

Table 19. Filtering data in C#.

Figure 25. Dynamically filling ticket.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

Now this is the best time to choose a seat. This part of code is the most complicated
because we have to set some logic to draw grid with seats, select busy places and
save it to databases. After clicking on the seats button, there will appear a window
similar to the one below. Red dots indicates the seats that are already reserved, green
for free, and blue for chosen for us.

Table 20. C# code of a dynamically filled ticket.

Figure 26. Window with free and busy seats.

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

When we are creating a grid with seats, at first, we have to know which seats are
occupied, and how many seats are free, when the show is on. To know that, we use a
LINQ query; there’s a class TakenIndexes, which creates objects of taken seats (row
and column). If we know which seats are occupied and now we have to know how
many seats (how many columns and rows) are in the room where the show will take
place. To find out this, we make another LINQ query from the Room Table. The
number of seats depends on the room where show will be performed. Now we can
create seats by inheriting the seatsButton from System class. Windows.Control.Button,
so our seats are buttons. While the program is putting objects into our grid, it always
checks the occupied indexes collection to check if our seat is free or not. To do that,
the program is using a loop, and checks one by one each object in collection and tries
to compare indexes, grids, and occupied seats. If the number of row and column is the

Table 21. Linq, chosing occupied seats.

Table 22. Creating grid with seats.

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

same as the one in the object of the collection, then program creates objects with
appropriate parameters(flag true when busy, false when free). Each button uses a
template (green, red, blue) which is defined in XAML, and then when the seat is busy,
we use template “takenSeat” and when is free we use “normalSeat”. To see the
Resource from CashierWindow class, we transfer everything when we call a
constructor. Template change depends on the position of clicked seats. After clicking,
we read what the name of chosen button template is set and then we change from one
template to another (from clickedSeat to normalSeat and other way). And then on
clicking the buttons, we change flag of selected buttons(by changing the color) to know
which buttons are clicked.

After choosing seats, and clicking on the accept button, the program checks out if
number of clicks is appropriate (depending on number of tickets which we choose in
textbox fields in tickets), and will look up into each button (seatGrid.Children[i] in for a
loop in the grid to find the selected buttons. If it finds them, then it will add themto the
list of clicked buttons. This list will be used later to display the chosen seats in the ticket
and make appropriate queries to create a ticket. Moreover, the program will calculate
the price for the ticket using LINQ queries to calculate the pricee for the particular
ticket.

F
ig: 1
Class
Take
nInde
xes

Table 23. Clicking the button dynamically changes the seats template.

Figure 27. Ticket with chosen seats and price.

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

To make a query which will add our ticket to the database, we need to fill some
additional fields. These are barcode and discountID. For each chosen seat (for each
loop), the program uses Random class and method Next () to generate a random
number. To get a second one, we use the LINQ query one more time.
As we can see in the SoldTickets tab, our DataGrid is updated dynamically after adding
the data to the database: the SoldTickets tab has two more rows with tickets which we
created.

Table 25. Find rest of attributes to make a LINQ add Ticket query.

Table 24. Creating a list of selected seats.

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

Figure 28. Sold Tickets Data Grid with new added tickets.

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

7 DATABASE MODULES

7.1 Tables

The following sections will describe the process of creating the database with the
necessary tables, relations and other features.

7.1.1 Property Tables

A property table was made in order to have an overview of the different tables, .thus
making it a lot easier to keep track of the tables changes.

Table 26. Property Table.

Table
name

Column
name

Domain
(intended)

Example Constraint FK referenced
table

Ticket idTicket

row

column

Barcode

int

int

int

int

1

40

30

22

PK, NOT NULL

NOT NULL

NOT NULL

UNIQUE, NOT
NULL

Ref.

