Vuokrarakennuksen energia- ja
kustannustehokkuus/käyttökustannukset

Harri Kauhanen

Opinnäytetyö
Toukokuu 2013

Rakennustekniikan koulutusohjelma
Tekniikan ja liikenteen ala
Työn nimi
Vuokrarakennuksen energia- ja kustannustehokkuus/käyttökustannukset

Koulutusohjelma
Rakennustekniikka

Työn ohjaaja(t)
KORPINEN, Jussi

Toimeksiantaja(t)
SUURONEN, Arttu

Tiivistelmä

Opinnäytetyön tilaajana toimi yksityishenkilö, rakennusinsinööri Arttu Suuronen. Opinnäytetyön tavoitteena oli luoda malli, miten vuokrattava rakennus olisi mahdollista toteuttaa kustannustehokkaasti. Lisäksi työssä oli tarkoitus selvittää rakennukselle energiatehokas lämmitysmuoto.

Opinnäytetyön yhteydessä suoritettiin asiakaskysely. Tällä oli tarkoitus selvittää ihmisten kiinnostusta ja käyttääasti rakennuskehoteja kohtaan. Kyselyssä kysyttiin lisäksi ihmisten tarvitsemaa rakennuksen varustelutasoa ja sitä, paljonko he ovat valmiita maksamaan valitsemaansa varusteet omaavasta mökistä vuokraa.

Avainsanat (asisanat)
Kustannustehokkuus, energiatehokkuus, E-luku

Muut tiedot
Title
Energy and cost efficiency with running costs of a rental building

Degree Programme
Civil Engineering

Tutor(s)
KORPINEN, Jussi

Assigned by
SUURONEN, Arttu

Abstract
The thesis was assigned by a private person, civil engineer Arttu Suuronen. The goal was to make a model how it is possible to build a rental building as cost-efficiently as possible. A further goal was to find an energy efficient heating system for the building.

The thesis includes issues which affect the costs of the building. The study also compares two heating systems, namely electricity and earth heat. The comparison was made by using an E-number.

A client enquiry was carried out for this thesis. The purpose of the enquiry was to find out how often people use a rental building. The enquiry also figures out what standard of equipment people need and how much they are ready to pay rent for it.

A quotation was made for the construction of a rental building. The thesis resolves how much money can be saved if the building is built without any expert help. The maintenance costs for a year were also defined. Furthermore, it was estimated how many times the building will be rented and how much income it would produce. The profits per one year are calculated by subtracting the running costs and taxes from the income, which is the way to define the repayment period.

Keywords
Cost efficiency, energy efficiency, E-number

Miscellaneous
Sisältö

1 Opinnäytetyön tavoitteet ... 4

2 Hirsirakentaminen .. 4
 2.1 Yleistä ... 4
 2.2 Laskeutumisvara .. 6
 2.3 Hirsitavan varastointi .. 7

3 Rakennuskustannuksiin vaikuttavat tekijät .. 8
 3.1 Yleistä ... 8
 3.2 Suunnittelun vaikutus kustannuksiin ... 8
 3.3 Rakentamisen kustannustehokkuus .. 9
 3.4 Aikataulun vaikutus kustannuksiin ... 11

4 Lämmönläpäisykertoimen laskenta .. 11
 4.1 U-arvon valinta ... 11
 4.2 Hirsideinän U-arvon määrittäminen ... 13
 4.3 Alapohjan U-arvon määrittäminen ... 13
 4.4 Yläpohjan U-arvon määrittäminen ... 15

5 Energiatehokkuus ... 16
 5.1 Yleistä ... 16
 5.2 Lämpöenergian hankinta ... 17
 5.2 E-luku ... 20
 5.3 Tulosten vertailu .. 38

6 Asiakaskysely ... 38
 6.1 Yleistä ... 38
 6.2 Varustelutaso .. 39
 6.3 Aktiviteettimahdollisuudet .. 41
 6.4 Vuokrarakennuksen käyttökerrat .. 43
 6.5 Vuokrahinta ... 44

7 Kustannukset .. 45
 7.1 Kustannusarvio .. 45
 7.2 Ylläpitokustannukset ... 45
 7.3 Vuokratulot ja takaisinmaksuaika ... 47
 7.4 Elinkaarikustannukset ... 48

8 Markkinointi .. 48
KUVIOT
KUVIOT 1. Joensuun Aurinkoinen Oy:n tekemä hirsikehikko ... 6
KUVIOT 2. IVT:n Greenline HE maalämpöpumppu .. 19
KUVIOT 3. Rakennuksen E-luvun laskennan vaiheet .. 22
KUVIOT 4. Ohjearvoja viivamaisen kylmäsillan aiheuttamalle lisäkonduktanssilleulkoseinän ja yläpohjan,ulkoseinän ja välipohjan sekäulkoseinän ja alapohjan välisissä liitoksissa joillakin runkomateriaaleilla ... 24
KUVIOT 5. Ohjearvoja viivamaisen kylmäsillan aiheuttamalle lisäkonduktanssilleulkoseinän välisissä nurkkaliitoksissa sekä ikkuna- ja oviliitoksissa joillakin runkomateriaaleilla .. 24
KUVIOT 6. Ohjearvot viivamaisen kylmäsillan aiheuttamalle lisäkonduktanssille liitoksissa, joilla ei ole erillistä arvoa kvioissa 4 ja 5 .. 25
KUVIOT 7. Tyypillisä rakennuksen ilmanvuotolukuja (n_{50}) ja rakennusvaipan ilmanvuotolukuja (q_{50}) .. 26
KUVIOT 8. Asuinrakennuksen yleisimpia laitteiden sähkökulkutuksia ... 28
1 Opinnäytetyön tavoitteet

2 Hirsirakentaminen

2.1 Yleistä

Ilmanpitävyys
Jotta rakennuksen tiloissa pystytään saavuttamaan käyttötarkoituksen vaatimat sisäilmasto-olot energiatehokkaasti, on eri rakennusosien omattava sen mukaiset lämpö- ja kosteustekniset ominaisuudet (RakMk C3 2010, 5).

Rakennuksen vaipan sekä tilojen välisten rakenteiden on oltava niin ilmanpitäviä, että vuotokohtien läpi aiheutuvat ilmavirrat eivät synnytä huomattavia haittoja rakennuksen käyttäjille eikä rakenteille. Tämän lisäksi ilmanvaihtojärjestelmän on toimittava suunnitellusti. Erityisesti huomiota pitää kiinnittää liitosten ja läpivientien suunnittelua sekä rakennustyön huoilellisuuteen. Jos rakenne niin vaatii, on siihen tarvittaessa järjestettävä ilmansulku. (RakMk C3 2010, 5.)

Ikkunoiden ja ovien liittymät ympärillä oleviin rakenteisiin on oltava ilmanpitäviä. Karmien ja puitteiden tiivistystöihin tulee käyttää sellaisia tarvikkeita, jotka kestävät rakennuksen käytöstä aiheutuvat rasitukset vaurioitumatta. Tämän lisäksi ne eivät saa aiheuttaa vaaraa ympäröiville rakenteille. (RakMk C3 2010, 5).

Kelohirsi

Kelohirsi on haluttu materiaali hirsitaloihin, mutta nykypäivänä sen löytäminen on hankalaa. Tämän seurauksena kelo on kallista. Nykyisin sitä tuodaankin Suomeen Venäjältä, sillä kotimaassamme kelohongan esiintyminen on harvassa. Massiivisuutensa ansiosta kelohirsi on erinomainen valinta isojen hirsirakennuksien materiaaliksi. Pitkään kuivunut kelo on myös sen takia oiva rakennusmateriaali, että se ei painu niin paljon kuin tuore pyöröhirsi. (Hakalin 2005, 9.)

Pyöröhirsi

Kaatamisen ja kuorimisen jälkeen pyöröhirtä pystyy jo käyttämään. On kuitenkin viisasta antaa sen kuivua esimerkiksi talven yli jo senkin takia, että sitä on helpompi käsittellä kuivumisen yhteydessä hävinneen painon takia. Puun kuoriminen on helpointa talvella heti tukin kaatamisen jälkeen. Puu on tällöin jäässä ja silloin kuori irtoaa siitä vaivattomimmin. Nykypäivänä kuoriminen on tehdastoimintaa, sillä koneella kuorittaessa puusta tulee latvasta tyveen tasapaksuista. Tämä puolestaan helpottaa suoran hirsiseinän veistämistä. (Hakalin 2005, 10.) Kuviossa 1 näkyy
Joensuun Aurinkoinen Oy:n valmistama pyöröhirsikehikko. Kehikko ei ole sama mikä tulee tämän opinnäytetyön kohteeseen.

KUVIO 1. Joensuun Aurinkoinen Oy:n tekemä hirsikehikko (Nousiainen 2013.)

2.2 Laskeutumisvara

Rakennettaessa hirrestä on hyvä pitää mielessä se tosiseikka, että hirsitalo painuu ajan saatossa. Kuten vanha sanonta kertoo: ”Hirsirakennus painuu siihen asti, että räystätät ovat maanpinnassa”. Käytännössä rakennuksen laskeminen ei ole näin rajua, vaan seinän korkeusmetriä kohden painuminen on noin 30 mm. Tämä tarkoittaa sitä, että esimerkiksi 2,5 m korkea seinä laskee 75 mm. Erityisesti painuminen ilmenee seinän yläosassa. (Hakalin 2005, 13.)

Rakennuksen painumiseen vaikuttaa esimerkiksi se, kuinka tuoreetta hirttä on käytetty. Mitä tuoreempaa hirsia on, sitä enemmän se painuu kuivumisen myötä. Tämän lisäksi painumisen määrää kasvattavat hirsien välissä käytettyt tilkkeet. Jos tilkettä on käytetty liikaa, jää hirsistä kantamaan sen päälle. Ajan myötä kyseisen kohdan yläpuolella olevan rakennuksen massa painaa raon umpeen, mistä syntyy painumista. Rakennuksen painuminen on erityisesti huomioitava mm. seuraavissa rakenteissa: tiiliseinät, palomuurit, pystypilarit, kuistin pystytuet sekä ikkunoiden ja
ovien karmit eli kaikissa rakenteissa, jotka eivät laskeudu hirsikehikon mukana. (Mts. 13.) Näiden rakenteiden lisäksi täytyy pitää mielessä yläpohjan höyrynsulkumuovi.

Sitä ei voi asennettaessa vetää liian tiukalle, sillä muuten rakennuksen painuessa se repeää ja menettää näin merkityksensä kokonaan.

Kierrepulteilla pystytään hallitsemaan pilareiden korkeutta painumisen myötä. Ne tulevat joko pilarin ala- tai yläreunaan. Painumisvaran loppuessa ikkunat ja ovet ovat voineet juuttua paikoilleen, niitä ei saa kiinni tai pahimmissa tapauksissa ikkunat ovat hajonneet. Tämän takia hirsirakennuksen omistajan onkin syytä tarkistaa vuosittain rakennuksen painuminen ja onko laskeutumisvaraa vielä jäljellä. (Mts. 13.)

2.3 Hirsitavan varastointi

Hirret erotetaan toisistaan vaaka- ja pystysuunnassa n. 50 mm x 50 mm - 100 mm vahvuisilla ”pirkkapuilla”. Näiden välilikapuloiden välin tulisi olla noin 1 - 1,5 m ja
hirsinippujen leveys noin 1,2 – 1,5 m. Hyvän ilmakierron saamiseksi hirsiniput on hyvää asettaa riittävän etäälle toisistaan, yli 1,5 m. Nippujen päälle asennetaan tarpeeksi suuri viistokatos estämään sade- ja roiskeveden pääsy hirsipinnoille. Katoksen on hyvä olla noin 50 cm ylimpän hirsien yläpuolella. Hirsinippuja myötäilevää tiivistä varastointia on ehdottomasti vältettävä. Hirskokehikolle on järjestettävä hyvä tuuletus rakennusvaiheen aikana. Tämä saadaan toteutettua kun ovi- ja ikkuna-aukot pidetään avoimina. Varastoinnin ja pystytyksen aikana kannattaa tarkkailla, että hirret ovat pysyneet virheettöminä. (Nousiainen 2013.)

3 Rakennuskustannuksiin vaikuttavat tekijät

3.1 Yleistä

Rakennuskustannuksiin vaikuttavat monet eri tekijät. Rakennuksen varustelutaso, toteuttamistapa sekä koko ja muoto ovat yleisimpiä seikkoja, jotka vaikuttavat rakennuskustannuksiin. Rakennuskustannuksiin eroja voivat aiheuttaa esimerkiksi tonttien erilaiset olosuhteet, tilasuunnittelu, valinnat ilmastointi- ja lämmityslaitteissa, ratkaisut materiaali-, kiintokaluste- ja kodinkonevalinnoissa sekä toteutustavoista hankkeen sisällä. (Lomarakentamisen kustannukset n.d.)

Menot rakennusprojektissa aiheutuvat resurssien käytöstä sekä niiden hinnoista. Pääoma, energia, tarvittavat materiaalit ja tehty työ ovat resurssseja. Suurin osa kuluista syntyy rakennustyön yhteydessä siitäkin huolimatta, että suunnitteluvaihe on ajallisesti pisin. (Talonrakennuksen kustannustieto 2003, 22.)

3.2 Suunnittelun vaikutus kustannuksiin

Suunnitteluvaiheessa tehtävät ratkaisut vaikuttavat eniten rakennuskustannuksiin, koska tässä vaiheessa päätetään rakennuksen laatutaso, tilojen käyttötarkoituksen sekä laajuus. Rakennuskustannuksista ja tilojen tarpeesta päätetään suurimmilta osin jo hankesuunnitteluvaiheessa. Silloin mietitään muun muassa makuuhuoneitten

...
määräää ja toisen kerroksen tarvetta. Hankesuunnitteluvaiheessa on mahdollista vielä edullisesti ja helposti muuttaa suunnitelmia. (Lomarakentamisen kustannukset n.d.)

Ennen rakennusluvan hakemista kannattaa huolella miettiä omat mielenvaikuttamisensa sen hetkisiin suunnitelmiin, sillä rakennusluvan saamisen jälkeen suunnitelmia ei kannata enää muuttaa. Tästä aiheutuu vain turhia lisäkulutuksia uusien lupakuvien sekä uuden rakennuslupaprosessin muodossa. (Lomarakentamisen kustannukset n.d.)

Opinnäytetyön kohteena olevassa rakennuksessa on pyritty pitämään rakennuksen ulkolinjat yksinkertaisina: talo onkin suorakaiteen muotoinen. Näin hirsikehikon hinta saadaan pidettyä mahdollisimman alhaisena, kun siinä ei ole esimerkiksi erkkereitä. Tämän myötä kehikkoon ei mene niin paljon hirttä ja tehtaalla kehikon osien teko helpottuu, mikä taas johtaa hirsikehikon halvempaan hintaan.

3.3 Rakentamisen kustannustehokkuus

Rakentamisen valmisteluvaiheessa rakennushankkeeseen ryhtyvän kannattaa pyytää tarjouksia useammalta eri toimittajalta. Tarjouksia kysytään ainakin hirsikehikosta, sähkö- ja lvi-urakoista sekä muista materiaalitoimituksista. Sisällöltään selkeät ja helppolukuiset tarjouspyynnöt auttavat vertailemaan tarjouksia toisiinsa. (Lomarakentamisen kustannukset n.d.)

Kalliimpi vaihtoehto olisi se, että kalliit ammattimiehet hoitaisivat rautakaupassa asioinnin ja työmaan siivouksen. (Lomarakentamisen kustannukset n.d.)

Laskettaessa oman työn panosta kustannuksista kannattaa ottaa huomioon se, että yhtä ammattilaisen työtuntia vastaa 2-3 oman työn tuntia. Säästömäärän saa selville, kun laskee ja hinnoittelee oman työn osuuden käyttämällä ammattimiesten palkkioiden suuruutta lähtökohtana. Älä kuitenkaan otta tähän huomioon ylimääräistä aikaa, joka kuluu rakennettaessa itse. Tämän avulla selviää oman työn osuus rakennuskustannuksista ja säästettävä rahamäärä. (Mts. 20.)

Hartiapankkirakentamisessa isoimmat säästöt tulevat sellaisissa työvaiheissa, joissa tarvitaan paljon aikaa ja huolellisuutta, mutta vähän ammattitaitoa. Tällaisia työvaiheita ovat esimerkiksi sisäväileen maalaustyöt, eristystyöt sekä välistein- ja levytystyöt. (Mts. 20.)

Tämän opinnäytetyön kohteessa rakennustyöt pyritään tekemään itse, sillä projektin ympäriltä löytyy asiantuntevia henkilöitä. Esimerkiksi työmaalle ei tarvitse erikseen hankkia mestaria, sillä rakennushankkeeseen ryhtyvällä kokoonpanolla on omasta takaa rakennusinsinööri, jolla on kokemusta työnjohtotehtävistä paljon isommiltakin työmaalta. Muillakin hankkeeseen tiiviisti osallistuvilla henkilöillä on kokemusta talonrakentamisesta, myös hirsirakentamisesta. Sähkö- ja lvi-työt teetetään

3.4 Aikataulun vaikutus kustannuksiin

Ennen aikojaan loppuneet työsuoritukset, tavarantoimitukset, urakat tai suunnittelutehtävät pilaavat aikataulun sekä lisäävät ylimääräisiä kulua. Tämän vuoksi onkin hyvä laatia aina kirjallinen sopimus. Lisäksi vajavaisten työsuoritusten tai rakennusvirheitten sattuessa kohdalle on paljon helpompi asiassa edetä, kun on näyttää kirjallinen sopimus. Myös projektin loppuun saaminen on todennäköisempää, kun maksueristä ja mahdollisista viivästymisistä koituvat sakot on kirjattu ylös. (Mts. 18.)

4 Lämmönläpäisykertoimen laskenta

4.1 U-arvon valinta

Kun loma-asunton on suunniteltu ympärivuotiseen käyttöön tarkoitettu lämmitysjärjestelmä, sitä koskevat ainoastaan vaipan lämpöhäviön vaatimukset.
Tällöin vaipan lämpöhäviö saa olla suurimmillaan samansuuruinen kuin näillä vertailuarvoilla laskettu lämpöhäviö:

- seinä 0,24 W/(m²K)
- hirsiseinä (hirsirakenteen keski-
määräinen paksuus vähintään 130 mm) 0,80 W/(m²K)
- yläpohja ja ulkoilmaan rajoittuva alapohja 0,15 W/(m²K)
- ryömintätilaan rajoittuva alapohja 0,19 W/(m²K)
- maata vasten oleva rakennusosa 0,24 W/(m²K)
- ikkuna, kattoikkuna, ovi 1,40 W/(m²K)

Äskeiset poikkeukset eivät tule kyseeseen, jos rakennus on tarkoitettu majoituselinkeinon harjoittamiseen. Tällaisessa tilanteessa rakennusta koskevat samat määräykset kuin uutta omakotitaloa. (RakMk D3 2012, 17.)

Tämän opinnäytetyön kohteena oleva rakennus on tarkoitettu vuokrakäyttöön, joten sitä koskevat seuraavat vaipan lämpöhäviön vertailuarvot:

- seinä 0,17 W/(m²K)
- hirsiseinä (hirsirakenteen keski-
määräinen paksuus vähintään 180 mm) 0,40 W/(m²K)
- yläpohja ja ulkoilmaan rajoittuva alapohja 0,09 W/(m²K)
- ryömintätilaan rajoittuva alapohja 0,17 W/(m²K)
- maata vasten oleva rakennusosa 0,16 W/(m²K)
- ikkuna, kattoikkuna, ovi 1,0 W/(m²K)

(RakMk D3 2012, 13.)

Rakennuksen vaipan lämpöhäviö voi kuitenkin olla 30 % suurempi kuin yllä mainituilla vertailuarvoilla laskettu, mutta silloin lämpöhäviön ylitys on kompensoitava vuotoilman ja/tai ilmanvaihdon lämpöhäviöillä (RakMk C3 2010, 6).

Lämmönlämpäisykerroin
Lämmönläpäisykerroin (U-arvo) tarkoittaa lämpövirran tiheyttä, joka jatkuvuustilassa läpäisee rakennusosan lämpötilaeron ollessa yksikön suuruisen rakennusosan eri puolilla (RakMk C3 2010, 3).

4.2 Hirsiseinän U-arvon määrittäminen

Kun rakenteessa on lämpövirtaan nähden peräkkäisiä ainekerroksia, lasketaan sen kokonaislämmönvastus kaavalla 1:

\[
R_T = R_{si} + R_1 + R_2 + \ldots + R_n + R_{se}
\]

jossa

- \(R_T \) rakennusosan kokonaislämmönvastus, m²K/W
- \(R_{si} \) sisäpuolen pintavastus, m²K/W
- \(R_1, R_2, \ldots, R_n \) rakennusosan ainekerrosten 1,2,..., n lämmönvastukset, m²K/W

(RakMk C4 luonnos 2012, 7.)

Hirsiseinän lämmönläpäisykerroin määritetään yhtälöllä 2:

\[
U = 1/R_T
\]

jossa

- \(U \) rakennusosan lämmönläpäisykerroin, W/(m²K)
- \(R_T \) rakennusosan kokonaislämmönvastus, m²K/W

Opinnäytetyössä ulkoseinälle ei erikseen määritetty U-arvoa, sillä se saatiin suoraan hirsikehikon toimittajalta. Kyseessä olevan hirsirakennuksen ulkoseinän U-arvo oli 0,4 W/(m²K) (Nousiainen 2013).

4.3 Alapohjan U-arvon määrittäminen

Opinnäytetyön kohteen alapohjan rakenne on sisältä ulospäin seuraava:

- pintamateriaali, betonilaatta 80 mm sekä 200 mm eristettä. (Ks. liite 7)
Maanvastaisen alapohjan ekvivalentti paksuus saadaan kaavasta 3:

\[d_t = w + \lambda_s (R_{si} + R_f + R_{se}) \] (3)

jossa

- \(d_t \) maanvastaisen alapohjan ekvivalentti paksuus, m
- \(w \) seinän paksuus lattiarakenteen kohdalla, m
- \(\lambda_s \) maan lämmönjohtavuus, W/(mK)
- \(R_{si} \) sisäpuolen pintavastus, m²K/W
- \(R_f \) lattiarakenteen lämmönvastus, m²K/W
- \(R_{se} \) maan pinnan pintavastus ulkona, m²K/W

(RakMk C4 luonnos 2012, 27.)

Lattiarakenteen suhteellinen lattiamitta, jolla otetaan huomioon maassa tapahtuva kolmiulotteinen lämmönsiirtyminen, lasketaan kaavalla 4:

\[B' = \frac{A}{0.5P} \] (4)

jossa

- \(B' \) suhteellinen lattiamitta, m
- \(A \) lattiarakenteen pinta-ala, m²
- \(P \) lattiarakenteen piiri, m

(RakMk C4 luonnos 2012, 26.)

Hyvin lämmöneristetyn maanvastaisen alapohjan (\(d_t \geq B' \)) lämmönläpäisykerroin määritetään yhtälöllä 5:

\[U_f = \frac{2\lambda_s}{(0.457B' + d_t)} + \frac{2\Psi_{ge}/B'}{B'} \] (5)

jossa

- \(U_f \) maanvastaisen alapohjan lämmönläpäisykerroin, W/(m²K)
- \(\lambda_s \) maan lämmönjohtavuus, W/(mK)
Ψ_{ge} lattiarakenteen reuna-alueella olevan vaakasuuntaisen lisälämmöneristem-
teen tai perusmuurin pystysuuntaisen lämmöneristyksen huomioon
ottava viivamainen lisäkonduktanssi
(RakMk C4 luonnos 2012, 28.)

4.4 Yläpohjan U-arvon määrittäminen

Työn kohteessa olevan rakennuksen yläpohjan rakenne lämpimämmästä tilasta
kylmempää on sisäverhouspaneeli, koolaus, höyrynsulkumuovi, runko kerto-S
51x450 + eriste, tuulensuojalevy sekä vesikattorakenne. (Ks. liite 8.)

Kun rakenne sisältää lämpövirran suuntaan nähden lämmönjohtavuudeltaan erilaisia
rinnan olevia kerroksia, lasketaan silloin rakennusosan kokonaislämmönvastus
kaavalla 6:

\[
R_T = \frac{R'_T + R''_T}{2}
\]

joissa
\[R'_T \] rakennusosan kokonaislämmönvastuksen ylälikiarvo, m²K/W
\[R''_T \] rakennusosan kokonaislämmönvastuksen alalikiarvo, m²K/W
(RakMk C4 luonnos 2012, 7.)

Yläpohjan lämmönläpäisykerroin ratkaistaan yhtälöllä 7:

\[
U = \frac{1}{R_T}
\]

joissa
\[U \] rakennusosan lämmönläpäisykerroin, W/(m²K)
\[R_T \] rakennusosan kokonaislämmönvastus, m²K/W
(RakMk C4 luonnos 2012, 6.)

Muiden rakenneosien U-arvot
Ikkunoille ja oville U-arvoja ei tarvitse erikseen määrittää, sillä ne saadaan suoraan toimittajalta. Ikkunoiden ja ovien U-arvot ovat 1,00 W/(m²K) (Kärki 2013).

5 Energiatehokkuus

5.1 Yleistä

Energiatehokkaan talon suunnittelussa päähuomio keskityy toteuttamaan vaadittu sisäilmasto niin yksinkertaisilla rakenne- ja laitteestisellä ratkaisuilla kuin mahdollista. Kyseisten ratkaisujen tulee kuitenkin täyttää vaadittavat energiankulutus- ja kustannusvaatimukset, sekä olla kohteeseen sopivia ja toimivia. (Häkkinen, Leinonen, Saari, Vares & Vesikari 1999, 23.)

Energiantarve

Rakennuksen energiantarve pitää sisällään tilojen lämmitystarpeen, joka koostuu vaipan johtumislämmöstä, vuotoilmasta sekä ilmanvaihdosta. Lisäksi siihen kuuluu käyttöveden lämmitystarve, sähköenergiantarve ja jäähdytystarve. Energiantarve saadaan katettua järjestelmien siirtämällä lämpöenergialla, jäähdysenergialla,
sähköenergialla, rakennuksen sisälle tulevalla auringon energialla sekä muilla lämpöenergioilla. Standardoiduilla laskentamalleilla pystytään määrittämään rakennuksen energiantarve, jonka pohjalta voidaan määrittää rakenne- ja talotekniiset järjestelmät. (RIL 249–2009, 23.)

Energiankulutus

5.2 Lämpöenergian hankinta

RIL 249–2009:n (2009) mukaan talokohtaiseen lämpöenergian tuottoon on monia eri vaihtoehtoja:

- keväisin ja syksyisin hyödynnettävä passiivinen aurinkoenergia
- puuenergialla lämmittettävät tulisijat
- aurinkolämpö ja – sähkö, eritoten aurinkosähkö tuottamaan käyttövoima aurinkolämpöjärjestelmän pumpulle
- lämpöpumput, esimerkiksi kallio/maa/vesistö, ilma ja poistoolma
- pientuulivoima sähkönä ja lämpönä
- lämmityskattila, esimerkiksi pelletti, hake tai öljy

(RIL 249–2009, 180.)

Passiivinen aurinkoenergia

Talon sijoittelulla pystytään vaikuttamaan passiivisen aurinkoenergian saantiin. Kun suurin osa talon ikkunoista sijoitetaan etelään osoittavalle seinustalle, on passiivisen

Puuenergia

Aurinkolämpö

Maalämpöpumppu

Auringon lämpöenergiaa varastoituu vesistöihin ja maaperään. Tätä kertynyttä lämpöenergiaa voidaan hyödyntää maalämpöpumpun avulla. Lämpö kerätään putkisilmukalla, jonka sisällä kiertää lämmönsiirtoneste. Putki pystytään asettamaan kallioon porattuun pystysuuntaiseen reikään tai vaakasuoraan maan alle tai vesistöön riippuen tontin sijainnista ja maaperästä. Rakennuksen suuruus määrää

KUVIO 2. IVT:n Greenline HE maalämpöpumppu
(maalämpöpumput.)

Sähkölämmitys

Lämmitystavan valinta

Valittaessa lämmitystapaa kannattaa pitää mielessä laitteiden hankinta- ja käyttökustannukset sekä ehkä kyseeseen tulevat lisä- ja varajärjestelmät kustannuksineen. Tämän lisäksi valintaan vaikuttaa energian saatavuus kullakin alueella. (Rakennusten lämmitysjärjestelmät 2007, 11.)

5.2 E-luku

E-luku kertoo rakennuksen kokonaisenergiankulutuksen. E-luku saadaan laskettua kaavasta 8:

\[
E = (f_{kau, lämp} Q_{kau, lämp} + f_{kau, jääh} Q_{kau, jääh} + \sum f_{polt, ain} Q_{polt, ain} + f_{säh} W_{säh}) / A_{netto}
\]

jossa

- \(E \): rakennuksen energialuku, kWh/(m²a)
- \(Q_{kau, lämp} \): kaukolämmön kulutus, kWh/a
- \(Q_{kau, jääh} \): kaukojäähdytysen kulutus, kWh/a
- \(Q_{polt, ain} \): polttotoaineen energiankulutus, kWh/a
- \(W_{säh} \): sähkönkulutus, josta on vähennetty rakennuksessa käytetty omavaraissähköenergia, kWh/a
- \(f_{kau, lämp} \): kaukolämmön energiamuodon kerroin
- \(f_{kau, jääh} \): kaukojäähdytysen energiamuodon kerroin
- \(f_{polt, ain} \): polttotoaineen energiamuodon kerroin
- \(A_{netto} \): rakennuksen lämmitetty nettoala, m²

(RakMk D5 luonnos 2012, 15.)
Energiamuotojen kertoimet:

- sähkö 1,7
- kaukolämpö 0,7
- kaukojäähdytys 0,4
- fossiiliset polttoaineet 1,0
- rakennuksessa käytettävät uusiutuvat polttoaineet 0,5

Rakennuksen ostoenergiankulutus lasketaan Suomen rakentamismääräyskokoelman osan D3 mukaisilla ulkoilman säätiiedoilla, sisäilmasto-olosuhteilla, rakennuksen ja sen tekniikan käyttö- ja käyntiaikojen sekä sisäisten lämpökuormien lähtöarvoilla. Muut E-luvun laskentaan vaadittavat lähtötiedot saadaan rakennuksen suunnitteluaasiakirjoista. (RakMk D3 2012, 8.)