Discount:

discount_id

Employee:

emp_id

Show:

show_id

Employee emp_id

name

surname

int

varchar(20)

varchar(200)

33

James

Bond

PK, NOT NULL

Discount discount_id

type

Value

int

varchar(20)

float

1

Student

50.00

PK, NOT NULL

NOT NULL

Show show_id

date

hour

minute

int

date

int

int

3

2012/01/
02

1

30

PK, NOT NULL

NOT NULL

NOT NULL

NOT NULL

Ref.

Room: room_id

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

Room room_id

Rows

Columns

Price

int

int

int

int

22

55

3

55

PK

NOT NULL

NOT NULL

NOT NULL

Ref.

Screen: screen_id

Screen screen_id

Type

Price

int

varchar(20)

int

3

HD

80

PK

UNIQUE,NOT
NULL

NOT NULL

Movie movie_id

Title

Year

Duration

Description

int

varchar(45)

int

int

text

444

Star
Wars

1973

02:03.33

scifi….

PK

NOT NULL

NOT NULL

NOT NULL

Ref.

Director:
director_id

Actor actor_id

Name

Surname

Int

varchar(20)

varchar(20)

555

Brad

Pit

PK

NOT NULL

NOT NULL

Director director_id

Name

Surname

int

varchar(20)

varchar(20)

33

Micheal

Bay

PK

NOT NULL

NOT NULL

Show_mo
vie

movie_id

show_id

int

int

33

2

PK

PK

Ref.

Show: show_id

Movie: movie_id

Emploaye
e_Show

emp_id

show_id

int

int

333

2

PK

PK

Ref.

Employee:
emp_id

Show: show_id

Actor_Mov
ie

actor_id

movie_id

int

int

555

33

PK

PK

Ref.

Actor: actor_id

Movie: movie_id

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

7.1.2 Table Definition

All the tables in our database are created via the following table definitions. The table
definitions do not differ so much from each other so only a few well chosen are shown
and describe here. The features mentioned in these table definition match with most of
the other tables’.

Ticket Table Definition:

CREATE TABLE Ticket
(idTicket int IDENTITY(1,1) NOT NULL,
barcode int NOT NULL,
row int NOT NULL,
col int NOT NULL,
PRIMARY KEY(idTicket),
UNIQUE(barcode)
);

The above table contains the basic information regarding tickets, such as barcode, row,
col and an id for each ticket. An explicitly a unique id has also been created to identify
the tables. The foreign key relationships to other tables are added as follows:

ALTER TABLE Ticket
ADD discount_id int references Discount(discount_id);

ALTER TABLE Ticket
ADD emp_id int references Employee(emp_id);

ALTER TABLE Ticket
ADD show_id int references Show(show_id);

ALTER TABLE Ticket
ADD FOREIGN KEY (emp_id) references Employee(emp_id);

ALTER TABLE Ticket
ADD FOREIGN KEY (show_id) references Show(show_id);

ALTER TABLE Ticket
ADD FOREIGN KEY (discount_id) references Discount(discount_id);

The following table containing the relations between movies and actors is the result of
a many-to-many relation between the Actor and Movie tables.

CREATE TABLE Actor_Movie
(actor_id int ,
movie_id int,
PRIMARY KEY(actor_id, movie_id)
);

43

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

This table definition was chosen primarily to describe the additional information that
some of the other table definitions contains. Thus, the two examples have covered all
the table definitions as all of them are similar to either one of the two table definitions.

ALTER TABLE Actor_Movie
ADD FOREIGN KEY (Actor_id) references Actor(Actor_id) ON DELETE
CASCADE;

ALTER TABLE Actor_Movie
ADD FOREIGN KEY (Movie_id) references Movie(Movie_id) ON
DELETE CASCADE;

Foreign keys are added with additional parameter, ON DELETE CASCADE. This
option is used to indicate that when rows are deleted in a child table, then the
corresponding rows should be deleted in the parent table. If this is not specified, the
default behaviour will be that the server prevents us from deleting data in a table if
other tables reference it.