E-luvun laskenta

E-luku saadaan laskettua Suomen rakentamismääräyskokoelman osien D3 ja D5 avulla. Kuviossa 3 on esitetty E-luvun laskennan vaiheet.
KUVIO 3. Rakennuksen E-luvun laskennan vaiheet
(RakMk D5 2012 luonnos, 13.)

Tilojen lämmitysenergian nettotarve lasketaan yhtälöllä 9:

\[Q_{lämmitys, tilat, netto} = Q_{tila} - Q_{sis.lämpö} \] (9)

jossa

\(Q_{lämmitys, tilat, netto} \)
tilojen lämmitysenergian nettotarve, kWh

\(Q_{tila} \)
tilojen lämmitysenergian tarve, kWh

\(Q_{sis.lämpö} \)
lämpökuormat, joka hyödynnetään lämmityksessä, kWh

(RakMk D5 luonnos 2012, 17.)

Tilojen lämmitysenergian tarve lasketaan kaavalla 10:

\[Q_{tila} = Q_{joht} + Q_{vuotoilma} + Q_{tuloilma} + Q_{kv, korvailma} \] (10)

jossa

\(Q_{tila} \)
tilojen lämmitysenergian tarve, kWh

\(Q_{joht} \)
johtumislämpöhäviöt rakennusvaipan läpi, kWh
vuotoilma vuotoilman lämpenemisen lämpöenergian tarve, kWh
Q_{v, tuloilma} tilassa tapahtuvan tuloilman lämpenemisen lämpöenergian tarve, kWh
Q_{v, korvausilma} korvausilman lämpenemisen lämpöenergian tarve, kWh
(RakMk D5 luonnos 2012, 17.)

Rakennusvaipan johtumislämpöhäviöt lasketaan kaavalla 11:

\[Q_{\text{joht}} = Q_{\text{ulkoseinät}} + Q_{\text{yläpohja}} + Q_{\text{alapohja}} + Q_{\text{ikkuna}} + Q_{\text{ovi}} + Q_{\text{muu}} + Q_{\text{kylmäsillat}} \]
(11)

jossa

\[Q_{\text{joht}} \] johtumislämpöhäviöt rakennusvaipan läpi, kWh
\[Q_{\text{ulkoseinät}} \] johtumislämpöhäviö ulkoseinien läpi, kWh
\[Q_{\text{yläpohja}} \] johtumislämpöhäviö yläpohjien läpi, kWh
\[Q_{\text{alapohja}} \] johtumislämpöhäviö alapohjien läpi, kWh
\[Q_{\text{ikkuna}} \] johtumislämpöhäviö ikkunoiden läpi, kWh
\[Q_{\text{ovi}} \] johtumislämpöhäviö ulko-ovien läpi, kWh
\[Q_{\text{muu}} \] johtumislämpöhäviö tilaan, jonka lämpötila poikkeaa ulkolämpötilasta, kWh
\[Q_{\text{kylmäsillat}} \] kylmäsiltojen johtumislämpöhäviö, kWh
(RakMk D5 luonnos 2012, 18.)

Ulkoilmaan rajoittuvien rakenneosien lämpöhäviöt saadaan kaavasta 12:

\[Q_{\text{rakosa}} = \sum U_i A_i (T_s - T_u) \Delta t / 1000 \]
(12)

joissa

\[Q_{\text{rakosa}} \] johtumislämpöhäviö rakennusosan läpi, kWh
\[U_i \] rakennusosan i lämmönläpäisykerroin, W/(m^2·K)
\[A_i \] rakennusosan i pinta-ala, m^2
\[T_s \] sisäilman lämpötila, °C
\[T_u \] ulkoilman lämpötila, °C
\[\Delta t \] ajanjakson pituus, h
1000 kerroin, jolla suoritetaan laatumuunnos kilowattitunteiksi
(RakMk D5 luonnos 2012, 18.)
Kylmäsiltojen laskennassa tarvittavaa viivamaisen kylmäsillan lisäkonduktanssin arvoja on esitetty kuvioissa 4-6. Kylmäsiltojen lämpöhäviöt lasketaan yhtälöllä 13:

\[Q_{kylmäsillat} = \sum l_k \Psi_k (T_s - T_u) \Delta t / 1000 \]

jossa

\(Q_{kylmäsillat} \) johtumislämpöhäviö kylmäsiltojen läpi, kWh

\(l_k \) viivamaisen kylmäsillan pituus, m

\(\Psi_k \) viivamaisen kylmäsillan lisäkonduktanssi, W/(mK)

(RakMk D5 luonnos 2012, 18.)

KUVIO 4. Ohjearvoja viivamaisen kylmäsillan aiheuttamalle lisäkonduktanssille ulkoseinän ja yläpohjan, ulkoseinän ja välipohjan sekä ulkoseinän ja alapohjan välisissä liitoksissa joillakin runkomateriaaleilla (RakMk D5 luonnos 2012, 19.)

<table>
<thead>
<tr>
<th>Lisäkonduktanssi (\Psi_k), W/(m K)</th>
<th>Lisäkonduktanssi (\Psi_k), W/(m K)</th>
<th>Lisäkonduktanssi (\Psi_k), W/(m K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yläpohjan (ulkonurkka) runkomateriaali</td>
<td>betoni kevyt- betoni puu</td>
<td>betoni kevyt- betoni puu</td>
</tr>
<tr>
<td>betoni</td>
<td>0,08</td>
<td>0,04</td>
</tr>
<tr>
<td>kevyt/betoni</td>
<td>0,18</td>
<td>0,06</td>
</tr>
<tr>
<td>kevyt/orbetoni</td>
<td>0,13</td>
<td>0,06</td>
</tr>
<tr>
<td>tiili</td>
<td>0,08</td>
<td>0,05</td>
</tr>
<tr>
<td>puu</td>
<td>0,05</td>
<td>0,04</td>
</tr>
<tr>
<td>hirsi</td>
<td>0,04</td>
<td>0,04</td>
</tr>
</tbody>
</table>

KUVIO 5. Ohjearvoja viivamaisen kylmäsillan aiheuttamalle lisäkonduktanssille ulkoseinän välisissä nurkkaliitoksissa sekä ikkuna- ja oviliitoksissa joillakin runkomateriaaleilla (RakMk D5 luonnos 2012, 19.)

- Kuvio 5. Ohjearvoja viivamaisen kylmäsillan aiheuttamalle lisäkonduktanssille ulkoseinän välisissä nurkkaliitoksissa sekä ikkuna- ja oviliitoksissa joillakin runkomateriaaleilla (RakMk D5 luonnos 2012, 19.)
<table>
<thead>
<tr>
<th>Liitios</th>
<th>Lisäkonduktanssi Ψ_k, W/(m K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ulkoseinän ja yläpohjan liitots</td>
<td>0,3</td>
</tr>
<tr>
<td>ulkoseinän ja alapohjan liitots</td>
<td>0,5</td>
</tr>
<tr>
<td>ulkoseinän ja välipohjan liitots</td>
<td>0,2</td>
</tr>
<tr>
<td>ulkoseinien vällinen liitots, ulkonurkka</td>
<td>0,1</td>
</tr>
<tr>
<td>ulkoseinien vällinen liitots, sisänurkka</td>
<td>−0,1</td>
</tr>
<tr>
<td>ikkuna- ja oviliitos</td>
<td>0,2</td>
</tr>
</tbody>
</table>

KUVIO 6. Ohjevarot viivamaisen kylmäsillan aiheuttamalle lisäkonduktanssille liitoksissa, joilla ei ole erillistä arvoa kuvioissa 4 ja 5

(RakMk D5 luonnos 2012, 19.)

Erilaisten rakennusten ilmanvuotolukuja on esitetty kuviossa 7. Vuotoilman lämmittämiseen tarvittava lämpöenergia lasketaan kaavalla 14:

$$Q_{vuotoilma} = \rho_i c_{pi} q_v, vuotoilma (T_s - T_u) \Delta t / 1000$$ (14)

jossa

- $Q_{vuotoilma}$ vuotoilman lämpenemisen lämpöenergian tarve, kWh
- ρ_i ilman tiheys, 1,2 kg/m3
- c_{pi} ilman ominaislämpökapasiteetti, 1000 J/(kgK)
- $q_v, vuotoilma$ vuotoilmavirta, m3/s

(RakMk D5 luonnos 2012, 21.)
KUVIO 7. Tyypillisä rakennuksen ilmanvuotolukuja \((n_{50})\) ja rakennusvaipan ilmanvuotolukuja \((q_{50})\)
(RakMk D5 luonnos 2012, 22.)

Ilmanvaihdon lämmitysenergian nettotarve lasketaan kaavalla 15:

\[
Q_{iv} = t_d t_v \rho_i c_p i q_v, \text{tulo} \cdot (T_{sp} - \Delta T_{puhallin}) - T_{lt0}) \Delta t / 1000
\]

joissa

\begin{itemize}
 \item \(Q_{iv}\): ilmanvaihdon lämmitysenergian nettotarve, kWh
 \item \(t_d\): ilmanvaihtolaitoksen keskimääräinen vuorokausinen käyntiaikasuhde, h/24h
 \item \(t_v\): ilmanvaihtolaitoksen viikoittainen käyntiaikasuhde, vrk/7vrk
 \item \(q_v, \text{tulo}\): tuloilmavirta, \(m^3/s\)
 \item \(T_{sp}\): sisäänpuhalluslämpötila, °C
 \item \(\Delta T_{puhallin}\): lämpötilan nousu puhaltimessa, °C
 \item \(T_{lt0}\): lämmöntaltenottotolaitteen jälkeinen lämpötila, °C
\end{itemize}
(RakMk D5 luonnos 2012, 23.)

Tuloilman lämpeneminen tilassa lasketaan yhtälöllä 16:

\[
Q_{iv, \text{tuloilma}} = t_d t_v \rho_i c_p i q_v, \text{tulo} \cdot (T_s - T_{sp}) \Delta t / 1000
\]
Q_{iv, tuloilma} tarve, kWh

\[Q_{iv, tuloilma} = \rho_i c_{pi} q_{iv, tuloilma} (T_s - T_u) \Delta t / 1000 \] (17)

Q_{iv, korvausilma} korvausilman lämpenemisen lämpöenergian tarve, kWh

q_{v, korvausilma} korvausilmavirta, m³/s

Q_{lkv, netto} lämpimän käyttöveden lämpöenergian nettotarve, kWh

\[Q_{lkv, netto} = \rho_v c_{pv} V_{lkv} (T_{lkv} - T_{kv}) / 3600 - Q_{lkv, LTO} \] (18)

ρ_v veden tiheys, 1000 kg/m³

c_{pv} veden ominaislämpökapasiteetti, 4,2 kJ/(kgK)

V_{lkv} lämpimän käyttöveden kulutus, m³

T_{lkv} lämpimän käyttöveden lämpötila, °C

T_{kv} kylmän käyttöveden lämpötila, °C

3600 kerroin, jolla suoritetaan laatumuunnos kilowattitunteiksi, s/h

Q_{lkv, LTO} jätteveden lämmöntalteenotolla talteenotettu ja käyttöveden lämmityksesä hyväksikäytetty energia, kWh

Laitteiden sähkökulutus koostuu eri laitteiden kuluttamasta sähköenergiasta (ks. kuvio 8). Tähän ei oteta mukaan valaistuksen, ilmanvaihtokoneen eikä lämmitys- ja jäähdytysjärjestelmien sähkökulutusta. (RakMk D5 luonnos 2012, 28.)
KUVIO 8. Asuinrakennuksen yleisimpien laitteiden sähkönkulutuksia
(RakMk D5 luonnos 2012, 28.)

Kuviossa 9 on esitetty tyypillisiä valaistuksen käyttöaikoja. Valaistuksen sähköenergian kulutus saadaan laskettua kaavasta 19:

\[W_{\text{valaistus}} = \sum P_{\text{valaistus}} A_{\text{huone}} \Delta t / 1000 \]

jossa

- \(W_{\text{valaistus}} \) valaistuksen sähköenergian kulutus, kWh
- \(P_{\text{valaistus}} \) valaistavan tilan valaistuksen kokonaissähköteho huonepinta-alaa kohti, W/hum²
- \(A_{\text{huone}} \) valaistavan tilan huonepinta-ala, hum²
- \(\Delta t \) valaistuksen käyttöaika, h
- \(f \) valaistuksen ohjaustavasta riippuvia ohjauskertoimia
 - läsnäolotunnistin ja päivänvalosäädin 0,70
 - päivänvalosäädin 0,80
 - läsnäolotunnistin 0,75

<table>
<thead>
<tr>
<th>Laiteryhmä</th>
<th>Asuinkerrostalon kulutus</th>
<th>Pientalon kulutus</th>
<th>Yksikkö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talosauna</td>
<td>410</td>
<td>-</td>
<td>kWh/asunto</td>
</tr>
<tr>
<td>Talopesula</td>
<td>67</td>
<td>-</td>
<td>kWh/asunto</td>
</tr>
<tr>
<td>Hissi</td>
<td>23</td>
<td>-</td>
<td>kWh/asukas</td>
</tr>
<tr>
<td>Autopaikat</td>
<td>150</td>
<td>150</td>
<td>kWh/paikka</td>
</tr>
<tr>
<td>Pihavaalaistus</td>
<td>2</td>
<td>2</td>
<td>kWh/m²</td>
</tr>
<tr>
<td>Liesi</td>
<td>340</td>
<td>520</td>
<td>kWh/kpl</td>
</tr>
<tr>
<td>Mikroaaltouuni</td>
<td>50</td>
<td>55</td>
<td>kWh/kpl</td>
</tr>
<tr>
<td>Kahvinkeitin</td>
<td>70</td>
<td>70</td>
<td>kWh/kpl</td>
</tr>
<tr>
<td>Astianpesukone</td>
<td>170</td>
<td>250</td>
<td>kWh/kpl</td>
</tr>
<tr>
<td>Jääkaappipakastin</td>
<td>740</td>
<td>270 (Jääkaappi)</td>
<td>kWh/kpl</td>
</tr>
<tr>
<td>Jää-viileäkaappi</td>
<td>330</td>
<td>330</td>
<td>kWh/kpl</td>
</tr>
<tr>
<td>Kaappipakastin</td>
<td>380</td>
<td>380</td>
<td>kWh/kpl</td>
</tr>
<tr>
<td>Pyykinpesukone</td>
<td>130</td>
<td>240</td>
<td>kWh/kpl</td>
</tr>
<tr>
<td>Kuivausrumpu</td>
<td>300</td>
<td>300</td>
<td>kWh/kpl</td>
</tr>
<tr>
<td>TV</td>
<td>200</td>
<td>200</td>
<td>kWh/kpl</td>
</tr>
<tr>
<td>Video</td>
<td>95</td>
<td>95</td>
<td>kWh/kpl</td>
</tr>
<tr>
<td>PC</td>
<td>80</td>
<td>80</td>
<td>kWh/kpl</td>
</tr>
<tr>
<td>Huoneistosauna</td>
<td>8</td>
<td>8</td>
<td>kWh/läämmityskerta</td>
</tr>
</tbody>
</table>
huonekohtainen kytkin 0,90
huonekohtainen kytkin, erillinen ikk.seinäll. 0,90
keskitetty päälle/pois 1,00

(RakMk D5 luonnos 2012, 29.)