7.2 Queries

At this point, we created some queries to show that our database works properly. We
used a variety of SQL calluses less and more complicated.[6] The types of SQL
queries are described and shown in the code below:

7.2.1 Multi Join, Where

This query is displaying tickets with prices was less than 15 dkk.

SELECT Ticket.barcode, room.price, room.room_id,

show.show_id, Discount.type, Discount.value,

Movie.movie_id From Discount

JOIN Ticket ON Discount.discount_id =

Ticket.discount_id

JOIN Show ON Show.show_id = ticket.show_id

JOIN Show_Movie ON Show_Movie.show_id = Show.show_id

JOIN Movie ON Show_Movie.movie_id = Movie.movie_id

JOIN Room ON Room.room_id = Show.room_id

WHERE Room.price*Discount.value >15;

7.2.2 Groupby, Having, Virtual Column

This query is displaying the number of tickets sold for shows, includes their type, where
the number of sold tickets is larger than 4.

SELECT show.show_id, Discount.type,

COUNT(Ticket.idTicket) AS NumberOfTicket FROM Discount

JOIN Ticket ON Discount.discount_id =

Ticket.discount_id

44

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

JOIN Show ON Show.show_id = Ticket.show_id

GROUP BY Discount.type, show.show_id

HAVING COUNT(Ticket.idTicket) > 4;

7.2.3 Except, Intersect And Union Expression

Except expression - actors by name, surname.
SELECT * FROM Actor

EXCEPT

SELECT * FROM Director;

Intersect expression - actors by name, surname.
SELECT * FROM Actor

EXCEPT

SELECT * FROM Director;

Unions directors and actors - by name, surname
SELECT name, surname FROM Director

UNION

SELECT name, surname FROM Actor;

45

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

8 TESTS AND FIXES

An application can only be considered reliable and trustworthy as long as it has been
subjected to pass through various tests. In our case, we paid additional attention to the
correctness of our application and data by controlling and managing all data which has
lead us to making sure that database is always consistent.[5] Yet, it our application still
had to pass through tests as explained below.

8.1 Compatibility Testing

During this process of testing, we tried to run our application on the entire Windows
(XP, Vista, Windows 7, and 8) running platform with .NET framework installed on the
system and it worked perfectly fine. Whatwe could not do was to test it on the systems
that came before Windows XP, simply because we could not find those systems
running those OS at this present time.

8.2 Functional Testing

At this point of testing, we tried to test the functional behaviour of our application. For
this, we showed the demo to the user before they could try it themselves. Here we had
some run-time problems that the application faced.

8.2.1 Run-Time Problems

 The first problem was to create a connection to the database. Since our
database was running on the same machine and every time we had to move to
some other hosts, the database connection name (which is dependent on the
host PC name and database name used) should be changed accordingly.
Alternatively, the whole database is supposed to be placed on the server and
the application is supposed to be run on from a client machine.

 Secondly, our application at the moment is meant to use a specific format of
date and time (i.e. mm-dd-yyyy), so if the format of a user system is different
from this, it will have a run-time error. In order to fix it, our system time is
supposed to be changed in a specific manner, or the application is supposed to
be coded with all the possible formats of date and time that the system could
use.

8.3 Security Testing

For the security testing we tried to sign in with different user credentials, but login was
unsuccessful. The problems are:

 At this point, our application is supposed to be slightly weak as the user can try
to log in with wrong credentials as many times as they want without being
traced, or let the system crash. This problem can be avoided by having a
condition set in our application that could monitor the number of allowed wrong
tries for a specific user and then banned the user as soon as he exceed the
limits.

 Another security threat is the password that is stored in our database. It is
stored in the clean text format which is a very weak point. So in order to prevent
this, some encryption is supposed to be applied for it, which, unfortunately, we

46

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

could not apply in our application. Thus it has been left for the future
improvements.

47

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

9 FUTURE IMPROVEMENT

After the necessary tests, we were able to fix some of the problems, but most of those
problems have been left for future improvements as explained below:

 In order to avoid the database connection problem since everyone uses the
same database at the same time, it is compulsory to keep the database on a
server with specific credentials that could be shared by the entire clients using
the application.