<table>
<thead>
<tr>
<th>Rakennustyyppi</th>
<th>Tuntia vuodessa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asuinkerrostalo</td>
<td>550</td>
</tr>
<tr>
<td>Rivitalo</td>
<td>550</td>
</tr>
<tr>
<td>Pientalo</td>
<td>550</td>
</tr>
<tr>
<td>Toimistorakennus</td>
<td>2 500</td>
</tr>
<tr>
<td>Opetusrakennus</td>
<td>1 900</td>
</tr>
<tr>
<td>Liikerakennus</td>
<td>4 000</td>
</tr>
<tr>
<td>Hotelli</td>
<td>5 000</td>
</tr>
<tr>
<td>Ravintola</td>
<td>3 500</td>
</tr>
<tr>
<td>Liikuntarakennus</td>
<td>5 000</td>
</tr>
<tr>
<td>Sairaalal</td>
<td>5 000</td>
</tr>
<tr>
<td>Muut rakennukset</td>
<td>2 500</td>
</tr>
</tbody>
</table>

KUVIO 9. Valaistuksen tyyppisiä käyttöaikoja Δt
(RakMk D5 luonnos 2012, 30.)

Ihmisistä vapautuva lämpöenergia pystytään selvittämään kaavalla 20:

\[Q_{henk} = kn\phi_{henk}\Delta t_{oleskelu}/1000 \] (20)

jossa

\(Q_{henk} \) henkilöiden luovuttama lämpöenergia, kWh
\(k \) rakennuksen käytönaiikainen käyttöaste, joka kuvaat ihmisten keskimääräistä läsnäoloa rakennuksessa
\(n \) henkilöiden lukumäärä
\(\phi_{henk} \) yhden henkilön luovuttama keskimääräinen lämpöteho (ei sisällä haihmustilämpöä), W/henkilo
\(\Delta t_{oleskelu} \) oleskeluaika, h
1000 kerroin, jolla suoritetaan laatumuunnos kilowattitunteiksi

(RakMk D5 luonnos 2012, 32.)
Valaistuksesta ja muista kuluttajalaitteista aiheutuva lämpökuorma lasketaan yhtälöllä 21:

\[Q_{säh} = W_{valaistus} + W_{kuluttajalaitteet} \]

jossa

\(Q_{säh} \) valaistuksesta ja sähkölaitteista rakennuksen sisälle tuleva lämpökuorma, kWh
\(W_{valaistus} \) valaistusjärjestelmän sähköenergian kulutus, kWh
\(W_{kuluttajalaitteet} \) kuluttajalaitteiden sähköenergian kulutus, kWh

(RakMk D5 luonnos 2012, 32.)

Ikkunoiden läpi sisälle tuleva auringon säteilyenergia ratkaistaan kaavalla 22:

\[Q_{aur} = \sum G_{säteily, vaakapinta} F_{suunta} F_{läpäisy} A_{ikkkg} = \sum G_{säteily, pystypinta} F_{läpäisy} A_{ikkkg} \]

jossa

\(Q_{aur} \) ikkunoiden kautta rakennukseen tuleva auringon säteilyenergia, kWh/kk
\(G_{säteily, vaakapinta} \) vaakatasolle tuleva auringon kokonaissäteilyenergia pinta-alaan yksikköä kohti, kWh/(m²kk)
\(G_{säteily, pystypinta} \) pystypinnalle tuleva auringon kokonaissäteilyenergia pinta-alaan yksikköä kohti, kWh/(m²kk) (ks. kuvio 10)
\(F_{suunta} \) muuntokerroin, jolla vaakatasolle tuleva auringon kokonaisläpäisyenergia muunnetaan ilmansuunnittain pystypinnalle tulevaksi kokonaisläpäisykykseksi
\(F_{läpäisy} \) säteilyn läpäisyyn kokonaiskorjaukskerroin
\(A_{ikk} \) ikkuna-aukon pinta-ala (kehys- ja karmirakenteineen), m²
\(g \) ikkunan valaaukon auringon kokonaissäteilyyn läpäisykerroin

(RakMk D5 luonnos 2012, 32.)
KUVIO 10. Aurion kokonaissäteilyenergia pystypinnoille eri ilmansuuntiin
(RakMk D3 2012, 31.)

Ikkunoiden kautta huonetilaan tulevaa auriongon säteilyenergiaa sekä ihmistä,
laitteista ja valaistuksesta vapautuvaa lämpöenergiaa pystytään käyttämään osittain
hyväksi rakennuksen lämmityksessä. Rakennuksen lämpökuorma lasketaan kaavalla
23:

\[
Q_{\text{lämpökuorma}} = Q_{\text{henk}} + Q_{\text{säh}} + Q_{\text{aur}} + Q_{\text{lkv, kierto, kuorma}} + Q_{\text{lkv, varastointi, kuorma}}
\]

jossa

\[
Q_{\text{lämpökuorma}} \quad \text{rakennuksen lämpökuorma, kWh}
\]
\[
Q_{\text{lkv, kierto, kuorma}} \quad \text{lämpimän käyttöveden kiertojohdon lämpöhäviöstä läm-
pökuormaksi tuleva osuus, kWh}
\]
\[
Q_{\text{lkv, varastointi, kuorma}} \quad \text{lämpimän käyttöveden varastoinnin lämpöhäviöstä läm-
pökuormaksi tuleva osuus, kWh}
\]

(RakMk D5 luonnos 2012, 36.)

Lämpökuormista lämmityksessä käytettävää osuus pystytään selvittämään kaavalla
24:

\[
Q_{\text{sis, lämpö}} = \eta_{\text{lämpö}} Q_{\text{lämpökuorma}}
\]

jossa

\[
Q_{\text{sis, lämpö}} \quad \text{lämpökuormat, jotka hyödynnetään lämmityksessä}
\]
\[
\eta_{\text{lämpö}} \quad \text{lämpökuormien kuukausittainen hyödyntämisaste}
\]
Lämmitysjärjestelmän kuluttama energiamäärä saadaan tilojen, ilmanvaihdon ja lämpimän käyttöveden lämmitysenergian nettotarpeesta (ks. kuvio 11). (RakMk D5 luonnos 2012, 40.)

KUVIO 11. Lämmitysjärjestelmän laskennan periaate (RakMk D5 luonnos 2012, 40.)

Tilojen lämmityksen lämpöenergian tarpeellisuus lasketaan yhtälöllä 25:

\[
Q_{lääm, til} = \frac{Q_{lääm, til, nett} \cdot \eta_{lääm, til} + Q_{jak, ulos} + Q_{var, ulos}}{1}
\]

jossa

- \(Q_{läämitys, tilat}\) tilojen lämmityksen lämpöenergian tarve, joka katetaan laskettavalla lämmönjakelujärjestelmällä, kWh/a
- \(Q_{läämitys, tilat, netto}\) tilojen lämmitysenergian nettotarve, joka katetaan laskettavalla lämmönjakelujärjestelmällä, kWh/a
- \(Q_{jakelu, ulos}\) lämmön jakelujärjestelmän lämpöhäviö lämmittämättömmään tilaan, kWh/a
- \(Q_{varastointi, ulos}\) laskettavan lämmön jakelujärjestelmän varastoinnin lämpöhäviö, kWh/a
Lämmönjakelujärjestelmien apulaitteiden sähkökulutus voidaan määrittää kaavalla 26:

\[W_{\text{tilat}} = \eta_{\text{tilat}} \cdot e_{\text{tilat}} A_{\text{netto, i}} \]

jossa

- \(W_{\text{tilat}} \): lämmönjakelujärjestelmän apulaitteiden sähköenergian kulutus, kWh/a
- \(\eta_{\text{tilat}} \): lämmönjakelujärjestelmän apulaitteiden sähköenergian omiaiskulutus, kWh/(m²a)
- \(A_{\text{netto, i}} \): rakennuksen osan lämmittetty nettoala, jonka lämmönjakelujärjestelmä kattaa, m²

(RakMk D5 luonnos 2012, 42.)
<table>
<thead>
<tr>
<th>Lämpitysratkaisu</th>
<th>Vuosihyötysuhde η_{tilat}</th>
<th>Sähkö c_{tilat} kWh/(m² a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesiradiaattori 45/35 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jakojohdot eristetty</td>
<td>0.90</td>
<td>2</td>
</tr>
<tr>
<td>jakojohdot eristämätön</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Vesiradiaattori 70/40 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jakojohdot eristetty</td>
<td>0.9</td>
<td>2</td>
</tr>
<tr>
<td>jakojohdot eristämätön</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Vesiradiaattori 70/40 °C jakotukilla</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>2</td>
</tr>
<tr>
<td>Vesiradiaattori 45/35 °C jakotukilla</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>2</td>
</tr>
<tr>
<td>Vesikiertoinen lattialämpitys 40/30 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maata vasten rajoittuvassa rak.</td>
<td>0.8</td>
<td>2,5</td>
</tr>
<tr>
<td>ryömintatilaan rajoittuvassa rak.</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>ulkoilmaan rajoittuvassa rak.</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>lämpimäätä tilaan rajoittuvassa rak.</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Kattolämpitys (sähköinen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ulkoilmaan rajoittuvassa rak.</td>
<td>0.85</td>
<td>0.5</td>
</tr>
<tr>
<td>lämpimäätä tilaan rajoittuvassa rak.</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Ilkunälämpitys (sähköinen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>0.5</td>
</tr>
<tr>
<td>Ilmanvaihtolämpitys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>huonekohtainen sääto</td>
<td>0.90</td>
<td>0.5</td>
</tr>
<tr>
<td>Sähköpatterilämpitys</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.5</td>
</tr>
<tr>
<td>Sähköinen lattialämpitys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maata vasten rajoittuva rak.</td>
<td>0.85</td>
<td>0.5</td>
</tr>
<tr>
<td>ryömintatilaan tai ulkoilmaan rajoittuvassa rak</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>lämpimäätä tilaan rajoittuvassa rak.</td>
<td>0.85</td>
<td>0.5</td>
</tr>
<tr>
<td>Muut lämmityslaiteet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulkotilaa tai maata vasten rajoittuva lämpitys</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Sisätilaan rajoittuva lämmitys laite</td>
<td>0.8</td>
<td>0.5</td>
</tr>
</tbody>
</table>

KUVIO 12. Lämpitysjärjestelmien lämmönjaon ja -luovutuksen vuosihyötysuhteiden ja apulaitteiden ominaisähkönkäytön ohjearvoja (RakMk D5 luonnos 2012, 43.)

Lämpimän käyttöveden lämpöenergiantarve määritetään kaavalla 27:

$$Q_{lääm, \text{likv}} = Q_{\text{likv, netto}}/\eta_{\text{likv, siirto}} + Q_{\text{likv, var}} + Q_{\text{likv, kierto}}$$ \((27)\)
lämmitys, lkv
lämpimän käyttöveden lämpöenergian tarve, kWh/a
Q_{lkv, netto}
lämpimän käyttöveden lämpöenergian nettotarve, kWh/a
η_{lkv, siirto}
lämpimän käyttöveden siirron hyötysuhde (ks. kuvio 13)
Q_{lkv, varastointi}
lämpimän käyttöveden varastoinnin lämpöhäviö, kWh/a (ks. kuvio 14)
Q_{lkv, kierto}
lämpimän käyttöveden kiertojohdon lämpöhäviö, kWh/a

(RakMK D5 luonnos 2012, 44.)

<table>
<thead>
<tr>
<th>Rakennustyyppi</th>
<th>Kirjonta</th>
<th>Ei kirjonta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erillinen pientalo sekä rivit- ja keljutalot</td>
<td>0,96</td>
<td>0,75</td>
</tr>
<tr>
<td>Asuinkerrostalo</td>
<td>0,97</td>
<td>0,76</td>
</tr>
<tr>
<td>Toimistorakennus</td>
<td>0,88</td>
<td>0,69</td>
</tr>
<tr>
<td>Liikerakennus</td>
<td>0,87</td>
<td>0,68</td>
</tr>
<tr>
<td>Majoitusliikerakennus</td>
<td>0,97</td>
<td>0,76</td>
</tr>
<tr>
<td>Opetusrakennus ja päiväkoti</td>
<td>0,89</td>
<td>0,70</td>
</tr>
<tr>
<td>Liikuntahalli</td>
<td>0,98</td>
<td>0,77</td>
</tr>
<tr>
<td>Sairaalata</td>
<td>0,94</td>
<td>0,74</td>
</tr>
</tbody>
</table>

η_{lkv, siirto}
lämpimän käyttöveden siirron hyötysuhde

(KUVIO 13. Lämpimän käyttöveden siirron hyötysuhde
(RakMK D5 luonnos 2012, 44.)
KUVIO 14. Lämpimän käyttöveden varastoinnin häviö vuodessa
(RakMk D5 luonnos 2012, 45.)

Lämmitysjärjestelmän lämpöenergiantarve saadaan selvitettyä kaavalla 28:

\[
Q_{\text{läm}} = \frac{Q_{\text{läm, tilat}} + Q_{\text{läm, iv}} + Q_{\text{läm, lkv}} - Q_{\text{aur, lkv}} - Q_{\text{muu tuotto}}}{\eta_{\text{tuotto}}}
\]

jossa

- \(Q_{\text{läm}} \) lämmitysjärjestelmän lämpöenergian kulutus, kWh/a
- \(Q_{\text{läm, tilat}} \) lämmönjakojärjestelmän apulaitteiden sähköenergian kulutus, kWh/a
- \(Q_{\text{läm, iv}} \) lämmönjako- ja lämmitysjärjestelmän apulaitteiden sähköenergian kulutus, kWh/a
- \(Q_{\text{aur, lkv}} \) aurinkokeräimellä tuotettu energia atm. lämpimään käyttövedeen, kWh/a
- \(Q_{\text{muu tuotto}} \) muilla mahdollisilla tuottojärjestelmillä tuotettu energia, kWh/a
- \(\eta_{\text{tuotto}} \) lämmitysenergian tuoton hyötysuhde tilojen, ilmanvaihdon ja lämmön käyttöveden lämmityksessä

(RakMk D5 luonnos 2012, 47.)

Lämmitysjärjestelmän sähköenergian kulutettu energiamäärä lasketaan yhtälöllä 29:

\[
W_{\text{lämmyys}} = W_{\text{tilat}} + W_{\text{tuotto, apu}} + W_{\text{lkv, pump}} + W_{\text{aurinko, pumput}} + W_{\text{LP, lämmyys}}
\]

jossa

- \(W_{\text{lämmyys}} \) lämmitysjärjestelmän sähköenergian kulutus, kWh/a
- \(W_{\text{tilat}} \) lämmönjakojärjestelmän apulaitteiden sähköenergian kulutus, kWh/a
- \(W_{\text{tuotto, apu}} \) lämmönjakojärjestelmän apulaitteiden sähköenergian kulutus, kWh/a
- \(W_{\text{lkv, pump}} \) lämmönjakojärjestelmän apulaitteiden sähköenergian kulutus, kWh/a
- \(W_{\text{aurinko, pumput}} \) lämmönjakojärjestelmän apulaitteiden sähköenergian kulutus, kWh/a
- \(W_{\text{LP, lämmyys}} \) lämmitysjärjestelmän sähköenergian kulutus, kWh/a

<table>
<thead>
<tr>
<th>Varaajan tilavuus, l</th>
<th>Varaajan lämpöhäviö, (Q_{\text{lkv, varasto}}), kWh/a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40 mm eriste</td>
</tr>
<tr>
<td>50</td>
<td>440</td>
</tr>
<tr>
<td>100</td>
<td>640</td>
</tr>
<tr>
<td>150</td>
<td>830</td>
</tr>
<tr>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>300</td>
<td>1300</td>
</tr>
<tr>
<td>500</td>
<td>1700</td>
</tr>
<tr>
<td>1000</td>
<td>2100</td>
</tr>
<tr>
<td>2000</td>
<td>3000</td>
</tr>
<tr>
<td>3000</td>
<td>4000</td>
</tr>
</tbody>
</table>
\[W_{\text{tuotto, apu}} \] lämmöntuottojärjestelmän apulaitteiden sähköenergian kulutus, kWh/a
\[W_{\text{lkv, pumppu}} \] lämpimän käyttöveden kiertopumpun sähköenergian kulutus, kWh/a
\[W_{\text{aurinko, pumppu}} \] aurinkolämpöjärjestelmän pumppujen sähköenergian kulutus, kWh/a
\[W_{\text{LP, lämmitys}} \] lämpöpumpujärjestelmän sähköenergian kulutus, kWh/a

(RakMk D5 luonnos 2012, 48.)

Maalämpöpumpun SPF-lukuja on esitetty kuviossa 15. Lämpöpumpun sähköenergiankulutus saadaan selville kaavalla 30:

\[W_{\text{LP, lämmitys}} = Q_{\text{LP, lämmitys, tilat}}/\text{SPF_{tilat}} + Q_{\text{LP, lämmitys, lkv}}/\text{SPF_{lkv}} + W_{\text{lisälämmitys}} \] (30)

jossa
\[W_{\text{LP, lämmitys}} \] lämpöpumpujärjestelmän sähköenergian kulutus, kWh
\[Q_{\text{LP, lämmitys, tilat}} \] lämpöpumpun tuottama tilojen lämmitysenergia, kWh
\[\text{SPF_{tilat}} \] lämpöpumpun SPF-luku tilojen lämmityksessä
\[Q_{\text{LP, lämmitys, lkv}} \] lämpöpumpun tuottama käyttöveden lämmitysenergia, kWh
\[\text{SPF_{lkv}} \] lämpöpumpun SPF-luku käyttöveden lämmityksessä
\[W_{\text{lisälämmitys}} \] tilojen ja lämpimän käyttöveden lämmityksessä tarvittavan lisälämmityksen sähköenergian tarve, kWh

(RakMk D5 luonnos 2012, 52.)

<table>
<thead>
<tr>
<th>Maalämpöpumpu</th>
<th>SPF-luku</th>
</tr>
</thead>
<tbody>
<tr>
<td>menoveden korkein lämpötila, °C</td>
<td>Vuotuinen keruupiirin paluunesteen keskilämpötila, °C</td>
</tr>
<tr>
<td>Tilojen lämmitys</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3,4</td>
</tr>
<tr>
<td>40</td>
<td>3,0</td>
</tr>
<tr>
<td>50</td>
<td>2,7</td>
</tr>
<tr>
<td>60</td>
<td>2,5</td>
</tr>
<tr>
<td>Käyttöveden lämmitys</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>2,3</td>
</tr>
</tbody>
</table>

KUVIO 15. Maalämpöpumpun SPF-lukuja
(RakMk D5 luonnos 2012, 53.)
Ilmanvaihtokoneiden sähkönkulutus pystytään määrittämään kaavalla 31:

\[
W_{\text{ilmanvaihto}} = \Sigma SPFq_v\Delta t + W_{\text{iv, muut}}
\]

jossa
\begin{itemize}
 \item \(W_{\text{ilmanvaihto}}\) ilmanvaihtojärjestelmän sähköenergian kulutus, kWh
 \item SPF puhaltimen tai ilmanvaihtokoneen ominaisähköteho, kW/(m\(^3\)/s)
 \item \(q_v\) puhaltimen tai ilmanvaihtokoneen ilmavirta, m\(^3\)/s
 \item \(\Delta t\) puhaltimen tai ilmanvaihtokoneen käyttöaika laskentajaksolla, h
 \item \(W_{\text{iv, muut}}\) muu ilmanvaihtojärjestelmän sähkönkulutus, kWh
\end{itemize}

(RakMk D5 luonnos 2012, 55.)

5.3 Tulosten vertailu

Opinnäytetyön kohteeseen verrattiin keskenään sähkölämmitystä ja maalämpöä. Suomen rakentamismääräyskokoelman osien D3:n ja D5:n mukaan rakennuksen E-luvuksi muodostui 303 kWh/(m\(^2\)a) sähkölämmityksellä (ks. liitteet 11 ja 12). E-luvun raja-arvo hirsirakennukselle, kun lämmitettyä pinta-alaa on 143 m\(^2\), on 196,8 kWh/(m\(^2\)a) (RakMk D3 2012, 9). Näin ollen kyseistä rakennusta ei saisi edes toteuttaa sähkölämmitteisenä.

Maalämmöllä E-luvuksi muodostui 145 kWh/(m\(^2\)a) (ks. liitteet 9 ja 10). Tämä arvo pysyy vaadituissa rajoissa, joten kun vertailtavina lämmitysmuotoina olivat sähkölämmitys ja maalämpö, niin toteutettavaksi muodoksi selviytyi maalämpö.

6 Asiakaskysely

6.1 Yleistä

Opinnäytetöyön yhteydessä suoritetulla asiakaskyselyllä oli tarkoitus selvittää ihmisten vaatimuksia ja toiveita vuokramönkin suhteen. Lisäksi kyselyllä oli tarkoitus saada selville, kuinka paljon mahdolliset tulevat vuokralaiset olisivat valmiita maksamaan lisävuokraa savusaunan sekä paljun käytöstä. Kyselyn pohjalta arvioitiin tämän opinnäytetöyön kohteelle sopivaa vuokrähintaa rakennuksen sijaintiin ja varustelutasoon nähden.

6.2 Varustelutaso

Kyselyllä oli tarkoitus selvittää kansalaisten tarvitsemaa ja haluamaa vuokrattavan mökin varustelutasoa. Kyselyn varustelutaso-osuus piti sisällään muun muassa millaisia laitteita ja välineitä keittiön tulisi pitää sisällään, tuleeko mökissä olla juokseva vesi ja sisä-WC sekä oleskelutilan elektroniikkatarjonta.

Miisten vastauksissa suurimmat erot tulivat pelikonsolin yhteydessä. Alle 20-vuotiaista kaikki olivat sitä vailla ja 20-30-vuotiaista kymmenestä oli sitä mieltä, että pelikonsoli kuuluu vuokramökin varusteisiin. Muut ikäluokat eivät nähneet pelikonsolin kuuluvan vuokrarakennuksen perustarvikkeisiin. Karaokelaitteita kaipasivat 50-60-vuotiaat miehet, muun ikäiset eivät niinkään paljon. (Ks. liite 15.)

Kaiken kaikkiaan miesten ja naisten näkemykset vuokramökin varustelusta olivat aika samanlaisia perusasioiden suhteen. Suurimmat erot tulivat sähkösäunan (naiset 14 %, miehet 47 %), vedenkeittimen (naiset 7%, miehet 32%) ja pelikonsolin (naiset 0 %, miehet 32%) osalta. Naisten ja miesten yhteen laskettujen vastausten perusteella vuokramökille tarvitaan ainakin seuraavat varusteet: sähköt, sisä-WC, juokseva vesi, puusauna, jääkaappi/pakastin, sähköuuni ja – liesi, mikroaaltouuni, kahvinkeitin, astiasto sekä taulu-TV (ylli 75 % vastanneista oli tästä mieltä).

Asiakaskyselyn pohjalta opinnäytetyön kohteeseen valittiin seuraavat varusteet:

- sähköt
- sisä-WC
- juokseva vesi
- lattialämmitys
• takka
• sähkösauna mökin sisälle
• puusauna rantaan
• astianpesukone
• jääkaappi/pakastin
• sähköuuni ja – liesi
• mikroaaltouuni
• kahvinkeitin
• leivänpaahdin
• astiasto
• lapsivarustus
• pyykinpesukone
• kuivauskaappi
• taulu-TV
• langaton nettiyhteys
• vene
• nuotiopaikka rannassa

Listalla on paljon sellaista, mitä kyselyn perusteella ihmiset eivät nähneet tarpeellisena. Kyseessä olevan mökin on kuitenkin tarkoitus olla hyvin varusteltu ja ottaa huomioon vaativan asiakkaan toiveet. Tällä perusteella päädyttiin kyseiseen varustelutasoon.

6.3 Aktiviteettimahdollisuudet

Kyselyyn vastanneiden naisten mielestä tärkeimmät vuokramökin aktiviteettimahdollisuudet ovat laskettelu, hiihto, veneily sekä retkeily. Vähemmälle kannatukselle jäivät lumikenkäily, moottorikelkkailu, avantouinti, metsästys, kalastus, marjastus, sienestys ja maastopyöräily. Naisten keskuudessa golf ei saanut arvostusta laisinkaan.

Miesten vastauksissa suurimmat prosentit saivat laskettelu, hiihto, moottorikelkkailu, veneily sekä kalastus. 50–60-vuotiaista miehistä kaikki näkivät hyväksi ajanvietto tavaksi avantouinnin, veneilyn ja kalastuksen. Alle 20-vuotiaitten miesten keskuudessa tärkeimmät aktiviteetit olivat moottorikelkkailu ja kalastus. Lisäksi tämä ikäryhmä oli ainut, jolta löytyi kannatusta golfille.

Yhteenlaskettuna kansalaiset haluavat vuokraamansa mökin läheisyydestä löytyvän laskettelu-, hiihto- ja veneilymahdollisuudet (yli puolet vastanneista). (Ks. liite 16.) Tässä tapauksessa rakennus sijaitsee Nilakan rannalla Pohjois-Savossa, missä aktiviteetteja on tarjolla seuraavaan tapaan:

- laskettelu Kasurilassa, matkaa noin 85 km (Tahkolle 120 km)
- hiihtoladut Tervossa, etäisyys n. 20 km (murtomaahiihtoa pystyy harrastamaan mökin välittömässä läheisyydessä)
- lumikenkäily onnistuu järvien jäällä aivan mökin välittömässä läheisyydessä
• moottorikelkkareitit menevät järven jäällä mökin edustalla
• avantouinti onnistuu erikseen sitä pyydettäessä
• veneily
• mökin läheisyydessä hyvät metsästysmaat
• kalastus onnistuu järvellä uistellen tai Lohimaassa, joka on noin 15 km päässä
• hyvät marjastus- ja sienestysmaat
• golfia Eerikkalan kentällä, jonne matkaa noin 25 km
• hiekkarannat, veneellä alle kilometri ja autolla noin 5 km

Sijainnilisesti mökki on hyvällä paikalla. Tietysti esimerkiksi laskettelua ajatellen paikka voisi olla parempikin, mutta kyllä hienossa Suomen järvimaisemassa kelpaa rentoutua. Sijainti on otollinen myös sen takia, koska Nilakan rattalla vuokramökkejä ei ole liiemmin tarjolla.

6.4 Vuokrarakennuksen käyttökerrat

molemmat sekä tämän lisäksi viisi prosenttia viettää seitsemän vuorokautta kerrallaan vuokraamallaan huvilalla.

Kyselyllä ilmeni hyvin ihmisten aktiivisuus vuokramökkejä kohtaan. Keskimäärin suomalainen käyttää vuokramökkia kerran vuodessa kolme vuorokautta.

6.5 Vuokrahinta

Keskimäärin vastanneet naiset maksisivat vuokramökistä 325 euroa viikonlopulta sekä 700 euroa viikolta. Miehet maksisivat viikolta saman verran kuin naiset.

Viikonlopulta kustannuksia saisi kertyä 50 euroa naisia enemmän hinnan ollessa 375 euroa. Näitä vuokrahinnat ovat varmasti aika paikkaansa pitäviä perusmökistä.

7 Kustannukset

7.1 Kustannusarvio

Opinnäytetyön kohteen kustannusarvioksi tuli noin 150 000 € (ks. liite 17). Tämä summa pitää sisällään maanrakennustyöt, rakentamistyöt, LVIS-työt, tarvittavat rakennusmateriaalit sekä kiintokalusteet. Arvio ei pidä sisällään tontin hankinnasta aiheutuvia kustannuksia. Rakennushankkeen työmenkeiksi tulivat seuraavat arvot:

- maanrakennustyöt 8 tv (Rakennustöiden menekit 2010, 20–33.)
- rakentamistyöt 75 tv (Rakennustöiden menekit 2010, 39–125.)
- LVIS-työt 29 tv (Rakennustöiden menekit 2010, 145–147.)
- sähkötyöt 14 tv (Rakennustöiden menekit 2010, 148.)

Töiden osuus kustannuksista oli noin 41 %, eli euroina noin 61 500 €. Tämä summa pitää sisällään edellä mainitut työmenekit, mutta lisäksi myös maalämpöpumpusta aiheutuvat menot (pumppu + työt). Maalämpöpumpun investointikustannukset Rädyn mukaan ovat noin 13 000 € (Räty 2013).