 In order to prevent the database from being misused, the password stored in
the clean text format in our database should be encrypted.

 To prevent the run-time error caused by the date format, our application should
be programmed in such a way that it could handle all the formats of date and
time.

 Since there is nothing like backing up or restoring in the application,application
should be implanted in order for the user to back it up and restore the system
from the application itself whenever the application get crashed or affected by a
virus.

 Since the application does not care for how many times someone could try to
get logged in, there could be cases of lost passwords by intent, and some
scammers could try to hack the system. In order to prevent unauthorized
access to the system, the number of attempts with wrong credentials should be
fixed. Moreover, application should monitor all the users logged in to the system
with the time stamped on it.

48

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

10 CONCLUSIONS

In conclusion, the principal goal of this thesis was met; we created a desktop
application for a movie theatre that could work well with a database. In the process, C#
application was developed. LINQ, WPF, Office Excel and external DDL were all used
as additional extensions. All the applications involved were designed so that they could
have reliable interactions with users in a very convenient and efficient manner. The
effectiveness and reliability of these applications were tested, and it was confirmed that
the applications were capable of serving their expected purposes. The implementation
of our design decisions was successful.

49

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aman Yadav

REFERENCES

1. DataBinding in WPF,

Availablefrom http://www.wpftutorial.net/DataBindingOverview.html
(Accessed 05 January 2013)

2. Edgar, F. Codd. 1997, ‘Relational Database’, Available from
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/reldb/
(Accessed 10 January 2013)

3. Managing solutions, Projects, and Files,
Available from http://msdn.microsoft.com/en-
us/library/cc294498(v=expression.30).aspx
(Accessed 05 January 2013)

4. MSDN, ‘ASP .NET Overview’,
Available from http://msdn.microsoft.com/library/4w3ex9c2.aspx
(Accessed 03 January 2013)

5. Slideshare, ‘Windows/Desktop Application Testing’,
Available from http://www.slideshare.net/trupti242/window-desktop-application-
testing
(Accessed 10 February 2013)

6. SQL JOIN,

Available from http://www.w3schools.com/Sql/sql_join.asp
(Accessed 13 January 2013)

7. Why SQL Server, ‘Top 12 Reasons to Choose SQL Server’,
Available from http://www.microsoft.com/en-us/sqlserver/product-info/top-
twelve.aspx
(Accessed 02 February 2013)

8. Wikepedia, ‘C Sharp(Prgramming Language)’,

Available from

http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
(Accessed 10 February 2013)

9. Wikepedia, ‘Mircrosoft Expression Blend’,

Available from http://en.wikipedia.org/wiki/Expression_Blend
(Accessed 10 February 2013)

10. WPF Tutorial, ‘WPF DataGrid Control’,
Available from http://www.wpftutorial.net/DataGrid.html
(Accessed 02 March 2013)

11. WPF Tutorial, ‘XAML Editors’,
Available from http://www.wpftutorial.net/XAMLEditors.html
(Accessed 03 March 2013)

http://www.wpftutorial.net/DataBindingOverview.html
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/reldb/
http://msdn.microsoft.com/en-us/library/cc294498(v=expression.30).aspx
http://msdn.microsoft.com/en-us/library/cc294498(v=expression.30).aspx
http://msdn.microsoft.com/library/4w3ex9c2.aspx
http://www.slideshare.net/trupti242/window-desktop-application-testing
http://www.slideshare.net/trupti242/window-desktop-application-testing
http://www.w3schools.com/Sql/sql_join.asp
http://www.microsoft.com/en-us/sqlserver/product-info/top-twelve.aspx
http://www.microsoft.com/en-us/sqlserver/product-info/top-twelve.aspx
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Expression_Blend
http://www.wpftutorial.net/DataGrid.html
http://www.wpftutorial.net/XAMLEditors.html