Rakennustarvikkeisiin kuluva summa oli noin 90 000 € (ks. liite 17). Tarvikkeiden ja materiaalien hinnat on otettu Taloon.com verkkosivulta sekä Rakennusosien kustannuksia-kirjasta.

Suurin säästö voidaan saavuttaa rakentamalla kohteita. Hartiapankkirakentamisella tässä kohteessa pystyttäisiin säästämään noin 22 500 euroa rakennustyömiesten palkoista. Maanrakennustyötin onnistuisivat omasta takaa, joten säästöä kertyisi yhteensä noin 28 000 euroa. Näin ollen rakennuskustannuksista tippuisi 19 % pois, mikä on huomattava määrä.

7.2 Ylläpitokustannukset

mukaan sähköön ja veteen kuluva rahamäärä, mahdolliset maalämpöpumpun korjauskustannukset sekä kiinteistövero.

Toinen mahdollinen keino säästää on ikkunat. Mitä parempi ikkunan lämmönläpäisykerroin on, sitä vähemmän se päästää lämpöenergiaa lävitseen. Piklas oy teki tarjouksen ikkunoista, joiden U-arvo oli 0,74 ja toisten 1,00 (Piklas Oy). Ikkunat, joiden U-arvo on 0,74, päästää läheltään 2370 kWh vuodessa lämpöenergiaa. U-arvolla 1,00 vastaava lämpöhäviö on 3268 kWh vuodessa. Eroa näiden ikkunoiden välillä on siis 898 kWh/a. Se tekee vuodessa noin 90 euroa säästöä. Kustannuksaltaan paremmin lämpöä eristävät ikkunat olivat 7810 euroa, kun taas lämmönläpäisykertoimella 1,00 varustetut ikkunat 5570 euroa. Hintaa näille
ikkunoille näin ollen syntyy 2240 €. U-arvon 0,74 omaavat ikkunat maksaisivat itsensä takaisin noin 25 vuodessa. Tästä jokainen voi tehdä omat johtopäätöksensä, onko kannattavaa laittaa paremmin lämpöä eristävät ikkunat vai ei. Kyseessä olevaan kohteeseen valittiin U-arvoltaan 1,00 lasit, sillä E-luku meni läpi näillä huonommillakin arvoilla.

Kiinteistövero on arvioitu noin 200 euron suuruiseksi sillä perusteella, että saman järven rannalla olevan rakennuksen kiinteistövero on sen suuruinen. Veron suuruus voi olla hieman erisuurempi, mutta isoja eroja ei siinä varmastikaan tule. Kun nämä menoerät lasketaan yhteen, saadaan rakennuksen käyttökokonaisuutta noin 2175 euroa vuodessa.

7.3 Vuokratulot ja takaisinmaksuaika

Tulevia vuokratuloja on mahdoton tietää etukäteen, sillä voi olla että mökkiä vuokrataan paljon, tai sitten ei ollenkaan. Tässä projektissa on arvioitu, että mökkiä vuokrataan seitsemän viikonloppua ja kaksi viikkoa sesonkiajan ulkopuolella. Sesonkiajalle arvion mukaan mökkiä vuokrataan kaksi viikonloppua sekä 12 viikkoa. Näillä arvioilla mökin vuokratulot olisivat vuodessa 16 750 €.

Tulojen ollessa 10 200 € vuodessa tarkoittaa, että rakennus maksaa itsensä takaisin vajaassa 15 vuodessa. Tämä tieteenkin tarkoittaa sitä, että mökkiä vuokrataan tässä opinnäytetyössä arvioidulla tavalla.

7.4 Elinkaarikustannukset

Rakennuksen elinkaarikustannukset koostuvat rakennus-, ylläpito-, muutoskorjaus-, ajanmukaistamis- ja purkukustannuksista (Saari 2004). Tämän opinnäytetyön elinkaarikustannuksiin on otettu mukaan rakennus, ylläpito- ja korjauskustannukset.

Oletetaan rakennuksen elinkaareksi 100 vuotta, sillä hirsirungon elinkaari on pitkä. 100 vuoden aikana mökin ylläpitokustannukset ovat vajaa 220 000 euroa, sillä vuoden ylläpitokustannukset ovat noin 2175 euroa.

Sadan vuoden aikana rakennusta joudutaan korjaamaan. Korjauskohteita ovat muun muassa märkätilojen vedeneristeet, vesikatto, puunsoja hirren pintaan sekä viemäriputket. Kun korjauskustannukset lasketaan yhteen, saadaan elinkaaren korjauskustannuksiksi noin 55 000 euroa. (Ks. liite 18.)

Kohteen rakennuskustannukset olivat noin 150 000 euroa, joten 100 vuoden elinkaareella laskettuna rakennuksen elinkaarikustannukset ovat noin 425 000 euroa. Näin ollen rakennus maksaa itsensä takaisin vajaassa 42 vuodessa, jos mukaan otetaan koko elinkaaren aikaiset menot.

8 Markkinointi

vaikuttamaan, sillä pienellä ylimääräisellä rahapannostuksella oman vuokrarakennuksen voi nostaa suoraan etusivulle. Tällä tavoin pystyy varmistamaan sen, että oma vuokrarakennus on kaikkien nähtävillä. Esimerkiksi Nettimökki-sivustolla neljän euron hinnalla voi nostaa oman ilmoitukseensa etusivulle, missä se näkyy vähintään tunnin ajan.

Vuokrarakennukselle on myös tavoitteenä saada ulkomaalaisvuokralaisia. Olisikon erittäin tärkeää saada rakennus esimerkiksi venäläisturistien tietoisuuteen, sillä itäräajan takana on suuri määrä potentiaalisia vuokralaisehdokkaita. Kun rakennukselle on saatu ensimmäiset ulkomaalaisvuokralaiset, on tärkeää, että kaikki sujuu heidän vierailunsa aikana moitteettomasti. Tällä tavoin on mahdollista saada samat vierait valitsemaan tulevaisuudessa oman vuokrarakennuksen lomansa viettopaikaksi. Kun vuokralaiset ovat lomansa päättyttyä tyytyväisiä niin mökkiin kuin vuokraisäntäänkin, on hyvin todennäköistä, että he suosittelevat paikkaa myös tuttavilleen ja ystävilleen. Tällä tavoin voi syntyä lisää tärkeitä vuokrasuhteita.

9 Yhteenveto

Opinnäytetyön tarkoituksena oli luoda käsitys siitä, kuinka paljon suhteellisen hyvin varustellun vuokrarakennuksen rakennuskustannukset tulevat olemaan. Lisäksi lämmitysjärjestelmän valinnassa pyrittiin vähän sähköenergiaa vievään ratkaisuun. Tähän työhön etsittiin eri lähteistä tietoa siitä, miten rakennuksen rakentamisajan kustannuksissa voidaan säätää ja mitkä seikat vaikuttavat rakennuksen energiankulutukseen.
Mielestäni opinnäytetyö oli melko onnistunut, sillä se antoi vastauksia erilaisiin kysymyksiin. Esimerkiksi oli mielenkiintoista nähdä, kuinka kauan kalliimmat ja paremmalla U-arvolla varustetut ikkunat maksaisivat itseään takaisin. Henkilökohtaisesti minulle tuli pienenä yllätyksenä, että kyseisillä ikkunoilla menisi 25 vuotta maksaa itsensä takaisin. Tästä jokainen voi päätellä, onko kannattavaa panostaa parempiin ikkunoihin vain sen takia, että ne eivät päästä lävitseen niin paljon lämpöenergiaa hukkaan.

Toinen mielenkiintoinen seikka oli rakennuksen takaisinmaksuaika. Jos rakennusta vuokrataan suhteellisen paljon, maksaa se itsensä takaisin suhteellisen nopeasti. Rakennus kerkeää maksaa itsensä takaisin jo ennen kuin siihen tarvitsee ruveta tekemään korjauksia. Tämä tietysti edellyttää sen, että ihmiset vuokraavat rakennusta.

Kaiken kaikkiaan luulen, että opinnäytetyön tilaaja sai tästä apua siihen, kuinka kannattavaa on rakentaa vuokrakäyttöön tarkoitettu rakennus. Kannattavuuteen vaikuttaa tietenkin myös rakennuksen sijainti, sillä esimerkiksi laskettelukeskusten läheisyydessä olevat vuokrarakennukset ovat usein kysyttyä tavaraa.
Lähteet

Http://www.ym.fi/fi-FI/Maankaytto_ja_rakentaminen/Lainsaadanto_ja_ohjeet/Rakentamismaaarayskoke_lma/Valmisteilla_olevat_rakentamismaaarayskokoelman_osat.

Http://www.veroilmotusohjeet/palkansaaja/vuokratulojenverotus/.

Liitteet

Liite 1. Ensimmäisen kerroksen pohjakuva
Liite 2. Toisen kerroksen pohjakuva
Liite 3. Julkisivu kaakkoon
Liite 4. Julkimu koilliseen
Liite 5. Julkisivu lounaaseen
Liite 6. Julkisivu luoteeseen
Liite 7. Alapohjan U-arvo

<table>
<thead>
<tr>
<th>Unelmantautu</th>
<th>Ruvanluoja</th>
<th>värä</th>
<th>Alapohjan lähde</th>
<th>P-alue</th>
<th>P-alue</th>
</tr>
</thead>
<tbody>
<tr>
<td>lampa 1</td>
<td>0,038 W/mK</td>
<td>0,1</td>
<td>1,2915799 m2/kW</td>
<td>1,2915799 m2/kW</td>
<td></td>
</tr>
<tr>
<td>lampa 2</td>
<td>0,038 W/mK</td>
<td>0,1</td>
<td>1,2915799 m2/kW</td>
<td>1,2915799 m2/kW</td>
<td></td>
</tr>
<tr>
<td>Rv</td>
<td>0,17 m2/kW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rv2</td>
<td>0,04 m2/kW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sisäpäiden lämmönarvo Rv

Rv = d / d

Maanvastaisen alapohjan ekvivalentti päästö dt

dt = 0,2 m

Maanvastaisen alapohjan lämmönlaatu hiukset Uf

uf = [fr(0,5)+] / A

Lattiasarjan tai metsän sisäpiirissä

Vge = Vge + (m(h - d)/h - d) / 2 Vge/h

Myllykallion sisäpiirissä

Vge = Vge + (h - d)/h - d / 2

Vge = 0,02 045 1467 m2/kW

Ulkoisin alapohjan tarkennus

Uf = 0,04

Näköpiirin suunnattu uudelleenväline

Uf = 0,04
Liite 8. Yläpohjan U-arvo

Yläpohjan U-arvo, rakenneteollisuuden rinnakkaisia materiaaleja

<table>
<thead>
<tr>
<th>Rakennepala</th>
<th>painevuus (m)</th>
<th>2u (W/mK)</th>
<th>isko (mm)</th>
<th>leveys (mm)</th>
<th>R (m2K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paneeli</td>
<td>0,015</td>
<td>0,12</td>
<td></td>
<td></td>
<td>0,125</td>
</tr>
<tr>
<td>Elmarako</td>
<td>0,022</td>
<td></td>
<td></td>
<td></td>
<td>0,16</td>
</tr>
<tr>
<td>Koolaus</td>
<td>0,012</td>
<td>0,12</td>
<td>600</td>
<td></td>
<td>0,183</td>
</tr>
<tr>
<td>Hsmuovi</td>
<td>0,0002</td>
<td>0,33</td>
<td></td>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td>Runko</td>
<td>0,45</td>
<td>0,11</td>
<td>900</td>
<td>51</td>
<td>4,091</td>
</tr>
<tr>
<td>Ensinte</td>
<td>0,45</td>
<td>0,037</td>
<td>900</td>
<td></td>
<td>12,162</td>
</tr>
<tr>
<td>Tuulensuoja</td>
<td>0,012</td>
<td>0,056</td>
<td></td>
<td></td>
<td>0,214</td>
</tr>
<tr>
<td>Rsi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,1</td>
</tr>
<tr>
<td>Rse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,04</td>
</tr>
</tbody>
</table>

Yläkkianvo R't

\[
1/R't = f_a/R_{ta} + f_b/R_{tb} + \ldots + f_n/R_{tn}
\]

\[
f_a = 0.94333333 \quad R_{ta} = 12.662
\]

\[
f_b = 0.056666667 \quad R_{tb} = 4.591
\]

\[
1/R't = 0.08684434 \quad R't = 11.51485521
\]

Alakäänavo R''t

\[
1/R''t = f_a/R_a + f_b/R_b + \ldots + f_n/R_n
\]

\[
f_a = 0.94333333 \quad R_a = 12.162
\]

\[
f_b = 0.056666667 \quad R_b = 4.091
\]

\[
1/R''t = 0.091434815 \quad R''t = 10.93141594
\]

\[
R''t = 1.1,44
\]

\[
R_t = (R''t + R't)/2
\]

R_t = 11,52664646

\[
U = 1/R_t
\]

U = 0,09
Liite 9. E-luvun laskennan lähtötiedot, maalämpö

<table>
<thead>
<tr>
<th>Rakennuskohde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osoite</td>
</tr>
<tr>
<td>Rakennusvälin käyttötarkoitus</td>
</tr>
<tr>
<td>Rakennusvuosi</td>
</tr>
</tbody>
</table>
| Lämmittelynetoala | m²
| Ilmansuutelu-alku vp0 | m³/(h·m²)
| Ilmansuutelu-alku vp0 | W/(m²·K)
| Rakennusvälin erottelu painotukset | m²
| A | W/(m²·K)
| U | U' | %
| Ulkoasianäät |
| Yläpohja |
| Alapohja |
| Ikkunat |
| Ulko-ovet |
| Kyllänsillat |
| Ikkunat ilmansuun mittain | m²
| A | U | gavo
| Rohjainen |
| Koillinen |
| Itä |
| Kaakko |
| Etelä |
| Lounas |
| Länsi |
| Luode |
| Ilmanvaihtojärjestelmä |
| Imanvaihto tulo/posto | m³/s
| Jarjestelyman SPF-suku | kW/(m³·s)
| LUV:n lämpötila-aste | °C
| Päällänsuutelutarkoitetut |
| Erillispoistot |
| Ilmanvaihtojärjestelmä |
| Lämmitysjärjestelmä |
| Tuoton hyötyyhde | W
| Lämmitysjärjestelmän hyötyyhde | W
| Lämpökerroin |
| Apulaitteiden säätökasutus | W
| Tilien ja liian lämmitys |
| LUV:n valmistus |
| Lähdöntyyppijärjestelmä |
| Lähdöntyyppin painottettu kylmäkerroin |
Liite 10. E-luku, maalämpö

<table>
<thead>
<tr>
<th>Rakennushkohe</th>
<th>E-luku</th>
<th>kWh/(m²a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osotte</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Rakennuskusti ja liäntokulutus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rakennusvuosi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lämmityset nettoala</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>E-luku</td>
<td>145</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-luvun erittely</th>
<th>Cistoenergia kWh/a</th>
<th>Energiamuodon kermo kWh/a</th>
<th>Kertoimella painetettu energiankulutus kWh/(m²a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sähkö</td>
<td>4356</td>
<td>1,7</td>
<td>7405</td>
</tr>
<tr>
<td>Kaukolämpö</td>
<td>0,7</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>Kaukotäyttöys</td>
<td>0,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uusiutuva poistoaina</td>
<td>26682</td>
<td>0,5</td>
<td>13814</td>
</tr>
<tr>
<td>Fossilinen poistoaina</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Yhteensä</td>
<td>31013</td>
<td>20746</td>
<td>145</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uusiutuva omavaraisenergia kWh/a kWh/(m²a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aurinko-ahkiko</td>
</tr>
<tr>
<td>Aurinkolämpö</td>
</tr>
<tr>
<td>Tuulishäkko</td>
</tr>
<tr>
<td>Lämpöpumun ottama energia</td>
</tr>
</tbody>
</table>

| Rakennuksen teknisten järjestelmien energiankulutus kWh/(m²a) kWh/(m²a) kWh/(m²a) |
|--|-----------------|-----------------|-----------------|
| Lämmitysjärjestelmä | Sähkö | Lämpö | Kaukotäyttöys |
| Tilojen lämmitys | 68 | 87 | 68 |
| Tuliöiden lämmitys | 2 | 9 | 2 |
| LKV valmistus | 30 | 68 | 30 |
| N-järjestelmän sähkönkulutus | 12 | | 12 |
| Jähdytysjärjestelmä | | | |
| Kuluttajaalit ja valaistus | 18 | | |
| Yhteensä | 131 | 183 | |

<table>
<thead>
<tr>
<th>Energian nettotarve kWh/a kWh/(m²a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilojen lämmitys</td>
</tr>
<tr>
<td>Ilmanvaihdon lämmitys</td>
</tr>
<tr>
<td>LKV valmius</td>
</tr>
<tr>
<td>Jähdytys</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lämpökuormat kWh/a kWh/(m²a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aurinko</td>
</tr>
<tr>
<td>Ihmiset</td>
</tr>
<tr>
<td>Kuluttajaalit</td>
</tr>
<tr>
<td>Valaistus</td>
</tr>
</tbody>
</table>
Liite 11. E-luvun laskennan lähtötiedot, sähkö

E-luvun laskennan lähtötiedot

<table>
<thead>
<tr>
<th>Rakennushohde</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Osioite</td>
<td></td>
</tr>
<tr>
<td>Rakennuksen käyttötarkoitus</td>
<td></td>
</tr>
<tr>
<td>Rakennusvuosi</td>
<td></td>
</tr>
<tr>
<td>Lämmitystyyppi metsäisä</td>
<td>343 m²</td>
</tr>
<tr>
<td>Ilmanvauriotuki 450</td>
<td>4 m³/(h/m²)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rakennusvaipan umpiosat</th>
<th>A</th>
<th>U</th>
<th>U*A</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulkossainat</td>
<td>46,98</td>
<td>0,4</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>Yläpuhja</td>
<td>93,02</td>
<td>0,09</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Alapuolija</td>
<td>71,39</td>
<td>0,16</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>Ikkunat</td>
<td>21,3</td>
<td>0,74</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>Ulko-avet</td>
<td>12,27</td>
<td>0,6</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ikkunat ilmanskuntaita</th>
<th>A</th>
<th>U</th>
<th>g-arvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pohjoinen</td>
<td>6,74</td>
<td>0,74</td>
<td>6,63</td>
</tr>
<tr>
<td>Koillinen</td>
<td>2,19</td>
<td>0,74</td>
<td>6,63</td>
</tr>
<tr>
<td>Kasanko</td>
<td>10,37</td>
<td>0,74</td>
<td>6,63</td>
</tr>
<tr>
<td>Länsi</td>
<td>3,4</td>
<td>0,74</td>
<td>6,63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ilmanyhdistojärjestelmä</th>
<th>Ilmavirto tub/posio</th>
<th>Järjestelmän SPI-luku</th>
<th>LTO:n lomara- sahde</th>
<th>Jäätyminen esto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[m³/s]</td>
<td>kW/(m³/s)</td>
<td>℃</td>
<td></td>
</tr>
<tr>
<td>Ilmanvaihtokonnet</td>
<td>0,076</td>
<td>2,67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lämmitysjärjestelmä</th>
<th>Tuoton hyötyysuhde</th>
<th>Lämmitysjärjestelmä</th>
<th>Lämpökerroin</th>
<th>Apunailetidens sähkökäyttö W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilmenen ja LV:n lämmitys</td>
<td>2,5</td>
<td>1</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>LV:n valmistus</td>
<td>2,3</td>
<td>0,85</td>
<td>2,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sähkötyypinäätelmä</th>
<th>Sähkötyypinäätelmä</th>
<th>Sähkötyypinäätelmä</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Liite 12. E-luku, sähkö

E-luvun laskennan tulokset

<table>
<thead>
<tr>
<th>Rakennuskohde</th>
<th>Ostoenergia</th>
<th>Energiamuodon karminta</th>
<th>Kertoimella painotettu energiankulutus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kWh/a</td>
<td>kWh/(m²a)</td>
<td>kWh/a</td>
</tr>
<tr>
<td>Sähkö</td>
<td>34481</td>
<td>1,7</td>
<td>43317</td>
</tr>
<tr>
<td>Kautilämpö</td>
<td>0,7</td>
<td>43317</td>
<td>303</td>
</tr>
<tr>
<td>Kaukojahdytys</td>
<td>0,4</td>
<td>43317</td>
<td>303</td>
</tr>
<tr>
<td>Uusisätiö puoltoisina</td>
<td>0,5</td>
<td>43317</td>
<td>303</td>
</tr>
<tr>
<td>Fossilinen puoltoisina</td>
<td>1</td>
<td>43317</td>
<td>303</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>25481</td>
<td>43317</td>
<td>303</td>
</tr>
</tbody>
</table>

Uusiutuvaa omavaraisenergia

<table>
<thead>
<tr>
<th></th>
<th>kWh/a</th>
<th>kWh/(m²a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aurinko</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aurinkolämpö</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuulisähkö</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rakennuksen teknisten järjestelmien energiankulutus

<table>
<thead>
<tr>
<th>Lämmitys- ja jäähdytystulot</th>
<th>kWh/(m²a)</th>
<th>kWh/(m²a)</th>
<th>kWh/(m²a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilojen lämmitys</td>
<td>66</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Tuulisähkölämmitys</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>UKV valmistus</td>
<td>30</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>M-järjestelmän sähkökulutus</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jäähydytys- ja täyttökeräily</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tilanteoska</td>
<td>129</td>
<td>138</td>
<td></td>
</tr>
</tbody>
</table>

Energian nettotarve

<table>
<thead>
<tr>
<th></th>
<th>kWh/a</th>
<th>kWh/(m²a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilojen lämmitys</td>
<td>9326</td>
<td>65</td>
</tr>
<tr>
<td>Ilmansähkölämmitys</td>
<td>1711</td>
<td>0</td>
</tr>
<tr>
<td>UKV valmistus</td>
<td>5323</td>
<td>37</td>
</tr>
<tr>
<td>Jäähydytyse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lämpökuormat

<table>
<thead>
<tr>
<th></th>
<th>kWh/a</th>
<th>kWh/(m²a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aurinko</td>
<td>6389</td>
<td>43</td>
</tr>
<tr>
<td>Aminset</td>
<td>3285</td>
<td>23</td>
</tr>
<tr>
<td>Kukkula-alus</td>
<td>2288</td>
<td>16</td>
</tr>
<tr>
<td>Vaihe</td>
<td>316</td>
<td>2</td>
</tr>
</tbody>
</table>
Liite 13. Asiakaskysely

Asiakaskysely

<table>
<thead>
<tr>
<th>Sukupuoli</th>
<th>nainen</th>
<th>mies</th>
</tr>
</thead>
<tbody>
<tr>
<td>luku</td>
<td>alle 20v</td>
<td>20-30v</td>
</tr>
</tbody>
</table>

Mikälaista varustelutason odottaisit tuoreparoiksi?

| Sähköö | Sis-ARC | Juokseva vei | Lattialämmitys | Takka | Sähkösauna | Puustuina (rannassa) | Asiampesukone | Ulkoseppi/pakastin | Sähköaunu/besi | Mikraaaltouuni | Kaivinpelto | Vedenkeitin | Lava-panaidun | Astiaasto (ruuanliittovälineitä, champanja, viski, konjakki ja viinilaist, muut ruokailuvälineitä) | Silitysvälineet | Lapsivarustus (lasten sänky, syöttötuoli, pota) | Pyykinpesukone | Kuvahaappa | Taulut-TV | Kirjat-araavilaitteet | Kaksi-kellokoneet | Langaton nettyyhteys | Fiikko-soili (playstation, x-box, vars.) | Vene | Nuottapaija rannassa | Jotakin muuta, mitä? |

Mikälaista aktiiviteettimahdollisia suksia toivoltiit olivat välittömässä läheisyydessä tai kohtauksessa matkan päässä?

| Lasikartelu | Filmi | Lumikasvialilo | Moottorikelkku | Avantounimi | Venelil | Metsäties | Kalastus | Marjastus | Sienamyy | Porti | Maastopyöräyli | Golf | Jokin muu, mikä? |
Mikä olisio epä vaikutteisesti minä suunnalta lisättävästä女士 (10-hengan mökki)?

<table>
<thead>
<tr>
<th>Vuokrahinta</th>
<th>vrik</th>
<th>vil</th>
<th>vlo</th>
</tr>
</thead>
<tbody>
<tr>
<td>alle 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150-200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200-250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250-300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300-350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350-400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400-450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450-500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500-550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>550-600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600-650</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>650-700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750-800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800-850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>850-900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900-950</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>950-1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yli 1000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jos on ilta savusauna, milloin paikkaa ilteen on ollut valuvaraa, milloin maksamaan sen käytöstä vierailusi aikana?

<table>
<thead>
<tr>
<th></th>
<th>Vierailusi kestää vik:n</th>
<th>Vierailusi kestää vik:n</th>
<th>Vierailusi kestää vik:n</th>
</tr>
</thead>
<tbody>
<tr>
<td>alle 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150-200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200-250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yli 250</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entä paljon käytöstä?

<table>
<thead>
<tr>
<th></th>
<th>Vierailusi kestää vik:n</th>
<th>Vierailusi kestää vik:n</th>
<th>Vierailusi kestää vik:n</th>
</tr>
</thead>
<tbody>
<tr>
<td>alle 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150-200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200-250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yli 250</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Kuin ka monta kertaa vuodessa käytit vuokramökkiä?

<table>
<thead>
<tr>
<th>Käyntikerrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>enemmän</td>
</tr>
</tbody>
</table>

Montako vuoroaastaa keskimäärin yksi vierailusi vuokramökillä kestäää?

<table>
<thead>
<tr>
<th>Vuoro-kaudet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>enemmän</td>
</tr>
</tbody>
</table>

Onko vielä jotain mitä haluaisit lisätä, joka ei tullut esille kyselyssä?

Kiitos vastauksistasi!
Liite 14. Asiakaskyselyn tulokset, naiset

Tulokset

<table>
<thead>
<tr>
<th>Maksullinen palvelutaso</th>
<th>alle 20</th>
<th>20-30</th>
<th>30-40</th>
<th>40-50</th>
<th>50-60</th>
<th>yli 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sähkö</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Sisä-WC</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Juniskööri</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Lattialämmitys</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Takka</td>
<td>33</td>
<td>50</td>
<td>67</td>
<td>80</td>
<td>100</td>
<td>64</td>
</tr>
<tr>
<td>Sähkösauna</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Puuro sauna (tonnassa)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>APK</td>
<td>67</td>
<td>50</td>
<td>100</td>
<td>40</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td>RPK</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Sähkösauna/Liesi</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Miisaalostamo</td>
<td>100</td>
<td>50</td>
<td>67</td>
<td>80</td>
<td>100</td>
<td>79</td>
</tr>
<tr>
<td>Kahvinkitchen</td>
<td>67</td>
<td>50</td>
<td>67</td>
<td>100</td>
<td>100</td>
<td>79</td>
</tr>
<tr>
<td>Vedenkeitin</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Leivänpaahdin</td>
<td>33</td>
<td>50</td>
<td>67</td>
<td>40</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>Astiasto</td>
<td>100</td>
<td>100</td>
<td>67</td>
<td>80</td>
<td>100</td>
<td>86</td>
</tr>
<tr>
<td>Siltrivälimeet</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Lapsivarustus</td>
<td>33</td>
<td>50</td>
<td>0</td>
<td>20</td>
<td>100</td>
<td>29</td>
</tr>
<tr>
<td>PPK</td>
<td>33</td>
<td>0</td>
<td>67</td>
<td>80</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Kuvauskaapeli</td>
<td>0</td>
<td>0</td>
<td>67</td>
<td>40</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Taulu-TV</td>
<td>100</td>
<td>50</td>
<td>33</td>
<td>80</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>Kuiniketettä laittimet</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Karkkolaitteet</td>
<td>33</td>
<td>100</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>Langaton nettityytyvä</td>
<td>33</td>
<td>0</td>
<td>33</td>
<td>60</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>Pelikonoll</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Venne</td>
<td>33</td>
<td>0</td>
<td>67</td>
<td>80</td>
<td>100</td>
<td>57</td>
</tr>
<tr>
<td>Nuottopalikka</td>
<td>100</td>
<td>50</td>
<td>67</td>
<td>80</td>
<td>100</td>
<td>79</td>
</tr>
</tbody>
</table>

Aktiivisuusmittat

<table>
<thead>
<tr>
<th>Laskettelu</th>
<th>67</th>
<th>100</th>
<th>67</th>
<th>60</th>
<th>0</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hilto</td>
<td>100</td>
<td>0</td>
<td>67</td>
<td>60</td>
<td>100</td>
<td>64</td>
</tr>
<tr>
<td>Lumiksenkäly</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>40</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Moottorikelkkeli</td>
<td>67</td>
<td>50</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Avantointi</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>0</td>
<td>100</td>
<td>14</td>
</tr>
<tr>
<td>Venely</td>
<td>33</td>
<td>0</td>
<td>67</td>
<td>40</td>
<td>100</td>
<td>43</td>
</tr>
<tr>
<td>Metsästys</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Keliastus</td>
<td>0</td>
<td>50</td>
<td>67</td>
<td>20</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Mäkiastus</td>
<td>0</td>
<td>0</td>
<td>67</td>
<td>20</td>
<td>100</td>
<td>29</td>
</tr>
<tr>
<td>Siemenstys</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>20</td>
<td>100</td>
<td>21</td>
</tr>
<tr>
<td>Retkeily</td>
<td>67</td>
<td>0</td>
<td>100</td>
<td>20</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>Maastopyöräily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Golf</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Muu</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

Vuokraha kita

<table>
<thead>
<tr>
<th>vuokrauslaita</th>
<th>vuokrauslaita</th>
<th>vuokrauslaita</th>
<th>vuokrauslaita</th>
</tr>
</thead>
<tbody>
<tr>
<td>vik</td>
<td>vki</td>
<td>vko</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>321</td>
<td>677</td>
<td></td>
</tr>
<tr>
<td>150 €</td>
<td>325 €</td>
<td>700 €</td>
<td></td>
</tr>
</tbody>
</table>

Lätkänkraava saunasäätö

<table>
<thead>
<tr>
<th>lätkänkraava saunasäätö</th>
<th>lätkänkraava saunasäätö</th>
<th>lätkänkraava saunasäätö</th>
</tr>
</thead>
<tbody>
<tr>
<td>vik</td>
<td>vki</td>
<td>vko</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>164</td>
</tr>
<tr>
<td>75 €</td>
<td>125 €</td>
<td>175 €</td>
</tr>
<tr>
<td>Lisäruokia palju</td>
<td>VRK</td>
<td>UCL</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>75 €</td>
<td>125 €</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vuokramökin käyttö</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>>7</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yhden vierailun kesto</th>
<th>VRK</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>>7</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Liite 15. Asiakaskyselyn tulokset, miehet

<table>
<thead>
<tr>
<th>Miehet</th>
<th>alle 20</th>
<th>20-30</th>
<th>30-40</th>
<th>40-50</th>
<th>50-60</th>
<th>yli 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miehen varustelutaso</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sähkö</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Sisä-WC</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Joustaveisi</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Latialäämmitys</td>
<td>100</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Takka</td>
<td>25</td>
<td>100</td>
<td>50</td>
<td>60</td>
<td>100</td>
<td>68</td>
</tr>
<tr>
<td>Sähkösauna</td>
<td>75</td>
<td>20</td>
<td>50</td>
<td>60</td>
<td>33</td>
<td>47</td>
</tr>
<tr>
<td>Puusauna (rannassa)</td>
<td>75</td>
<td>80</td>
<td>50</td>
<td>60</td>
<td>100</td>
<td>74</td>
</tr>
<tr>
<td>APK</td>
<td>100</td>
<td>80</td>
<td>50</td>
<td>60</td>
<td>100</td>
<td>79</td>
</tr>
<tr>
<td>JK/P</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Sähköbuuni/liesi</td>
<td>75</td>
<td>80</td>
<td>100</td>
<td>80</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>Mikroaaltouuni</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>Kahvinkahvi</td>
<td>75</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td>100</td>
<td>89</td>
</tr>
<tr>
<td>Vedenkeitin</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>67</td>
<td>32</td>
</tr>
<tr>
<td>Laidunpahdin</td>
<td>75</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td>Astiaasto</td>
<td>100</td>
<td>80</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>89</td>
</tr>
<tr>
<td>Silitysvalmiste</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>33</td>
<td>21</td>
</tr>
<tr>
<td>Lapanvaruste</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>33</td>
<td>20</td>
</tr>
<tr>
<td>PPK</td>
<td>75</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>60</td>
<td>67</td>
</tr>
<tr>
<td>Kyljutaskeaapi</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>60</td>
<td>67</td>
<td>42</td>
</tr>
<tr>
<td>Taulu-TV</td>
<td>100</td>
<td>80</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>89</td>
</tr>
<tr>
<td>Kotiteatterilaiteet</td>
<td>75</td>
<td>60</td>
<td>50</td>
<td>20</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>Karaokealkkueet</td>
<td>50</td>
<td>40</td>
<td>0</td>
<td>20</td>
<td>67</td>
<td>37</td>
</tr>
<tr>
<td>Langaton nettiyhteyks</td>
<td>75</td>
<td>80</td>
<td>50</td>
<td>20</td>
<td>33</td>
<td>53</td>
</tr>
<tr>
<td>Pelikonsoli</td>
<td>100</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Vene</td>
<td>50</td>
<td>40</td>
<td>0</td>
<td>40</td>
<td>100</td>
<td>47</td>
</tr>
<tr>
<td>Nuottopaikka</td>
<td>50</td>
<td>60</td>
<td>50</td>
<td>60</td>
<td>100</td>
<td>63</td>
</tr>
</tbody>
</table>

Aktiiviteettimäärä

<table>
<thead>
<tr>
<th>Aktiiviteettimäärä</th>
<th>alle 20</th>
<th>20-30</th>
<th>30-40</th>
<th>40-50</th>
<th>50-60</th>
<th>yli 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laskettelu</td>
<td>50</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Hiljaa</td>
<td>50</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Lumikonekäily</td>
<td>25</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Moottorileikkaus</td>
<td>75</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>67</td>
<td>53</td>
</tr>
<tr>
<td>Vihreänuoruus</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>21</td>
</tr>
<tr>
<td>Veneily</td>
<td>50</td>
<td>60</td>
<td>100</td>
<td>60</td>
<td>100</td>
<td>68</td>
</tr>
<tr>
<td>Metsästys</td>
<td>50</td>
<td>40</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>Kalastus</td>
<td>75</td>
<td>40</td>
<td>0</td>
<td>80</td>
<td>100</td>
<td>63</td>
</tr>
<tr>
<td>Marjastus</td>
<td>25</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>67</td>
<td>26</td>
</tr>
<tr>
<td>Siemenstys</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>67</td>
<td>26</td>
</tr>
<tr>
<td>Retkeily</td>
<td>25</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>67</td>
<td>32</td>
</tr>
<tr>
<td>Maastopyöräily</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Golf</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Muu</td>
<td>25</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>

Vuokrahinta

<table>
<thead>
<tr>
<th>vnk</th>
<th>vkl</th>
<th>vko</th>
</tr>
</thead>
<tbody>
<tr>
<td>171</td>
<td>370</td>
<td>694</td>
</tr>
<tr>
<td>175 €</td>
<td>375 €</td>
<td>700 €</td>
</tr>
</tbody>
</table>

Liisavuokra savusauna

<table>
<thead>
<tr>
<th>vnk</th>
<th>vkl</th>
<th>vko</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>111</td>
<td>150</td>
</tr>
<tr>
<td>75 €</td>
<td>125 €</td>
<td>150 €</td>
</tr>
</tbody>
</table>

Liisavuokra palju

<table>
<thead>
<tr>
<th>vnk</th>
<th>vkl</th>
<th>vko</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>107</td>
<td>133</td>
</tr>
<tr>
<td>75 €</td>
<td>125 €</td>
<td>150 €</td>
</tr>
</tbody>
</table>

Vuokramökkin käyttö

<table>
<thead>
<tr>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>>7</td>
</tr>
</tbody>
</table>

Yhden vierailun kesto

<table>
<thead>
<tr>
<th>vnk</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>>7</td>
<td>0</td>
</tr>
</tbody>
</table>
Liite 16. Asiakaskyselyn tulokset, yhteenveto

Yhteenveto

<table>
<thead>
<tr>
<th>Kaupunki</th>
<th>alle 20</th>
<th>20-30</th>
<th>30-40</th>
<th>40-50</th>
<th>50-60</th>
<th>yli 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sähkö</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Sisä-WC</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Juovana</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Lattialämmitys</td>
<td>83</td>
<td>30</td>
<td>25</td>
<td>50</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>Taika</td>
<td>29</td>
<td>75</td>
<td>58</td>
<td>70</td>
<td>100</td>
<td>67</td>
</tr>
<tr>
<td>Sähkösauna</td>
<td>38</td>
<td>35</td>
<td>25</td>
<td>40</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td>Sauna (rannassa)</td>
<td>88</td>
<td>65</td>
<td>75</td>
<td>40</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>APK</td>
<td>83</td>
<td>65</td>
<td>75</td>
<td>50</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>JK/P</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Sähköperhe</td>
<td>88</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>97</td>
</tr>
<tr>
<td>Miksaikoini</td>
<td>100</td>
<td>75</td>
<td>85</td>
<td>50</td>
<td>100</td>
<td>88</td>
</tr>
<tr>
<td>Kanvinka</td>
<td>71</td>
<td>75</td>
<td>85</td>
<td>50</td>
<td>100</td>
<td>85</td>
</tr>
<tr>
<td>Vedenkerta</td>
<td>13</td>
<td>45</td>
<td>0</td>
<td>10</td>
<td>33</td>
<td>21</td>
</tr>
<tr>
<td>Lehvangmahdi</td>
<td>54</td>
<td>45</td>
<td>33</td>
<td>30</td>
<td>17</td>
<td>39</td>
</tr>
<tr>
<td>Astia</td>
<td>100</td>
<td>90</td>
<td>58</td>
<td>90</td>
<td>100</td>
<td>88</td>
</tr>
<tr>
<td>Silitysvainetta</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>LapiHarjutus</td>
<td>29</td>
<td>45</td>
<td>0</td>
<td>20</td>
<td>67</td>
<td>27</td>
</tr>
<tr>
<td>PPK</td>
<td>54</td>
<td>20</td>
<td>33</td>
<td>60</td>
<td>33</td>
<td>48</td>
</tr>
<tr>
<td>Kuulosaapin</td>
<td>13</td>
<td>20</td>
<td>33</td>
<td>50</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>Taul-TV</td>
<td>100</td>
<td>65</td>
<td>42</td>
<td>90</td>
<td>50</td>
<td>79</td>
</tr>
<tr>
<td>Kukkakantahintat</td>
<td>38</td>
<td>55</td>
<td>30</td>
<td>30</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>Karaokebasiset</td>
<td>42</td>
<td>70</td>
<td>0</td>
<td>40</td>
<td>33</td>
<td>39</td>
</tr>
<tr>
<td>Langaton nettiyhteys</td>
<td>54</td>
<td>40</td>
<td>42</td>
<td>40</td>
<td>17</td>
<td>45</td>
</tr>
<tr>
<td>Pelikonto</td>
<td>50</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Vene</td>
<td>42</td>
<td>20</td>
<td>33</td>
<td>60</td>
<td>100</td>
<td>52</td>
</tr>
<tr>
<td>Nuoripalikka</td>
<td>75</td>
<td>55</td>
<td>58</td>
<td>70</td>
<td>100</td>
<td>70</td>
</tr>
</tbody>
</table>

Aktiivisuuskirja

<table>
<thead>
<tr>
<th>Kirja</th>
<th>Lasiottelu</th>
<th>Hihto</th>
<th>Lumikankaisly</th>
<th>Moottoripyörätkä</th>
<th>Avantouinti</th>
<th>Venely</th>
<th>Metsätek</th>
<th>Kalastus</th>
<th>Maanjäristys</th>
<th>Siemenjäristys</th>
<th>Retkikyll</th>
<th>Maastopyöräkyl</th>
<th>Aktiivisuus</th>
<th>yht.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>58</td>
<td>80</td>
<td>58</td>
<td>50</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>20</td>
<td>58</td>
<td>50</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>10</td>
<td>42</td>
<td>30</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>45</td>
<td>25</td>
<td>30</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>30</td>
<td>83</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>20</td>
<td>17</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>45</td>
<td>33</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>10</td>
<td>33</td>
<td>20</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>10</td>
<td>17</td>
<td>20</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>10</td>
<td>75</td>
<td>20</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Golf</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muu</td>
<td>13</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vuokrahinta

<table>
<thead>
<tr>
<th>vrk</th>
<th>vkl</th>
<th>vko</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>346</td>
<td>685</td>
</tr>
</tbody>
</table>

| 150 € | 350 € | 300 € |

Lisävuokra savusaura

<table>
<thead>
<tr>
<th>vrk</th>
<th>vkl</th>
<th>vko</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>118</td>
<td>157</td>
</tr>
</tbody>
</table>

| 75 € | 125 € | 175 € |

Lisävuokra palju

<table>
<thead>
<tr>
<th>vrk</th>
<th>vkl</th>
<th>vko</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>113</td>
<td>147</td>
</tr>
</tbody>
</table>

| 75 € | 125 € | 150 € |

Vuokramökkin käyttö

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>>7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Yhden vierailun kesto

<table>
<thead>
<tr>
<th>vrk</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>>7</td>
<td>0</td>
</tr>
</tbody>
</table>
Liite 17. Rakennustöiden ja -materiaalien menekki

<table>
<thead>
<tr>
<th>Nimike</th>
<th>Materiaali €</th>
<th>Työ €</th>
<th>Yht. €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maanrakennustyöt</td>
<td>3 317</td>
<td>6 162</td>
<td>9 479</td>
</tr>
<tr>
<td>Perustukset ja alapohja</td>
<td>7 112</td>
<td>7 213</td>
<td>9 325</td>
</tr>
<tr>
<td>Runko ja julkisivu</td>
<td>41 751</td>
<td>1 691</td>
<td>43 442</td>
</tr>
<tr>
<td>Vilipohja</td>
<td>4 077</td>
<td>5 551</td>
<td>9 637</td>
</tr>
<tr>
<td>Välineitä ja-pohja</td>
<td>1 765</td>
<td>1 350</td>
<td>3 114</td>
</tr>
<tr>
<td>Siiskosat</td>
<td>12 709</td>
<td>13 178</td>
<td>25 886</td>
</tr>
<tr>
<td>Kalusteet</td>
<td>12 755</td>
<td>718</td>
<td>13 473</td>
</tr>
<tr>
<td>LVII lyhet</td>
<td>26 889,3</td>
<td></td>
<td>26 889</td>
</tr>
<tr>
<td>Sähkölyöt</td>
<td>10 830</td>
<td></td>
<td>10 830</td>
</tr>
<tr>
<td>Yht.</td>
<td></td>
<td></td>
<td>150 070</td>
</tr>
</tbody>
</table>

Liite 18. Elinkaarikustannukset

<table>
<thead>
<tr>
<th>Lukuutava osa</th>
<th>Hinta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Määräluokat</td>
<td>11 237</td>
</tr>
<tr>
<td>Runko</td>
<td>1 350</td>
</tr>
<tr>
<td>Miloummien</td>
<td>15 400</td>
</tr>
<tr>
<td>Ny-lone</td>
<td>300</td>
</tr>
<tr>
<td>Keittö</td>
<td>10 000</td>
</tr>
<tr>
<td>LVII</td>
<td>500</td>
</tr>
<tr>
<td>Verikatto</td>
<td>931</td>
</tr>
<tr>
<td>Sisäpinn.</td>
<td>8 072</td>
</tr>
<tr>
<td>Uloasoulu</td>
<td>2 786</td>
</tr>
<tr>
<td>53 475 €</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elinkaarikustannukset yhteensä</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rak. kust.</td>
</tr>
<tr>
<td>Yläpinto</td>
</tr>
<tr>
<td>Korjaus</td>
</tr>
<tr>
<td>42 2097 €</td>
</tr>
</tbody>
</table>